Method and Apparatus for Quadrature Signal Modulation

Methods and apparatus for facilitating wireless communication using digital Quadrature Amplitude Modulation are disclosed. A mapping module electronic component of a wireless communication device utilizes a signal constellation for quadrature modulating a signal for transmission or quadrature demodulating a received signal. The signal constellation includes multiple constellation symbols and associated bit sequences. Specific signal constellations are disclosed. The signal constellations may be obtained through an optimization procedure which accounts for both phase noise and power amplifier nonlinearity.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application is a continuation of PCT Application No. PCT/CN2016/078101, entitled “Method and Apparatus for Quadrature Signal Modulation,” filed on Mar. 31, 2016, which application is hereby incorporated herein by reference.

TECHNICAL FIELD

The present invention pertains to the field of wireless communications, and in particular to a method and apparatus for performing quadrature amplitude modulation, using particular quadrature amplitude modulation constellations.

BACKGROUND

Quadrature amplitude modulation (QAM) has found extensive applications in wired and wireless digital communications systems. In a digital QAM scheme, the QAM constellations are specified by both their amplitude and phase in a quadrature coordination. Phase-shift keying (PSK) modulation can be considered as a special case of QAM where the amplitude of a PSK modulation scheme is constant and the PSK constellations are equally spaced on a circle.

The aim of digital QAM is to communicate a message from a transmitter to a receiver. However, such communication must contend with the presence of noise, such as thermal noise and phase noise, as well as other limitations such as transmitter power limitations. Phase noise (frequency offset) is particularly problematic at higher frequencies, such as 60 GHz and above, and can be generated due to imperfect oscillators in both transmitter and receiver. Use of higher-order QAM in the presence of thermal noise, phase noise, and other limitations, can result in unacceptably high error rates, particularly for higher-frequency communication systems.

Therefore, there is a need for a method and apparatus for quadrature amplitude modulation that obviates or mitigates one or more limitations of the prior art.

This background information is provided to reveal information believed by the applicant to be of possible relevance to the present invention. No admission is necessarily intended, nor should be construed, that any of the preceding information constitutes prior art against the present invention.

SUMMARY

An object of embodiments of the present invention is to provide a method and apparatus for quadrature signal modulation in a wireless communication system. In accordance with embodiments of the present invention, there is provided a method for facilitating wireless communication using digital Quadrature Amplitude Modulation, the method comprising: translating between constellation symbols and bit sequences corresponding to the constellation symbols using a mapping module electronic component of a wireless communication device, in accordance with a signal constellation having a specified number of constellation points, the constellation symbols used in modulating a signal for transmission or detected in a received signal, or both, wherein each of the constellation symbols is specified in a row of one of Tables 17-26C as set forth herein, wherein normalized magnitudes of in-phase components of the constellation symbols are specified in one of the “X” and “Y” columns of said one of the tables and normalized magnitudes of quadrature components of the constellation symbols are specified to a in a different one of the “X” and “Y” columns of said one of the tables. In various embodiments, the signal constellation is specified by the values in the Tables as rounded or truncated to three, four, five or six decimal places. In some embodiments, the signal constellation may be selected from one of a plurality of Tables 17-26C. In various embodiments, the particular bit sequences associated with the constellation symbols are as listed in Tables 17-26C, or are derived from the bit sequences listed in Tables 17-26C by adding a constant binary value to the listed bit sequences, by applying consistent bit reordering operation to the listed bit sequences, or both.

In accordance with embodiments of the present invention, there is provided an apparatus for a wireless communication device configured for wireless communication using digital Quadrature Amplitude Modulation, the apparatus comprising: a mapping module electronic component configured to translate between bit sequences and corresponding constellation symbols in accordance with a signal constellation having a specified number of constellation points, the constellation symbols used in generating a signal for transmission or detected in a received signal, or both, wherein each of the constellation symbols is specified in a row of a one of Tables 17-26C as set forth herein, wherein normalized magnitudes of in-phase components of the constellation symbols are specified in one of the “X” and “Y” columns of said one of the tables and normalized magnitudes of quadrature components of the constellation symbols are specified to a in a different one of the “X” and “Y” columns of said one of the tables. In various embodiments, the signal constellation is specified by the values in the tables as rounded or truncated to three, four, five or six decimal places. In some embodiments, the signal constellation may be selected from one of a plurality of Tables 17-26C. In various embodiments, the particular bit sequences associated with the constellation symbols are as listed in Tables 17-26C, or are derived from the bit sequences listed in Tables 17-26C by adding a constant binary value to the listed bit sequences, by applying consistent bit reordering operation to the listed bit sequences, or both.

BRIEF DESCRIPTION OF THE DRAWINGS

Further features and advantages of the present invention will become apparent from the following detailed description, taken in combination with the appended drawings, in which:

FIG. 1 illustrates a wireless transmitter communication apparatus in accordance with an embodiment of the present invention.

FIG. 2 illustrates a wireless receiver communication apparatus in accordance with another embodiment of the present invention.

FIG. 3 illustrates a method for wireless transmission of QAM symbols, in accordance with an embodiment of the present invention.

FIG. 4 illustrates a method for wireless reception of QAM symbols, in accordance with an embodiment of the present invention.

FIG. 5 illustrates a mapping module electronic component in accordance with embodiments of the present invention.

FIG. 6 illustrates the generation of a physical layer protocol data unit (PPDU) from a physical layer service data unit (PSDU) in a single carrier physical layer, in accordance with an IEEE 802.11ad wireless communication approach which may be utilized in embodiments of the present invention.

FIG. 7 illustrates an IEEE 802.11ad single carrier physical layer frame format and associated block structure which may be utilized in accordance with embodiments of the present invention.

FIG. 8 illustrates a 16-point signal constellation in accordance with an embodiment of the present invention.

FIG. 9 illustrates a 32-point signal constellation in accordance with an embodiment of the present invention.

FIG. 10A illustrates a 64-point signal constellation in accordance with an embodiment of the present invention.

FIG. 10B illustrates a 64-point signal constellation in accordance with another embodiment of the present invention.

FIG. 10C illustrates a 64-point signal constellation in accordance with another embodiment of the present invention.

FIG. 10D illustrates a 64-point signal constellation in accordance with another embodiment of the present invention.

FIG. 11A illustrates the first quadrant of a 128-point signal constellation in accordance with an embodiment of the present invention.

FIG. 11B illustrates the first quadrant of a 128-point signal constellation in accordance with another embodiment of the present invention.

FIG. 11C illustrates the first quadrant of a 128-point signal constellation in accordance with another embodiment of the present invention.

FIG. 11D illustrates the first quadrant of a 128-point signal constellation in accordance with another embodiment of the present invention.

FIG. 12A illustrates the first quadrant of a 256-point signal constellation in accordance with an embodiment of the present invention.

FIG. 12B illustrates the first quadrant of a 256-point signal constellation in accordance with another embodiment of the present invention.

FIG. 12C illustrates the first quadrant of a 256-point signal constellation in accordance with another embodiment of the present invention.

FIG. 13 illustrates a 16-point signal constellation in accordance with another embodiment of the present invention.

FIG. 14 illustrates a 32-point signal constellation in accordance with another embodiment of the present invention.

FIG. 15A illustrates a 64-point signal constellation in accordance with another embodiment of the present invention.

FIG. 15B illustrates a 64-point signal constellation in accordance with another embodiment of the present invention.

FIG. 15C illustrates a 64-point signal constellation in accordance with another embodiment of the present invention.

FIG. 15D illustrates a 64-point signal constellation in accordance with another embodiment of the present invention.

FIG. 16A illustrates the first quadrant of a 128-point signal constellation in accordance with another embodiment of the present invention.

FIG. 16B illustrates the first quadrant of a 128-point signal constellation in accordance with another embodiment of the present invention.

FIG. 16C illustrates the first quadrant of a 128-point signal constellation in accordance with another embodiment of the present invention.

FIG. 16D illustrates the first quadrant of a 128-point signal constellation in accordance with another embodiment of the present invention.

FIG. 17A illustrates the first quadrant of a 256-point signal constellation in accordance with another embodiment of the present invention.

FIG. 17B illustrates the first quadrant of a 256-point signal constellation in accordance with another embodiment of the present invention.

FIG. 17C illustrates the first quadrant of a 256-point signal constellation in accordance with another embodiment of the present invention.

FIG. 18 illustrates the standard derivation of residual phase noise vs. SNR using a linear interpolation phase noise mitigation method in accordance with an embodiment of the present invention.

FIG. 19 illustrates transmitter and receiver systems in accordance with an embodiment of the present invention.

FIG. 20 illustrates a simplified soft limiter for enforcing a peak power constraint, in accordance with an embodiment of the present invention.

FIG. 21 illustrates a theoretical spectral efficiency according to an embodiment of the present invention.

FIG. 22 illustrates a theoretical spectral efficiency according to another embodiment of the present invention.

FIG. 23 illustrates a constellation optimization procedure according to an embodiment of the present invention.

It will be noted that throughout the appended drawings, like features are identified by like reference numerals.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Embodiments of the present invention are directed to a method and apparatus for wireless communication using a digital QAM signal constellation as described herein. The method includes modulating and/or demodulating a signal according to the described constellation, using a wireless transmitter and/or receiver, or associated signal processing electronics. The apparatus includes a wireless transmitter and/or receiver, or associated signal processing electronics, configured to modulate and/or demodulate a signal according to the described constellation. As used herein, QAM refers generally to any amplitude modulation which includes an in-phase component and a quadrature component, for modulating two carrier signals which are in quadrature with each other. For example, phase-shift keying is regarded as a particular form of QAM.

Embodiments of the present invention may be used to wirelessly communicate information between a transmitter and receiver. The information can include control plane data, application data, or user messaging data, for example. On the transmitter side, the information is initially represented as a plurality of binary digits (bits), and modulating the signal comprises mapping a given number m of bits at a time to a corresponding symbol in the signal constellation. On the receiver side, the information is represented via a quadrature modulated waveform, and demodulating the signal comprises mapping portions of the waveform corresponding to a symbol in the signal constellation to an associated sequence of m bits.

Embodiments of the present invention apply high order modulation schemes, in which each of M=2m symbols in a QAM modulation represents multiple (m>1) bits. Table 1 shows the spectral efficiency r=mrc and required minimum Signal to Noise Ratio (SNR) based on the Shannon capacity limit, corresponding to different code rates rc and to different cardinalities of constellation sets M=2m, m=2, . . . , 8.

m 2 3 4 5 6 7 8 min min min min min min min r SNR r SNR r SNR r SNR r SNR r SNR r SNR rc ½ 1.00 0.0 1.50 2.6 2.00 4.8 2.50 6.7 3.00 8.5 3.50 10.1 4.00 11.8 1.25 1.4 1.88 4.3 2.50 6.7 3.13 8.9 3.75 11.0 4.38 13.0 5.00 14.9 ¾ 1.50 2.6 2.25 5.7 3.00 8.5 3.75 11.0 4.50 13.4 5.25 15.7 6.00 18.0 1.75 3.7 2.63 7.1 3.50 10.1 4.38 13.0 5.25 15.7 6.13 18.4 7.00 21.0

In accordance with embodiments of the present invention, and with reference to FIG. 1, a wireless communication apparatus comprising an input interface 110, a transmitter mapping module 120, and a transmitter module 130 is disclosed. The input interface 110 is configured to receive data to be wirelessly transmitted. The data may be represented in binary, and may include at least m bits, where m is the base-2 logarithm of the modulation order of the quadrature modulation constellation being used. The transmitter mapping module 120 is configured to receive one or more bit sequences. Each bit sequence is representative of a portion of the data of length m. A bit sequence may correspond directly to m contiguous bits of the data, or it may be derived from the data by applying operations such as scrambling, interleaving, channel coding, etc. The transmitter mapping module is further configured to generate, for each bit sequence, a corresponding constellation symbol 122 having an in-phase component 124 and a quadrature component 126. Correspondence between a bit sequence and the generated constellation symbol is given according to a particular signal constellation 128, as described herein. Typically, multiple bit sequences representative of the input data are used to generate a sequence of constellation symbols. The transmitter module 130 is configured to generate and transmit a wireless signal 135 based on the constellation symbols generated by the mapping module.

Generation of wireless signals based on constellation symbols can be performed in a manner as would be readily understood by a worker skilled in the art. For example, a sequence of in-phase components can be used to amplitude modulate a first sinusoidal carrier signal, and a corresponding sequence of quadrature components can be used to amplitude modulate a second sinusoidal carrier signal that is out of phase (in quadrature) with the first sinusoidal signal. The sequences of in-phase and quadrature components can be represented, for example, as pulse trains or other electrical signals with amplitudes varying according to the magnitudes of the in-phase and quadrature components, for example, to be used for amplitude modulation of the carrier signals. The amplitude modulated carrier signals are then added together and transmitted.

In accordance with embodiments of the present invention, and with reference to FIG. 2, a wireless communication apparatus comprising a receiver module 210, a receiver mapping module 220, and an output interface 130 is disclosed. The receiver module is configured to receive a wireless signal 212 and generate constellation symbols 214 based on the wireless signal, each constellation symbol having an in-phase component 216 and a quadrature component 218. Generation of constellation symbols based on a received wireless signal can be performed in a manner as would be readily understood by a worker skilled in the art. For example, the received signal can be multiplied by locally generated copies of the carrier signal, low-pass filtering may be applied to the result, and the output of the low-pass filtering can be sampled to recover representations of the in-phase and quadrature components of the constellation symbols. The sampling includes quantization. For hard-decision decoding, the receiver mapping module 220 is configured to receive constellation symbols 214 and generate, for each constellation symbol, a bit sequence 228 corresponding to the constellation symbol. Correspondence between a bit sequence and a received constellation symbol is given according to a particular signal constellation 226, as described herein. The output interface 230 is configured to provide data 238, a portion of the data represented by the generated bit sequence 228 associated with a received constellation symbol. Alternatively, soft-decision decoding, such as Low Density Parity Check LDPC decoding or turbo decoding may be employed, in which a demodulator outputs a sequence of log-likelihood ratios (LLRs) rather than performing direct symbol-to-bit mapping. A decoder then uses the LLR values for decoding.

The provided group of m bits may directly represent m bits of the data, or the portion of data may be obtained at least partially from the generated bit sequence by applying operations such as descrambling, deinterleaving, decoding, etc. Typically, the received wireless signal is used to generate a sequence of constellation symbols which are passed to the receiver mapping module. The receiver mapping module then generates the data using hard-decision decoding or soft-decision decoding.

In accordance with embodiments of the present invention, and with reference to FIG. 3, there is provided a method for facilitating wireless transmission of QAM symbols. The method includes receiving 310, via an internal input interface of a wireless communication device, data to be wirelessly transmitted. The data may include at least m bits, where m is determined by the modulation order of the quadrature modulation scheme being used. The method further includes providing 320 one or more bit sequences. Each bit sequence is representative of a portion of the data, for example subsequent to operations such as but not necessarily limited to channel coding. Each bit sequence is of length m, where m is the predetermined value corresponding to the modulation order. The method further includes determining 330, for each bit sequence, a corresponding constellation symbol having an in-phase component and a quadrature component. Correspondence between a bit sequence and the provided constellation symbol is given according to a particular signal constellation, as described herein. Typically, multiple bit sequences representative of the input data are used to generate a sequence of constellation symbols. The method may further include generating and transmitting 340 a wireless signal based on the determined constellation symbols. The generation of the wireless signal comprises modulating a carrier signal according to the generated sequence of constellation symbols.

In accordance with embodiments of the present invention, and with reference to FIG. 4, there is provided a method for performing wireless reception and demodulation of QAM symbols. The method includes receiving 410 a wireless signal and generating 420 received baseband symbols based on the wireless signal, each received baseband symbol having an in-phase component and a quadrature component. The received baseband symbol can either generate a bit sequence by mapping the most likely constellation symbol to a corresponding bit sequence based on the constellation mapping, or form a sequence of bit-related soft values indicating the likelihood of bit values at the specific bit positions of a bit sequence corresponding to the selected constellation symbol. As such, the method further includes providing 430 bit sequences or soft values corresponding to the received baseband symbol. A received constellation symbol is given according to a particular signal constellation, as described herein. The method further includes providing 440 data, a portion of the data represented by the provided bit sequence or a sequence of soft values associated with a received symbol. The data may be provided, for example, by performing channel decoding and other operations on the bit sequences.

Embodiments of the present invention provide for methods and apparatus for generating constellation symbols based on bit sequences and/or generating bit sequences or sequences of bit-related soft values based on constellation symbols, according to a correspondence which is specified by a signal constellation as described herein. Such embodiments may be represented in the transmitter mapping module and receiver mapping module described above, collectively referred to as mapping modules. For example, a provided apparatus may receive groups of m bits and generate constellation symbols, including in-phase and quadrature components, corresponding to the received bit sequences. Bit sequences may be represented by digital signals, such as serial or parallel digital data signals, for example. Sequences of constellation symbols may be represented, for example, by pairs of electrical signals having amplitudes which vary with the magnitudes of the in-phase and quadrature components of the constellation symbols. As another example, sequences of constellation symbols may be represented by time-varying digital or analog signals which convey instructions for use by another electronic device to generate such pairs of electrical signals. For a reception operation, a provided apparatus may receive pairs of electrical signals having amplitudes or other characteristics which are interpreted, by the apparatus, as the magnitudes of a received sequence of in-phase and quadrature components of a received sequence of constellation symbols. The apparatus may then generate a plurality of bit sequences or plurality of bit-related soft values in a larger sequence, which correspond to the received sequence of constellation symbols.

Embodiments of the present invention therefore comprise translating, for example using mapping modules, between constellation symbols and bit sequences according to a particular signal constellation. In the case of signal transmission, the translating includes generating constellation symbols based on bit sequences. In the case of signal reception, the translating includes generating bit sequences or bit-related sequences of soft values based on constellation symbols. Other aspects of signal modulation and/or demodulation, such as varying the amplitudes of carrier signals and/or processing a received signal recover constellation symbols, may be, but are not necessarily, included in the embodiments of the present invention.

FIG. 5 illustrates a mapping module electronic component 500 provided in accordance with embodiments of the present invention. The electronic component may be provided as a semiconductor circuit, for example forming part or all of an integrated circuit package. The mapping module electronic component can be configured as a transmitter mapping module, a receiver mapping module, or both. The mapping module includes a first interface 510 configured to provide and/or receive groups of m bits. The mapping module further includes a second interface 520 configured to receive and/or provide signals indicative of constellation symbols. In some embodiments the second interface may include a first terminal 522 for receiving and/or providing in-phase components of the constellation symbols, and a second terminal 524 for receiving and/or providing quadrature components of the constellation symbols. The mapping module is configured to translate, via translation circuitry 530, between bit sequences and constellation symbols according to a signal constellation 535. The translation circuitry may be digital or analog circuitry. In some embodiments, the translation circuitry is preconfigured according to a certain signal constellation. In other embodiments, the translation circuitry is reconfigurable according to a signal constellation which can be specified or selected via a control interface 540 of the mapping module.

Embodiments of the present invention are applied for signal modulation in millimeter wave (mmWave) wireless communication systems. Some embodiments of the present invention are applicable to signal modulation in Wi-Fi™ communication systems, as specified in the IEEE 802.11 series of standards. Some embodiments of the present invention are applicable to signal modulation in wireless communication systems employing a carrier frequency around 60 GHz. It will be readily appreciated that embodiments of the present invention can be applied to other wireless communication systems, as well as to wired or optical systems, and in other communication environments.

FIG. 6 illustrates the generation of a physical layer protocol data unit (PPDU) from a physical layer service data unit (PSDU) in a single carrier physical layer, in accordance with a wireless communication approach which may be utilized in embodiments of the present invention. The operations illustrated in FIG. 6 are comparable to those specified in the IEEE 802.11ad wireless local area network protocol, and details can be found in the IEEE 802.11ad-2012 standards document, published December, 2012 and having E-ISBN 978-0-7381-8096-0. The single carrier physical layer may employ low-density parity check (LDPC) codes, for example with a code word length of 672. The input PSDU data 605 undergoes scrambling 610, and the scrambled bits are fragmented 615 to provide input bits 617. The input bits are then encoded 620, for example using a LDPC code, to provide coded bits 622. An optional interleaving operation 623 can be performed following encoding. Interleaving can include shuffling encoded bits, for example. The coded and possibly interleaved bits then optionally undergo zero padding 625. The coded bits, with or without zero padding, are then modulated 630. In embodiments of the present invention, modulation may be performed using a signal constellation as described herein. The modulated symbols 632 then undergo symbol blocking and guard insertion 635, thereby providing the PPDU 640. In general, modulation operations according to the present invention may be performed after channel coding, such as LDPC coding.

FIG. 7 illustrates an IEEE 802.11ad single carrier physical layer frame format 700 and associated block structure which may be utilized in accordance with embodiments of the present invention. A set of three contiguous data block structures 750a, 750b, 750c are illustrated in detail. The number of data block structures can be variable. Each data block structure 750a, 750b, 750c in a PPDU includes 448 modulated data symbols 752 preceded by a guard interval (GI) 755. For multiple contiguous blocks, groups of 448 modulated data symbols 752 are thus separated by GIs 755 of the same length-64 bipolar Golay sequence. The two GIs 755 preceding and following a given group of 448 modulated data symbols 752 form a cyclic prefix permitting FFT/IFFT operations at a receiver to perform frequency-domain equalization. In addition, the known GIs can be used for other purposes such as phase noise estimation for mitigation of phase noise.

