INTERNET/INTRANET-CONNECTED APPARATUS
A method and apparatus that uses the Internet protocol, TCP/IP, for a home control network. The invention also provides embedded servers, email clients at the electrical boxes. The invention integrates the Internet to the electrical outlet, switch, or appliance boxes using a low cost embedded web server.
This is a division of application Ser. No. 10/214,086, filed on Aug. 6, 2002, now U.S. Pat. No. 7,761,555 granted on Jul. 20, 2010.
TECHNICAL FIELDThis disclosure relates generally to home networks and more particularly to TCP/IP-enabled electrical boxes for controlling and monitoring lighting, outlets, and servers via the home Intranet or Internet.
BACKGROUND INFORMATIONCurrent home or industrial networking technologies have two separate networks. One network connects the PCs to the Internet via a dial-up phone, cable, xDSL, or Ethernet connection, and another network such as CEBus™, LonWorks™, or X-10™ controls appliances or equipment. CEBus™ was developed by the Electronics Industries Association, LonWorks™ was developed by Echelon Corp. of California, and X-10™ components are manufactured by X-10 Limited of Hong Kong. When one wants to remotely control the appliance via the Internet, one needs a converter, a specialized gateway, or software in a computer to interface between the Internet and the other networks.
For example, U.S. Pat. No. 4,200,862 shows one popular protocol called X-10™ used in homes to control lights and appliances. It uses dedicated transmitters at various locations in the home to control slave receivers that are designed to plug into the electrical outlets or designed to replace existing switches or outlets. The protocol is very restrictive and cannot handle very much data since it transmits 120 data bits/s over the existing power lines. To communicate on the Internet, a PC or similar device with proprietary software is needed to convert information and control data from the X-10™ system to the Internet. Similarly, LonWorks™ and CEBus™ are two other networks that are being used in the home to control lights and appliances.
U.S. Patent Application 2001/0034754 A1 defines a specialized gateway between CEBus™, LonWorks™, or X-10™ and the Internet as an attempt to solve the issue of remotely controlling the lights and appliances.
U.S. Pat. No. 5,949,779 discusses remotely controlling home electrical outlets and appliances by the CEBus™ protocol and proprietary BAN, Broadcast Access Network. A converter is needed to link the two systems. U.S. Patent Application No. 2002/0002627 A1 describes a scheme to control devices remotely, but uses a home protocol as described in U.S. Pat. No. 5,991,795, and a specialize gateway called emGateway™. U.S. Patent Application No. 2002/0027504 A1 describes an embodiment that allows devices attached to the Internet to communicate to dedicated sensors via a site controller that translates the wireless sensors information to the Internet. This also is a dedicated proprietary device that requires specialized software.
U.S. Pat. No. 6,370,448,B1 describes a process device, which is attached to a process communication network and then to the Internet via a process communicator. The process communication network is one of the following types: low-speed Fieldbus protocol H1), high-speed Fieldbus protocol (H2), or similar types. The process communicator converts the process communication protocol from each node link, which contains Internet address information to Ethernet data network, which connects to the Internet, Similarly, U.S. Pat. No. 6,363,057 B1 describes an electronics meter, which incorporates a TCP/IP protocol suite and an HTTP server to provide direct access to the meter data via the Internet. However, it too relies on a specialized gateway to a non-TCP/IP network such as CEBus™.
U.S. Pat. No. 5,956,487 talks about incorporating a web access in a wide variety of devices including office equipment, home-based equipment, and lab equipment, as well as a variety of other types of devices commonly that provide device specific user interface functions. Office equipment devices typically include printers and copiers. Home-based devices include home entertainment equipment such as televisions, video recorders, and audio players as well as security systems, and appliances. Lab equipment includes measurement devices such as oscilloscopes and spectrum analyzers. Web server functionality embedded in the device allows a web browser to access user interface functions for the device through a web page. These types of devices have the computing power, or can be easily added to the device, to provide web server functionality. U.S. Pat. No. 5,956,487 further describes devices that control the user interface to the device but does not describe control of house lighting and electrical outlets or control of power to the device. In fact, every home appliance or home entertainment equipment must have this web server functionality to control its operation via the Internet. This would limit such control to devices with this web server functionality and would not allow control of existing home appliances or home entertainment equipment.
U.S. Pat. No. 6,198,479 B1 describes a home network with browser-based command and control for TV or audio equipment that uses a software agent. A software agent is executed on the client device to cause a user interface to be displayed on the client device. The devices described in U.S. Pat. No. 6,198,479 B1 are entertainment equipment, and the home network is the Internet within the home which connects PCs. The control of home entertainment equipment would be limited to devices with this specialized software agent and would not allow control of existing home appliances or home entertainment equipment.
