BIOMETRIC DEVICE AND METHOD THEREOF AND WEARABLE CARRIER
A biometric device includes a substrate, an image sensor, an optical layer and at least one infrared light emitting diode (IR LED). The image sensor is disposed on the substrate. The optical layer is disposed on the image sensor and includes a diffraction pattern. The IR LED is disposed on the diffraction pattern of the optical layer. The optical layer is located between the IR LED and the image sensor.
Latest Industrial Technology Research Institute Patents:
This application claims the priority benefits of U.S. provisional application Ser. No. 62/198,645, filed on Jul. 29, 2015 and Taiwan application serial no. 105120683, filed on Jun. 30, 2016. The entirety of each of the above-mentioned patent applications is hereby incorporated by reference herein and made a part of this specification.
BACKGROUND OF THE DISCLOSUREField of the Disclosure
The disclosure relates to a recognition device and a method thereof, and particularly relates to a biometric device and a method thereof and a wearable carrier using the biometric device.
Description of Related Art
Biometrics plays a more and more important role in today's society, where types of the biometrics mainly include face recognition, iris recognition, vein recognition, fingerprint recognition, etc.
In terms of a current technique, solution for identity (ID) recognition on a smart wearable device is still not developed, and a reason thereof is that the wearable device generally requires a light and thin ID recognition system. Moreover, taking finger, palm vein recognition as an example, a vein image is generally captured first, and regarding the current technique, a data amount of the image is relatively large, a processing speed thereof is very slow, and power consumption of the whole image capturing operation is relatively large, which is not suitable for ID recognition of the smart wearable device. Therefore, how to design a biometric device with low power consumption, thinned modules and a fast processing speed has become an important technical challenge in design of the biometric device.
SUMMARY OF THE DISCLOSUREThe disclosure is directed to a biometric device, which adopts an optical layer to achieve a thinning effect.
The disclosure is directed to a biometric method, which is adapted to sequentially light infrared light emitting diodes to decrease a data amount and increase a processing speed.
The disclosure is directed to a wearable carrier, which has the aforementioned biometric device.
The disclosure provides a biometric device, which is adapted to recognize a biological characteristic of a region of a biological body. The biometric device includes a substrate, an image sensor, an optical layer and at least one infrared light emitting diode (IR LED). The image sensor is disposed on the substrate. The optical layer is disposed on the image sensor and includes a diffraction pattern. The IR LED is disposed on the diffraction pattern of the optical layer, where and the optical layer is located between the IR LED and the image sensor.
The disclosure provides a biometric device, which is adapted to recognize a biological characteristic of a region of a biological body. The biometric device includes a substrate, an image sensor, a plurality of infrared light emitting diodes (IR LEDs) and an optical layer. The image sensor is disposed on the substrate and includes a plurality of photosensing units. The IR LEDs are disposed on the substrate, where the IR LEDs and the photosensing units are arranged in interleaving. The optical layer includes a plurality of lens portions, where the lens portions are aligned to a part of the photosensing units, an orthogonal projection of each of the lens portions on the substrate is overlapped with an orthogonal projection of the corresponding photosensing unit on the substrate.
The disclosure provides a wearable carrier, which is adapted to be worn on a user. The wearable carrier includes a display unit, a strip unit and a biometric device. The strip unit is connected to the display unit at a first edge and a second edge opposite to each other. The biometric device is disposed on the display unit or the strip unit for recognizing a biological characteristic of a region of a biological body. The biometric device includes a substrate, an image sensor, an optical layer and at least one infrared light emitting diode (IR LED). The image sensor is disposed on the substrate. The optical layer is disposed on the image sensor and includes a diffraction pattern. The IR LED is disposed on the diffraction pattern of the optical layer, where the IR LED is located between the region of the biological body and the image sensor, and the optical layer is located between the IR LED and the image sensor.
The disclosure provides a wearable carrier, which is adapted to be worn on a user. The wearable carrier includes a display unit, a strip unit and a biometric device. The strip unit is connected to the display unit at a first edge and a second edge opposite to each other. The biometric device is disposed on the display unit or the strip unit for recognizing a biological characteristic of a region of a biological body. The biometric device includes a substrate, an image sensor, a plurality of infrared light emitting diodes (IR LEDs) and an optical layer. The image sensor is disposed on the substrate and includes a plurality of photosensing units. The IR LEDs are disposed on the substrate, where the IR LEDs and the photosensing units are arranged in interleaving. The optical layer includes a plurality of lens portions, where the lens portions are aligned to a part of the photosensing units, an orthogonal projection of each of the lens portions on the substrate is overlapped with an orthogonal projection of the corresponding photosensing unit on the substrate, and the lens portion is located between the region of the biological body and the corresponding photosensing unit.