Embodiments of the present invention relate to signal modulation and/or demodulation in single carrier systems, for example using the data block structure as illustrated in FIG. 7. Embodiments of the present invention relate to signal modulation and/or demodulation in single carrier systems with other formats of data block structure.

Embodiments of the present invention relate to signal modulation and/or demodulation in communication systems with or without phase noise. Phase noise can significantly degrade the link performance in high-frequency communication systems employing high order digital QAM modulations. The power spectral density of one model of phase noise considered for IEEE 802.11ad is shown in Eq. (1):

PSD ( f ) = PSD ( 0 ) [ 1 + ( f / f z ) 2 1 + ( f / f p ) 2 ] . ( 1 )

The parameterization of this model as considered for IEEE 802.11ad is such that: PSD(0)=−90 dBc/Hz; Pole frequency fp=1 MHz; Zero frequency fz=100 MHz; Corresponding PSD(infinity)=−130 dBc/Hz; and impairment is modeled at both transmitter and receiver. In embodiments of the present invention, signal constellations are provided which have been configured in view of the above phase noise model.

Embodiments of the present invention relate to signal modulation and/or demodulation in communication systems with or without power amplifier nonlinearity impairments. The power constraints may include peak-to-average power ratio (PAPR) constraints. A first power amplifier nonlinearity model considered for IEEE 802.11ad is given in Equation (2):

G ( A ) = g A ( 1 + ( gA A sat ) 2 S ) 1 2 S in RMS Volts , ( 2 )

where g is the small signal gain, s is the smoothness factor, and Asat is the saturation level.

A second power amplifier nonlinearity model considered for IEEE 802.11ad is given in Equation (3):

Ψ ( A ) = α A q 1 ( 1 + ( A β ) q 2 ) . ( 3 )

For Equations (2) and (3) above, CMOS power amplifier model parameters can be specified as follows. For Equation (2): g=4.65, Asat=0.58 and s=0.81. For Equation (3): α=2560 degrees, β=0.114, q1=2.4 and q2=2.3.

In embodiments of the present invention, signal constellations are provided which have been configured in view of the above power amplifier nonlinearity model.

Embodiments of the present invention include signal constellations which have been generated according to a constellation optimization for two scenarios. The first scenario relates to single carrier systems with a linear channel and without a transmit power constraint. The second scenario relates to a non-linear channel with nonlinearity impairments. For both scenarios, sub-scenarios which include or exclude phase noise are considered. In some embodiments, constellations are optimized in view of both the transmit power and phase noise constraints. In various embodiments the phase noise model and the PA model used for the constellation optimization are given in Equations (1)-(3) above. Multiple sets of 16-, 32-, 64-, 128- and 256-point constellations may be generated using this optimization approach. Selected ones of these constellations are disclosed herein.

It is noted that a constellation that is considered optimal for a particular code rate is not limited for use with that code rate. Rather, a constellation can be used for various code rates, even if it has been optimized for use with a particular code rate. The use of the constellation for different code rates may result in a reduction in performance and/or loss of optimality. More generally, it is noted that a constellation that is considered optimal for a particular set of conditions can be used in other conditions, with a possible reduction in performance and/or loss of optimality. However, such a performance reduction may be acceptable. Further, the reduced complexity due to the ability to use the same constellation under different conditions may result in a benefit which offsets the performance reduction.

Various signal constellations provided in accordance with embodiments of the present invention are described in detail below. Each signal constellation represents a set of constellation symbols. A signal constellation having M points is referred to as an M-point constellation. In various embodiments, the x coordinate value of a constellation symbol indicates the (normalized) magnitude of the in-phase component of the constellation symbol, and the y coordinate value of a constellation symbol indicates the (normalized) magnitude of the quadrature component of the constellation symbol. Alternatively, the x coordinate value of a constellation symbol may indicate the (normalized) magnitude of the quadrature component of the constellation symbol, and the y coordinate value of a constellation symbol indicates the (normalized) magnitude of the in-phase component of the constellation symbol. A sequence of m bits may be associated with each constellation symbol.

In some cases, only the first quadrant of a constellation is specified. As such, in some embodiments, the locations of constellation symbols in other quadrants of the constellation can be readily obtained from the constellation symbols in the first quadrant by reflection symmetry. For reflection symmetry, given constellation symbols in the first quadrant, the locations of constellation symbols in the second quadrant can be obtained by reflection in the Y (vertical) axis. More specifically, the reflection operation can include, for each constellation symbol in the first quadrant specified by vector location (x,y), obtaining a constellation symbol in the second quadrant specified by vector location (−x, y). Similarly, given constellation symbols in the first quadrant, the locations of constellation symbol in the third quadrant can be obtained by reflection in the Y axis, followed by reflection in the X (horizontal) axis. More specifically, the reflection operation can include, for each constellation symbol in the first quadrant specified by vector location (x,y), where x and y are non-negative values, obtaining a constellation symbol in the third quadrant specified by vector location (−x,−y). Similarly, given constellation symbols in the first quadrant, the locations of constellation symbol in the fourth quadrant can be obtained by reflection in the X (horizontal) axis. More specifically, the reflection operation can include, for each constellation symbol in the first quadrant specified by vector location (x,y), obtaining a constellation symbol in the second quadrant specified by vector location (x, −y). Alternatively to obtain constellation symbols in different quadrants from those of the first quadrant by the reflection operations above, a series of reflection operations can be used. For example, the constellation symbols in the second quadrant can be obtained from those of the first quadrant by reflection in the Y axis, the constellation symbols in the third quadrant can be obtained from those of the second quadrant by reflection in the X axis, and the constellation symbols in the fourth quadrant can be obtained from those of the third quadrant by reflection in the Y axis. As used herein, the term “reflection symmetric constellation symbols” refers to a set of four constellation symbols (x,y), (x,−y), (−x,−y), (−x,y) for given values of x and y.

As used herein, the term “symmetric constellation symbols” refers to “reflection symmetric constellation symbols”. A constellation consisting of reflection symmetric constellation symbols may also be referred to as a reflection symmetric constellation, or as a “symmetric constellation”.

In various embodiments, the illustrated signal constellations can be scaled by a nonzero scaling factor k. Scaling of a signal constellation can be performed by mapping each constellation symbol (x,y) in the constellation to a new constellation symbol (kx,ky). The (x,y) coordinate values illustrated in FIGS. 8-17C and specified in Tables 17-26C are nominal. In Tables 17-21C constellation magnitudes are normalized such that the average power, across all constellation symbols, is equal to one. In Tables 22-26C, constellation magnitudes are normalized such that the power of each constellation symbol is less than or equal to one. The specified coordinate values may alternatively be normalized such that the peak power, among all constellation symbols, is equal to one. The present description of the specified constellations should be understood to include other scalings or normalizations thereof, for example as would be readily understood by a worker skilled in the art.

In various embodiments, the (x,y) locations of constellation symbols in the illustrated signal constellations can be varied by a limited amount. For example, when the locations of constellation symbols are specified in one embodiment with a precision of d decimal places, another embodiment may correspond to the same general locations of constellation symbols, but specified with a precision of d−1 decimal places, another embodiment correspond to the same general locations of constellation symbols but specified with a precision of d−2 decimal places, and yet another embodiment correspond to the same general locations of constellation symbols but specified with a precision of d−3 decimal places. The lower precision embodiment can be obtained from the higher precision embodiment through rounding or truncation. In various embodiments, the normalized (x,y) locations of the constellation symbols can be specified to 3, 4, 5, or 6 decimal places. A magnitude that is defined by a coordinate value to at least d decimal places of precision is a magnitude which, when measured, agrees with the coordinate value to at least d decimal places of precision, further decimal places of the measurement and/or coordinate value being either discarded via truncation or subjected to a rounding operation to the dth decimal place.

In some embodiments, the precision of the decimal places may be related to Error Vector Magnitude (EVM) requirement, taking into account factors such as I/Q arm amplitude and phase balance, DC offset, and phase noise. In IEEE 802.11ad, EVM is typically required to be as low as −21 dB for single carrier transmissions and −26 dB for OFDM transmissions.

As another example, when the locations of constellation symbols are specified in a first embodiment with a precision of d decimal places, a second embodiment may correspond to the same general locations of constellation symbols, but varied by up to 6 units, where δ is on the order of 10−d, or alternatively 10−d+1 or 10−d+2, so that, for example, given a constellation symbol (x,y) in the first embodiment, the second embodiment may include a corresponding constellation symbol (x′,y′), where (x-δ,y-δ)<(x′,y′)<(x+δ,y+δ), or alternatively where ∥(x′,y′)-(x,y)∥<δ.

In embodiments of the present invention, the normalized magnitudes of the constellation symbols are defined by coordinates which fall anywhere within a rectangular region, including along a boundary of the rectangular region. For each constellation symbol, the rectangular region is defined by a first corner specified by a first coordinate pair and a second corner specified by a second coordinate pair. The second corner is diagonally opposite the first corner. For a signal constellation as specified in one of Tables 17-26C, and for each listed coordinate pair in the table, the first coordinate pair (specifying the first corner of the rectangular region) can be derived from the listed coordinate pair by rounding down both X and Y values of the listed coordinate pair. The second coordinate pair (specifying the second corner of the rectangular region) can be derived from the listed coordinate pair by rounding up both X and Y values of the listed coordinate pair. In some embodiments, rounding is performed to the nearest thousandth, as would be readily understood by a worker skilled in the art. In some embodiments, rounding is performed to the nearest ten thousandth. In some embodiments, rounding is performed to the nearest hundred thousandth.

As such, for each of original Tables 17-26C, a new table can be defined in which the “X” column of the original table is replaced with a pair of columns “Xmin” and “Xmax,” and the “Y” column of the original table is replaced with a pair of columns “Ymin” and “Ymax.” The “Xmin” and “Ymin” columns list the X and Y values of the first coordinate pairs, and the “Xmax” and “Ymax” columns list the X and Y values of the second coordinate pairs. The new table indicates a set of ranges for the constellation symbols, such that the normalized magnitude of each constellation symbol has an X coordinate value lying between a value specified in a corresponding row of the “Xmin” column and a value specified in the same row of the “Xmax” column, and further such that the normalized magnitude of the constellation symbol has a Y coordinate value lying between a value specified in the same row of the “Ymin” column and a value specified in the same row of the “Ymax” column. Such new tables are not explicitly listed in the present disclosure for the sake of brevity, however they can be readily derived as described above by a person skilled in the art.

In some embodiments, rather than determining the corners of the rectangular regions via rounding, the first corner of the rectangular region can be derived from the listed coordinate pair by subtracting a first predetermined value from the X value of the listed coordinate pair, and subtracting a second predetermined value from the Y value of the listed coordinate pair. The second coordinate pair specifying the second corner of the rectangular region can be derived from the listed coordinate pair by adding the first predetermined value to the X value of the listed coordinate pair, and adding the second predetermined value to the Y value of the listed coordinate pair. The first and second predetermined values can be values which are less than or equal to 0.0005, for example.

In addition to specifying the vector locations of the constellation symbols in the XY plane, embodiments of the present invention specify the bit sequences corresponding to each of the constellation symbols. As will be readily understood by a worker skilled in the art, given an input group of m bits, modulation includes identifying a symbol in the signal constellation corresponding to the bit sequence, and modulating a signal according to the identified symbol. Similarly, demodulation of a received signal includes identifying a symbol in the signal constellation most closely corresponding to a given portion of the received signal, and outputting the bit sequence corresponding to the identified symbol or the bit-related sequence of soft values corresponding to the constellation. The correspondence between a signal and a constellation symbol may be such that, where the signal is locally describable by the function A cos(ωt)+B sin(ωt), the corresponding constellation symbol is the closest constellation symbol in the XY plane to point (A,B).

In various embodiments, each group of m bits includes two quadrant-specifying bits. The quadrant-specifying bits may be at fixed locations in the bit sequence. For example, the first two bits (most significant bits) of a bit sequence may be the quadrant-specifying bits. The remaining m−2 bits of a bit sequence are referred to as quadrant non-specific bits. In some embodiments, the quadrant specifying bits corresponding to all constellation symbols in the first quadrant are 00, the quadrant specifying bits corresponding to all constellation symbols in the second quadrant are 10, the quadrant specifying bits corresponding to all constellation symbols in the third quadrant are 11, and the quadrant specifying bits corresponding to all constellation symbols in the fourth quadrant are 01.

In various embodiments, the quadrant non-specific bits (for example the m−2 least significant bits) of each given constellation symbol may be identical to the quadrant non-specific bits of each other constellation symbol within the same set of symmetric constellation symbols as the given constellation symbol.

It will be readily understood that the correspondence between bit sequences and constellation symbols can be varied in several ways. For example, each of the illustrated bit values inverted, such that a “0” bit becomes a “1” and vice versa. As another example, the illustrated bit positions can be re-ordered. The reordering may be a consistent bit reordering, i.e. in which the same reordering is applied to all bit sequences in a constellation. A simple example of a reordering is a reversal of all bits, for example such that group abcd is replaced by group dcba. As yet another example, a constant value can be added to each of the illustrated bit sequences using a modulo-M binary addition operation, where M=2m and m is the number of bits in each bit sequence. It is noted that bit inversion corresponds to addition of a particular constant value consisting of all binary ones. A combination of bit reordering and addition of a constant value may also be performed.

In some embodiments, for an index value k ranging from k=1 to k=2m−2 inclusive, where m is the number of bits in each bit sequence: the quadrant non-specific bits of the bit sequence corresponding to the constellation symbol defined by a kth-listed one of the coordinate pairs are equal to: a binary representation of k−1; the binary representation of k−1 added to a constant value under Modulo-2m−2 addition; the binary representation of k−1 subjected to a consistent bit reordering, or the binary representation of k−1 added to a constant value under Modulo-2m−2 addition and subjected to the consistent bit reordering.

It is noted that, in Tables 17-26C, the bit sequences associated with the constellation symbols correspond to binary representations of the position of the constellation symbol in the list. For example, the first-listed constellation symbol is associated with bit sequence ‘0 . . . 000’, the second-listed constellation symbol is associated with bit sequence ‘0 . . . 001’, etc.

In various embodiments, bit sequences are assigned to constellation symbols using a Gray mapping. Gray mapping comprises associating bit patterns (bit sequences) with constellation symbols, such that the bit sequences associated with adjacent constellation symbols differ by only one bit. That is, the bit sequences assigned to the constellation symbols closest to a first constellation symbol differ by one bit from the bit sequence assigned to the first constellation symbol. Two dimensional Gray mapping comprises associating bit sequences with constellation symbols, such that the bit sequences associated with adjacent constellation symbols differ by only one bit, and the bit sequences associated with the next nearest constellation symbols differ by two bits. The term “adjacent” can be taken to mean closest in terms of a distance metric applied to constellation points in the signal constellation.

FIG. 8 illustrates a 16-point signal constellation provided in accordance with an embodiment of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIG. 8 are provided to six decimal places in Table 17. The signal constellation of FIG. 8 is optimized for use with a code rate of 3/4, and is also suitable for use with other code rates. The code rate corresponds to a channel code which is applied to the bit sequences prior to mapping to constellation symbols for transmission, and which is used for decoding to recover the coded information bits. In FIGS. 8-17C, bit sequences (according to some embodiments of the present invention) are shown generally above their corresponding constellation points. Ambiguities can be resolved by reference to the corresponding tables.

FIG. 9 illustrates a 32-point signal constellation provided in accordance with an embodiment of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIG. 9 are provided to six decimal places in Table 18. The signal constellation of FIG. 9 is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates.

FIGS. 10A to 10D illustrate four different 64-point signal constellations provided in accordance with embodiments of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIGS. 10A to 10D are provided to six decimal places in Tables 19A to 19D, respectively. The signal constellation of FIG. 10A is optimized for use with a code rate of 5/8 and is also suitable for use with other code rates. The signal constellation of FIG. 10B is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates. The signal constellation of FIG. 10C is optimized for use with a code rate of 13/16 and is also suitable for use with other code rates. The signal constellation of FIG. 10D is optimized for use with a code rate of 7/8 and is also suitable for use with other code rates.

FIGS. 11A to 11D illustrate the first quadrants of four different 128-point signal constellations provided in accordance with embodiments of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIGS. 11A to 11D are provided to six decimal places in Tables 20A to 20D, respectively. The signal constellation of FIG. 11A is optimized for use with a code rate of 5/8 and is also suitable for use with other code rates. The signal constellation of FIG. 11B is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates. The signal constellation of FIG. 11C is optimized for use with a code rate of 13/16 and is also suitable for use with other code rates. The signal constellation of FIG. 11D is optimized for use with a code rate of 7/8 and is also suitable for use with other code rates.

FIGS. 12A to 12C illustrate the first quadrants of three different 256-point signal constellations provided in accordance with embodiments of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIGS. 12A to 12C are provided to six decimal places in Tables 21A to 21C, respectively. The signal constellation of FIG. 12A is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates. The signal constellation of FIG. 12B is optimized for use with a code rate of 13/16 and is also suitable for use with other code rates. The signal constellation of FIG. 12C is optimized for use with a code rate of 7/8 and is also suitable for use with other code rates.

The constellations described above with respect to FIGS. 8-12C and Tables 17-21C were initially derived by an optimization operation which produced signal constellations optimized for single carrier scenarios exhibiting phase noise impairment, but without power amplifier nonlinearity. However, the constellations are not necessarily limited to use in such scenarios.

FIG. 13 illustrates a 16-point signal constellation provided in accordance with an embodiment of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIG. 13 are provided to six decimal places in Table 22. The signal constellation of FIG. 13 is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates.

FIG. 14 illustrates a 32-point signal constellation provided in accordance with an embodiment of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIG. 14 are provided to six decimal places in Table 23. The signal constellation of FIG. 14 is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates.

FIGS. 15A to 15D illustrate four different 64-point signal constellations provided in accordance with embodiments of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIGS. 15A to 15D are provided to six decimal places in Tables 24A to 24D, respectively. The signal constellation of FIG. 15A is optimized for use with a code rate of 5/8 and is also suitable for use with other code rates. The signal constellation of FIG. 15B is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates. The signal constellation of FIG. 15C is optimized for use with a code rate of 13/16 and is also suitable for use with other code rates. The signal constellation of FIG. 15D is optimized for use with a code rate of 7/8 and is also suitable for use with other code rates.

FIGS. 16A to 16D illustrate the first quadrants of four different 128-point signal constellations provided in accordance with an embodiment of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIGS. 16A to 16D are provided to six decimal places in Tables 25A to 25D, respectively. The signal constellation of FIG. 16A is optimized for use with a code rate of 5/8 and is also suitable for use with other code rates. The signal constellation of FIG. 16B is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates. The signal constellation of FIG. 16C is optimized for use with a code rate of 13/16 and is also suitable for use with other code rates. The signal constellation of FIG. 16D is optimized for use with a code rate of 7/8 and is also suitable for use with other code rates.

FIGS. 17A to 17C illustrate the first quadrants of three different 256-point signal constellation provided in accordance with embodiments of the present invention. The corresponding (x,y) coordinate values of the constellation symbols illustrated in FIGS. 17A to 17C are provided to six decimal places in Tables 26A to 26C, respectively. The signal constellation of FIG. 17A is optimized for use with a code rate of 3/4 and is also suitable for use with other code rates. The signal constellation of FIG. 17B is optimized for use with a code rate of 13/16 and is also suitable for use with other code rates. The signal constellation of FIG. 17C is optimized for use with a code rate of 7/8 and is also suitable for use with other code rates.

The constellations described above with respect to FIGS. 13-17C and Tables 22-26C were initially derived by an optimization operation which produced signal constellations which were believed to be optimal for single carrier scenarios exhibiting both phase noise and power amplifier nonlinearity impairments. However, the constellations are not necessarily limited to use in such scenarios.

The (x,y) coordinate values provided in Tables 17-26C are specified to a level of precision of six decimal places. In some embodiments, the coordinate values of the constellation symbols illustrated in FIGS. 8-17C and shown in Tables 17-26C can be truncated to a level of precision of three, four, or five decimal places.

Embodiments of the present invention provide for a method and apparatus for performing wireless communication using digital Quadrature Amplitude Modulation. The method and apparatus involve utilizing, by a mapping module electronic component of a wireless communication device, a signal constellation for modulating a signal for transmission or demodulating a received signal, the signal constellation comprising a plurality of constellation symbols. The signal constellation may be obtained using an optimization procedure for example as described below. It is noted that the optimization procedure below is not intended to limit the disclosed signal constellations. Rather, the optimization procedure is provided as an example of how these and similar constellations may be obtained, and the circumstances under which they may be expected to perform well.

