SOI SUBSTRATE AND MANUFACTURING METHOD THEREOF
The present invention application provides a method for manufacturing a SOI substrate, and the method comprising: providing a first semiconductor substrate; growing a first insulating layer on a top surface of the first semiconductor substrate for forming a first wafer; implanting a deuterium and hydrogen co-doping layer at a certain pre-determined depth of the first wafer; providing a second substrate; growing a second insulating layer on a top surface of the second semiconductor substrate for forming a second wafer; bonding the first wafer with the second wafer; annealing the first wafer and second wafer; separating a part of the first wafer from the second wafer; and forming a deuterium and hydrogen co-doping semiconductor layer on the second wafer.
This application claims priority from P.R.C. Patent Application No. 201610120565.2, filed on Mar. 3, 2016, the contents of which are hereby incorporated by reference in their entirety for all purposes.
TECHNICAL FIELDThe present invention relates to a semiconductor substrate and a method for manufacturing the semiconductor substrate, and particularly relates to a silicon on insulator substrate and a method for manufacturing the silicon on insulator substrate.
BACKGROUNDIn recent years, many industries have used silicon on insulator (SOI) substrate to manufacture a semiconductor integrated circuit instead of using a piece of a silicon wafer. Because using an SOI substrate has an advantage of reducing the parasitic capacitance between a drain and a substrate, whereby a performance of a semiconductor integrated circuit can be promoted.
With regard to a method for manufacturing a semiconductor device, such as U.S. Pat. No. 5,374,564, which provides a method for doping hydrogen ions into a silicon wafer, and forming an ion doped layer at a pre-determined depth of the silicon wafer. Then the silicon wafer doped by hydrogen ions is coupled with another silicon wafer, and a silicon oxide film is formed between the two silicon wafers. Then the two silicon wafers are separated at the ion doped layer by a heat treatment, whereby a monocrystalline silicon film can be formed on the ion doped layer.
For example, U.S. Pat. No. 5,872,387 provides a method for annealing a substrate growth, a gate oxide layer at a deuterium atmosphere, whereby dangling bonds between the gate oxide and the substrate can be removed. However, this method should be proceeding at a very high deuterium pressure, so that a cost for manufacturing a semiconductor device is increased.
In view of prior arts described above, an improved method is needed for manufacturing a SOI substrate, which at least solves drawbacks described above.
SUMMARYAn object of the present invention application is to provide a silicon on insulator substrate and a method thereof, wherein the SOI substrate has an advantage of reducing the parasitic capacitance between a drain and a substrate, and the cost for manufacturing the SOI substrate can be reduced.
In order to solving the above problems, the present invention application provides a method for manufacturing a SOI substrate, and the method comprising: providing a first semiconductor substrate; growing a first insulating layer on a top surface of the first semiconductor substrate for forming a first wafer; irradiating the first semiconductor substrate via a ion beam for forming a deuterium and hydrogen co-doping layer to a pre-determined depth from a top surface of the first insulating layer; providing a second substrate; growing a second insulating layer on a top surface of the second semiconductor substrate for forming a second wafer; bonding the first wafer with the second wafer in a face to face manner; annealing the first wafer and second wafer; separating a part of the first wafer from the second wafer; forming a deuterium and hydrogen co-doping semiconductor layer on the second wafer.
The present invention application further provides a SOI substrate comprising: a semiconductor substrate; an insulating layer grown on a top surface of the semiconductor substrate; and a deuterium and hydrogen co-doping semiconductor layer grown on the insulating layer.
Exemplary embodiments will be more readily understood from the following detailed description when read in conjunction with the appended drawing, in which:
For a more complete understanding of the present disclosure and its advantages, reference is now made to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features. Persons having ordinary skill in the art will understand other varieties for implementing example embodiments, including those described herein.
Step 101 (S101): providing a first semiconductor substrate;
Step 102 (S102): growing a first insulating layer on a bottom surface of the first semiconductor substrate for forming a first wafer;
Step 103 (S103): Deuterium and hydrogen being used for source gases, and irradiating the first semiconductor substrate via a deuterium and hydrogen ions co-beam for forming a deuterium and hydrogen co-doping layer to a pre-determined depth from a top surface of the first insulating layer;
Step 104 (S104): providing a second semiconductor substrate;
Step 105 (S105): growing a second insulating layer on a top surface of the second semiconductor substrate for forming a second wafer;
Step 106 (S106): bonding the first wafer with the second wafer in a face to face manner;
Step 107 (S107): annealing the first wafer and the second wafer;
Step 108 (S108): separating a part of the first wafer from the second wafer; and
Step 109 (S109): forming a deuterium and hydrogen co-doping semiconductor layer on the second wafer;
Step 110 (S110): reusing the separated part of the first wafer.
In order to describe the method for manufacturing the silicon on insulator more specifically,
The first step is referred to
The next process is referred to
The next process is referred to
The next step is referred to
The next process is referred to
The next step is referred to
The next step is referred to
The next step is referred to
It is worth noting that the separated part of the first wafer 106 may further be proceeded with chemical-mechanical polishing (CMP) and cleaned, so that the separated part of the first wafer 106 may be reused for economizing on cost. The second wafer 106 bonded with the deuterium and hydrogen co-doping semiconductor layer 400 may further be heated to 10000 degrees centigrade, and time for heating the second wafer 106 is between 30 minutes and 8 hours.
