METHOD TO GENERATE AND DISPERSE NANOSTRUCTURES IN A COMPOSITE MATERIAL

A method of making a nanostructure-reinforced composite comprises providing matrix particles in a reactor; fluidizing the matrix particles; introducing a nanostructure material into the reactor; homogeneously dispersing the nanostructure material; uniformly depositing the nanostructure material on the matrix particles to form a composite powder; generating a nanostructure on the matrix particles from the nanostructure material; and processing the composite powder to form the nanostructure-reinforced composite having a matrix formed from the matrix particles. The nanostructures are evenly distributed in the matrix of the nanostructure-reinforced composite.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional application of U.S. Ser. No. 13/224,443, filed Sep. 2, 2011, the contents of which are incorporated by reference herein in their entirety.

BACKGROUND

Dispersal of reinforcing nanostructures in a matrix material to form a composite material is an emerging technology. Potential improvements in the material properties and performance of the composite material over the matrix material due to addition of reinforcing nanostructures offer an attractive route to robust articles used in downhole industries including oil and natural gas, CO2 sequestration, etc.

To achieve enhanced mechanical properties offered by addition of reinforcing nanostructures, substantially even dispersal of the reinforcing nanostructures within the composite material is required. However, full and even dispersion of nanostructures with high wettability in a matrix material is often difficult and expensive. Moreover, clustering and non-uniform dispersion of reinforcing nanostructures causes variation in mechanical properties of the resulting composite material, which can produce regions of weakness and anisotropic character in properties such as elasticity, strength, thermal conductivity, and thermal expansion coefficient.

There accordingly remains a need for evenly dispersing nanostructures within a matrix material and formation of a composite material therefrom.

SUMMARY

In an embodiment, a method of making a composite powder is disclosed. The method comprises providing matrix particles in a reactor; fluidizing the matrix particles; introducing a nanostructure material into the reactor; homogeneously dispersing the nanostructure material; and uniformly depositing the nanostructure material on the matrix particles to form the composite powder.

In another embodiment, a method of making a nanostructure-reinforced composite comprises providing matrix particles in a reactor; fluidizing the matrix particles; introducing a nanostructure material into the reactor; homogeneously dispersing the nanostructure material; uniformly depositing the nanostructure material on the matrix particles to form a composite powder; generating a nanostructure on the matrix particles from the nanostructure material; and processing the composite powder to form the nanostructure-reinforced composite having a matrix formed from the matrix particles, wherein the nanostructures are evenly distributed in the matrix of the nanostructure-reinforced composite.

BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings, wherein like elements are numbered alike in the several Figures:

FIG. 1 shows a scanning electron microscope image of matrix particles without a nanostructure material coating.

FIGS. 2A and 2B show scanning electron microscope images of matrix particles with a nanostructure material coating.

DETAILED DESCRIPTION

Disclosed herein is a method to generate and disperse nanostructures in a matrix material useful for production of a nanostructure-reinforced composite. The homogeneous dispersion of nanostructures within the matrix material provides enhanced material properties as compared with the native matrix material alone. Because of the mechanical strength and associated properties of nanostructures, small amounts of nanostructures disposed in the matrix are sufficient to provide enhanced durability and wear resistance in the nanostructure-reinforced composite. Furthermore, the inventors have found that the homogeneity of the dispersion of the nanostructures within the matrix formed in the method disclosed herein leads to a surprisingly strong and resilient nanostructure-reinforced composite.

The nanostructure-reinforced composite includes a matrix with nanostructures dispersed with a high degree of homogeneity throughout the matrix. In order to obtain homogeneous dispersion of the nanostructures, matrix particles are combined with a nanostructure material that respectively form the matrix and nanostructures in the nanostructure-reinforced composite.

In an embodiment, matrix particles are provided in a reactor and fluidized therein. Nanostructure material is also introduced into the reactor. Due to the relative motion of the matrix particles and the nanostructure material, the nanostructure material is homogeneously dispersed among the matrix particles. The matrix particles and nanostructure material contact each other, and the nanostructure material deposits on the matrix particles. That is, the nanostructure material adsorbs onto the surface of the matrix particles. The adsorption can be, for example, physisorption or chemisorption. Further, the nanostructure material is uniformly deposited on the matrix particles to form a composite powder.

In an embodiment, the composite powder is removed from the reactor and further processed to form a nanostructure-reinforced composite having a matrix formed from the matrix particles. In the nanostructure-reinforced composite, nanostructures are evenly distributed in the matrix. The nanostructures are generated on the matrix particles either in the reactor or during processing of the composite powder.