In a practical system, phase noise may be said to have a memory. That is, the state of the phase noise at a given time may depend on the state of the phase noise at previous times. As such, according to embodiments of the present invention, the residual phase error caused by the imperfect cancellation for phase noise with memory is obtained based on the specified pilot distribution and the methods for phase estimation and phase noise mitigation. The residual phase error is assumed to be a white random process. Therefore, with the aid of transformation of phase noise with memory to the memoryless residual phase error, methods for constellation optimization with white phase noise constraint and white Gaussian noise can be applied to constellation optimization in the presence of a constraint representing phase noise with memory.

One embodiment of the present invention provides for signal constellations derived from conducting a joint signal-labeling optimization for the optimized modulation symbol constellations either with phase noise constraint only or with both phase noise and power constraints with a simplified optimization algorithm in order to obtain the constellations of higher order modulation such those having 128 or 256 points.

Another embodiment of the present invention provides for signal constellations derived from the optimization of pilot sequence distribution in a single carrier system, which depends on a given phase noise model such as described in Equation (1) as well as particular SNR level, overhead ratio, and phase estimate and phase noise mitigation algorithms.

According to an embodiment of the present invention, a simple and efficient algorithm for the estimation of the phase noise based on the presence of a pilot field of length L every W transmitted symbols, with a pilot overhead OH=L/W may be utilized. The output of the channel affected by the phase noise θk and thermal noise nk may be written as:


rk=ekpk+nk

If the known pilot symbols are placed in contiguous positions


kε[nW−L/2,nW+L/2],

with arbitrary integer n, a phase estimate corresponding to the middle of the pilot field can be calculated as follows:

θ ^ nW = tan - 1 ( k = nW - L / 2 nW + L / 2 - 1 ( r k p k * ) k = nW - L / 2 nW + L / 2 - 1 ( r k p k * ) ) . ( 4 )

To derive a sequence of phases between two consecutive phase estimates calculated using Equation (4), that is the (nW)th and ((n+1)W)th phase estimates, the following linear interpolation formula is used:

θ ^ nW + m = [ W - m W ] θ ^ nW + [ m W ] θ ^ ( n + 1 ) W m = 1 , , W - 1. ( 5 )

For a given overhead OH=L/W, the optimal length of the pilot field L can be obtained by trading off accuracy of the estimation Equation (4) versus accuracy of interpolation Equation (5). As shown in FIG. 7, in an IEEE 802.11ad Single Carrier (SC) block, the pilot field length L=64 and the single SC block length W=512. Therefore, OH=64/512=12.5%.

After mitigation of phase noise, the power spectral density (PSD) of the residual phase error is assumed to be white. Standard deviation of residual phase noise σφ is used to evaluate the phase errors after a phase noise mitigation process and is used to optimize the constellations. FIG. 18 shows the standard derivation of residual phase noise vs. SNR using the linear interpolation phase noise mitigation method (5). The standard deviation of the residual phase noise (left vertical axis) versus SNR for a system baud rate Rs=2 GHz, and a pilot overhead of 12.5% is shown. The solid line curve corresponds to the 802.11ad SC frame structure (L=64, W=512). The dashed curve corresponds to the optimal pilot distribution. The dotted curve shows the optimal pilot field length (to be read in the right vertical axis).

Performance of a given signal constellation over a channel under ideal detection and decoding can be computed using the Mutual Information (MI):

MI = E [ log P ( Z W ) P ( Z ) ] ( 6 )

or using the Pragmatic Mutual Information (PMI):

PMI = i = 1 m E [ log P ( Z B i ) P ( Z ) ] . ( 7 )

FIG. 19 illustrates transmitter and receiver systems bounded by the PMI. In the FIG. 19 as well as the above Equations (6) and (7), W and Z represent the input and output of channel respectively and B, is the ith bit in W. The MI provides an upper bound on the maximum spectral efficiency, defined as r=mrc, where m is the number of bits associated to each modulation symbol and rc is the binary code rate. However, in practical systems optimization of signal constellations is performed under the PMI approach. To improve the performance of pragmatic systems, the mapping of bits to constellation can be suitably optimized, for example using Gray mapping. Although the PMI can be in general quite different from the MI, the difference can be reduced significantly when using optimized constellations and bit-to-signal mappings.

The computation of PMI can be performed with numerical techniques when the conditional distribution of the channel P(ZIW) is known. When the channel is memoryless, the output at a given time instant only depends on the corresponding input at the same time and the computation of PMI becomes easier. Practical memoryless channel models include AWGN and White phase noise channels.

In channels constrained by the use of a nonlinear amplifier the optimization of the constellation may be appropriately modified. In these cases, the AM/AM curve of the non-linearity may be represented using the simplified soft limiter shown FIG. 20 by enforcing a peak power constraint. Peak power of the constellation may then become a relevant parameter.

The following system conditions were used in the computation of signal constellations according to an optimization procedure. Signal constellations with 16, 32, 64, 128 and 256 modulation points were considered. Five code rates: rc=1/2, 5/8, 3/4, 13/16, 7/8 were considered. Channel scenarios were considered corresponding to AWGN without phase noise, AWGN with minimal residual phase noise corresponding to the optimal pilot distribution, AWGN with residual phase noise corresponding to the standard (64/512) pilot distribution; AWGN with non linearity, AWGN with non linearity and minimal residual phase noise corresponding to optimal pilot distribution, and AWGN with non linearity and residual phase noise corresponding to the standard (64/512) pilot distribution. The non linearity is represented using a Peak Signal-to-Noise ratio (PSNR) constraint.

According to embodiments of the present invention, for each pair of code rate and constellation size, as well as for various levels of the residual phase noise, a constellation and the corresponding binary labeling are designed to achieve a PMI larger than the target spectral efficiency r=mrc with the minimum possible SNR or PSNR.

FIG. 21 is a graph showing the loss in spectral efficiency (from the Shannon limit (in bits per dimension) as a function of the channel SNR, for square QAM type constellations (M=22q) with Bit Interleaved Coded Modulation (BICMm) (a Pragmatic Mutual Information (PMI) approach), according to an embodiment of the present invention. The plot demonstrates that when using a BICM approach, each constellation set has an optimal range of SNR for practical uses.

FIG. 22 is a graph showing the loss in spectral efficiency from the Shannon limit (in bits per dimension) as a function of the spectral efficiency, according to an embodiment of the present invention. In FIG. 22 it is observed that the crossing point for optimality between the different constellation happens roughly at spectral efficiencies r=(q−0.4) bit per dimension, where q is the number of bits associated to each signal of the constellation.

From this observation it is possible to determine the optimal range of coding rates for 22q QAM constellation with BICM:


(q−1.4)/q<rcq<(q−0.4)/q.

In some embodiments, the optimal range may be further reduced by also implementing the cross QAM constellations with size M=22q+1. That is, non-square QAM constellations may be utilized in addition to square QAM constellations.

In some embodiments, a 16-point constellation or a 32-point constellation, for example having a code rate of 3/4, is used when 0.3<rcq<0.8. In some embodiments, a 64-point constellation or a 128-point constellation, for example having a code rate of 5/8, 3/4, 13/16 or 7/8 is used when 0.53<rcq<0.87. In some embodiments, a 256-point constellation, for example having a code rate of 3/4, 13/16 or 7/8 is used when 0.65<rcq<0.9.

Given modulation format, code rate and channel scenario, constellation and bit sequence labeling can be optimized to minimize SNR to achieve a PMI greater than the target spectral efficiency r=mrc. FIG. 23 illustrates an applicable constellation optimization procedure using a simulated annealing (SA) technique, according to an embodiment of the present invention. Embodiments of the present invention involve providing a signal constellation which is derived from a simulating annealing algorithm which is applied to maximize Pragmatic Mutual Information. The algorithm may use a logarithmic, polynomial, or other cooling function. The polynomial cooling function may be particularly appropriate for higher order modulations, such as order 64 and above.

Tables 2-16 illustrate numerical results indicative of performance of the corresponding signal constellations disclosed herein in Tables 17-26C and FIGS. 8-17C, compared to the performance of conventional QAM constellations. These signal constellations were evaluated numerically to obtain the illustrated results. The results were obtained under certain assumptions and are provided by way of example only, and with the understanding that performance may vary in practice.

Performance in Tables 2-16 is reported in terms of SNR or PSNR, as appropriate, to achieve the target spectral efficiencies, for the QAM and selected optimized constellations. Tables 2-4 relate to 16-point constellations, Tables 5-7 relate to 32-point constellations, Tables 8-10 relate to 64-point constellations, Tables 11-13 relate to 128-point constellations, and Tables 14-16 relate to 256-point constellations. Tables 2, 5, 8, 11 and 14 show the performance of square QAM constellations used as a basis for comparison. Tables 3, 6, 9, 12 and 15 show the performance of the selected (optimized) constellations according to embodiments of the invention. Tables 4, 7, 10, 13 and 16 show the gains in dB of the selected (optimized) constellations disclosed herein with respect to their closest corresponding QAM constellation and each of these tables can be obtained by subtraction performed on the two tables immediately preceding it.

In Tables 2-16 each performance result has been obtained using a constellation optimized for the system scenario corresponding to the phase noise, pilot signal, and power amplifier conditions indicated in the table.

Tables 2-16 show performance gains that are believed to be significant in a significant number of cases, especially in the case of PSNR.

TABLE 1 Performance (I) of QAM versus selected optimized constellations with 16 points. SQUARE QAM CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 5.33 5.38 5.38 7.86 7.96 7.96 5/8 7.30 7.40 7.42 9.87 9.93 9.99 3/4 9.29 9.44 9.51 11.89 11.95 12.01 13/16 10.36 10.52 10.54 12.89 13.02 13.11 7/8 11.57 11.73 11.82 14.10 14.23 14.35

TABLE 3 Performance (II) of QAM versus selected optimized constellations with 16 points. EMBODIMENT CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 5.21 5.33 5.33 6.51 6.58 6.61 5/8 7.17 7.27 7.27 8.52 8.65 8.65 3/4 9.26 9.33 9.39 10.57 10.70 10.76 13/16 10.42 10.52 10.55 11.66 11.86 11.89 7/8 11.87 11.98 12.07 12.88 13.10 13.23

TABLE 4 Performance (III) of QAM versus selected optimized constellations with 16 points. DIFFERENCE SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 0.13 0.05 0.05 1.36 1.38 1.34 5/8 0.13 0.13 0.14 1.34 1.28 1.34 3/4 0.03 0.11 0.13 1.32 1.25 1.25 13/16 −0.05 0.00 −0.01 1.23 1.16 1.22 7/8 −0.30 −0.25 −0.25 1.23 1.13 1.13

TABLE 5 Performance (I) of QAM versus selected optimized constellations with 32 points. SQUARE QAM CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 7.87 7.93 7.99 10.12 10.24 10.24 5/8 10.10 10.24 10.32 12.38 12.50 12.57 3/4 12.27 12.42 12.55 14.55 14.69 14.82 13/16 13.31 13.56 13.70 15.65 15.81 16.02 7/8 14.55 14.80 15.02 16.83 17.05 17.31

TABLE 6 Performance (II) of QAM versus selected optimized constellations with 32 points. EMBODIMENT CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 7.37 7.49 7.49 8.99 9.12 9.12 5/8 9.50 9.62 9.69 11.32 11.49 11.57 3/4 11.77 11.89 11.95 13.80 14.05 14.27 13/16 13.02 13.18 13.27 15.27 15.59 15.95 7/8 14.57 14.77 14.89 16.94 17.52 18.27

TABLE 7 Performance (III) of QAM versus selected optimized constellations with 32 points. DIFFERENCE SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 0.50 0.43 0.50 1.13 1.13 1.13 5/8 0.60 0.62 0.63 1.06 1.01 1.00 3/4 0.50 0.53 0.60 0.75 0.64 0.55 13/16 0.28 0.38 0.43 0.38 0.22 0.07 7/8 −0.02 0.03 0.13 −0.11 −0.47 −0.95

TABLE 8 Performance (I) of QAM versus selected optimized constellations with 64 points. SQUARE QAM CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 9.44 9.56 9.64 13.14 13.20 13.26 5/8 11.92 12.14 12.17 15.64 15.77 15.89 3/4 14.41 14.66 14.83 18.07 18.29 18.54 13/16 15.71 15.99 16.26 19.37 19.59 19.96 7/8 17.06 17.42 17.91 20.75 21.03 21.55

TABLE 9 Performance (II) of QAM versus selected optimized constellations with 64 points. EMBODIMENT CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 9.01 9.07 9.14 11.01 11.14 11.19 5/8 11.39 11.55 11.64 13.77 13.94 14.06 3/4 13.94 14.16 14.29 16.54 16.72 16.97 13/16 15.46 15.62 15.84 17.84 18.14 18.59 7/8 16.93 17.16 17.41 19.28 19.63 20.25

TABLE 10 Performance (III) of QAM versus selected optimized constellations with 64 points. DIFFERENCE SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 0.42 0.49 0.50 2.13 2.06 2.08 5/8 0.53 0.59 0.53 1.88 1.83 1.83 3/4 0.47 0.50 0.55 1.53 1.56 1.57 13/16 0.25 0.38 0.42 1.53 1.45 1.38 7/8 0.13 0.27 0.50 1.47 1.41 1.30

TABLE 11 Performance (I) of QAM versus selected optimized constellations with 128 points. SQUARE QAM CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 11.76 11.95 12.07 14.95 15.07 15.20 5/8 14.39 14.64 14.89 17.56 17.77 18.02 3/4 17.03 17.38 17.78 20.17 20.50 20.93 13/16 18.38 18.78 19.47 21.52 21.88 22.60 7/8 19.81 20.34 21.36 22.97 23.44 24.56

TABLE 12 Performance (II) of QAM versus selected optimized constellations with 128 points. EMBODIMENT CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 10.70 10.85 10.88 13.24 13.45 13.49 5/8 13.52 13.64 13.77 16.17 16.39 16.64 3/4 16.41 16.63 16.88 19.28 19.63 20.13 13/16 18.10 18.35 18.72 20.72 21.10 21.72 7/8 19.73 19.98 20.47 22.24 22.69 23.72

TABLE 13 Performance (III) of QAM versus selected optimized constellations with 128 points. DIFFERENCE SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 1.06 1.09 1.20 1.70 1.63 1.70 5/8 0.88 1.00 1.13 1.39 1.38 1.38 3/4 0.63 0.75 0.91 0.89 0.88 0.81 13/16 0.28 0.43 0.75 0.80 0.78 0.88 7/8 0.08 0.36 0.89 0.73 0.75 0.84

TABLE 14 Performance (I) of QAM versus selected optimized constellations with 256 points. SQUARE QAM CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 13.32 13.48 13.60 17.50 17.63 17.82 5/8 16.26 16.60 16.91 20.48 20.73 21.13 3/4 19.31 19.73 20.56 23.49 23.85 24.81 13/16 20.83 21.46 22.71 25.08 25.50 26.96 7/8 22.48 23.26 25.51 26.66 27.35 30.00

TABLE 15 Performance (II) of QAM versus selected optimized constellations with 256 points. EMBODIMENT CONSTELLATION SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 12.70 12.85 12.98 15.95 16.07 16.23 5/8 15.66 15.90 16.13 19.02 19.26 19.60 3/4 18.84 19.18 19.68 22.18 22.48 23.23 13/16 20.46 20.86 21.64 23.96 24.33 25.36 7/8 22.73 23.10 24.01 25.88 26.28 27.65

TABLE 16 Performance (III) of QAM versus selected optimized constellations with 256 points. DIFFERENCE SNR PSNR CODE NO PN PN NO PN PN RATE PN OPT STD PN OPT STD 1/2 0.63 0.63 0.63 1.55 1.56 1.59 5/8 0.60 0.70 0.77 1.45 1.47 1.53 3/4 0.47 0.55 0.88 1.31 1.38 1.58 13/16 0.38 0.59 1.07 1.13 1.17 1.59 7/8 −0.25 0.16 1.50 0.77 1.07 2.35

Tables 17-26C as referenced herein are presented below. As noted above, each table specifies a signal constellation, with each row specifying a constellation symbol in which one of the X and Y values indicates a normalized magnitude of the in-phase component of the constellation symbol and the other of the X and Y values indicates a normalized magnitude of the quadrature component of the constellation symbol. The normalized magnitudes may be scaled. The first column specifies bit sequences corresponding to the constellation symbols. In some embodiments, the entries in the first column can be reordered. In some embodiments, the entries in the second column can be varied, for example by rounding, truncating or varying by up to a predetermined amount.

TABLE 17 COORDINATE SYMBOL BITS X Y 0000 0.208300 0.385859 0001 0.643529 0.210665 0010 0.453620 1.186803 0011 1.179606 0.586066 0100 0.208300 −0.385859 0101 0.643529 −0.210665 0110 0.453620 −1.186803 0111 1.179606 −0.586066 1000 −0.208300 0.385859 1001 −0.643529 0.210665 1010 −0.453620 1.186803 1011 −1.179606 0.586066 1100 −0.208300 −0.385859 1101 −0.643529 −0.210665 1110 −0.453620 −1.186803 1111 −1.179606 −0.586066

TABLE 18 COORDINATE SYMBOL BITS X Y 00000 1.310029 0.338031 00001 0.224325 0.876872 00010 0.720578 0.336506 00011 0.269767 0.543938 00100 1.012286 0.981782 00101 0.423089 1.343637 00110 0.540439 0.139694 00111 0.159408 0.198087 01000 1.310029 −0.338031 01001 0.224325 −0.876872 01010 0.720578 −0.336506 01011 0.269767 −0.543938 01100 1.012286 −0.981782 01101 0.423089 −1.343637 01110 0.540439 −0.139694 01111 0.159408 −0.198087 10000 −1.310029 0.338031 10001 −0.224325 0.876872 10010 −0.720578 0.336506 10011 −0.269767 0.543938 10100 −1.012286 0.981782 10101 −0.423089 1.343637 10110 −0.540439 0.139694 10111 −0.159408 0.198087 11000 −1.310029 −0.338031 11001 −0.224325 −0.876872 11010 −0.720578 −0.336506 11011 −0.269767 −0.543938 11100 −1.012286 −0.981782 11101 −0.423089 −1.343637 11110 −0.540439 −0.139694 11111 −0.159408 −0.198087

TABLE 19A COORDINATE SYMBOL BITS X Y 000000 1.469392 0.279838 000001 1.056826 0.221924 000010 0.278986 0.118028 000011 0.715494 0.159574 000100 1.278954 0.863275 000101 0.881208 0.583362 000110 0.313280 0.160867 000111 0.595671 0.362205 001000 0.295098 1.516036 001001 0.173629 1.014971 001010 0.114742 0.259617 001011 0.152038 0.700078 001100 0.785642 1.243046 001101 0.550103 0.874280 001110 0.164975 0.288326 001111 0.353214 0.596159 010000 1.469392 −0.279838 010001 1.056826 −0.221924 010010 0.278986 −0.118028 010011 0.715494 −0.159574 010100 1.278954 −0.863275 010101 0.881208 −0.583362 010110 0.313280 −0.160867 010111 0.595671 −0.362205 011000 0.295098 −1.516036 011001 0.173629 −1.014971 011010 0.114742 −0.259617 011011 0.152038 −0.700078 011100 0.785642 −1.243046 011101 0.550103 −0.874280 011110 0.164975 −0.288326 011111 0.353214 −0.596159 100000 −1.469392 0.279838 100001 −1.056826 0.221924 100010 −0.278986 0.118028 100011 −0.715494 0.159574 100100 −1.278954 0.863275 100101 −0.881208 0.583362 100110 −0.313280 0.160867 100111 −0.595671 0.362205 101000 −0.295098 1.516036 101001 −0.173629 1.014971 101010 −0.114742 0.259617 101011 −0.152038 0.700078 101100 −0.785642 1.243046 101101 −0.550103 0.874280 101110 −0.164975 0.288326 101111 −0.353214 0.596159 110000 −1.469392 −0.279838 110001 −1.056826 −0.221924 110010 −0.278986 −0.118028 110011 −0.715494 −0.159574 110100 −1.278954 −0.863275 110101 −0.881208 −0.583362 110110 −0.313280 −0.160867 110111 −0.595671 −0.362205 111000 −0.295098 −1.516036 111001 −0.173629 −1.014971 111010 −0.114742 −0.259617 111011 −0.152038 −0.700078 111100 −0.785642 −1.243046 111101 −0.550103 −0.874280 111110 −0.164975 −0.288326 111111 −0.353214 −0.596159