All previous art describes systems that require a specialized converter or gateway to translate the home control network such as CEBus™, X-10™, and LonWorks™ to the TCP/IP protocol of the home Intranet network or requires that the TCP/IP protocol be incorporated in the appliance or home device. The major disadvantage of the current approaches is that there are too many different types of home networks. Each type of network has specialized controllers to control the electrical load. The proprietary converters or gateways require specialized software for the different networks, and this specialized software needs to be updated with new software when new devices are added to these home control networks. The consumer may be overwhelmed with what equipment to purchase, and in many cases a specialist would be required to install and verify the proper operation. Also, with TCP/IP embedded in the home appliance or equipment, the existing home appliances and equipment could not be controlled over the home Intranet. Therefore, there exists a need for an apparatus that incorporates the TCP/IP protocol into the home electrical boxes so as to have the same home Intranet that connects PCs, printers, and other web appliances to be used for control over existing home appliances, entertainment equipment, and electrical loads. Using a standardized TCP/IP protocol for the home control network would allow the use of standardized web browsers such as Microsoft Internet Explorer or Netscape Communicator to view the electrical load status or to control the AC electrical load without using a dedicated controller or a web-based home appliance or equipment.
SUMMARY OF THE DISCLOSURECertain embodiments described herein are capable of solving the problems cited above. One example embodiment is an apparatus that uses a common communication standard for information, such as the TCP/UDP/IP protocol, to control electrical loads and/or sensors, to monitor a house or other dwelling or structure using sensors, and to provide numerous other capabilities when attached to the Internet or Intranet. The apparatus is mountable within an electrical box, in particularly, a standard AC electrical box.
Certain embodiments may integrate the TCP/UDP/IP protocol in the electrical outlets, switches, and other electrical boxes. With this capability, the home Intranet used to connect Internet appliances such as PCs, printers, and others can be used also for controlling and monitoring the electrical connections in the electrical boxes.
Certain embodiments may incorporate a web server in the electrical box to monitor and control items attached or connected to the electrical box via a web browser. This web browser can be executing on, for examples, a local PC connected to the home Intranet or a remote PC connected to the World Wide Web, the Internet. The web browser can request information from the apparatus called AC power circuit using the HTTP protocol. The apparatus within the electrical box can respond with an HTML or XML formatted web page. The web page may contain CGI or other server-controlled capabilities to allow control of an attached electrical load, to change information on the web page, or to alter the monitoring sensor characteristics.
Certain embodiments may provide e-mail capability in the electrical box to send e-mail upon activation of a light switch, a motion sensor, or any other attached sensors, or programmed conditions. One can monitor the electrical power status of the light, HVAC system, or attached appliance, and send e-mail if the attached device is not working or consuming too much electrical power. In addition, one can send e-mail to the electrical box to turn an electrical load ON or OFF, to update stored information such as a software program attached to the e-mail, or to accomplish a number of other tasks associated with e-mail capability. With a camera sensor designed within the AC power circuit, one can send e-mail with attached picture to indicate the presence of school children, for example.
Certain embodiments can control lights, outlets, and electrical boxes via a connection to the Internet or Intranet whether the connection is within the home or remote. An application program on a device such as the PDA, PC, laptop, or web-enabled phone may communicate directly to the electrical box via a protocol such as TCP/IP or UDP/IP. Each AC power circuit within each electrical box may have a unique IP number by which any device using an instant messaging protocol can control the electrical box's AC power to its electrical load, can check the sensor incorporated within or attached to the electrical box, or can transmit a voice message. In one embodiment, the electrical box is controlled using the Internet protocol and instant messaging capability. Any Internet-connected devices with an instant messaging protocol such as AOL instant messaging, Microsoft instant messaging protocol, or some other instant messaging scheme can control the attached appliances to the electrical box. A web browser is not needed to display a web page in this particular configuration. The AC power circuit within the electrical box can send status information upon an instant messaging request from the Internet-connected device. This allows Internet-controlled devices with small screens such as web-enable phones, PDAs, or web-enabled pages to control the lights and appliances in the home.
Certain embodiments can collect information on an attached sensor or electrical load and store it within its memory until a pre-programmed time interval, pre-programmed amount of data, or some other event that indicates the AC power circuit to transmit the information to some server for data collection or requested to do so by a web client or Internet-connected device. With this capability, the AC power circuit can monitor such thins as the amount of electrical power consumed by the attached device, the number of activations of a switch, the number of times a room is occupied, the number of times an electrical outlet is used, the temperature of the room, the number of times an appliance is being used and at what times. With this information, people can determine the amount of electrical power consumed by the household and what appliances are the major users. Homeowners or occupants can determine which rooms are being heated or cooled, and which rooms are occupied. By examining this information, one can determine the efficiency of the HVAC system. Other information can be collected to help the home occupants live a better life.