In an embodiment, the nanostructures on the surface of the matrix particles are generated from the nanostructure material. Although details of the nanostructure material are given below, in brief, the nanostructure material is either a nanostructure or a material that can form a nanostructure. Therefore, in an embodiment, the nanostructure material is a precursor to a nanostructure, and the nanostructure material either transforms (physically or chemically) into a nanostructure as it deposits or after being deposited on the matrix particles. Alternatively, the nanostructure material is introduced into the reactor as a nanostructure so that nanostructures are deposited on the matrix particles without affecting a physical or chemical transformation of the nanostructure material into a nano structure.

The superior mechanical properties of the nanostructure-reinforced composite depend on the homogeneous dispersion of the nanostructures in the matrix. To afford these properties, in an embodiment, the nanostructure material is homogeneously dispersed in the reactor with the matrix particles prior to processing the composite powder. In an embodiment, the reactor is a fluidized bed reactor. Particularly, the matrix particles are provided to the fluidized bed reactor prior to the introduction of the nanostructure material. In this case, the matrix particles are fluidized by the passage of a fluid through the fluidized bed reactor. Then, the nanostructure material is introduced into the fluidized bed reactor. In another embodiment, the nanostructure material is included in the fluid. In an alternative embodiment, the nanostructure material is introduced into the fluidized bed reactor either before or simultaneously with the matrix particles.

Due to the fluid-like behavior of the solid matrix particles in the fluidized bed reactor, the matrix particles completely mix with the nanostructure material, eliminating radial and axial concentration gradients in the reactor and allowing for contact of the nanostructure material and matrix particles. As a result of the mixing efficiency of the fluidized bed reactor, the nanostructure material is homogeneously dispersed with the matrix particles and uniformly deposited onto the matrix particles. In an embodiment, the nanostructure material can be introduced into the fluidized bed reactor and deposited onto the matrix particles by a physical or chemical process such as physical vapor deposition or chemical vapor deposition.

The amount of the matrix particles and the nanostructure material in the reactor can be determined based on the desired property of the nanostructure-reinforced composite. In an embodiment, the ratio of the weight of the nanostructure material to the weight of the matrix particles is about 1:500,000 to about 1:1, more specifically 1:100,000, even more specifically about 1:1000, and yet even more specifically 1:10. According to another embodiment, the amount of the nanostructure material on the matrix particles is about 0.001 wt. % to about 50 wt. %, particularly about 0.01 wt. % to about 10 wt. %, and more particularly about 0.01 wt % to about 1 wt. %, based on the weight of the composite powder.

The reaction time in the reactor can vary from about 5 minutes to about 1 week, more specifically about 30 minutes to 12 hours, and even more specifically about 0.5 hour to about 6 hours. In an embodiment, the pressure and temperature is each set to a value effective for disposal of the nanostructure material on the matrix particles and depends on the chemical makeup of the matrix particles. The temperature can be about 20° C. to about 450° C. In an embodiment, the environmental parameters (for example, chemical, temperature, pressure, and the like) inside the reactor allow for deposition of the nanostructure material while maintaining the integrity and composition of the matrix particles. The fluid used in the reactor can be, for example, a gas, liquid, or a combination thereof.

According to an embodiment, the matrix particles can be coated with one or more layers of nanostructure material. Further, in the case of a multilayer coating of nanostructure material on the matrix particles, the layers can have different compositions from each other. In an embodiment, the matrix particle is coated with three layers formed by introducing the matrix particles into the reactor followed by entraining a first nanostructure material in a carrier gas, dispersing the first nanostructure material, and coating the first nanostructure material on the matrix particles to form a first layer. Subsequently, a second nanostructure material is introduced into the reactor by entraining it in a carrier gas, dispersing the second nanostructure material, and disposing the second nanostructure material on the first layer to form a second layer. Then, a third nanostructure material is introduced into the reactor by entraining it in a carrier gas, dispersing the third nanostructure material, and disposing the third nanostructure material on the second layer to form a third layer.

The thickness of the nanostructure material coating on the matrix particles can be about 30 nanometers (nm) to about 5000 nm. Moreover, for a multilayer coating of nanostructure material on the matrix particles, each layer may have a thickness of about 30 nm to about 1000 nm.