TABLE 19B COORDINATE SYMBOL BITS X Y 000000 1.492905 0.360756 000001 1.080694 0.217529 000010 0.403075 0.095458 000011 0.768391 0.154809 000100 1.206775 0.854056 000101 0.849704 0.601606 000110 0.417913 0.175906 000111 0.610015 0.376978 001000 0.309008 1.471972 001001 0.198570 1.031429 001010 0.103390 0.265338 001011 0.134876 0.685577 001100 0.824050 1.192733 001101 0.553412 0.861355 001110 0.174613 0.295716 001111 0.339582 0.576666 010000 1.492905 −0.360756 010001 1.080694 −0.217529 010010 0.403075 −0.095458 010011 0.768391 −0.154809 010100 1.206775 −0.854056 010101 0.849704 −0.601606 010110 0.417913 −0.175906 010111 0.610015 −0.376978 011000 0.309008 −1.471972 011001 0.198570 −1.031429 011010 0.103390 −0.265338 011011 0.134876 −0.685577 011100 0.824050 −1.192733 011101 0.553412 −0.861355 011110 0.174613 −0.295716 011111 0.339582 −0.576666 100000 −1.492905 0.360756 100001 −1.080694 0.217529 100010 −0.403075 0.095458 100011 −0.768391 0.154809 100100 −1.206775 0.854056 100101 −0.849704 0.601606 100110 −0.417913 0.175906 100111 −0.610015 0.376978 101000 −0.309008 1.471972 101001 −0.198570 1.031429 101010 −0.103390 0.265338 101011 −0.134876 0.685577 101100 −0.824050 1.192733 101101 −0.553412 0.861355 101110 −0.174613 0.295716 101111 −0.339582 0.576666 110000 −1.492905 −0.360756 110001 −1.080694 −0.217529 110010 −0.403075 −0.095458 110011 −0.768391 −0.154809 110100 −1.206775 −0.854056 110101 −0.849704 −0.601606 110110 −0.417913 −0.175906 110111 −0.610015 −0.376978 111000 −0.309008 −1.471972 111001 −0.198570 −1.031429 111010 −0.103390 −0.265338 111011 −0.134876 −0.685577 111100 −0.824050 −1.192733 111101 −0.553412 −0.861355 111110 −0.174613 −0.295716 111111 −0.339582 −0.576666

TABLE 19C COORDINATE SYMBOL BITS X Y 000000 1.223083 0.871183 000001 1.501110 0.301512 000010 0.977190 0.129880 000011 1.034515 0.370077 000100 0.752034 1.165798 000101 0.670194 0.763847 000110 0.622485 0.140135 000111 0.728917 0.432979 001000 0.146134 1.065653 001001 0.158150 0.688012 001010 0.128341 0.119548 001011 0.111238 0.401943 001100 0.296713 1.461668 001101 0.398918 0.653188 001110 0.386998 0.128121 001111 0.372132 0.404640 010000 1.223083 −0.871183 010001 1.501110 −0.301512 010010 0.977190 −0.129880 010011 1.034515 −0.370077 010100 0.752034 −1.165798 010101 0.670194 −0.763847 010110 0.622485 −0.140135 010111 0.728917 −0.432979 011000 0.146134 −1.065653 011001 0.158150 −0.688012 011010 0.128341 −0.119548 011011 0.111238 −0.401943 011100 0.296713 −1.461668 011101 0.398918 −0.653188 011110 0.386998 −0.128121 011111 0.372132 −0.404640 100000 −1.223083 0.871183 100001 −1.501110 0.301512 100010 −0.977190 0.129880 100011 −1.034515 0.370077 100100 −0.752034 1.165798 100101 −0.670194 0.763847 100110 −0.622485 0.140135 100111 −0.728917 0.432979 101000 −0.146134 1.065653 101001 −0.158150 0.688012 101010 −0.128341 0.119548 101011 −0.111238 0.401943 101100 −0.296713 1.461668 101101 −0.398918 0.653188 101110 −0.386998 0.128121 101111 −0.372132 0.404640 110000 −1.223083 −0.871183 110001 −1.501110 −0.301512 110010 −0.977190 −0.129880 110011 −1.034515 −0.370077 110100 −0.752034 −1.165798 110101 −0.670194 −0.763847 110110 −0.622485 −0.140135 110111 −0.728917 −0.432979 111000 −0.146134 −1.065653 111001 −0.158150 −0.688012 111010 −0.128341 −0.119548 111011 −0.111238 −0.401943 111100 −0.296713 −1.461668 111101 −0.398918 −0.653188 111110 −0.386998 −0.128121 111111 −0.372132 −0.404640

TABLE 19D COORDINATE SYMBOL BITS X Y 000000 1.484430 0.355657 000001 1.103689 0.241419 000010 0.483043 0.093713 000011 0.757638 0.144839 000100 1.150175 0.837105 000101 0.876141 0.599840 000110 0.335946 0.248000 000111 0.608728 0.420395 001000 0.255763 1.404577 001001 0.189712 1.014604 001010 0.088351 0.457627 001011 0.166639 0.679954 001100 0.768973 1.227892 001101 0.588939 0.901538 001110 0.105757 0.127560 001111 0.433169 0.631655 010000 1.484430 −0.355657 010001 1.103689 −0.241419 010010 0.483043 −0.093713 010011 0.757638 −0.144839 010100 1.150175 −0.837105 010101 0.876141 −0.599840 010110 0.335946 −0.248000 010111 0.608728 −0.420395 011000 0.255763 −1.404577 011001 0.189712 −1.014604 011010 0.088351 −0.457627 011011 0.166639 −0.679954 011100 0.768973 −1.227892 011101 0.588939 −0.901538 011110 0.105757 −0.127560 011111 0.433169 −0.631655 100000 −1.484430 0.355657 100001 −1.103689 0.241419 100010 −0.483043 0.093713 100011 −0.757638 0.144839 100100 −1.150175 0.837105 100101 −0.876141 0.599840 100110 −0.335946 0.248000 100111 −0.608728 0.420395 101000 −0.255763 1.404577 101001 −0.189712 1.014604 101010 −0.088351 0.457627 101011 −0.166639 0.679954 101100 −0.768973 1.227892 101101 −0.588939 0.901538 101110 −0.105757 0.127560 101111 −0.433169 0.631655 110000 −1.484430 −0.355657 110001 −1.103689 −0.241419 110010 −0.483043 −0.093713 110011 −0.757638 −0.144839 110100 −1.150175 −0.837105 110101 −0.876141 −0.599840 110110 −0.335946 −0.248000 110111 −0.608728 −0.420395 111000 −0.255763 −1.404577 111001 −0.189712 −1.014604 111010 −0.088351 −0.457627 111011 −0.166639 −0.679954 111100 −0.768973 −1.227892 111101 −0.588939 −0.901538 111110 −0.105757 −0.127560 111111 −0.433169 −0.631655

TABLE 20A COORDINATE SYMBOL BITS X Y 0000000 0.737273 0.315203 0000001 0.782564 0.180128 0000010 0.471801 0.125755 0000011 0.472349 0.082889 0000100 0.584038 0.424801 0000101 0.600465 0.414587 0000110 0.411169 0.162424 0000111 0.431203 0.128962 0001000 0.113326 0.576184 0001001 0.132604 0.585352 0001010 0.109346 0.231247 0001011 0.109292 0.159056 0001100 0.265381 0.483973 0001101 0.265697 0.558228 0001110 0.164357 0.264453 0001111 0.142192 0.229753 0010000 0.987276 0.501105 0010001 1.073123 0.189336 0010010 1.238487 0.575437 0010011 1.328506 0.231640 0010100 0.751918 0.674743 0010101 0.679577 0.745095 0010110 1.248964 0.961337 0010111 1.793509 0.444665 0011000 0.178513 0.836678 0011001 0.146379 1.017268 0011010 0.280870 1.717180 0011011 0.220033 1.321346 0011100 0.371932 0.779634 0011101 0.467467 0.944880 0011110 0.933089 1.379959 0011111 0.606172 1.218326 0100000 0.737273 −0.315203 0100001 0.782564 −0.180128 0100010 0.471801 −0.125755 0100011 0.472349 −0.082889 0100100 0.584038 −0.424801 0100101 0.600465 −0.414587 0100110 0.411169 −0.162424 0100111 0.431203 −0.128962 0101000 0.113326 −0.576184 0101001 0.132604 −0.585352 0101010 0.109346 −0.231247 0101011 0.109292 −0.159056 0101100 0.265381 −0.483973 0101101 0.265697 −0.558228 0101110 0.164357 −0.264453 0101111 0.142192 −0.229753 0110000 0.987276 −0.501105 0110001 1.073123 −0.189336 0110010 1.238487 −0.575437 0110011 1.328506 −0.231640 0110100 0.751918 −0.674743 0110101 0.679577 −0.745095 0110110 1.248964 −0.961337 0110111 1.793509 −0.444665 0111000 0.178513 −0.836678 0111001 0.146379 −1.017268 0111010 0.280870 −1.717180 0111011 0.220033 −1.321346 0111100 0.371932 −0.779634 0111101 0.467467 −0.944880 0111110 0.933089 −1.379959 0111111 0.606172 −1.218326 1000000 −0.737273 0.315203 1000001 −0.782564 0.180128 1000010 −0.471801 0.125755 1000011 −0.472349 0.082889 1000100 −0.584038 0.424801 1000101 −0.600465 0.414587 1000110 −0.411169 0.162424 1000111 −0.431203 0.128962 1001000 −0.113326 0.576184 1001001 −0.132604 0.585352 1001010 −0.109346 0.231247 1001011 −0.109292 0.159056 1001100 −0.265381 0.483973 1001101 −0.265697 0.558228 1001110 −0.164357 0.264453 1001111 −0.142192 0.229753 1010000 −0.987276 0.501105 1010001 −1.073123 0.189336 1010010 −1.238487 0.575437 1010011 −1.328506 0.231640 1010100 −0.751918 0.674743 1010101 −0.679577 0.745095 1010110 −1.248964 0.961337 1010111 −1.793509 0.444665 1011000 −0.178513 0.836678 1011001 −0.146379 1.017268 1011010 −0.280870 1.717180 1011011 −0.220033 1.321346 1011100 −0.371932 0.779634 1011101 −0.467467 0.944880 1011110 −0.933089 1.379959 1011111 −0.606172 1.218326 1100000 −0.737273 −0.315203 1100001 −0.782564 −0.180128 1100010 −0.471801 −0.125755 1100011 −0.472349 −0.082889 1100100 −0.584038 −0.424801 1100101 −0.600465 −0.414587 1100110 −0.411169 −0.162424 1100111 −0.431203 −0.128962 1101000 −0.113326 −0.576184 1101001 −0.132604 −0.585352 1101010 −0.109346 −0.231247 1101011 −0.109292 −0.159056 1101100 −0.265381 −0.483973 1101101 −0.265697 −0.558228 1101110 −0.164357 −0.264453 1101111 −0.142192 −0.229753 1110000 −0.987276 −0.501105 1110001 −1.073123 −0.189336 1110010 −1.238487 −0.575437 1110011 −1.328506 −0.231640 1110100 −0.751918 −0.674743 1110101 −0.679577 −0.745095 1110110 −1.248964 −0.961337 1110111 −1.793509 −0.444665 1111000 −0.178513 −0.836678 1111001 −0.146379 −1.017268 1111010 −0.280870 −1.717180 1111011 −0.220033 −1.321346 1111100 −0.371932 −0.779634 1111101 −0.467467 −0.944880 1111110 −0.933089 −1.379959 1111111 −0.606172 −1.218326

TABLE 20B COORDINATE SYMBOL BITS X Y 0000000 0.779391 0.338303 0000001 0.705151 0.165321 0000010 0.392817 0.073826 0000011 0.566840 0.098610 0000100 0.591096 0.495628 0000101 0.506207 0.386704 0000110 0.333309 0.129562 0000111 0.431485 0.259293 0001000 0.133150 0.720478 0001001 0.112303 0.521489 0001010 0.088988 0.094762 0001011 0.084578 0.331907 0001100 0.369721 0.688796 0001101 0.245135 0.489948 0001110 0.173144 0.142180 0001111 0.187579 0.326278 0010000 0.960305 0.408119 0010001 1.024151 0.117108 0010010 1.193232 0.494688 0010011 1.308642 0.184615 0010100 0.755084 0.676471 0010101 0.815391 0.852249 0010110 1.225372 0.896021 0010111 1.673595 0.351190 0011000 0.153929 0.914118 0011001 0.210848 1.095014 0011010 0.311339 1.668426 0011011 0.184999 1.301075 0011100 0.468118 0.850595 0011101 0.563693 0.998855 0011110 0.958825 1.358356 0011111 0.578328 1.241114 0100000 0.779391 −0.338303 0100001 0.705151 −0.165321 0100010 0.392817 −0.073826 0100011 0.566840 −0.098610 0100100 0.591096 −0.495628 0100101 0.506207 −0.386704 0100110 0.333309 −0.129562 0100111 0.431485 −0.259293 0101000 0.133150 −0.720478 0101001 0.112303 −0.521489 0101010 0.088988 −0.094762 0101011 0.084578 −0.331907 0101100 0.369721 −0.688796 0101101 0.245135 −0.489948 0101110 0.173144 −0.142180 0101111 0.187579 −0.326278 0110000 0.960305 −0.408119 0110001 1.024151 −0.117108 0110010 1.193232 −0.494688 0110011 1.308642 −0.184615 0110100 0.755084 −0.676471 0110101 0.815391 −0.852249 0110110 1.225372 −0.896021 0110111 1.673595 −0.351190 0111000 0.153929 −0.914118 0111001 0.210848 −1.095014 0111010 0.311339 −1.668426 0111011 0.184999 −1.301075 0111100 0.468118 −0.850595 0111101 0.563693 −0.998855 0111110 0.958825 −1.358356 0111111 0.578328 −1.241114 1000000 −0.779391 0.338303 1000001 −0.705151 0.165321 1000010 −0.392817 0.073826 1000011 −0.566840 0.098610 1000100 −0.591096 0.495628 1000101 −0.506207 0.386704 1000110 −0.333309 0.129562 1000111 −0.431485 0.259293 1001000 −0.133150 0.720478 1001001 −0.112303 0.521489 1001010 −0.088988 0.094762 1001011 −0.084578 0.331907 1001100 −0.369721 0.688796 1001101 −0.245135 0.489948 1001110 −0.173144 0.142180 1001111 −0.187579 0.326278 1010000 −0.960305 0.408119 1010001 −1.024151 0.117108 1010010 −1.193232 0.494688 1010011 −1.308642 0.184615 1010100 −0.755084 0.676471 1010101 −0.815391 0.852249 1010110 −1.225372 0.896021 1010111 −1.673595 0.351190 1011000 −0.153929 0.914118 1011001 −0.210848 1.095014 1011010 −0.311339 1.668426 1011011 −0.184999 1.301075 1011100 −0.468118 0.850595 1011101 −0.563693 0.998855 1011110 −0.958825 1.358356 1011111 −0.578328 1.241114 1100000 −0.779391 −0.338303 1100001 −0.705151 −0.165321 1100010 −0.392817 −0.073826 1100011 −0.566840 −0.098610 1100100 −0.591096 −0.495628 1100101 −0.506207 −0.386704 1100110 −0.333309 −0.129562 1100111 −0.431485 −0.259293 1101000 −0.133150 −0.720478 1101001 −0.112303 −0.521489 1101010 −0.088988 −0.094762 1101011 −0.084578 −0.331907 1101100 −0.369721 −0.688796 1101101 −0.245135 −0.489948 1101110 −0.173144 −0.142180 1101111 −0.187579 −0.326278 1110000 −0.960305 −0.408119 1110001 −1.024151 −0.117108 1110010 −1.193232 −0.494688 1110011 −1.308642 −0.184615 1110100 −0.755084 −0.676471 1110101 −0.815391 −0.852249 1110110 −1.225372 −0.896021 1110111 −1.673595 −0.351190 1111000 −0.153929 −0.914118 1111001 −0.210848 −1.095014 1111010 −0.311339 −1.668426 1111011 −0.184999 −1.301075 1111100 −0.468118 −0.850595 1111101 −0.563693 −0.998855 1111110 −0.958825 −1.358356 1111111 −0.578328 −1.241114

TABLE 20C COORDINATE SYMBOL BITS X Y 0000000 0.676205 0.590907 0000001 0.696016 0.362489 0000010 0.553277 0.064967 0000011 0.641368 0.195573 0000100 0.526012 0.596882 0000101 0.490563 0.432520 0000110 0.372395 0.089910 0000111 0.433984 0.256395 0001000 0.133129 0.680380 0001001 0.140357 0.511313 0001010 0.073689 0.113398 0001011 0.073957 0.342801 0001100 0.335239 0.697471 0001101 0.293873 0.462352 0001110 0.223478 0.122727 0001111 0.250692 0.291177 0010000 0.849307 0.605280 0010001 0.910806 0.371753 0010010 1.121469 0.096631 0010011 0.889883 0.100840 0010100 1.044658 0.689042 0010101 1.351312 0.747663 0010110 1.653554 0.212837 0010111 1.334308 0.348076 0011000 0.106020 0.847896 0011001 0.110430 1.108822 0011010 0.790965 1.102054 0011011 0.991785 1.277338 0011100 0.409035 0.918111 0011101 0.191275 1.371272 0011110 0.580772 1.045388 0011111 0.545581 1.581968 0100000 0.676205 −0.590907 0100001 0.696016 −0.362489 0100010 0.553277 −0.064967 0100011 0.641368 −0.195573 0100100 0.526012 −0.596882 0100101 0.490563 −0.432520 0100110 0.372395 −0.089910 0100111 0.433984 −0.256395 0101000 0.133129 −0.680380 0101001 0.140357 −0.511313 0101010 0.073689 −0.113398 0101011 0.073957 −0.342801 0101100 0.335239 −0.697471 0101101 0.293873 −0.462352 0101110 0.223478 −0.122727 0101111 0.250692 −0.291177 0110000 0.849307 −0.605280 0110001 0.910806 −0.371753 0110010 1.121469 −0.096631 0110011 0.889883 −0.100840 0110100 1.044658 −0.689042 0110101 1.351312 −0.747663 0110110 1.653554 −0.212837 0110111 1.334308 −0.348076 0111000 0.106020 −0.847896 0111001 0.110430 −1.108822 0111010 0.790965 −1.102054 0111011 0.991785 −1.277338 0111100 0.409035 −0.918111 0111101 0.191275 −1.371272 0111110 0.580772 −1.045388 0111111 0.545581 −1.581968 1000000 −0.676205 0.590907 1000001 −0.696016 0.362489 1000010 −0.553277 0.064967 1000011 −0.641368 0.195573 1000100 −0.526012 0.596882 1000101 −0.490563 0.432520 1000110 −0.372395 0.089910 1000111 −0.433984 0.256395 1001000 −0.133129 0.680380 1001001 −0.140357 0.511313 1001010 −0.073689 0.113398 1001011 −0.073957 0.342801 1001100 −0.335239 0.697471 1001101 −0.293873 0.462352 1001110 −0.223478 0.122727 1001111 −0.250692 0.291177 1010000 −0.849307 0.605280 1010001 −0.910806 0.371753 1010010 −1.121469 0.096631 1010011 −0.889883 0.100840 1010100 −1.044658 0.689042 1010101 −1.351312 0.747663 1010110 −1.653554 0.212837 1010111 −1.334308 0.348076 1011000 −0.106020 0.847896 1011001 −0.110430 1.108822 1011010 −0.790965 1.102054 1011011 −0.991785 1.277338 1011100 −0.409035 0.918111 1011101 −0.191275 1.371272 1011110 −0.580772 1.045388 1011111 −0.545581 1.581968 1100000 −0.676205 −0.590907 1100001 −0.696016 −0.362489 1100010 −0.553277 −0.064967 1100011 −0.641368 −0.195573 1100100 −0.526012 −0.596882 1100101 −0.490563 −0.432520 1100110 −0.372395 −0.089910 1100111 −0.433984 −0.256395 1101000 −0.133129 −0.680380 1101001 −0.140357 −0.511313 1101010 −0.073689 −0.113398 1101011 −0.073957 −0.342801 1101100 −0.335239 −0.697471 1101101 −0.293873 −0.462352 1101110 −0.223478 −0.122727 1101111 −0.250692 −0.291177 1110000 −0.849307 −0.605280 1110001 −0.910806 −0.371753 1110010 −1.121469 −0.096631 1110011 −0.889883 −0.100840 1110100 −1.044658 −0.689042 1110101 −1.351312 −0.747663 1110110 −1.653554 −0.212837 1110111 −1.334308 −0.348076 1111000 −0.106020 −0.847896 1111001 −0.110430 −1.108822 1111010 −0.790965 −1.102054 1111011 −0.991785 −1.277338 1111100 −0.409035 −0.918111 1111101 −0.191275 −1.371272 1111110 −0.580772 −1.045388 1111111 −0.545581 −1.581968