Certain embodiments can use wired and wireless home Intranet technologies as the network interfaces of the AC power circuit. Wired technologies such as phone lines, Ethernet (CAT 5 cable), and powerline communication technology are a few of the current types. Phone lines technology utilizes the existing telephone networks to transmit data. Ethernet wired technology uses a dedicated cable such as CAT5. Newer homes are being built with CAT5 cabling throughout the homes. PCs, printers, and the electrical boxes described herein may be connected via a hub. Powerline technology uses the existing electrical wires to transmit data.
Wireless technologies such as IEEE 802.11 (known as wireless Ethernet), HomeRF™ (developed by HomeRF Working Group), and Bluetooth™ (Bluetooth Signal, Inc.) are some of the current types that can be used.
Some embodiments may utilize single-wire connection or dual-wire connection to the AC power circuit. Using single-wire AC power circuit allows for incorporating the TCP/IP capability in older homes using wireless or powerline communication technologies.
The AC power circuit 40 is installed in an electrical box 48 as shown in
The microcontroller 30 in the AC power circuits 40, 41, and 42 has the Internet stack (TCP/UDP/IP) 31 and application programs 33.
The microcontroller 30 that is contained in the AC power circuit 45 can run an e-mail application program 37 that sends out information upon some condition. For example, if the motion sensor 72 detects some movement in an area, or if the smoke detector 76 indicates a fire, an e-mail can be sent to alert the proper agency for assistance.
The microcontroller 30 can run a web server application 139 with a web page 39. The web server application 139 receives HTTP commands through the network interface 34 that specifies a predetermined Internet Protocol (IP) number for the AC power circuit 45. Web clients to read information from the AC power circuit 45, such as the status of the AC power to the electrical load, may use the HTTP commands. HTTP commands may also be used to transfer information to the AC power circuit 45 such as information that controls the electrical load or sensors.
In response to an HTTP request, the AC power circuit web server application 139 generates a web page 39 that specifies interactions to the attached electrical load and sensors. The web page 39 is a Hypertext Markup Language (HTML) formatted page or an eXtensive Markup Language (XML) formatted page. The network interface 34 transfers the web page 39 to the web client that requested the information via the Internet/Intranet 50.
In another embodiment, the network interface 34 contains the TCP/IP and UDP/IP stacks instead of the microcontroller 30.
In another embodiment, the network interface 34 is connected to the home Intranet via the power lines.
Claims
1-35. (canceled)
36. An apparatus for selectively energizing an electrical load, comprising:
- a relay coupled between current leads for controlling a flow of current to an electrical load;
- a network interface;
- a controller configured to enable the relay and receive an HTTP command via the network interface and generate an HTML file in response to the HTTP command; and
- circuitry coupling the relay, the network interface, and the controller,
- wherein the HTTP command specifies a URL corresponding to the circuitry.
37. The apparatus of claim 36, wherein the relay comprises a thyristor.
38. The apparatus of claim 36, wherein the network interface comprises a standard Internet/Intranet network interface coupled to the controller.
39. The apparatus of claim 38, wherein the standard Internet/Intranet network interface operates according to a TCP/IP protocol.
40. The apparatus of claim 38, wherein the standard Internet/intranet network interface operates according to an UDP/IP protocol.
41. The apparatus of claim 36, wherein the controller comprises at least one of an embedded controller, an embedded computer, a microcontroller, or a microcomputer.
42. The apparatus of claim 36, wherein the controller comprises:
- a storage device that stores a set of instructions; and
- at least one processor coupled to the storage device, the at least one processor being operative with the set of instructions in order to execute an application.
43. The apparatus of claim 42, wherein the application comprises a web server.
44. The apparatus of claim 42, wherein the application comprises a Simple Transport Mail Protocol application.
45. The apparatus of claim 42, wherein the application comprises a File Transport Protocol application.
46. The apparatus of claim 42, wherein the application comprises an instant messaging application.
47. The apparatus of claim 36, wherein the network interface receives the HTTP command across a wired connection.
48. The apparatus of claim 36, wherein the network interface receives the HTTP command across a wireless connection.
49. The apparatus of claim 36, wherein the electrical load is an AC electrical load.
50. The apparatus of claim 36, wherein the circuitry further couples the controller to a power network, the power network being configured to provide voltage to operate the controller.
51. The apparatus of claim 36, wherein the controller is configured to interface with an EEPROM.
52. The apparatus of claim 36, wherein the controller is configured to interface with an Ethernet controller.
Type: Application
Filed: Feb 13, 2015
Publication Date: Jun 1, 2017
Patent Grant number: 10104150
Inventor: Richard Anthony BISHEL (Beaverton, OR)
Application Number: 14/622,685