The carrier gas can be inert with respect to reactivity inside the reactor, for example, nitrogen, argon, and the like. Alternatively, the carrier gas can be an oxidizing or oxide forming gas, such as oxygen. As a further alternative, the carrier gas can be a gas mixture of the foregoing gases.

In an embodiment, the nanostructure material is a solid, liquid, or gas. The introduction of the nanostructure material into the reactor can be via flow of carrier gas or any other means known in the art.

Depending on the composition of the matrix particles (which are described more fully below), processing the composite powder includes physical and/or chemical processing of the composite powder. Processing the composite powder forms the matrix from the matrix particles. Further, nanostructures can be formed from the nanostructure material on the surface of the matrix particles during processing the composite powder, particularly when the nanostructures were not formed in the reactor.

An example of processing includes mechanical deformation of the composite powder such as by mechanical alloying. Mechanical alloying can be performed by repeated physical impact on the composite powder. In an embodiment, the composite powder is transferred from the reactor to a ball mill so that balls (for example, metallic or ceramic balls) mechanically impact the composite powder. In particular, mechanical alloying can be performed using a vibratory ball mill, rotary ball mill, planetary ball mill, or attrition mill, but is not limited thereto. It will be understood that the nanostructure material is homogeneously dispersed and disposed on the matrix particles in the reactor prior to processing by mechanical deformation such as mechanical alloying. Due to the strength of the nanostructures on the matrix particles, the nanostructures incur substantially no damage during mechanical alloying. In a further embodiment, nanostructures are generated from the nanostructure material during mechanical alloying. Also, as a result of processing metals or ceramics in particular (in the matrix particles, nanostructure materials, or both), fine grain structures and grain boundaries can form. The composition and phases of the grain structures is determined by the temperature and pressure used during processing.

During mechanical alloying, the matrix particles can fragment into smaller particles. However, the nanostructure material remains fully dispersed such that the nanostructure material does not agglomerate or cluster. That is, mechanical alloying does not reduce the high degree of dispersion of the nanostructure material.

In an embodiment, the temperature during ball milling is regulated from about cryogenic temperatures (for example, 77 K) to about ambient temperature (about 300 K). According to an embodiment, for matrix particles containing polymer material, ball milling can be performed at about the temperature of liquid nitrogen in a process such as cryomilling.

In an embodiment, additional nanostructure material (including nanostructures) is added to the composite powder during mechanical alloying. Furthermore, the milling rate (for example, the angular frequency of the rotary ball mill) can be controlled to vary the force and amount of impacts of the composite powder with balls in the mill. In this way, deformation of the composite powder and physical and chemical changes to the composite powder can be regulated.

Depending on the chemical composition of the matrix (for example, a matrix formed from polymeric, metallic, or ceramic matrix particles), further processing can follow the mechanical alloying. After the mechanical alloying, the composite powder can be placed in a mold and sintered to form the nanostructure-reinforced composite. The term “sintering” as used herein means densification of a particulate component (for example, the matrix particles) involving removal of at least a portion of the pores between the particles combined with coalescence and bonding between adjacent matrix particles.

Alternatively, spark plasma sintering can be performed by placing the mechanically alloyed composite powder in a mold, establishing a vacuum in a chamber containing the mold using a vacuum pump, introducing gas (for example, argon, hydrogen, or oxygen, and the like) into the chamber to apply pressure to the mold, and treating the composite powder with plasma in a plasma zone formed in the central portion of the mold. Since the spark plasma sintering rapidly sinters, the nanostructure-reinforced composite having high mechanical strength can be prepared.

For spark plasma sintering, if the pressure in the chamber is too high or too low during the plasma process, it is difficult to generate plasma or perform a plasma treatment. Thus, the pressure in the chamber can be from about 50 megapascals (MPa) to about 100 MPa, particularly about 60 MPa to about 90 MPa. Additionally, if the plasma treatment time is too short or the heating rate is too low, it is difficult to sufficiently perform the plasma treatment. Therefore, the plasma treatment can be performed at a temperature of about 150° C. to about 700° C. and at a heating rate of about 25° C. per minute (° C./min) to about 75° C./min for about 1 minute to about 30 minutes.

According to another embodiment, the composite powder is subjected to hot isostatic pressing or cold isostatic pressing. In another embodiment, particularly when the matrix particles include a polymer, the composite powder is molded and optionally cured. In a further embodiment, the composite powder is extruded.