TABLE 20D COORDINATE SYMBOL BITS X Y 0000000 0.752060 0.302196 0000001 0.788983 0.113122 0000010 0.325356 0.054462 0000011 0.573961 0.098934 0000100 0.579122 0.497202 0000101 0.471776 0.396048 0000110 0.294917 0.133438 0000111 0.433938 0.245088 0001000 0.132847 0.742015 0001001 0.122253 0.604949 0001010 0.068657 0.075472 0001011 0.060983 0.445207 0001100 0.382346 0.652673 0001101 0.302064 0.494450 0001110 0.166497 0.233502 0001111 0.196116 0.340897 0010000 0.907567 0.452354 0010001 1.043922 0.158157 0010010 1.130081 0.548716 0010011 1.320594 0.181413 0010100 0.712483 0.646623 0010101 0.815526 0.865815 0010110 1.157076 0.928991 0010111 1.532471 0.508968 0011000 0.120519 0.915797 0011001 0.148259 1.123784 0011010 0.282652 1.690100 0011011 0.221465 1.387236 0011100 0.423824 0.821654 0011101 0.488704 1.037583 0011110 0.872546 1.413810 0011111 0.675009 1.247576 0100000 0.752060 −0.302196 0100001 0.788983 −0.113122 0100010 0.325356 −0.054462 0100011 0.573961 −0.098934 0100100 0.579122 −0.497202 0100101 0.471776 −0.396048 0100110 0.294917 −0.133438 0100111 0.433938 −0.245088 0101000 0.132847 −0.742015 0101001 0.122253 −0.604949 0101010 0.068657 −0.075472 0101011 0.060983 −0.445207 0101100 0.382346 −0.652673 0101101 0.302064 −0.494450 0101110 0.166497 −0.233502 0101111 0.196116 −0.340897 0110000 0.907567 −0.452354 0110001 1.043922 −0.158157 0110010 1.130081 −0.548716 0110011 1.320594 −0.181413 0110100 0.712483 −0.646623 0110101 0.815526 −0.865815 0110110 1.157076 −0.928991 0110111 1.532471 −0.508968 0111000 0.120519 −0.915797 0111001 0.148259 −1.123784 0111010 0.282652 −1.690100 0111011 0.221465 −1.387236 0111100 0.423824 −0.821654 0111101 0.488704 −1.037583 0111110 0.872546 −1.413810 0111111 0.675009 −1.247576 1000000 −0.752060 0.302196 1000001 −0.788983 0.113122 1000010 −0.325356 0.054462 1000011 −0.573961 0.098934 1000100 −0.579122 0.497202 1000101 −0.471776 0.396048 1000110 −0.294917 0.133438 1000111 −0.433938 0.245088 1001000 −0.132847 0.742015 1001001 −0.122253 0.604949 1001010 −0.068657 0.075472 1001011 −0.060983 0.445207 1001100 −0.382346 0.652673 1001101 −0.302064 0.494450 1001110 −0.166497 0.233502 1001111 −0.196116 0.340897 1010000 −0.907567 0.452354 1010001 −1.043922 0.158157 1010010 −1.130081 0.548716 1010011 −1.320594 0.181413 1010100 −0.712483 0.646623 1010101 −0.815526 0.865815 1010110 −1.157076 0.928991 1010111 −1.532471 0.508968 1011000 −0.120519 0.915797 1011001 −0.148259 1.123784 1011010 −0.282652 1.690100 1011011 −0.221465 1.387236 1011100 −0.423824 0.821654 1011101 −0.488704 1.037583 1011110 −0.872546 1.413810 1011111 −0.675009 1.247576 1100000 −0.752060 −0.302196 1100001 −0.788983 −0.113122 1100010 −0.325356 −0.054462 1100011 −0.573961 −0.098934 1100100 −0.579122 −0.497202 1100101 −0.471776 −0.396048 1100110 −0.294917 −0.133438 1100111 −0.433938 −0.245088 1101000 −0.132847 −0.742015 1101001 −0.122253 −0.604949 1101010 −0.068657 −0.075472 1101011 −0.060983 −0.445207 1101100 −0.382346 −0.652673 1101101 −0.302064 −0.494450 1101110 −0.166497 −0.233502 1101111 −0.196116 −0.340897 1110000 −0.907567 −0.452354 1110001 −1.043922 −0.158157 1110010 −1.130081 −0.548716 1110011 −1.320594 −0.181413 1110100 −0.712483 −0.646623 1110101 −0.815526 −0.865815 1110110 −1.157076 −0.928991 1110111 −1.532471 −0.508968 1111000 −0.120519 −0.915797 1111001 −0.148259 −1.123784 1111010 −0.282652 −1.690100 1111011 −0.221465 −1.387236 1111100 −0.423824 −0.821654 1111101 −0.488704 −1.037583 1111110 −0.872546 −1.413810 1111111 −0.675009 −1.247576

TABLE 21A COORDINATE SYMBOL BITS X Y 00000000 1.443706 0.533189 00000001 1.269957 0.814447 00000010 1.190815 0.494955 00000011 1.099458 0.637493 00000100 1.465098 0.242389 00000101 0.756113 0.035702 00000110 1.757959 0.251458 00000111 0.780617 0.113362 00001000 1.032269 1.540287 00001001 1.450983 1.025801 00001010 1.044843 0.407507 00001011 0.920903 0.474471 00001100 1.061180 0.094137 00001101 0.942993 0.109431 00001110 1.146865 0.181476 00001111 0.863666 0.236933 00010000 1.028531 1.046265 00010001 0.903477 0.907951 00010010 0.580224 0.575049 00010011 0.741607 0.728471 00010100 0.418728 0.083169 00010101 0.537914 0.122315 00010110 0.581523 0.384883 00010111 0.655016 0.231039 00011000 0.844978 1.282582 00011001 0.713419 0.974473 00011010 0.662139 0.570492 00011011 0.764324 0.614172 00011100 0.401000 0.062964 00011101 0.510837 0.125696 00011110 0.576609 0.374709 00011111 0.692682 0.292587 00100000 0.276792 1.794144 00100001 0.158046 1.018387 00100010 0.104813 0.702356 00100011 0.124613 0.885016 00100100 0.110294 0.045410 00100101 0.068892 0.234221 00100110 0.112344 0.534452 00100111 0.089452 0.398340 00101000 0.132300 1.285556 00101001 0.180106 1.107457 00101010 0.190850 0.723373 00101011 0.170166 0.861137 00101100 0.088520 0.064328 00101101 0.063584 0.193067 00101110 0.118919 0.539605 00101111 0.097923 0.408426 00110000 0.215811 1.558150 00110001 0.404454 1.021596 00110010 0.411119 0.597529 00110011 0.429107 0.835089 00110100 0.269636 0.105598 00110101 0.260922 0.234821 00110110 0.375258 0.455253 00110111 0.242072 0.352853 00111000 0.498501 1.328103 00111001 0.496854 1.034589 00111010 0.351667 0.652324 00111011 0.454845 0.854758 00111100 0.278962 0.076488 00111101 0.267573 0.245109 00111110 0.374077 0.452024 00111111 0.248176 0.363324 01000000 1.443706 −0.533189 01000001 1.269957 −0.814447 01000010 1.190815 −0.494955 01000011 1.099458 −0.637493 01000100 1.465098 −0.242389 01000101 0.756113 −0.035702 01000110 1.757959 −0.251458 01000111 0.780617 −0.113362 01001000 1.032269 −1.540287 01001001 1.450983 −1.025801 01001010 1.044843 −0.407507 01001011 0.920903 −0.474471 01001100 1.061180 −0.094137 01001101 0.942993 −0.109431 01001110 1.146865 −0.181476 01001111 0.863666 −0.236933 01010000 1.028531 −1.046265 01010001 0.903477 −0.907951 01010010 0.580224 −0.575049 01010011 0.741607 −0.728471 01010100 0.418728 −0.083169 01010101 0.537914 −0.122315 01010110 0.581523 −0.384883 01010111 0.655016 −0.231039 01011000 0.844978 −1.282582 01011001 0.713419 −0.974473 01011010 0.662139 −0.570492 01011011 0.764324 −0.614172 01011100 0.401000 −0.062964 01011101 0.510837 −0.125696 01011110 0.576609 −0.374709 01011111 0.692682 −0.292587 01100000 0.276792 −1.794144 01100001 0.158046 −1.018387 01100010 0.104813 −0.702356 01100011 0.124613 −0.885016 01100100 0.110294 −0.045410 01100101 0.068892 −0.234221 01100110 0.112344 −0.534452 01100111 0.089452 −0.398340 01101000 0.132300 −1.285556 01101001 0.180106 −1.107457 01101010 0.190850 −0.723373 01101011 0.170166 −0.861137 01101100 0.088520 −0.064328 01101101 0.063584 −0.193067 01101110 0.118919 −0.539605 01101111 0.097923 −0.408426 01110000 0.215811 −1.558150 01110001 0.404454 −1.021596 01110010 0.411119 −0.597529 01110011 0.429107 −0.835089 01110100 0.269636 −0.105598 01110101 0.260922 −0.234821 01110110 0.375258 −0.455253 01110111 0.242072 −0.352853 01111000 0.498501 −1.328103 01111001 0.496854 −1.034589 01111010 0.351667 −0.652324 01111011 0.454845 −0.854758 01111100 0.278962 −0.076488 01111101 0.267573 −0.245109 01111110 0.374077 −0.452024 01111111 0.248176 −0.363324 10000000 −1.443706 0.533189 10000001 −1.269957 0.814447 10000010 −1.190815 0.494955 10000011 −1.099458 0.637493 10000100 −1.465098 0.242389 10000101 −0.756113 0.035702 10000110 −1.757959 0.251458 10000111 −0.780617 0.113362 10001000 −1.032269 1.540287 10001001 −1.450983 1.025801 10001010 −1.044843 0.407507 10001011 −0.920903 0.474471 10001100 −1.061180 0.094137 10001101 −0.942993 0.109431 10001110 −1.146865 0.181476 10001111 −0.863666 0.236933 10010000 −1.028531 1.046265 10010001 −0.903477 0.907951 10010010 −0.580224 0.575049 10010011 −0.741607 0.728471 10010100 −0.418728 0.083169 10010101 −0.537914 0.122315 10010110 −0.581523 0.384883 10010111 −0.655016 0.231039 10011000 −0.844978 1.282582 10011001 −0.713419 0.974473 10011010 −0.662139 0.570492 10011011 −0.764324 0.614172 10011100 −0.401000 0.062964 10011101 −0.510837 0.125696 10011110 −0.576609 0.374709 10011111 −0.692682 0.292587 10100000 −0.276792 1.794144 10100001 −0.158046 1.018387 10100010 −0.104813 0.702356 10100011 −0.124613 0.885016 10100100 −0.110294 0.045410 10100101 −0.068892 0.234221 10100110 −0.112344 0.534452 10100111 −0.089452 0.398340 10101000 −0.132300 1.285556 10101001 −0.180106 1.107457 10101010 −0.190850 0.723373 10101011 −0.170166 0.861137 10101100 −0.088520 0.064328 10101101 −0.063584 0.193067 10101110 −0.118919 0.539605 10101111 −0.097923 0.408426 10110000 −0.215811 1.558150 10110001 −0.404454 1.021596 10110010 −0.411119 0.597529 10110011 −0.429107 0.835089 10110100 −0.269636 0.105598 10110101 −0.260922 0.234821 10110110 −0.375258 0.455253 10110111 −0.242072 0.352853 10111000 −0.498501 1.328103 10111001 −0.496854 1.034589 10111010 −0.351667 0.652324 10111011 −0.454845 0.854758 10111100 −0.278962 0.076488 10111101 −0.267573 0.245109 10111110 −0.374077 0.452024 10111111 −0.248176 0.363324 11000000 −1.443706 −0.533189 11000001 −1.269957 −0.814447 11000010 −1.190815 −0.494955 11000011 −1.099458 −0.637493 11000100 −1.465098 −0.242389 11000101 −0.756113 −0.035702 11000110 −1.757959 −0.251458 11000111 −0.780617 −0.113362 11001000 −1.032269 −1.540287 11001001 −1.450983 −1.025801 11001010 −1.044843 −0.407507 11001011 −0.920903 −0.474471 11001100 −1.061180 −0.094137 11001101 −0.942993 −0.109431 11001110 −1.146865 −0.181476 11001111 −0.863666 −0.236933 11010000 −1.028531 −1.046265 11010001 −0.903477 −0.907951 11010010 −0.580224 −0.575049 11010011 −0.741607 −0.728471 11010100 −0.418728 −0.083169 11010101 −0.537914 −0.122315 11010110 −0.581523 −0.384883 11010111 −0.655016 −0.231039 11011000 −0.844978 −1.282582 11011001 −0.713419 −0.974473 11011010 −0.662139 −0.570492 11011011 −0.764324 −0.614172 11011100 −0.401000 −0.062964 11011101 −0.510837 −0.125696 11011110 −0.576609 −0.374709 11011111 −0.692682 −0.292587 11100000 −0.276792 −1.794144 11100001 −0.158046 −1.018387 11100010 −0.104813 −0.702356 11100011 −0.124613 −0.885016 11100100 −0.110294 −0.045410 11100101 −0.068892 −0.234221 11100110 −0.112344 −0.534452 11100111 −0.089452 −0.398340 11101000 −0.132300 −1.285556 11101001 −0.180106 −1.107457 11101010 −0.190850 −0.723373 11101011 −0.170166 −0.861137 11101100 −0.088520 −0.064328 11101101 −0.063584 −0.193067 11101110 −0.118919 −0.539605 11101111 −0.097923 −0.408426 11110000 −0.215811 −1.558150 11110001 −0.404454 −1.021596 11110010 −0.411119 −0.597529 11110011 −0.429107 −0.835089 11110100 −0.269636 −0.105598 11110101 −0.260922 −0.234821 11110110 −0.375258 −0.455253 11110111 −0.242072 −0.352853 11111000 −0.498501 −1.328103 11111001 −0.496854 −1.034589 11111010 −0.351667 −0.652324 11111011 −0.454845 −0.854758 11111100 −0.278962 −0.076488 11111101 −0.267573 −0.245109 11111110 −0.374077 −0.452024 11111111 −0.248176 −0.363324

TABLE 21B COORDINATE SYMBOL BITS X Y 00000000 0.975369 1.374032 00000001 1.481139 0.719889 00000010 1.218020 0.537432 00000011 1.572273 1.013574 00000100 1.187472 0.140021 00000101 1.528894 0.437163 00000110 1.209428 0.325388 00000111 1.451803 0.133447 00001000 1.150324 0.991883 00001001 0.920560 1.027887 00001010 1.130859 0.690274 00001011 0.935148 0.791094 00001100 1.046905 0.109020 00001101 0.905564 0.126090 00001110 0.986845 0.392801 00001111 0.888567 0.278893 00010000 0.311973 1.734362 00010001 0.529664 1.037246 00010010 0.623019 0.619800 00010011 0.545408 0.794517 00010100 0.590997 0.100302 00010101 0.593410 0.246925 00010110 0.607152 0.477790 00010111 0.629036 0.343531 00011000 0.563423 1.365187 00011001 0.710907 1.103897 00011010 0.763953 0.637666 00011011 0.728679 0.837901 00011100 0.699119 0.052387 00011101 0.778520 0.167574 00011110 0.841139 0.487476 00011111 0.768298 0.365852 00100000 0.127333 1.155716 00100001 0.307801 1.071269 00100010 0.054226 0.569000 00100011 0.045338 0.681811 00100100 0.028860 0.067281 00100101 0.073608 0.181658 00100110 0.036820 0.425876 00100111 0.052368 0.277893 00101000 0.043419 0.999378 00101001 0.134293 0.871130 00101010 0.167741 0.582866 00101011 0.144323 0.745869 00101100 0.216884 0.055250 00101101 0.186854 0.164842 00101110 0.160698 0.411437 00101111 0.184735 0.310456 00110000 0.173083 1.310422 00110001 0.373110 0.990945 00110010 0.442036 0.572513 00110011 0.450171 0.761992 00110100 0.448273 0.078434 00110101 0.429733 0.223957 00110110 0.433525 0.483009 00110111 0.442487 0.351997 00111000 0.234057 1.493126 00111001 0.245349 0.871117 00111010 0.278032 0.601780 00111011 0.299117 0.752566 00111100 0.343828 0.049983 00111101 0.307660 0.197631 00111110 0.256888 0.459299 00111111 0.301477 0.340566 01000000 0.975369 −1.374032 01000001 1.481139 −0.719889 01000010 1.218020 −0.537432 01000011 1.572273 −1.013574 01000100 1.187472 −0.140021 01000101 1.528894 −0.437163 01000110 1.209428 −0.325388 01000111 1.451803 −0.133447 01001000 1.150324 −0.991883 01001001 0.920560 −1.027887 01001010 1.130859 −0.690274 01001011 0.935148 −0.791094 01001100 1.046905 −0.109020 01001101 0.905564 −0.126090 01001110 0.986845 −0.392801 01001111 0.888567 −0.278893 01010000 0.311973 −1.734362 01010001 0.529664 −1.037246 01010010 0.623019 −0.619800 01010011 0.545408 −0.794517 01010100 0.590997 −0.100302 01010101 0.593410 −0.246925 01010110 0.607152 −0.477790 01010111 0.629036 −0.343531 01011000 0.563423 −1.365187 01011001 0.710907 −1.103897 01011010 0.763953 −0.637666 01011011 0.728679 −0.837901 01011100 0.699119 −0.052387 01011101 0.778520 −0.167574 01011110 0.841139 −0.487476 01011111 0.768298 −0.365852 01100000 0.127333 −1.155716 01100001 0.307801 −1.071269 01100010 0.054226 −0.569000 01100011 0.045338 −0.681811 01100100 0.028860 −0.067281 01100101 0.073608 −0.181658 01100110 0.036820 −0.425876 01100111 0.052368 −0.277893 01101000 0.043419 −0.999378 01101001 0.134293 −0.871130 01101010 0.167741 −0.582866 01101011 0.144323 −0.745869 01101100 0.216884 −0.055250 01101101 0.186854 −0.164842 01101110 0.160698 −0.411437 01101111 0.184735 −0.310456 01110000 0.173083 −1.310422 01110001 0.373110 −0.990945 01110010 0.442036 −0.572513 01110011 0.450171 −0.761992 01110100 0.448273 −0.078434 01110101 0.429733 −0.223957 01110110 0.433525 −0.483009 01110111 0.442487 −0.351997 01111000 0.234057 −1.493126 01111001 0.245349 −0.871117 01111010 0.278032 −0.601780 01111011 0.299117 −0.752566 01111100 0.343828 −0.049983 01111101 0.307660 −0.197631 01111110 0.256888 −0.459299 01111111 0.301477 −0.340566 10000000 −0.975369 1.374032 10000001 −1.481139 0.719889 10000010 −1.218020 0.537432 10000011 −1.572273 1.013574 10000100 −1.187472 0.140021 10000101 −1.528894 0.437163 10000110 −1.209428 0.325388 10000111 −1.451803 0.133447 10001000 −1.150324 0.991883 10001001 −0.920560 1.027887 10001010 −1.130859 0.690274 10001011 −0.935148 0.791094 10001100 −1.046905 0.109020 10001101 −0.905564 0.126090 10001110 −0.986845 0.392801 10001111 −0.888567 0.278893 10010000 −0.311973 1.734362 10010001 −0.529664 1.037246 10010010 −0.623019 0.619800 10010011 −0.545408 0.794517 10010100 −0.590997 0.100302 10010101 −0.593410 0.246925 10010110 −0.607152 0.477790 10010111 −0.629036 0.343531 10011000 −0.563423 1.365187 10011001 −0.710907 1.103897 10011010 −0.763953 0.637666 10011011 −0.728679 0.837901 10011100 −0.699119 0.052387 10011101 −0.778520 0.167574 10011110 −0.841139 0.487476 10011111 −0.768298 0.365852 10100000 −0.127333 1.155716 10100001 −0.307801 1.071269 10100010 −0.054226 0.569000 10100011 −0.045338 0.681811 10100100 −0.028860 0.067281 10100101 −0.073608 0.181658 10100110 −0.036820 0.425876 10100111 −0.052368 0.277893 10101000 −0.043419 0.999378 10101001 −0.134293 0.871130 10101010 −0.167741 0.582866 10101011 −0.144323 0.745869 10101100 −0.216884 0.055250 10101101 −0.186854 0.164842 10101110 −0.160698 0.411437 10101111 −0.184735 0.310456 10110000 −0.173083 1.310422 10110001 −0.373110 0.990945 10110010 −0.442036 0.572513 10110011 −0.450171 0.761992 10110100 −0.448273 0.078434 10110101 −0.429733 0.223957 10110110 −0.433525 0.483009 10110111 −0.442487 0.351997 10111000 −0.234057 1.493126 10111001 −0.245349 0.871117 10111010 −0.278032 0.601780 10111011 −0.299117 0.752566 10111100 −0.343828 0.049983 10111101 −0.307660 0.197631 10111110 −0.256888 0.459299 10111111 −0.301477 0.340566 11000000 −0.975369 −1.374032 11000001 −1.481139 −0.719889 11000010 −1.218020 −0.537432 11000011 −1.572273 −1.013574 11000100 −1.187472 −0.140021 11000101 −1.528894 −0.437163 11000110 −1.209428 −0.325388 11000111 −1.451803 −0.133447 11001000 −1.150324 −0.991883 11001001 −0.920560 −1.027887 11001010 −1.130859 −0.690274 11001011 −0.935148 −0.791094 11001100 −1.046905 −0.109020 11001101 −0.905564 −0.126090 11001110 −0.986845 −0.392801 11001111 −0.888567 −0.278893 11010000 −0.311973 −1.734362 11010001 −0.529664 −1.037246 11010010 −0.623019 −0.619800 11010011 −0.545408 −0.794517 11010100 −0.590997 −0.100302 11010101 −0.593410 −0.246925 11010110 −0.607152 −0.477790 11010111 −0.629036 −0.343531 11011000 −0.563423 −1.365187 11011001 −0.710907 −1.103897 11011010 −0.763953 −0.637666 11011011 −0.728679 −0.837901 11011100 −0.699119 −0.052387 11011101 −0.778520 −0.167574 11011110 −0.841139 −0.487476 11011111 −0.768298 −0.365852 11100000 −0.127333 −1.155716 11100001 −0.307801 −1.071269 11100010 −0.054226 −0.569000 11100011 −0.045338 −0.681811 11100100 −0.028860 −0.067281 11100101 −0.073608 −0.181658 11100110 −0.036820 −0.425876 11100111 −0.052368 −0.277893 11101000 −0.043419 −0.999378 11101001 −0.134293 −0.871130 11101010 −0.167741 −0.582866 11101011 −0.144323 −0.745869 11101100 −0.216884 −0.055250 11101101 −0.186854 −0.164842 11101110 −0.160698 −0.411437 11101111 −0.184735 −0.310456 11110000 −0.173083 −1.310422 11110001 −0.373110 −0.990945 11110010 −0.442036 −0.572513 11110011 −0.450171 −0.761992 11110100 −0.448273 −0.078434 11110101 −0.429733 −0.223957 11110110 −0.433525 −0.483009 11110111 −0.442487 −0.351997 11111000 −0.234057 −1.493126 11111001 −0.245349 −0.871117 11111010 −0.278032 −0.601780 11111011 −0.299117 −0.752566 11111100 −0.343828 −0.049983 11111101 −0.307660 −0.197631 11111110 −0.256888 −0.459299 11111111 −0.301477 −0.340566