The disclosure provides a biometric method including following steps. A characteristic image data is received. A region of a biological body is coupled to a biometric device, where the biometric device includes a plurality of photosensing units and a plurality of infrared light emitting diodes (IR LEDs), and the photosensing units are disposed corresponding to the IR LEDs, and each of the IR LEDs is adapted to emit a light to the region of the biological body. At least a part of the IR LEDs is sequentially lighted and the corresponding photosensing units are sequentially turned on, and the corresponding photosensing units receive the lights scattered by the region to respectively generate a recognition sensing image. The recognition sensing image is compared with the characteristic image data, and a recognition result is output according to a comparison result.
According to the above description, since the biometric device of an embodiment of the disclosure adopts the design of the optical layer to replace the conventional optical module with a large volume, the biometric device of the disclosure has an advantage of thinning tendency. Moreover, in the biometric device of another embodiment of the disclosure, the optical layer thereof has the lens portion, such that the biometric device may provide a planar light source to decrease intensity and power consumption of the IR LEDs may in subsequent recognition illumination. In addition, since the biometric method of the disclosure adopts a method of sequentially lighting the IR LEDs, the amount of data processed by the image sensor is decreased, such that an image processing speed is accelerated to quickly obtain a recognition result.
In order to make the aforementioned and other features and advantages of the disclosure comprehensible, several exemplary embodiments accompanied with figures are described in detail below.
The accompanying drawings are included to provide a further understanding of the disclosure, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the disclosure and, together with the description, serve to explain the principles of the disclosure.
In detail, the image sensor 120a includes a plurality of photosensing units 122a, where the photosensing units 122a are arranged in an array. The optical layer 130a further includes a transparent substrate 134a, and the diffraction pattern 132a is disposed on the transparent substrate 134a to define a plurality of slits S. As shown in
Since the diffraction pattern 132a is an opaque pattern and is disposed on the transparent substrate 134a, the slits S are defined on the transparent substrate 134a (i.e. the region without the diffraction pattern 132a). The IR LEDs 140a are disposed on the diffraction pattern 132a, i.e. a light L emitted by the IR LED 140a does not enter the optical layer 130a from the position where the IR LED 140a is located, but is incident to the region 12 of the biological body 10, and is scattered by the region 12 of the biological body 10 to form a scattered light LS, and the scattered light LS enters the optical layer 130a. Then, the scattered light LS passes through the slits S to produce a diffraction effect for imaging, and the image sensor 120a receives the scattered light LS, and obtains a recognition result after image processing and image analysis and comparison.
Since the optical layer 130a of the present embodiment is embodied as a single layer type optical layer, compared to the conventional optical module consisting of multilayer of lenses, the optical layer 130a of the present embodiment may have a thinner volume. Therefore, the biometric device 100a of the present embodiment adopts the optical layer 130a to replace the conventional large-volume optical modules, by which the whole volume and thickness can be greatly decreased to cope with a thinning tendency.
It should be noticed that reference numbers of the components and a part of contents of the aforementioned embodiment are also used in the following embodiment, wherein the same reference numbers denote the same or like components, and descriptions of the same technical contents are omitted. The aforementioned embodiment can be referred for descriptions of the omitted parts, and detailed descriptions thereof are not repeated in the following embodiment.
As shown in
To be specific, the photosensing units 122c of the present embodiment and the IR LEDs 140c are, for example, (but not limited to be) located on a same horizontal plane. Moreover, in the present embodiment, a height of the photosensing unit 122c is, for example, greater than a height of the IR LED 140c, though the disclosure is not limited thereto.
As shown in
Since the optical layer 130c of the present embodiment is embodied as a single layer type optical layer, compared to the conventional optical module consisting of multilayer of lenses, the optical layer 130a of the present embodiment may have a thinner volume. Therefore, the whole volume and thickness can be greatly decreased to cope with the thinning tendency. Moreover, in the present embodiment, the IR LEDs are arranged in an array to provide a planar light source. In this way, the intensity and power consumption of the IR LEDs 140 can be effectively decreased in subsequent recognition illumination.
Certainly, in other embodiments, different structure designs can be adopted to prevent the lateral light of the IR LED 140d from entering the photosensing unit 122d. Referring to
In detail, the display unit 210 of the present embodiment may, for example, display time information, where the display unit 210 has a first edge 210a and a second edge 210b opposite to each other and a display surface 212 and a back surface 214 opposite to each other. The strip unit 220 is connected to the first edge 210a and the second edge 210b of the display unit 210, and is adapted to be fixed on a wrist of the user, though the disclosure is not limited thereto. The biometric device 100a (or the biometric devices 100b˜100h) can be configured on the display surface 212 of the display unit 210. Certainly, in other embodiments that are not shown, the biometric device 100a (or the biometric devices 100b˜100h) can also be disposed on the back surface 214 of the display unit 210, or on an outer surface 222 of the strip unit 220, or on an inner surface 224 of the strip unit 220.