Processing the composite powder results in the formation of the nanostructure-reinforced composite whereby the matrix particles form the matrix, and nanostructures are uniformly dispersed throughout the matrix. It will be appreciated that, in processing the composite powder, the matrix and nanostructures form a monolith with substantially all of the matrix particles being integrated into the matrix. In addition, any of the foregoing processing methods of the composite powder may be used in combination.

The nanostructure-reinforced composite is useful for preparing elements for applications in oil and natural gas industries. Exemplary elements include a packer element, a blow out preventer element, a submersible pump motor protector bag, a sensor protector, a sucker rod, a production tubing, an O-ring, a T-ring, a gasket, a sucker rod seal, a pump shaft seal, a tube seal, a valve seal, a seal for an electrical component, an insulator for an electrical component, a seal for a drilling motor, a seal for a drilling bit, a plug, a valve, a connector, a filter, a latch, or other downhole elements.

The matrix particles are mechanically deformable and/or pulverizable and have an initial average particle size from about 0.1 μm to about 500 μm, in an embodiment 0.5 μm to about 250 μm. The shape of the matrix particles may be regular or irregular. In an embodiment, the matrix particles may be, for example, spherical or oblong. The matrix particles can be any material that allows for deposition of the nanostructure material and formation of nanostructures on the surface of the matrix particles. In an embodiment, the matrix particles are a metal, metal oxide, metal carbide, polymer, ceramic, plastic, glass, graphene, graphite, or a combination thereof.

Metals include, for example, magnesium, aluminum, titanium, manganese, iron, cobalt, nickel, copper, molybdenum, tungsten, palladium, chromium, ruthenium, gold, silver, zinc, zirconium, vanadium, silicon, or a combination thereof, including alloys thereof. Particularly, the metal can be an aluminum-based alloy, magnesium-based alloy, tungsten-based alloy, cobalt-based alloy, iron-based alloy, nickel-based alloy, cobalt and nickel-based alloy, iron and nickel-based alloy, iron and cobalt-based alloy, copper-based alloy, and titanium-based alloy. As used herein, the term “metal-based alloy” means a metal alloy wherein the weight percentage of the specified metal in the alloy is greater than the weight percentage of any other component of the alloy, based on the total weight of the alloy. Exemplary metal alloys include MgZrZn, MgAlZn, AlCuZnMn, and AlMgnSiMn.

Further, the metal oxides and metal carbides include the metals listed above. Exemplary metal oxides and metal carbides include aluminum oxide (Al2O3), magnesium oxide, and tungsten carbide,

The polymer can be a homopolymer or copolymer and can be linear or branched. Further the copolymer can be a random copolymer, alternating copolymer, block copolymer, or graft copolymer. In an embodiment, the polymer is a polyphenylene, polyacetylene, polypyrrole, polythiophene, polyester, polyethylene, polyacrylate, polypropylene, polyamide, polyimide, polybenzoxazole, poly(amino acid), epoxy, polystyrene, polybutadiene, polycarbonate, substituted derivative thereof, or copolymer thereof. Exemplary polymers include polyacrylic acid, polyacrylonitrile, poly(methyl methacrylate), polyethylene propylene, polyisopropene, polyphenylene, polyphenylene sulfide, and polyetherketone.

The ceramic is not particularly limited and can be selected depending on the particular application of the nanostructure-reinforced composite. Examples of the ceramic include an oxide-based ceramic, nitride-based ceramic, carbide-based ceramic, boride-based ceramic, silicide-based ceramic, or a combination thereof. In an embodiment the oxide-based ceramic is silica (SiO2) or titania (TiO2). The oxide-based ceramic, nitride-based ceramic, carbide-based ceramic, boride-based ceramic, or silicide-based ceramic can contain a nonmetal such as oxygen, nitrogen, boron, carbon, or silicon; a metal such as aluminum, lead, or bismuth; a transition metal such as niobium, tungsten, titanium, zirconium, hafnium, or yttrium; an alkali metal such as lithium or potassium; an alkaline earth metal such as calcium, magnesium, or strontium; a rare earth such as lanthanum or cerium; and a halogen such as fluorine or chlorine.

The nanostructure material is a nanostructure or a nanostructure precursor, which can form a nanostructure on the surface of the matrix particles. Adjusting the temperature and pressure of the reactor in relation to chemical and physical properties of the matrix particles and nanostructure material allows for generation of nanostructures on the surface of the matrix particles.