TABLE 21C COORDINATE SYMBOL BITS X Y 00000000 1.305348 0.483686 00000001 1.385995 0.667682 00000010 1.079272 0.658809 00000011 0.952913 0.612614 00000100 1.407955 0.162208 00000101 0.743036 0.093077 00000110 1.664544 0.277796 00000111 0.700449 0.240646 00001000 1.057746 1.546204 00001001 1.364655 0.938592 00001010 1.159648 0.316961 00001011 0.982972 0.392157 00001100 0.953812 0.086185 00001101 0.865433 0.202042 00001110 1.125799 0.109188 00001111 0.884989 0.377701 00010000 0.998762 0.983475 00010001 0.752453 0.974676 00010010 0.441612 0.542222 00010011 0.762558 0.774613 00010100 0.542471 0.050180 00010101 0.566038 0.143317 00010110 0.540193 0.413002 00010111 0.564199 0.285899 00011000 0.861634 1.190812 00011001 0.496817 1.189830 00011010 0.530301 0.608420 00011011 0.692344 0.638263 00011100 0.415573 0.053395 00011101 0.452110 0.157963 00011110 0.613213 0.496838 00011111 0.742823 0.455828 00100000 0.299991 1.828537 00100001 0.234715 1.027308 00100010 0.101242 0.654205 00100011 0.216049 0.940458 00100100 0.149232 0.065752 00100101 0.079653 0.216567 00100110 0.103154 0.579257 00100111 0.075918 0.328242 00101000 0.253926 1.421727 00101001 0.068626 1.125115 00101010 0.102520 0.767709 00101011 0.074965 0.884980 00101100 0.075988 0.053940 00101101 0.026120 0.146113 00101110 0.089699 0.491963 00101111 0.071658 0.412884 00110000 0.292967 1.624754 00110001 0.492228 1.002755 00110010 0.286607 0.646480 00110011 0.503324 0.866300 00110100 0.230317 0.127990 00110101 0.244364 0.221890 00110110 0.252236 0.527795 00110111 0.199080 0.311608 00111000 0.838132 1.415418 00111001 0.163432 1.243384 00111010 0.321389 0.731153 00111011 0.426149 0.802687 00111100 0.302291 0.076239 00111101 0.350515 0.224507 00111110 0.311265 0.430253 00111111 0.333302 0.349304 01000000 1.305348 −0.483686 01000001 1.385995 −0.667682 01000010 1.079272 −0.658809 01000011 0.952913 −0.612614 01000100 1.407955 −0.162208 01000101 0.743036 −0.093077 01000110 1.664544 −0.277796 01000111 0.700449 −0.240646 01001000 1.057746 −1.546204 01001001 1.364655 −0.938592 01001010 1.159648 −0.316961 01001011 0.982972 −0.392157 01001100 0.953812 −0.086185 01001101 0.865433 −0.202042 01001110 1.125799 −0.109188 01001111 0.884989 −0.377701 01010000 0.998762 −0.983475 01010001 0.752453 −0.974676 01010010 0.441612 −0.542222 01010011 0.762558 −0.774613 01010100 0.542471 −0.050180 01010101 0.566038 −0.143317 01010110 0.540193 −0.413002 01010111 0.564199 −0.285899 01011000 0.861634 −1.190812 01011001 0.496817 −1.189830 01011010 0.530301 −0.608420 01011011 0.692344 −0.638263 01011100 0.415573 −0.053395 01011101 0.452110 −0.157963 01011110 0.613213 −0.496838 01011111 0.742823 −0.455828 01100000 0.299991 −1.828537 01100001 0.234715 −1.027308 01100010 0.101242 −0.654205 01100011 0.216049 −0.940458 01100100 0.149232 −0.065752 01100101 0.079653 −0.216567 01100110 0.103154 −0.579257 01100111 0.075918 −0.328242 01101000 0.253926 −1.421727 01101001 0.068626 −1.125115 01101010 0.102520 −0.767709 01101011 0.074965 −0.884980 01101100 0.075988 −0.053940 01101101 0.026120 −0.146113 01101110 0.089699 −0.491963 01101111 0.071658 −0.412884 01110000 0.292967 −1.624754 01110001 0.492228 −1.002755 01110010 0.286607 −0.646480 01110011 0.503324 −0.866300 01110100 0.230317 −0.127990 01110101 0.244364 −0.221890 01110110 0.252236 −0.527795 01110111 0.199080 −0.311608 01111000 0.838132 −1.415418 01111001 0.163432 −1.243384 01111010 0.321389 −0.731153 01111011 0.426149 −0.802687 01111100 0.302291 −0.076239 01111101 0.350515 −0.224507 01111110 0.311265 −0.430253 01111111 0.333302 −0.349304 10000000 −1.305348 0.483686 10000001 −1.385995 0.667682 10000010 −1.079272 0.658809 10000011 −0.952913 0.612614 10000100 −1.407955 0.162208 10000101 −0.743036 0.093077 10000110 −1.664544 0.277796 10000111 −0.700449 0.240646 10001000 −1.057746 1.546204 10001001 −1.364655 0.938592 10001010 −1.159648 0.316961 10001011 −0.982972 0.392157 10001100 −0.953812 0.086185 10001101 −0.865433 0.202042 10001110 −1.125799 0.109188 10001111 −0.884989 0.377701 10010000 −0.998762 0.983475 10010001 −0.752453 0.974676 10010010 −0.441612 0.542222 10010011 −0.762558 0.774613 10010100 −0.542471 0.050180 10010101 −0.566038 0.143317 10010110 −0.540193 0.413002 10010111 −0.564199 0.285899 10011000 −0.861634 1.190812 10011001 −0.496817 1.189830 10011010 −0.530301 0.608420 10011011 −0.692344 0.638263 10011100 −0.415573 0.053395 10011101 −0.452110 0.157963 10011110 −0.613213 0.496838 10011111 −0.742823 0.455828 10100000 −0.299991 1.828537 10100001 −0.234715 1.027308 10100010 −0.101242 0.654205 10100011 −0.216049 0.940458 10100100 −0.149232 0.065752 10100101 −0.079653 0.216567 10100110 −0.103154 0.579257 10100111 −0.075918 0.328242 10101000 −0.253926 1.421727 10101001 −0.068626 1.125115 10101010 −0.102520 0.767709 10101011 −0.074965 0.884980 10101100 −0.075988 0.053940 10101101 −0.026120 0.146113 10101110 −0.089699 0.491963 10101111 −0.071658 0.412884 10110000 −0.292967 1.624754 10110001 −0.492228 1.002755 10110010 −0.286607 0.646480 10110011 −0.503324 0.866300 10110100 −0.230317 0.127990 10110101 −0.244364 0.221890 10110110 −0.252236 0.527795 10110111 −0.199080 0.311608 10111000 −0.838132 1.415418 10111001 −0.163432 1.243384 10111010 −0.321389 0.731153 10111011 −0.426149 0.802687 10111100 −0.302291 0.076239 10111101 −0.350515 0.224507 10111110 −0.311265 0.430253 10111111 −0.333302 0.349304 11000000 −1.305348 −0.483686 11000001 −1.385995 −0.667682 11000010 −1.079272 −0.658809 11000011 −0.952913 −0.612614 11000100 −1.407955 −0.162208 11000101 −0.743036 −0.093077 11000110 −1.664544 −0.277796 11000111 −0.700449 −0.240646 11001000 −1.057746 −1.546204 11001001 −1.364655 −0.938592 11001010 −1.159648 −0.316961 11001011 −0.982972 −0.392157 11001100 −0.953812 −0.086185 11001101 −0.865433 −0.202042 11001110 −1.125799 −0.109188 11001111 −0.884989 −0.377701 11010000 −0.998762 −0.983475 11010001 −0.752453 −0.974676 11010010 −0.441612 −0.542222 11010011 −0.762558 −0.774613 11010100 −0.542471 −0.050180 11010101 −0.566038 −0.143317 11010110 −0.540193 −0.413002 11010111 −0.564199 −0.285899 11011000 −0.861634 −1.190812 11011001 −0.496817 −1.189830 11011010 −0.530301 −0.608420 11011011 −0.692344 −0.638263 11011100 −0.415573 −0.053395 11011101 −0.452110 −0.157963 11011110 −0.613213 −0.496838 11011111 −0.742823 −0.455828 11100000 −0.299991 −1.828537 11100001 −0.234715 −1.027308 11100010 −0.101242 −0.654205 11100011 −0.216049 −0.940458 11100100 −0.149232 −0.065752 11100101 −0.079653 −0.216567 11100110 −0.103154 −0.579257 11100111 −0.075918 −0.328242 11101000 −0.253926 −1.421727 11101001 −0.068626 −1.125115 11101010 −0.102520 −0.767709 11101011 −0.074965 −0.884980 11101100 −0.075988 −0.053940 11101101 −0.026120 −0.146113 11101110 −0.089699 −0.491963 11101111 −0.071658 −0.412884 11110000 −0.292967 −1.624754 11110001 −0.492228 −1.002755 11110010 −0.286607 −0.646480 11110011 −0.503324 −0.866300 11110100 −0.230317 −0.127990 11110101 −0.244364 −0.221890 11110110 −0.252236 −0.527795 11110111 −0.199080 −0.311608 11111000 −0.838132 −1.415418 11111001 −0.163432 −1.243384 11111010 −0.321389 −0.731153 11111011 −0.426149 −0.802687 11111100 −0.302291 −0.076239 11111101 −0.350515 −0.224507 11111110 −0.311265 −0.430253 11111111 −0.333302 −0.349304

TABLE 22 COORDINATE SYMBOL BITS X Y 0000 0.270682 0.962663 0001 0.253573 0.248544 0010 0.707302 0.706911 0011 0.961176 0.275819 0100 0.270682 −0.962663 0101 0.253573 −0.248544 0110 0.707302 −0.706911 0111 0.961176 −0.275819 1000 −0.270682 0.962663 1001 −0.253573 0.248544 1010 −0.707302 0.706911 1011 −0.961176 0.275819 1100 −0.270682 −0.962663 1101 −0.253573 −0.248544 1110 −0.707302 −0.706911 1111 −0.961176 −0.275819

TABLE 23 COORDINATE SYMBOL BITS X Y 00000 0.358210 0.139403 00001 0.235261 0.421763 00010 0.930790 0.364753 00011 0.787656 0.614713 00100 0.125482 0.991921 00101 0.382784 0.922993 00110 0.990631 0.136566 00111 0.626638 0.778830 01000 0.358210 −0.139403 01001 0.235261 −0.421763 01010 0.930790 −0.364753 01011 0.787656 −0.614713 01100 0.125482 −0.991921 01101 0.382784 −0.922993 01110 0.990631 −0.136566 01111 0.626638 −0.778830 10000 −0.358210 0.139403 10001 −0.235261 0.421763 10010 −0.930790 0.364753 10011 −0.787656 0.614713 10100 −0.125482 0.991921 10101 −0.382784 0.922993 10110 −0.990631 0.136566 10111 −0.626638 0.778830 11000 −0.358210 −0.139403 11001 −0.235261 −0.421763 11010 −0.930790 −0.364753 11011 −0.787656 −0.614713 11100 −0.125482 −0.991921 11101 −0.382784 −0.922993 11110 −0.990631 −0.136566 11111 −0.626638 −0.778830

TABLE 24A COORDINATE SYMBOL BITS X Y 000000 0.894480 0.445822 000001 0.890395 0.455110 000010 0.984821 0.172554 000011 0.985411 0.170142 000100 0.730858 0.679601 000101 0.731787 0.681533 000110 0.594365 0.254018 000111 0.545682 0.183541 001000 0.172908 0.983278 001001 0.144365 0.988438 001010 0.103984 0.512065 001011 0.110135 0.138733 001100 0.453133 0.891044 001101 0.458751 0.888174 001110 0.237903 0.413635 001111 0.327635 0.213996 010000 0.894480 −0.445822 010001 0.890395 −0.455110 010010 0.984821 −0.172554 010011 0.985411 −0.170142 010100 0.730858 −0.679601 010101 0.731787 −0.681533 010110 0.594365 −0.254018 010111 0.545682 −0.183541 011000 0.172908 −0.983278 011001 0.144365 −0.988438 011010 0.103984 −0.512065 011011 0.110135 −0.138733 011100 0.453133 −0.891044 011101 0.458751 −0.888174 011110 0.237903 −0.413635 011111 0.327635 −0.213996 100000 −0.894480 0.445822 100001 −0.890395 0.455110 100010 −0.984821 0.172554 100011 −0.985411 0.170142 100100 −0.730858 0.679601 100101 −0.731787 0.681533 100110 −0.594365 0.254018 100111 −0.545682 0.183541 101000 −0.172908 0.983278 101001 −0.144365 0.988438 101010 −0.103984 0.512065 101011 −0.110135 0.138733 101100 −0.453133 0.891044 101101 −0.458751 0.888174 101110 −0.237903 0.413635 101111 −0.327635 0.213996 110000 −0.894480 −0.445822 110001 −0.890395 −0.455110 110010 −0.984821 −0.172554 110011 −0.985411 −0.170142 110100 −0.730858 −0.679601 110101 −0.731787 −0.681533 110110 −0.594365 −0.254018 110111 −0.545682 −0.183541 111000 −0.172908 −0.983278 111001 −0.144365 −0.988438 111010 −0.103984 −0.512065 111011 −0.110135 −0.138733 111100 −0.453133 −0.891044 111101 −0.458751 −0.888174 111110 −0.237903 −0.413635 111111 −0.327635 −0.213996

TABLE 24B COORDINATE SYMBOL BITS X Y 000000 0.847425 0.528328 000001 0.724032 0.689761 000010 0.949712 0.313126 000011 0.993100 0.116019 000100 0.561795 0.514360 000101 0.575688 0.817191 000110 0.586661 0.291101 000111 0.623692 0.093506 001000 0.114854 0.716644 001001 0.141761 0.989893 001010 0.099426 0.429732 001011 0.092178 0.159156 001100 0.344522 0.588449 001101 0.385307 0.921869 001110 0.314441 0.342702 001111 0.309723 0.111529 010000 0.847425 −0.528328 010001 0.724032 −0.689761 010010 0.949712 −0.313126 010011 0.993100 −0.116019 010100 0.561795 −0.514360 010101 0.575688 −0.817191 010110 0.586661 −0.291101 010111 0.623692 −0.093506 011000 0.114854 −0.716644 011001 0.141761 −0.989893 011010 0.099426 −0.429732 011011 0.092178 −0.159156 011100 0.344522 −0.588449 011101 0.385307 −0.921869 011110 0.314441 −0.342702 011111 0.309723 −0.111529 100000 −0.847425 0.528328 100001 −0.724032 0.689761 100010 −0.949712 0.313126 100011 −0.993100 0.116019 100100 −0.561795 0.514360 100101 −0.575688 0.817191 100110 −0.586661 0.291101 100111 −0.623692 0.093506 101000 −0.114854 0.716644 101001 −0.141761 0.989893 101010 −0.099426 0.429732 101011 −0.092178 0.159156 101100 −0.344522 0.588449 101101 −0.385307 0.921869 101110 −0.314441 0.342702 101111 −0.309723 0.111529 110000 −0.847425 −0.528328 110001 −0.724032 −0.689761 110010 −0.949712 −0.313126 110011 −0.993100 −0.116019 110100 −0.561795 −0.514360 110101 −0.575688 −0.817191 110110 −0.586661 −0.291101 110111 −0.623692 −0.093506 111000 −0.114854 −0.716644 111001 −0.141761 −0.989893 111010 −0.099426 −0.429732 111011 −0.092178 −0.159156 111100 −0.344522 −0.588449 111101 −0.385307 −0.921869 111110 −0.314441 −0.342702 111111 −0.309723 −0.111529

TABLE 24C COORDINATE SYMBOL BITS X Y 000000 0.089757 0.995927 000001 0.871842 0.489415 000010 0.992114 0.111242 000011 0.947926 0.318276 000100 0.624995 0.779546 000101 0.766239 0.642268 000110 0.631056 0.095979 000111 0.627559 0.304108 001000 0.276549 0.960689 001001 0.111329 0.622856 001010 0.150023 0.138919 001011 0.116201 0.363483 001100 0.453255 0.891381 001101 0.390500 0.599215 001110 0.332423 0.100418 001111 0.436529 0.401382 010000 0.089757 −0.995927 010001 0.871842 −0.489415 010010 0.992114 −0.111242 010011 0.947926 −0.318276 010100 0.624995 −0.779546 010101 0.766239 −0.642268 010110 0.631056 −0.095979 010111 0.627559 −0.304108 011000 0.276549 −0.960689 011001 0.111329 −0.622856 011010 0.150023 −0.138919 011011 0.116201 −0.363483 011100 0.453255 −0.891381 011101 0.390500 −0.599215 011110 0.332423 −0.100418 011111 0.436529 −0.401382 100000 −0.089757 0.995927 100001 −0.871842 0.489415 100010 −0.992114 0.111242 100011 −0.947926 0.318276 100100 −0.624995 0.779546 100101 −0.766239 0.642268 100110 −0.631056 0.095979 100111 −0.627559 0.304108 101000 −0.276549 0.960689 101001 −0.111329 0.622856 101010 −0.150023 0.138919 101011 −0.116201 0.363483 101100 −0.453255 0.891381 101101 −0.390500 0.599215 101110 −0.332423 0.100418 101111 −0.436529 0.401382 110000 −0.089757 −0.995927 110001 −0.871842 −0.489415 110010 −0.992114 −0.111242 110011 −0.947926 −0.318276 110100 −0.624995 −0.779546 110101 −0.766239 −0.642268 110110 −0.631056 −0.095979 110111 −0.627559 −0.304108 111000 −0.276549 −0.960689 111001 −0.111329 −0.622856 111010 −0.150023 −0.138919 111011 −0.116201 −0.363483 111100 −0.453255 −0.891381 111101 −0.390500 −0.599215 111110 −0.332423 −0.100418 111111 −0.436529 −0.401382

TABLE 24D COORDINATE SYMBOL BITS X Y 000000 0.825394 0.564557 000001 0.679474 0.733233 000010 0.934649 0.354296 000011 0.992113 0.124306 000100 0.547499 0.538212 000101 0.512966 0.857155 000110 0.667874 0.319131 000111 0.704023 0.112315 001000 0.105064 0.673007 001001 0.104623 0.989353 001010 0.128136 0.390102 001011 0.131864 0.120209 001100 0.337537 0.644600 001101 0.310475 0.949750 001110 0.364337 0.376712 001111 0.404674 0.115168 010000 0.825394 −0.564557 010001 0.679474 −0.733233 010010 0.934649 −0.354296 010011 0.992113 −0.124306 010100 0.547499 −0.538212 010101 0.512966 −0.857155 010110 0.667874 −0.319131 010111 0.704023 −0.112315 011000 0.105064 −0.673007 011001 0.104623 −0.989353 011010 0.128136 −0.390102 011011 0.131864 −0.120209 011100 0.337537 −0.644600 011101 0.310475 −0.949750 011110 0.364337 −0.376712 011111 0.404674 −0.115168 100000 −0.825394 0.564557 100001 −0.679474 0.733233 100010 −0.934649 0.354296 100011 −0.992113 0.124306 100100 −0.547499 0.538212 100101 −0.512966 0.857155 100110 −0.667874 0.319131 100111 −0.704023 0.112315 101000 −0.105064 0.673007 101001 −0.104623 0.989353 101010 −0.128136 0.390102 101011 −0.131864 0.120209 101100 −0.337537 0.644600 101101 −0.310475 0.949750 101110 −0.364337 0.376712 101111 −0.404674 0.115168 110000 −0.825394 −0.564557 110001 −0.679474 −0.733233 110010 −0.934649 −0.354296 110011 −0.992113 −0.124306 110100 −0.547499 −0.538212 110101 −0.512966 −0.857155 110110 −0.667874 −0.319131 110111 −0.704023 −0.112315 111000 −0.105064 −0.673007 111001 −0.104623 −0.989353 111010 −0.128136 −0.390102 111011 −0.131864 −0.120209 111100 −0.337537 −0.644600 111101 −0.310475 −0.949750 111110 −0.364337 −0.376712 111111 −0.404674 −0.115168