Since the biometric device 100a (or the biometric devices 100b-100h) adopts the optical layer 130a (or 130b, 130c, 130f, 130g) to replace the conventional optical module consisting of multilayer of lenses, the surface of the optical layer is similar to a planar optical layer, such that the biometric device 100a (or the biometric devices 100b-100h) of the present embodiment have an advantage of thinning tendency. When the biometric device 100a (or the biometric devices 100b˜100h) is integrated with the wearable device to form a wearable carrier 200, besides that the wearable carrier 200 has the original functions (for example, a time display function), it also has a biometric function, which satisfies user's appeal for multi-function on products.
Then, referring to
Then, referring to
Then referring to
In detail, a method for sequentially lighting the IR LEDs 140a is, for example, to only light a single IR LED 140a at each time point, i.e. when one of the IR LEDs 140a is lighted, the other IR LEDs 140a are all turned off, though the disclosure is not limited thereto.
Finally, referring to
Certainly, the biometric device 100a adopted in the aforementioned biometric method is only an example, and those skilled in the art may select to use the biometric devices 100b˜100h of the aforementioned embodiments according to an actual requirement. If the biometric device 100c of
According to actual requirements, technicians of the field may add other types of sensing elements in the biometric devices 100b˜100h of the aforementioned embodiments, such that the functions of the biometric devices can be more comprehensive and diversified. The added sensing elements are, for example, used for sensing the biological body, sensing an environment in which the biological body is located or providing other sensing functions, which is not limited by the disclosure.
In summary, since the biometric device of the embodiment of the disclosure adopts the design of the optical layer to replace the conventional optical module with a large volume, and the surface of the optical layer is similar to a planar optical layer, the biometric device of the disclosure has an advantage of thinning tendency. Moreover, in the biometric device of another embodiment of the disclosure, the optical layer thereof has the lens portion, such that the biometric device may provide a planar light source to decrease intensity and power consumption of the IR LEDs required in subsequent recognition illumination. In addition, since the biometric method of the disclosure adopts a method of sequentially lighting the IR LEDs, the amount of data processed by the image sensor is decreased, such that an image processing speed is accelerated to quickly obtain a recognition result.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the disclosure without departing from the scope or spirit of the disclosure. In view of the foregoing, it is intended that the disclosure cover modifications and variations of this disclosure provided they fall within the scope of the following claims and their equivalents.
Claims
1. A biometric device, comprising:
- a substrate;
- an image sensor, disposed on the substrate;
- an optical layer, disposed on the image sensor, and comprising a diffraction pattern; and
- at least one infrared light emitting diode, disposed on the diffraction pattern of the optical layer, wherein the optical layer is located between the infrared light emitting diode and the image sensor.
2. The biometric device as claimed in claim 1, wherein the image sensor comprises a plurality of photosensing units, and the photosensing units are arranged in an array.
3. The biometric device as claimed in claim 1, wherein the optical layer further comprises a transparent substrate, and the diffraction pattern is disposed on the transparent substrate to define a plurality of slits.
4. The biometric device as claimed in claim 1, wherein the biometric device is adapted to recognize a biological characteristic of a region of a biological body, and the infrared light emitting diode is located between the region of the biological body and the image sensor.
5. The biometric device as claimed in claim 1, wherein the optical layer further comprises a first silicon oxide layer, a silicon nitride layer and a second silicon oxide layer, the silicon nitride layer is located between the first silicon oxide layer and the second silicon oxide layer, and the diffraction pattern is located on an upper surface of the first silicon oxide layer, and the second silicon oxide layer is located between the silicon nitride layer and the image sensor.
6. The biometric device as claimed in claim 5, wherein the optical layer further comprises a metal layer and at least one conductive through hole, the metal layer is disposed on the upper surface of the first silicon oxide layer and covers a part of the diffraction pattern, and the conductive through hole is electrically connected between the metal layer and the image sensor, and the infrared light emitting diode is electrically connected to the image sensor through the metal layer and the conductive through hole.
7. A biometric device, comprises:
- a substrate;
- an image sensor, disposed on the substrate, and comprising a plurality of photosensing units;
- a plurality of infrared light emitting diodes, disposed on the substrate, wherein the infrared light emitting diodes and the photosensing units are arranged in interleaving; and
- an optical layer, comprising a plurality of lens portions, wherein the lens portions are aligned to a part of the photosensing units, an orthogonal projection of each of the lens portions on the substrate is overlapped with an orthogonal projection of the corresponding photosensing unit on the substrate.
8. The biometric device as claimed in claim 7, wherein the photosensing units and the infrared light emitting diodes are located on a same horizontal plane.