Nanostructures are generally particles having an average particle size, in at least one dimension, of less than one micrometer (μm). As used herein “average particle size” refers to the number average particle size based on the largest linear dimension of the nanostructure (sometimes referred to as “diameter”). Particle size, including average, maximum, and minimum particle sizes, can be determined by an appropriate method of sizing particles such as, for example, static or dynamic light scattering (SLS or DLS) using a laser light source. Nanostructures include both particles having an average particle size of 250 nanometers (nm) or less, and particles having an average particle size of greater than 250 nm to less than 1 μm (sometimes referred in the art as “sub-micron sized” particles). In an embodiment, a nanostructure has an average particle size of about 0.01 to about 500 nm, in another embodiment, 0.05 to 250 nm, in another embodiment, about 0.1 to about 150 nm, and in another embodiment about 1 to about 75 nm. The nanostructures are monodisperse, where all particles are of the same size with little variation, or polydisperse, where the particles have a range of sizes and are averaged. Generally, polydisperse nanostructures are used. In another embodiment, nanostructures of different average particle sizes are used, and in this way, the particle size distribution of the nanostructures is unimodal (exhibiting a single distribution), bimodal exhibiting two distributions, or multi-modal, exhibiting more than one particle size distribution.

The minimum particle size for the smallest 5% of the nanostructures is less than 0.05 nm, in an embodiment less than or equal to 0.02 nm, and in another embodiment less than or equal to 0.01 nm. Similarly, the maximum particle size for 95% of the nanostructures is greater than or equal to 900 nm, in an embodiment greater than or equal to 750 nm, and in another embodiment greater than or equal to 500 nm.

The nanostructures have a high surface area of greater than 180 m2/g, in an embodiment, 300 m2/g to 1800 m2/g, and in another embodiment 500 m2/g to 1500 m2/g.

Examples of the nanostructure material includes nanoparticles, nanotubes, fullerenes, nanowires, nanodots, nanorods, sheets, graphene including nanographene and graphene fiber, nanographite, C1-C4 alkane, C1-C4 alkene, C1-C4 alkyne, benzene, metal, metal oxide, nanodiamonds, polysilsesquioxanes, inorganic nanoparticles including silica nanoparticles, nanoclays, metal nanoparticles, or combinations comprising at least one of the foregoing.

In an embodiment, the nanostructure material is a nanostructure precursor such as a carbon-containing gas or liquid. The gas or liquid deposits on the matrix particle and forms a nanostructure under reactive conditions. Examples of the gas or liquid are methane, ethane, ethylene, acetylene, propane, butane, butene, butadiene, pentane, pentene, hexanes, cyclohexane, benzene, or a combination thereof.

Fullerenes, as disclosed herein, include any of the known cage-like hollow allotropic forms of carbon possessing a polyhedral structure. Fullerenes include, for example, those having from about 20 to about 100 carbon atoms. For example, C60 is a fullerene having 60 carbon atoms and D5h symmetry and is a commercially available fullerene. Exemplary fullerenes include C30, C32, C34, C38, C40, C42, C44, C46, C48, C50, C52, C60, C70, C76, and the like.

Nanotubes include carbon nanotubes, inorganic nanotubes (e.g., boron nitride nanotubes), metallated nanotubes, or a combination comprising at least one of the foregoing. Nanotubes are tubular fullerene structures having open or closed ends and which are inorganic (e.g., boron nitride) or made entirely or partially of carbon. In an embodiment, carbon and inorganic nanotubes include additional components such as metals or metalloids, which are incorporated into the structure of the nanotube, included as a dopant, form a surface coating, or a combination comprising at least one of the foregoing. Nanotubes, including carbon and inorganic nanotubes, are single walled nanotubes (SWNTs) or multi-walled nanotubes (MWNTs).

Nanographite is a cluster of plate-like sheets of graphite, in which a stacked structure of one or more layers of graphite, which has a plate-like two-dimensional structure of fused hexagonal rings with an extended delocalized π-electron system, are layered and weakly bonded to one another. Nanographite has both micro- and nano-scale dimensions, such as for example an average particle size of 1 to 20 μm, in an embodiment 1 to 15 μm, and an average thickness (smallest) dimension in nano-scale dimensions, and an average thickness of less than 1 μm, in an embodiment less than or equal to 700 nm, and in another embodiment less than or equal to 500 nm.