TABLE 25A COORDINATE SYMBOL BITS X Y 0000000 0.401618 0.182455 0000001 0.432271 0.238332 0000010 0.210211 0.077897 0000011 0.188527 0.106144 0000100 0.690013 0.077217 0000101 0.658899 0.105155 0000110 0.991792 0.108289 0000111 0.994471 0.097881 0001000 0.266643 0.496767 0001001 0.335273 0.407525 0001010 0.087396 0.426683 0001011 0.081485 0.285545 0001100 0.157416 0.730291 0001101 0.144214 0.989148 0001110 0.075548 0.683943 0001111 0.123780 0.992051 0010000 0.632012 0.419775 0010001 0.581779 0.400034 0010010 0.818321 0.574028 0010011 0.808932 0.585710 0010100 0.772679 0.293599 0010101 0.753516 0.255345 0010110 0.937056 0.349179 0010111 0.937889 0.344474 0011000 0.484355 0.600452 0011001 0.469372 0.569456 0011010 0.650758 0.755708 0011011 0.663597 0.743786 0011100 0.362030 0.806477 0011101 0.324343 0.942537 0011110 0.457817 0.888570 0011111 0.394670 0.918198 0100000 0.401618 −0.182455 0100001 0.432271 −0.238332 0100010 0.210211 −0.077897 0100011 0.188527 −0.106144 0100100 0.690013 −0.077217 0100101 0.658899 −0.105155 0100110 0.991792 −0.108289 0100111 0.994471 −0.097881 0101000 0.266643 −0.496767 0101001 0.335273 −0.407525 0101010 0.087396 −0.426683 0101011 0.081485 −0.285545 0101100 0.157416 −0.730291 0101101 0.144214 −0.989148 0101110 0.075548 −0.683943 0101111 0.123780 −0.992051 0110000 0.632012 −0.419775 0110001 0.581779 −0.400034 0110010 0.818321 −0.574028 0110011 0.808932 −0.585710 0110100 0.772679 −0.293599 0110101 0.753516 −0.255345 0110110 0.937056 −0.349179 0110111 0.937889 −0.344474 0111000 0.484355 −0.600452 0111001 0.469372 −0.569456 0111010 0.650758 −0.755708 0111011 0.663597 −0.743786 0111100 0.362030 −0.806477 0111101 0.324343 −0.942537 0111110 0.457817 −0.888570 0111111 0.394670 −0.918198 1000000 −0.401618 0.182455 1000001 −0.432271 0.238332 1000010 −0.210211 0.077897 1000011 −0.188527 0.106144 1000100 −0.690013 0.077217 1000101 −0.658899 0.105155 1000110 −0.991792 0.108289 1000111 −0.994471 0.097881 1001000 −0.266643 0.496767 1001001 −0.335273 0.407525 1001010 −0.087396 0.426683 1001011 −0.081485 0.285545 1001100 −0.157416 0.730291 1001101 −0.144214 0.989148 1001110 −0.075548 0.683943 1001111 −0.123780 0.992051 1010000 −0.632012 0.419775 1010001 −0.581779 0.400034 1010010 −0.818321 0.574028 1010011 −0.808932 0.585710 1010100 −0.772679 0.293599 1010101 −0.753516 0.255345 1010110 −0.937056 0.349179 1010111 −0.937889 0.344474 1011000 −0.484355 0.600452 1011001 −0.469372 0.569456 1011010 −0.650758 0.755708 1011011 −0.663597 0.743786 1011100 −0.362030 0.806477 1011101 −0.324343 0.942537 1011110 −0.457817 0.888570 1011111 −0.394670 0.918198 1100000 −0.401618 −0.182455 1100001 −0.432271 −0.238332 1100010 −0.210211 −0.077897 1100011 −0.188527 −0.106144 1100100 −0.690013 −0.077217 1100101 −0.658899 −0.105155 1100110 −0.991792 −0.108289 1100111 −0.994471 −0.097881 1101000 −0.266643 −0.496767 1101001 −0.335273 −0.407525 1101010 −0.087396 −0.426683 1101011 −0.081485 −0.285545 1101100 −0.157416 −0.730291 1101101 −0.144214 −0.989148 1101110 −0.075548 −0.683943 1101111 −0.123780 −0.992051 1110000 −0.632012 −0.419775 1110001 −0.581779 −0.400034 1110010 −0.818321 −0.574028 1110011 −0.808932 −0.585710 1110100 −0.772679 −0.293599 1110101 −0.753516 −0.255345 1110110 −0.937056 −0.349179 1110111 −0.937889 −0.344474 1111000 −0.484355 −0.600452 1111001 −0.469372 −0.569456 1111010 −0.650758 −0.755708 1111011 −0.663597 −0.743786 1111100 −0.362030 −0.806477 1111101 −0.324343 −0.942537 1111110 −0.457817 −0.888570 1111111 −0.394670 −0.918198

TABLE 25B COORDINATE SYMBOL BITS X Y 0000000 0.349139 0.084873 0000001 0.444253 0.223961 0000010 0.200465 0.076363 0000011 0.076729 0.165391 0000100 0.661752 0.074430 0000101 0.569082 0.152245 0000110 0.867463 0.058010 0000111 0.994165 0.101734 0001000 0.276140 0.483395 0001001 0.360395 0.354916 0001010 0.105450 0.423216 0001011 0.112712 0.306408 0001100 0.157400 0.694676 0001101 0.092859 0.872214 0001110 0.073573 0.584372 0001111 0.086593 0.996244 0010000 0.664424 0.454352 0010001 0.620132 0.459156 0010010 0.822650 0.566931 0010011 0.811832 0.583371 0010100 0.734535 0.287119 0010101 0.698954 0.273938 0010110 0.932816 0.357106 0010111 0.955383 0.292872 0011000 0.415243 0.605429 0011001 0.487527 0.551685 0011010 0.624474 0.780353 0011011 0.654058 0.755420 0011100 0.291362 0.740066 0011101 0.280086 0.955742 0011110 0.463177 0.885940 0011111 0.351608 0.935764 0100000 0.349139 −0.084873 0100001 0.444253 −0.223961 0100010 0.200465 −0.076363 0100011 0.076729 −0.165391 0100100 0.661752 −0.074430 0100101 0.569082 −0.152245 0100110 0.867463 −0.058010 0100111 0.994165 −0.101734 0101000 0.276140 −0.483395 0101001 0.360395 −0.354916 0101010 0.105450 −0.423216 0101011 0.112712 −0.306408 0101100 0.157400 −0.694676 0101101 0.092859 −0.872214 0101110 0.073573 −0.584372 0101111 0.086593 −0.996244 0110000 0.664424 −0.454352 0110001 0.620132 −0.459156 0110010 0.822650 −0.566931 0110011 0.811832 −0.583371 0110100 0.734535 −0.287119 0110101 0.698954 −0.273938 0110110 0.932816 −0.357106 0110111 0.955383 −0.292872 0111000 0.415243 −0.605429 0111001 0.487527 −0.551685 0111010 0.624474 −0.780353 0111011 0.654058 −0.755420 0111100 0.291362 −0.740066 0111101 0.280086 −0.955742 0111110 0.463177 −0.885940 0111111 0.351608 −0.935764 1000000 −0.349139 0.084873 1000001 −0.444253 0.223961 1000010 −0.200465 0.076363 1000011 −0.076729 0.165391 1000100 −0.661752 0.074430 1000101 −0.569082 0.152245 1000110 −0.867463 0.058010 1000111 −0.994165 0.101734 1001000 −0.276140 0.483395 1001001 −0.360395 0.354916 1001010 −0.105450 0.423216 1001011 −0.112712 0.306408 1001100 −0.157400 0.694676 1001101 −0.092859 0.872214 1001110 −0.073573 0.584372 1001111 −0.086593 0.996244 1010000 −0.664424 0.454352 1010001 −0.620132 0.459156 1010010 −0.822650 0.566931 1010011 −0.811832 0.583371 1010100 −0.734535 0.287119 1010101 −0.698954 0.273938 1010110 −0.932816 0.357106 1010111 −0.955383 0.292872 1011000 −0.415243 0.605429 1011001 −0.487527 0.551685 1011010 −0.624474 0.780353 1011011 −0.654058 0.755420 1011100 −0.291362 0.740066 1011101 −0.280086 0.955742 1011110 −0.463177 0.885940 1011111 −0.351608 0.935764 1100000 −0.349139 −0.084873 1100001 −0.444253 −0.223961 1100010 −0.200465 −0.076363 1100011 −0.076729 −0.165391 1100100 −0.661752 −0.074430 1100101 −0.569082 −0.152245 1100110 −0.867463 −0.058010 1100111 −0.994165 −0.101734 1101000 −0.276140 −0.483395 1101001 −0.360395 −0.354916 1101010 −0.105450 −0.423216 1101011 −0.112712 −0.306408 1101100 −0.157400 −0.694676 1101101 −0.092859 −0.872214 1101110 −0.073573 −0.584372 1101111 −0.086593 −0.996244 1110000 −0.664424 −0.454352 1110001 −0.620132 −0.459156 1110010 −0.822650 −0.566931 1110011 −0.811832 −0.583371 1110100 −0.734535 −0.287119 1110101 −0.698954 −0.273938 1110110 −0.932816 −0.357106 1110111 −0.955383 −0.292872 1111000 −0.415243 −0.605429 1111001 −0.487527 −0.551685 1111010 −0.624474 −0.780353 1111011 −0.654058 −0.755420 1111100 −0.291362 −0.740066 1111101 −0.280086 −0.955742 1111110 −0.463177 −0.885940 1111111 −0.351608 −0.935764

TABLE 25C COORDINATE SYMBOL BITS X Y 0000000 0.179332 0.062318 0000001 0.264529 0.196526 0000010 0.055320 0.109173 0000011 0.101863 0.235172 0000100 0.669962 0.075558 0000101 0.419174 0.070925 0000110 0.861092 0.104401 0000111 0.992390 0.118291 0001000 0.195476 0.575233 0001001 0.219531 0.412072 0001010 0.060970 0.560996 0001011 0.085387 0.369804 0001100 0.213900 0.756034 0001101 0.279980 0.959448 0001110 0.078356 0.804679 0001111 0.089502 0.994559 0010000 0.552393 0.333246 0010001 0.396346 0.273296 0010010 0.683752 0.404797 0010011 0.858560 0.511264 0010100 0.642493 0.197800 0010101 0.462109 0.164180 0010110 0.801694 0.290343 0010111 0.937916 0.339763 0011000 0.412951 0.509479 0011001 0.336567 0.413951 0011010 0.600289 0.546834 0011011 0.763765 0.644626 0011100 0.385655 0.691063 0011101 0.443902 0.896057 0011110 0.536473 0.674051 0011111 0.606478 0.795101 0100000 0.179332 −0.062318 0100001 0.264529 −0.196526 0100010 0.055320 −0.109173 0100011 0.101863 −0.235172 0100100 0.669962 −0.075558 0100101 0.419174 −0.070925 0100110 0.861092 −0.104401 0100111 0.992390 −0.118291 0101000 0.195476 −0.575233 0101001 0.219531 −0.412072 0101010 0.060970 −0.560996 0101011 0.085387 −0.369804 0101100 0.213900 −0.756034 0101101 0.279980 −0.959448 0101110 0.078356 −0.804679 0101111 0.089502 −0.994559 0110000 0.552393 −0.333246 0110001 0.396346 −0.273296 0110010 0.683752 −0.404797 0110011 0.858560 −0.511264 0110100 0.642493 −0.197800 0110101 0.462109 −0.164180 0110110 0.801694 −0.290343 0110111 0.937916 −0.339763 0111000 0.412951 −0.509479 0111001 0.336567 −0.413951 0111010 0.600289 −0.546834 0111011 0.763765 −0.644626 0111100 0.385655 −0.691063 0111101 0.443902 −0.896057 0111110 0.536473 −0.674051 0111111 0.606478 −0.795101 1000000 −0.179332 0.062318 1000001 −0.264529 0.196526 1000010 −0.055320 0.109173 1000011 −0.101863 0.235172 1000100 −0.669962 0.075558 1000101 −0.419174 0.070925 1000110 −0.861092 0.104401 1000111 −0.992390 0.118291 1001000 −0.195476 0.575233 1001001 −0.219531 0.412072 1001010 −0.060970 0.560996 1001011 −0.085387 0.369804 1001100 −0.213900 0.756034 1001101 −0.279980 0.959448 1001110 −0.078356 0.804679 1001111 −0.089502 0.994559 1010000 −0.552393 0.333246 1010001 −0.396346 0.273296 1010010 −0.683752 0.404797 1010011 −0.858560 0.511264 1010100 −0.642493 0.197800 1010101 −0.462109 0.164180 1010110 −0.801694 0.290343 1010111 −0.937916 0.339763 1011000 −0.412951 0.509479 1011001 −0.336567 0.413951 1011010 −0.600289 0.546834 1011011 −0.763765 0.644626 1011100 −0.385655 0.691063 1011101 −0.443902 0.896057 1011110 −0.536473 0.674051 1011111 −0.606478 0.795101 1100000 −0.179332 −0.062318 1100001 −0.264529 −0.196526 1100010 −0.055320 −0.109173 1100011 −0.101863 −0.235172 1100100 −0.669962 −0.075558 1100101 −0.419174 −0.070925 1100110 −0.861092 −0.104401 1100111 −0.992390 −0.118291 1101000 −0.195476 −0.575233 1101001 −0.219531 −0.412072 1101010 −0.060970 −0.560996 1101011 −0.085387 −0.369804 1101100 −0.213900 −0.756034 1101101 −0.279980 −0.959448 1101110 −0.078356 −0.804679 1101111 −0.089502 −0.994559 1110000 −0.552393 −0.333246 1110001 −0.396346 −0.273296 1110010 −0.683752 −0.404797 1110011 −0.858560 −0.511264 1110100 −0.642493 −0.197800 1110101 −0.462109 −0.164180 1110110 −0.801694 −0.290343 1110111 −0.937916 −0.339763 1111000 −0.412951 −0.509479 1111001 −0.336567 −0.413951 1111010 −0.600289 −0.546834 1111011 −0.763765 −0.644626 1111100 −0.385655 −0.691063 1111101 −0.443902 −0.896057 1111110 −0.536473 −0.674051 1111111 −0.606478 −0.795101

TABLE 25D COORDINATE SYMBOL BITS X Y 0000000 0.215659 0.071275 0000001 0.247193 0.239779 0000010 0.059723 0.089476 0000011 0.084352 0.256286 0000100 0.631601 0.086959 0000101 0.421425 0.060957 0000110 0.811036 0.081198 0000111 0.989141 0.115779 0001000 0.238961 0.619410 0001001 0.188755 0.432433 0001010 0.081970 0.619772 0001011 0.071916 0.446011 0001100 0.230093 0.798693 0001101 0.278409 0.959192 0001110 0.079376 0.797516 0001111 0.102980 0.994337 0010000 0.540893 0.373750 0010001 0.390688 0.300381 0010010 0.711286 0.403395 0010011 0.878402 0.477131 0010100 0.613230 0.218230 0010101 0.459120 0.180142 0010110 0.770540 0.249889 0010111 0.951364 0.303258 0011000 0.419831 0.530248 0011001 0.327094 0.416570 0011010 0.635577 0.561146 0011011 0.777941 0.627040 0011100 0.406760 0.706463 0011101 0.454097 0.890952 0011110 0.554936 0.677703 0011111 0.616155 0.785695 0100000 0.215659 −0.071275 0100001 0.247193 −0.239779 0100010 0.059723 −0.089476 0100011 0.084352 −0.256286 0100100 0.631601 −0.086959 0100101 0.421425 −0.060957 0100110 0.811036 −0.081198 0100111 0.989141 −0.115779 0101000 0.238961 −0.619410 0101001 0.188755 −0.432433 0101010 0.081970 −0.619772 0101011 0.071916 −0.446011 0101100 0.230093 −0.798693 0101101 0.278409 −0.959192 0101110 0.079376 −0.797516 0101111 0.102980 −0.994337 0110000 0.540893 −0.373750 0110001 0.390688 −0.300381 0110010 0.711286 −0.403395 0110011 0.878402 −0.477131 0110100 0.613230 −0.218230 0110101 0.459120 −0.180142 0110110 0.770540 −0.249889 0110111 0.951364 −0.303258 0111000 0.419831 −0.530248 0111001 0.327094 −0.416570 0111010 0.635577 −0.561146 0111011 0.777941 −0.627040 0111100 0.406760 −0.706463 0111101 0.454097 −0.890952 0111110 0.554936 −0.677703 0111111 0.616155 −0.785695 1000000 −0.215659 0.071275 1000001 −0.247193 0.239779 1000010 −0.059723 0.089476 1000011 −0.084352 0.256286 1000100 −0.631601 0.086959 1000101 −0.421425 0.060957 1000110 −0.811036 0.081198 1000111 −0.989141 0.115779 1001000 −0.238961 0.619410 1001001 −0.188755 0.432433 1001010 −0.081970 0.619772 1001011 −0.071916 0.446011 1001100 −0.230093 0.798693 1001101 −0.278409 0.959192 1001110 −0.079376 0.797516 1001111 −0.102980 0.994337 1010000 −0.540893 0.373750 1010001 −0.390688 0.300381 1010010 −0.711286 0.403395 1010011 −0.878402 0.477131 1010100 −0.613230 0.218230 1010101 −0.459120 0.180142 1010110 −0.770540 0.249889 1010111 −0.951364 0.303258 1011000 −0.419831 0.530248 1011001 −0.327094 0.416570 1011010 −0.635577 0.561146 1011011 −0.777941 0.627040 1011100 −0.406760 0.706463 1011101 −0.454097 0.890952 1011110 −0.554936 0.677703 1011111 −0.616155 0.785695 1100000 −0.215659 −0.071275 1100001 −0.247193 −0.239779 1100010 −0.059723 −0.089476 1100011 −0.084352 −0.256286 1100100 −0.631601 −0.086959 1100101 −0.421425 −0.060957 1100110 −0.811036 −0.081198 1100111 −0.989141 −0.115779 1101000 −0.238961 −0.619410 1101001 −0.188755 −0.432433 1101010 −0.081970 −0.619772 1101011 −0.071916 −0.446011 1101100 −0.230093 −0.798693 1101101 −0.278409 −0.959192 1101110 −0.079376 −0.797516 1101111 −0.102980 −0.994337 1110000 −0.540893 −0.373750 1110001 −0.390688 −0.300381 1110010 −0.711286 −0.403395 1110011 −0.878402 −0.477131 1110100 −0.613230 −0.218230 1110101 −0.459120 −0.180142 1110110 −0.770540 −0.249889 1110111 −0.951364 −0.303258 1111000 −0.419831 −0.530248 1111001 −0.327094 −0.416570 1111010 −0.635577 −0.561146 1111011 −0.777941 −0.627040 1111100 −0.406760 −0.706463 1111101 −0.454097 −0.890952 1111110 −0.554936 −0.677703 1111111 −0.616155 −0.785695