Because a dangling bond has a higher activity, a trap center may be produced to cause that an electron is bonded with an electron hole once again. Consequently a resilience of a semiconductor device to hot carrier effects is decreased. This invention provides a SOI substrate for manufacturing a semiconductor device. The SOI substrate can reduce a parasitic capacitance between a drain and a source of the semiconductor device, deuterium atoms (or deuterium ions) doped in the SOI substrate may be diffused into an interface between a gate oxide and the SOI substrate after growing the gate oxide on the SOI substrate, and deuterium atoms (or deuterium ions) are covalently bonded to semiconductor atoms for eliminating the dangling bond and increasing the resilience of the semiconductor device to hot carrier effects. Moreover, the method for manufacturing the SOI substrate doesn't need a very high deuterium pressure, and the cost for manufacturing the SOI substrate can be reduced substantially.
While various embodiments in accordance with the disclosed principles have been described above, it should be understood that they are presented by way of example only, and are not limiting. Thus, the breadth and scope of exemplary embodiment(s) should not be limited by any of the above-described embodiments, but should be defined only in accordance with the claims and their equivalents issuing from this disclosure. Furthermore, the above advantages and features are provided in described embodiments, but shall not limit the application of such issued claims to processes and structures accomplishing any or all of the above advantages.
Claims
1. A manufacturing method of a silicon on insulator substrate, comprising the steps of:
- providing a first semiconductor substrate;
- growing a first insulating layer on a top surface of the first semiconductor substrate for forming a first wafer;
- irradiating the first semiconductor substrate via a ion beam for forming a deuterium and hydrogen co-doping layer to a pre-determined depth from a top surface of the first insulating layer;
- providing a second substrate;
- growing a second insulating layer on a top surface of the second semiconductor substrate for forming a second wafer;
- bonding the first wafer with second wafer through a hydrophilic bonding process, wherein the first wafer is bonded with second wafer at a temperature between 200 degrees centigrade and degrees centigrade, the detail steps of hydrophilic bonding process further comprises the steps of:
- wetting the first insulating layer and the second insulating layer;
- contacting the wetted first insulating layer with the wetted second insulating layer; and
- pressing the first insulating layer and the second insulating layer for closely bonding the first insulating layer with the second insulating layer;
- annealing the first wafer and second wafer;
- separating a part of the first wafer from the second wafer; and
- forming a deuterium and hydrogen co-doping semiconductor layer on the second wafer.
2. The method according to claim 1, wherein a material of the first semiconductor substrate includes IV group element, silicon-germanium (SiGe), III-V group compound, III group-nitrogen compound, or II-VI group compound.
3. The method according to claim 1, wherein the pre-determined depth is between 0.1 μm and 5 μm.
4. The method according to claim 1, wherein the deuterium and hydrogen co-doping layer is implanted at the first semiconductor substrate through a hydrogen and deuterium ions co-beam, and an accelerated voltage of the hydrogen and deuterium ions co-beam is between 1 keV and 200 keV and a doping dosage of the hydrogen and deuterium ions co-beam is between 1016 ions/cm2 and 2×1017 ions/cm2.
5. The method according to claim 1, wherein a material of the second semiconductor substrate includes IV group element, silicon-germanium (SiGe), III-V group compound, III group-nitrogen compound, or II-VI group compound.
6. The method according to claim 1, wherein the first wafer is boned with the second wafer face to face at a temperature between 200 degrees centigrade and 400 degrees centigrade.
7. (canceled)
8. The method according to claim 1, wherein the step of annealing the first wafer and second wafer further includes: heating the first wafer and the second wafer to a temperature between 600 degrees centigrade and 900 degrees centigrade; and cooling the first wafer and the second wafer to a temperature between 400 degrees centigrade and 600 degrees centigrade
9. The method according to claim 8, wherein time for cooling the first wafer and the second wafer is between 30 minutes and 120 minutes.
10. The method according to claim 1, wherein a thickness of the deuterium and hydrogen co-doping semiconductor layer is between 50 Å and 50000 Å.
11. The method according to claim 1, further comprising a step of heating the second wafer to 10000 degrees centigrade once again after separating a part of the first wafer from the second wafer.
12. The method according to claim 11, wherein time for heating the first wafer and the second wafer once again is between 30 minutes and 8 hours.
13. A silicon on insulator substrate, comprising:
- a semiconductor substrate;
- an insulating layer grown on a top surface of the semiconductor substrate; and
- a deuterium and hydrogen co-doping semiconductor layer grown on a top surface of the insulating layer.
14. The silicon on insulator substrate according to claim 13, wherein a material of the semiconductor substrate includes IV group element, silicon-germanium (SiGe), III-V group compound, III group-nitrogen compound, or II-VI group compound.
15. The silicon on insulator substrate according to claim 13, wherein a thickness of the deuterium and hydrogen co-doping semiconductor layer is between 50 Å and 50000 Å.
Type: Application
Filed: Sep 7, 2016
Publication Date: Sep 7, 2017
Inventor: DEYUAN XIAO (Shanghai)
Application Number: 15/258,899