In an embodiment, the nanostructure is graphene including nanographene and graphene fibers (i.e., graphene particles having an average largest dimension of greater than 1 μm, a second dimension of less than 1 μm, and an aspect ratio of greater than 10, where the graphene particles form an inter-bonded chain). Graphene and nanographene, as disclosed herein, are effectively two-dimensional particles of nominal thickness, having of one, or more than one layers of fused hexagonal rings with an extended delocalized π-electron system; as with nanographite, where more than one graphene layer is present, the layers are weakly bonded to one another through π-π stacking interaction. Graphene in general, and including nanographene (with an average particle size of less than 1 μm), is thus a single sheet or a stack of several sheets having both micro- and nano-scale dimensions. In some embodiments, graphene has an average particle size of 1 to 20 μm, in another embodiment 1 to 15 μm, and an average thickness (smallest) dimension in nano-scale dimensions of less than or equal to 50 nm, in an embodiment less than or equal to 25 nm, and in another embodiment less than or equal to 10 nm. An exemplary graphene has an average particle size of 1 to 5 μm, and in an embodiment 2 to 4 μm. In another embodiment, smaller nanoparticles or sub-micron sized particles as defined above are combined with nanoparticles having an average particle size of greater than or equal to 1 μm. In a specific embodiment, the nanostructure is a derivatized graphene.

Graphene, including nanographene, is prepared by, for example, exfoliation of nanographite or by a synthetic procedure by “unzipping” a nanotube to form a nanographene ribbon, followed by derivatization of the nanographene to prepare nanographene oxide.

Exfoliation to form graphene or nanographene is carried out by exfoliation of a graphite source such as graphite, intercalated graphite, and nanographite. Exemplary exfoliation methods include, but are not limited to, those practiced in the art such as fluorination, acid intercalation, acid intercalation followed by high temperature treatment, and the like, or a combination comprising at least one of the foregoing. Exfoliation of the nanographite provides a nanographene having fewer layers than non-exfoliated nanographite. It will be appreciated that exfoliation of nanographite may provide the nanographene as a single sheet only one molecule thick, or as a layered stack of relatively few sheets. In an embodiment, exfoliated nanographene has fewer than 50 single sheet layers, in an embodiment fewer than 20 single sheet layers, in another embodiment fewer than 10 single sheet layers, and in another embodiment fewer than 5 single sheet layers.

A nanodiamond is a diamond particle having an average particle size of less than 1 μm. Nanodiamonds are from a naturally occurring source, such as a by-product of milling or other processing of natural diamonds, or are synthetic, prepared by any suitable commercial method. Nanodiamonds are used as received, or are sorted and cleaned by various methods to remove contaminants and non-diamond carbon phases present, such as residues of amorphous carbon or graphite.

Polysilsesquioxanes, also referred to as polyorganosilsesquioxanes or polyhedral oligomeric silsesquioxanes (POSS) derivatives are polyorganosilicon oxide compounds of general formula RSiO1.5 (where R is an organic group such as methyl) having defined closed or open cage structures (closo or nido structures). Polysilsesquioxanes, including POSS structures, may be prepared by acid and/or base-catalyzed condensation of functionalized silicon-containing monomers such as tetraalkoxysilanes including tetramethoxysilane and tetraethoxysilane, alkyltrialkoxysilanes such as methyltrimethoxysilane and methyltrimethoxysilane.

Nanoclays are hydrated or anhydrous silicate minerals with a layered structure and include, for example, alumino-silicate clays such as kaolins including hallyosite, smectites including montmorillonite, illite, and the like. Exemplary nanoclays include those marketed under the tradename CLOISITE® marketed by Southern Clay Additives, Inc. Nanoclays are exfoliated to separate individual sheets, or are non-exfoliated, and further, are dehydrated or included as hydrated minerals. Other nano-sized mineral fillers of similar structure are also included such as, for example, talc, micas including muscovite, phlogopite, or phengite, or the like.

Inorganic nanoparticles include a metal or metalloid oxide such as silica, alumina, titania, tungsten oxide, iron oxides, combinations thereof, or the like; a metal or metalloid carbide such as tungsten carbide, silicon carbide, boron carbide, or the like; a metal or metalloid nitride such as titanium nitride, boron nitride, silicon nitride, or the like; or a combination comprising at least one of the foregoing.

Metal nanoparticles include those made from metals such as aluminum, iron, tin, titanium, platinum, palladium, cobalt, nickel, tungsten, zinc, zirconium, silicon, vanadium, alloys thereof, or a combination comprising at least one of the foregoing. In other embodiments, inorganic nanoparticles include those coated with one or more layers of metals such as iron, tin, titanium, platinum, palladium, cobalt, nickel, vanadium, alloys thereof, or a combination comprising at least one of the foregoing.