9. The biometric device as claimed in claim 7, wherein the optical layer further comprises a transparent panel portion, the transparent panel portion is disposed on the substrate and covers the infrared light emitting diodes and the photosensing units, and the lens portions are located on a top surface of the transparent panel portion.
10. The biometric device as claimed in claim 7, wherein each of the infrared light emitting diodes has a first upper surface, and each of the photosensing units has a second upper surface, and the first upper surface is lower than the second upper surface.
11. The biometric device as claimed in claim 7, wherein each of the infrared light emitting diodes has a first upper surface, and each of the photosensing units has a second upper surface, and the first upper surface is higher than the second upper surface.
12. The biometric device as claimed in claim 11, further comprising:
- a plurality of wall structures, disposed on the substrate and surrounding each of the infrared light emitting diodes, wherein each of the wall structures has a third upper surface, and the third upper surface is higher than the first upper surface.
13. The biometric device as claimed in claim 11, wherein a surrounding surface of each of the infrared light emitting diodes has a reflective material layer, and reflectivity of the reflective material layer is greater than 70%.
14. The biometric device as claimed in claim 7, wherein the optical layer further comprises a transparent panel portion, the transparent panel portion is disposed on the infrared light emitting diodes, and the transparent panel portion, the infrared light emitting diodes and the image sensor define a plurality of air gaps, and the lens portions are located on a top surface of the transparent panel portion.
15. The biometric device as claimed in claim 7, wherein the biometric device is adapted to recognize a biological characteristic of a region of a biological body, and the lens portions are located between the region of the biological body and the corresponding photosensing units.
16. A wearable carrier, adapted to be worn on a user, the wearable carrier comprises:
- a display unit;
- a strip unit, connected to the display unit at a first edge and a second edge opposite to each other; and
- a biometric device as claimed in claim 1, disposed on the display unit or the strip unit for recognizing a biological characteristic of a region of a biological body.
17. The wearable carrier as claimed in claim 16, wherein the biometric device is located on a display surface of the display unit, a back surface of the display unit opposite to the display surface, an outer surface of the strip unit or an inner surface of the strip unit opposite to the outer surface.
18. A wearable carrier, adapted to be worn on a user, the wearable carrier comprising:
- a display unit;
- a strip unit, connected to the display unit at a first edge and a second edge opposite to each other; and
- the biometric device as claimed in claim 7, disposed on the display unit or the strip unit for recognizing a biological characteristic of a region of a biological body.
19. The wearable carrier as claimed in claim 18, wherein the biometric device is located on a display surface of the display unit, a back surface of the display unit opposite to the display surface, an outer surface of the strip unit or an inner surface of the strip unit opposite to the outer surface.
20. A biometric method, comprising:
- receiving a characteristic image data;
- coupling a region of a biological body to a biometric device, wherein the biometric device comprises a plurality of photosensing units and a plurality of infrared light emitting diodes, and the photosensing units are disposed corresponding to the infrared light emitting diodes, and each of the infrared light emitting diodes is adapted to emit a light to the region of the biological body;
- sequentially lighting at least a part of the infrared light emitting diodes and sequentially turning on the corresponding photosensing units, and making the corresponding photosensing units to receive the lights scattered by the region to respectively generate a recognition sensing image; and
- comparing the recognition sensing image with the characteristic image data, and outputting a recognition result according to a comparison result.
21. The biometric method as claimed in claim 20, wherein the corresponding photosensing units are turned on at the same time while, before or after at least a part of the infrared light emitting diodes are sequentially lighted.
22. The biometric method as claimed in claim 20, wherein the characteristic image data is a vein image database.
23. The biometric method as claimed in claim 20, wherein the biometric device further comprises a substrate and an optical layer, the optical layer comprises a diffraction pattern, the infrared light emitting diodes are disposed on the diffraction pattern of the optical layer, and the infrared light emitting diodes are located between the region of the biological body and the photosensing units, and the optical layer is located between the infrared light emitting diodes and the photosensing unit.
24. The biometric method as claimed in claim 20, wherein the biometric device further comprises a substrate and an optical layer, the infrared light emitting diodes are disposed on the substrate, and the infrared light emitting diodes and the photosensing units are arranged in interleaving, the optical layer comprises a plurality of lens portions, the lens portions are aligned to a part of the photosensing units, an orthogonal projection of each of the lens portions on the substrate is overlapped with an orthogonal projection of the corresponding photosensing unit on the substrate, and the lens portions are located between the region of the biological body and the corresponding photosensing units.
25. The biometric method as claimed in claim 20, wherein the region of the biological body comprises a vein.
Type: Application
Filed: Jul 28, 2016
Publication Date: Feb 2, 2017
Applicant: Industrial Technology Research Institute (Hsinchu)
Inventors: Chia-Hsin Chao (Hsinchu County), Yen-Hsiang Fang (New Taipei City), Ming-Hsien Wu (Tainan City)
Application Number: 15/221,615