Nanostructures in general can be derivatized to include a variety of different functional groups such as, for example, carboxy (e.g., carboxylic acid groups), epoxy, ether, ketone, amine, hydroxy, alkoxy, alkyl, aryl, aralkyl, alkaryl, lactone, functionalized polymeric or oligomeric groups, and the like. In an embodiment, the nanoparticle is functionalized to include a hydrophilic functional group including hydroxy, carboxylic acid, amine, lactone, polyethylene glycol, a hydrophilic polymer, ionic groups such as ammonium groups and/or carboxylate salt groups, or a combination comprising at least one of the foregoing. In another embodiment, nanostructures include a combination of derivatized nanostructures and underivatized nanostructures.

As described above, using a fluidized bed reactor to disperse the matrix particles and nanostructure material allows for full and even dispersion of the nanostructure material. Moreover, clustering and non-uniform dispersion of nanostructures in the nanostructure-reinforced composite is substantially diminished. Hence, the resulting composite material has uniform mechanical properties, including elasticity, strength, thermal conductivity, and thermal expansion coefficient.

The above embodiments are further demonstrated in the following example, which is intended as illustrative only and is not intended to be limited thereto.

Coating of Magnesium Matrix Particles. Magnesium granules were placed in a fluidized bed reactor. Triethyl aluminum ((C2H5)3Al) was entrained in a flow of nitrogen carrier gas. The gas mixture was introduced into the fluidized bed reactor. The aluminum was fully dispersed in the reactor among the magnesium granules. The magnesium granules were coated with the aluminum to dispose an aluminum layer on the magnesium granules. Air was then injected into the carrier gas. Oxygen from the air reacted with the aluminum in the carrier gas so that aluminum oxide (Al2O3) entered the reactor. The aluminum oxide was fully dispersed in the reactor among the aluminum coated magnesium granules. The aluminum oxide then coated the aluminum layer on the magnesium granules to dispose an aluminum oxide layer. Subsequently, the air to the gas mixture was terminated so that the gas mixture no longer contained oxygen. Consequently, aluminum was introduced and fully dispersed inside the reactor to dispose a layer of aluminum on the aluminum oxide layer. As a result, the magnesium granules were uniformly coated with three layers in the following order: aluminum, aluminum oxide, and aluminum.

FIG. 1 shows a scanning electron microscope (SEM) image of the magnesium granules before coating. The magnesium particles 101 were mounted in an epoxy substrate 110 and cross-sectioned to obtain the image. It is to be noted that the magnesium granules 101, coated or uncoated, do not contain the epoxy substrate material used solely for the purposes of obtaining the SEM image.

FIGS. 2A and 2B show scanning electron microscope images of the magnesium granules after coating with the layers of nanostructure material as described above. FIG. 2B is an enlarged view of portion A of FIG. 2A. Unlike the magnesium granules 101 shown in FIG. 1, magnesium granules 101 of FIGS. 2A and 2B have a white-colored encapsulation 102, which is the three-layer coating 102 described above. The coating 102 is aluminum/aluminum oxide/aluminum.

The coating 102 was evenly deposited on the magnesium granules 101 with greater than 95% surface coverage of the magnesium granules 101. Subsequent processing of the coated granules by compacting, sintering, or deforming processing created nanostructures from the coating 102.

While one or more embodiments have been shown and described, modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. Accordingly, it is to be understood that the present invention has been described by way of illustrations and not limitation.

All ranges disclosed herein are inclusive of the endpoints, and the endpoints are independently combinable with each other. The suffix “(s)” as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including at least one of that term (e.g., the colorant(s) includes at least one colorants). “Optional” or “optionally” means that the subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event occurs and instances where it does not. As used herein, “combination” is inclusive of blends, mixtures, alloys, reaction products, and the like. All references are incorporated herein by reference.

The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Further, it should further be noted that the terms “first,” “second,” and the like herein do not denote any order, quantity, or importance, but rather are used to distinguish one element from another. The modifier “about” used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., it includes the degree of error associated with measurement of the particular quantity).

Claims

1. A method of making a composite powder comprising:

providing matrix particles in a reactor, the matrix particles comprising a metal oxide, metal carbide, polymer, ceramic, plastic, glass, graphene, graphite, or a combination thereof;
fluidizing the matrix particles;
introducing a nanostructure material into the reactor;
homogeneously dispersing the nanostructure material; and
uniformly depositing the nanostructure material on the matrix particles to form the composite powder.

2. The method of claim 1, wherein the matrix particles are the polymer selected from polyphenylene, polyacetylene, polypyrrole, polythiophene, polyester, polyethylene, polyacrylate, polypropylene, polyamide, polyimide, polybenzoxazole, poly(amino acid), epoxy, polystyrene, polybutadiene, polycarbonate, or a combination thereof.

3. The method of claim 1, wherein the matrix particles are the ceramic selected from an oxide-based ceramic, nitride-based ceramic, carbide-based ceramic, boride-based ceramic, silicide-based ceramic, or a combination thereof.

4. The method of claim 1, wherein the matrix particles are about 0.5 μm to about 500 μm.

5. The method of claim 1, wherein the nanostructure material comprises nanoparticles, nanotubes, fullerenes, nanowires, nanodots, nanorods, sheets, graphene, nanographite, C1-C4 alkane, C1-C4 alkene, C1-C4 alkyne, benzene, metal, metal oxide, nanodiamonds, polysilsesquioxanes, inorganic nanoparticles, nanoclays, metal nanoparticles, or combinations thereof.

6. The method of claim 1, wherein the amount of the nanostructure material on the matrix particles is about 0.001 wt. % to about 50 wt. % based on the weight of the composite powder.

7. The method of claim 1, wherein uniformly depositing the nanostructure material on the matrix particles is a chemical process.

8. The method of claim 1, wherein uniformly depositing the nanostructure material on the matrix particles is a physical process.

9. The method of claim 1, further comprising generating nanostructures on the matrix particles from the deposited nanostructure material.

10. A method of making a nanostructure-reinforced composite comprising:

providing matrix particles in a reactor, the matrix particles comprising a metal oxide, metal carbide, polymer, ceramic, plastic, glass, graphene, graphite, or a combination thereof;
fluidizing the matrix particles;
introducing a nanostructure material into the reactor;
homogeneously dispersing the nanostructure material;
uniformly depositing the nanostructure material on the matrix particles to form a composite powder;
generating a nanostructure on the matrix particles from the nanostructure material; and
processing the composite powder to form the nanostructure-reinforced composite having a matrix formed from the matrix particles,
wherein the nanostructures are evenly distributed in the matrix of the nanostructure-reinforced composite.

11. The method of claim 10, wherein processing the composite powder comprises mechanical alloying, sintering, hot pressing, spark plasma sintering, extrusion, curing, molding, or a combination thereof.

12. The method of claim 10, wherein processing the composite powder comprises

mechanical alloying the composite powder using a ball mill; and
sintering the composite powder to form the nanostructure-reinforced composite.

13. The method of claim 10, wherein the matrix particles are the polymer selected from polyphenylene, polyacetylene, polypyrrole, polythiophene, polyester, polyethylene, polyacrylate, polypropylene, polyamide, polyimide, polybenzoxazole, poly(amino acid), epoxy, polystyrene, polybutadiene, polycarbonate, or a combination thereof.

14. The method of claim 10, wherein processing comprises

ball milling the matrix particles; and
curing the polymer to form the nanostructure-reinforced composite.

15. The method of claim 10, wherein the matrix particles are the ceramic selected from an oxide-based ceramic, nitride-based ceramic, carbide-based ceramic, boride-based ceramic, silicide-based ceramic, or a combination thereof.

16. The method of claim 10, wherein the nanostructure material comprises nanoparticles, nanotubes, fullerenes, nanowires, nanodots, nanorods, sheets, graphene, nanographite, C1-C4 alkane, C1-C4 alkene, C1-C4 alkyne, benzene, metal, metal oxide, nanodiamonds, polysilsesquioxanes, inorganic nanoparticles, nanoclays, metal nanoparticles, or combinations thereof.

Patent History
Publication number: 20170050159
Type: Application
Filed: Nov 3, 2016
Publication Date: Feb 23, 2017
Applicant: Baker Hughes Incorporated (Houston, TX)
Inventors: Zhiyue Xu (Cypress, TX), Gaurav Agrawal (Aurora, CO)
Application Number: 15/342,177
Classifications
International Classification: B01J 2/00 (20060101); B22F 1/02 (20060101); C08J 5/00 (20060101); B01J 2/16 (20060101);