TABLE 26A COORDINATE SYMBOL BITS X Y 00000000 0.729468 0.681354 00000001 0.738514 0.673491 00000010 0.855792 0.514140 00000011 0.849844 0.515379 00000100 0.968926 0.244322 00000101 0.961654 0.274266 00000110 0.846439 0.172785 00000111 0.814534 0.289437 00001000 0.660833 0.597951 00001001 0.635704 0.601179 00001010 0.703246 0.498537 00001011 0.713555 0.458342 00001100 0.982752 0.108821 00001101 0.995743 0.075153 00001110 0.835216 0.108792 00001111 0.734334 0.299494 00010000 0.563531 0.824212 00010001 0.538599 0.841459 00010010 0.422490 0.436968 00010011 0.486743 0.460303 00010100 0.533243 0.050591 00010101 0.625049 0.049186 00010110 0.460159 0.327276 00010111 0.545204 0.349786 00011000 0.466690 0.722489 00011001 0.472883 0.710099 00011010 0.416973 0.618858 00011011 0.459806 0.568347 00011100 0.496124 0.136766 00011101 0.632908 0.115646 00011110 0.478072 0.233508 00011111 0.637346 0.269821 00100000 0.150085 0.986638 00100001 0.096333 0.982163 00100010 0.054634 0.530674 00100011 0.124963 0.483488 00100100 0.039722 0.038334 00100101 0.135172 0.056012 00100110 0.055695 0.397262 00100111 0.117755 0.376976 00101000 0.077604 0.807366 00101001 0.114272 0.876917 00101010 0.077226 0.661268 00101011 0.142363 0.599635 00101100 0.048885 0.160450 00101101 0.167945 0.151950 00101110 0.046340 0.256559 00101111 0.151392 0.268874 00110000 0.368991 0.926086 00110001 0.380645 0.924004 00110010 0.333044 0.460912 00110011 0.244729 0.473505 00110100 0.373900 0.043782 00110101 0.245282 0.046720 00110110 0.338122 0.327772 00110111 0.246479 0.355455 00111000 0.271941 0.776781 00111001 0.314659 0.780426 00111010 0.281591 0.667979 00111011 0.269267 0.631313 00111100 0.391733 0.132460 00111101 0.267292 0.162978 00111110 0.375666 0.240801 00111111 0.260740 0.241834 01000000 0.729468 −0.681354 01000001 0.738514 −0.673491 01000010 0.855792 −0.514140 01000011 0.849844 −0.515379 01000100 0.968926 −0.244322 01000101 0.961654 −0.274266 01000110 0.846439 −0.172785 01000111 0.814534 −0.289437 01001000 0.660833 −0.597951 01001001 0.635704 −0.601179 01001010 0.703246 −0.498537 01001011 0.713555 −0.458342 01001100 0.982752 −0.108821 01001101 0.995743 −0.075153 01001110 0.835216 −0.108792 01001111 0.734334 −0.299494 01010000 0.563531 −0.824212 01010001 0.538599 −0.841459 01010010 0.422490 −0.436968 01010011 0.486743 −0.460303 01010100 0.533243 −0.050591 01010101 0.625049 −0.049186 01010110 0.460159 −0.327276 01010111 0.545204 −0.349786 01011000 0.466690 −0.722489 01011001 0.472883 −0.710099 01011010 0.416973 −0.618858 01011011 0.459806 −0.568347 01011100 0.496124 −0.136766 01011101 0.632908 −0.115646 01011110 0.478072 −0.233508 01011111 0.637346 −0.269821 01100000 0.150085 −0.986638 01100001 0.096333 −0.982163 01100010 0.054634 −0.530674 01100011 0.124963 −0.483488 01100100 0.039722 −0.038334 01100101 0.135172 −0.056012 01100110 0.055695 −0.397262 01100111 0.117755 −0.376976 01101000 0.077604 −0.807366 01101001 0.114272 −0.876917 01101010 0.077226 −0.661268 01101011 0.142363 −0.599635 01101100 0.048885 −0.160450 01101101 0.167945 −0.151950 01101110 0.046340 −0.256559 01101111 0.151392 −0.268874 01110000 0.368991 −0.926086 01110001 0.380645 −0.924004 01110010 0.333044 −0.460912 01110011 0.244729 −0.473505 01110100 0.373900 −0.043782 01110101 0.245282 −0.046720 01110110 0.338122 −0.327772 01110111 0.246479 −0.355455 01111000 0.271941 −0.776781 01111001 0.314659 −0.780426 01111010 0.281591 −0.667979 01111011 0.269267 −0.631313 01111100 0.391733 −0.132460 01111101 0.267292 −0.162978 01111110 0.375666 −0.240801 01111111 0.260740 −0.241834 10000000 −0.729468 0.681354 10000001 −0.738514 0.673491 10000010 −0.855792 0.514140 10000011 −0.849844 0.515379 10000100 −0.968926 0.244322 10000101 −0.961654 0.274266 10000110 −0.846439 0.172785 10000111 −0.814534 0.289437 10001000 −0.660833 0.597951 10001001 −0.635704 0.601179 10001010 −0.703246 0.498537 10001011 −0.713555 0.458342 10001100 −0.982752 0.108821 10001101 −0.995743 0.075153 10001110 −0.835216 0.108792 10001111 −0.734334 0.299494 10010000 −0.563531 0.824212 10010001 −0.538599 0.841459 10010010 −0.422490 0.436968 10010011 −0.486743 0.460303 10010100 −0.533243 0.050591 10010101 −0.625049 0.049186 10010110 −0.460159 0.327276 10010111 −0.545204 0.349786 10011000 −0.466690 0.722489 10011001 −0.472883 0.710099 10011010 −0.416973 0.618858 10011011 −0.459806 0.568347 10011100 −0.496124 0.136766 10011101 −0.632908 0.115646 10011110 −0.478072 0.233508 10011111 −0.637346 0.269821 10100000 −0.150085 0.986638 10100001 −0.096333 0.982163 10100010 −0.054634 0.530674 10100011 −0.124963 0.483488 10100100 −0.039722 0.038334 10100101 −0.135172 0.056012 10100110 −0.055695 0.397262 10100111 −0.117755 0.376976 10101000 −0.077604 0.807366 10101001 −0.114272 0.876917 10101010 −0.077226 0.661268 10101011 −0.142363 0.599635 10101100 −0.048885 0.160450 10101101 −0.167945 0.151950 10101110 −0.046340 0.256559 10101111 −0.151392 0.268874 10110000 −0.368991 0.926086 10110001 −0.380645 0.924004 10110010 −0.333044 0.460912 10110011 −0.244729 0.473505 10110100 −0.373900 0.043782 10110101 −0.245282 0.046720 10110110 −0.338122 0.327772 10110111 −0.246479 0.355455 10111000 −0.271941 0.776781 10111001 −0.314659 0.780426 10111010 −0.281591 0.667979 10111011 −0.269267 0.631313 10111100 −0.391733 0.132460 10111101 −0.267292 0.162978 10111110 −0.375666 0.240801 10111111 −0.260740 0.241834 11000000 −0.729468 −0.681354 11000001 −0.738514 −0.673491 11000010 −0.855792 −0.514140 11000011 −0.849844 −0.515379 11000100 −0.968926 −0.244322 11000101 −0.961654 −0.274266 11000110 −0.846439 −0.172785 11000111 −0.814534 −0.289437 11001000 −0.660833 −0.597951 11001001 −0.635704 −0.601179 11001010 −0.703246 −0.498537 11001011 −0.713555 −0.458342 11001100 −0.982752 −0.108821 11001101 −0.995743 −0.075153 11001110 −0.835216 −0.108792 11001111 −0.734334 −0.299494 11010000 −0.563531 −0.824212 11010001 −0.538599 −0.841459 11010010 −0.422490 −0.436968 11010011 −0.486743 −0.460303 11010100 −0.533243 −0.050591 11010101 −0.625049 −0.049186 11010110 −0.460159 −0.327276 11010111 −0.545204 −0.349786 11011000 −0.466690 −0.722489 11011001 −0.472883 −0.710099 11011010 −0.416973 −0.618858 11011011 −0.459806 −0.568347 11011100 −0.496124 −0.136766 11011101 −0.632908 −0.115646 11011110 −0.478072 −0.233508 11011111 −0.637346 −0.269821 11100000 −0.150085 −0.986638 11100001 −0.096333 −0.982163 11100010 −0.054634 −0.530674 11100011 −0.124963 −0.483488 11100100 −0.039722 −0.038334 11100101 −0.135172 −0.056012 11100110 −0.055695 −0.397262 11100111 −0.117755 −0.376976 11101000 −0.077604 −0.807366 11101001 −0.114272 −0.876917 11101010 −0.077226 −0.661268 11101011 −0.142363 −0.599635 11101100 −0.048885 −0.160450 11101101 −0.167945 −0.151950 11101110 −0.046340 −0.256559 11101111 −0.151392 −0.268874 11110000 −0.368991 −0.926086 11110001 −0.380645 −0.924004 11110010 −0.333044 −0.460912 11110011 −0.244729 −0.473505 11110100 −0.373900 −0.043782 11110101 −0.245282 −0.046720 11110110 −0.338122 −0.327772 11110111 −0.246479 −0.355455 11111000 −0.271941 −0.776781 11111001 −0.314659 −0.780426 11111010 −0.281591 −0.667979 11111011 −0.269267 −0.631313 11111100 −0.391733 −0.132460 11111101 −0.267292 −0.162978 11111110 −0.375666 −0.240801 11111111 −0.260740 −0.241834

TABLE 26B SYMBOL COORDINATE BITS X Y 00000000 0.100722 0.994770 00000001 0.750351 0.661022 00000010 0.881575 0.471414 00000011 0.873252 0.483693 00000100 0.992123 0.101906 00000101 0.913440 0.102519 00000110 0.951789 0.302746 00000111 0.937645 0.339561 00001000 0.672550 0.570706 00001001 0.676544 0.624432 00001010 0.698643 0.418766 00001011 0.776531 0.393317 00001100 0.761618 0.102135 00001101 0.834592 0.108693 00001110 0.707515 0.282568 00001111 0.814401 0.272917 00010000 0.492252 0.870452 00010001 0.594583 0.796236 00010010 0.508862 0.423943 00010011 0.436952 0.512043 00010100 0.427335 0.024507 00010101 0.472640 0.103214 00010110 0.504587 0.325416 00010111 0.481372 0.201663 00011000 0.497458 0.750636 00011001 0.516303 0.690518 00011010 0.579766 0.455486 00011011 0.502377 0.570749 00011100 0.663972 0.082265 00011101 0.584150 0.076688 00011110 0.610969 0.277009 00011111 0.572290 0.199840 00100000 0.056666 0.691228 00100001 0.151272 0.675756 00100010 0.204894 0.530525 00100011 0.216699 0.584379 00100100 0.043480 0.044961 00100101 0.049099 0.162247 00100110 0.038237 0.360110 00100111 0.049416 0.284838 00101000 0.099703 0.839454 00101001 0.117273 0.821271 00101010 0.135244 0.463140 00101011 0.031880 0.529953 00101100 0.162184 0.047275 00101101 0.125789 0.162121 00101110 0.117611 0.404115 00101111 0.138289 0.256313 00110000 0.343736 0.937804 00110001 0.259185 0.697227 00110010 0.338770 0.448588 00110011 0.336399 0.578736 00110100 0.326500 0.064530 00110101 0.345811 0.144428 00110110 0.380906 0.330718 00110111 0.374826 0.247547 00111000 0.314588 0.835245 00111001 0.330246 0.739962 00111010 0.261873 0.406571 00111011 0.397693 0.622723 00111100 0.242090 0.072399 00111101 0.232395 0.167109 00111110 0.238175 0.347737 00111111 0.249935 0.249763 01000000 0.100722 −0.994770 01000001 0.750351 −0.661022 01000010 0.881575 −0.471414 01000011 0.873252 −0.483693 01000100 0.992123 −0.101906 01000101 0.913440 −0.102519 01000110 0.951789 −0.302746 01000111 0.937645 −0.339561 01001000 0.672550 −0.570706 01001001 0.676544 −0.624432 01001010 0.698643 −0.418766 01001011 0.776531 −0.393317 01001100 0.761618 −0.102135 01001101 0.834592 −0.108693 01001110 0.707515 −0.282568 01001111 0.814401 −0.272917 01010000 0.492252 −0.870452 01010001 0.594583 −0.796236 01010010 0.508862 −0.423943 01010011 0.436952 −0.512043 01010100 0.427335 −0.024507 01010101 0.472640 −0.103214 01010110 0.504587 −0.325416 01010111 0.481372 −0.201663 01011000 0.497458 −0.750636 01011001 0.516303 −0.690518 01011010 0.579766 −0.455486 01011011 0.502377 −0.570749 01011100 0.663972 −0.082265 01011101 0.584150 −0.076688 01011110 0.610969 −0.277009 01011111 0.572290 −0.199840 01100000 0.056666 −0.691228 01100001 0.151272 −0.675756 01100010 0.204894 −0.530525 01100011 0.216699 −0.584379 01100100 0.043480 −0.044961 01100101 0.049099 −0.162247 01100110 0.038237 −0.360110 01100111 0.049416 −0.284838 01101000 0.099703 −0.839454 01101001 0.117273 −0.821271 01101010 0.135244 −0.463140 01101011 0.031880 −0.529953 01101100 0.162184 −0.047275 01101101 0.125789 −0.162121 01101110 0.117611 −0.404115 01101111 0.138289 −0.256313 01110000 0.343736 −0.937804 01110001 0.259185 −0.697227 01110010 0.338770 −0.448588 01110011 0.336399 −0.578736 01110100 0.326500 −0.064530 01110101 0.345811 −0.144428 01110110 0.380906 −0.330718 01110111 0.374826 −0.247547 01111000 0.314588 −0.835245 01111001 0.330246 −0.739962 01111010 0.261873 −0.406571 01111011 0.397693 −0.622723 01111100 0.242090 −0.072399 01111101 0.232395 −0.167109 01111110 0.238175 −0.347737 01111111 0.249935 −0.249763 10000000 −0.100722 0.994770 10000001 −0.750351 0.661022 10000010 −0.881575 0.471414 10000011 −0.873252 0.483693 10000100 −0.992123 0.101906 10000101 −0.913440 0.102519 10000110 −0.951789 0.302746 10000111 −0.937645 0.339561 10001000 −0.672550 0.570706 10001001 −0.676544 0.624432 10001010 −0.698643 0.418766 10001011 −0.776531 0.393317 10001100 −0.761618 0.102135 10001101 −0.834592 0.108693 10001110 −0.707515 0.282568 10001111 −0.814401 0.272917 10010000 −0.492252 0.870452 10010001 −0.594583 0.796236 10010010 −0.508862 0.423943 10010011 −0.436952 0.512043 10010100 −0.427335 0.024507 10010101 −0.472640 0.103214 10010110 −0.504587 0.325416 10010111 −0.481372 0.201663 10011000 −0.497458 0.750636 10011001 −0.516303 0.690518 10011010 −0.579766 0.455486 10011011 −0.502377 0.570749 10011100 −0.663972 0.082265 10011101 −0.584150 0.076688 10011110 −0.610969 0.277009 10011111 −0.572290 0.199840 10100000 −0.056666 0.691228 10100001 −0.151272 0.675756 10100010 −0.204894 0.530525 10100011 −0.216699 0.584379 10100100 −0.043480 0.044961 10100101 −0.049099 0.162247 10100110 −0.038237 0.360110 10100111 −0.049416 0.284838 10101000 −0.099703 0.839454 10101001 −0.117273 0.821271 10101010 −0.135244 0.463140 10101011 −0.031880 0.529953 10101100 −0.162184 0.047275 10101101 −0.125789 0.162121 10101110 −0.117611 0.404115 10101111 −0.138289 0.256313 10110000 −0.343736 0.937804 10110001 −0.259185 0.697227 10110010 −0.338770 0.448588 10110011 −0.336399 0.578736 10110100 −0.326500 0.064530 10110101 −0.345811 0.144428 10110110 −0.380906 0.330718 10110111 −0.374826 0.247547 10111000 −0.314588 0.835245 10111001 −0.330246 0.739962 10111010 −0.261873 0.406571 10111011 −0.397693 0.622723 10111100 −0.242090 0.072399 10111101 −0.232395 0.167109 10111110 −0.238175 0.347737 10111111 −0.249935 0.249763 11000000 −0.100722 −0.994770 11000001 −0.750351 −0.661022 11000010 −0.881575 −0.471414 11000011 −0.873252 −0.483693 11000100 −0.992123 −0.101906 11000101 −0.913440 −0.102519 11000110 −0.951789 −0.302746 11000111 −0.937645 −0.339561 11001000 −0.672550 −0.570706 11001001 −0.676544 −0.624432 11001010 −0.698643 −0.418766 11001011 −0.776531 −0.393317 11001100 −0.761618 −0.102135 11001101 −0.834592 −0.108693 11001110 −0.707515 −0.282568 11001111 −0.814401 −0.272917 11010000 −0.492252 −0.870452 11010001 −0.594583 −0.796236 11010010 −0.508862 −0.423943 11010011 −0.436952 −0.512043 11010100 −0.427335 −0.024507 11010101 −0.472640 −0.103214 11010110 −0.504587 −0.325416 11010111 −0.481372 −0.201663 11011000 −0.497458 −0.750636 11011001 −0.516303 −0.690518 11011010 −0.579766 −0.455486 11011011 −0.502377 −0.570749 11011100 −0.663972 −0.082265 11011101 −0.584150 −0.076688 11011110 −0.610969 −0.277009 11011111 −0.572290 −0.199840 11100000 −0.056666 −0.691228 11100001 −0.151272 −0.675756 11100010 −0.204894 −0.530525 11100011 −0.216699 −0.584379 11100100 −0.043480 −0.044961 11100101 −0.049099 −0.162247 11100110 −0.038237 −0.360110 11100111 −0.049416 −0.284838 11101000 −0.099703 −0.839454 11101001 −0.117273 −0.821271 11101010 −0.135244 −0.463140 11101011 −0.031880 −0.529953 11101100 −0.162184 −0.047275 11101101 −0.125789 −0.162121 11101110 −0.117611 −0.404115 11101111 −0.138289 −0.256313 11110000 −0.343736 −0.937804 11110001 −0.259185 −0.697227 11110010 −0.338770 −0.448588 11110011 −0.336399 −0.578736 11110100 −0.326500 −0.064530 11110101 −0.345811 −0.144428 11110110 −0.380906 −0.330718 11110111 −0.374826 −0.247547 11111000 −0.314588 −0.835245 11111001 −0.330246 −0.739962 11111010 −0.261873 −0.406571 11111011 −0.397693 −0.622723 11111100 −0.242090 −0.072399 11111101 −0.232395 −0.167109 11111110 −0.238175 −0.347737 11111111 −0.249935 −0.249763

TABLE 26C SYMBOL COORDINATE BITS X Y 00000000 0.704805 0.709401 00000001 0.653485 0.647271 00000010 0.839635 0.536645 00000011 0.779762 0.466418 00000100 0.950855 0.309585 00000101 0.898873 0.237975 00000110 0.791594 0.179828 00000111 0.816680 0.306330 00001000 0.505509 0.556460 00001001 0.578086 0.594539 00001010 0.604085 0.430430 00001011 0.675607 0.467474 00001100 0.995507 0.093945 00001101 0.927144 0.066550 00001110 0.798416 0.068850 00001111 0.692878 0.075290 00010000 0.479391 0.863511 00010001 0.505225 0.774265 00010010 0.484617 0.414350 00010011 0.520888 0.310957 00010100 0.381499 0.038864 00010101 0.487670 0.092097 00010110 0.411849 0.258755 00010111 0.487732 0.202001 00011000 0.406573 0.655126 00011001 0.462736 0.718925 00011010 0.664047 0.289395 00011011 0.596484 0.264203 00011100 0.355974 0.107909 00011101 0.560999 0.039644 00011110 0.359573 0.187393 00011111 0.615102 0.131990 00100000 0.115389 0.992829 00100001 0.099077 0.892498 00100010 0.049649 0.509714 00100011 0.145149 0.483577 00100100 0.041063 0.109972 00100101 0.054519 0.039305 00100110 0.056636 0.417591 00100111 0.146141 0.395735 00101000 0.120064 0.703253 00101001 0.072859 0.801344 00101010 0.058365 0.627881 00101011 0.138895 0.590276 00101100 0.039437 0.207733 00101101 0.107948 0.211695 00101110 0.044117 0.330946 00101111 0.135942 0.306297 00110000 0.296688 0.951488 00110001 0.300001 0.845945 00110010 0.381891 0.443738 00110011 0.259783 0.465152 00110100 0.258503 0.034355 00110101 0.161844 0.058432 00110110 0.366199 0.349348 00110111 0.261819 0.363870 00111000 0.262841 0.689677 00111001 0.249677 0.780505 00111010 0.347351 0.553715 00111011 0.238875 0.569146 00111100 0.254190 0.129082 00111101 0.178447 0.154862 00111110 0.285410 0.232281 00111111 0.211277 0.280009 01000000 0.704805 −0.709401 01000001 0.653485 −0.647271 01000010 0.839635 −0.536645 01000011 0.779762 −0.466418 01000100 0.950855 −0.309585 01000101 0.898873 −0.237975 01000110 0.791594 −0.179828 01000111 0.816680 −0.306330 01001000 0.505509 −0.556460 01001001 0.578086 −0.594539 01001010 0.604085 −0.430430 01001011 0.675607 −0.467474 01001100 0.995507 −0.093945 01001101 0.927144 −0.066550 01001110 0.798416 −0.068850 01001111 0.692878 −0.075290 01010000 0.479391 −0.863511 01010001 0.505225 −0.774265 01010010 0.484617 −0.414350 01010011 0.520888 −0.310957 01010100 0.381499 −0.038864 01010101 0.487670 −0.092097 01010110 0.411849 −0.258755 01010111 0.487732 −0.202001 01011000 0.406573 −0.655126 01011001 0.462736 −0.718925 01011010 0.664047 −0.289395 01011011 0.596484 −0.264203 01011100 0.355974 −0.107909 01011101 0.560999 −0.039644 01011110 0.359573 −0.187393 01011111 0.615102 −0.131990 01100000 0.115389 −0.992829 01100001 0.099077 −0.892498 01100010 0.049649 −0.509714 01100011 0.145149 −0.483577 01100100 0.041063 −0.109972 01100101 0.054519 −0.039305 01100110 0.056636 −0.417591 01100111 0.146141 −0.395735 01101000 0.120064 −0.703253 01101001 0.072859 −0.801344 01101010 0.058365 −0.627881 01101011 0.138895 −0.590276 01101100 0.039437 −0.207733 01101101 0.107948 −0.211695 01101110 0.044117 −0.330946 01101111 0.135942 −0.306297 01110000 0.296688 −0.951488 01110001 0.300001 −0.845945 01110010 0.381891 −0.443738 01110011 0.259783 −0.465152 01110100 0.258503 −0.034355 01110101 0.161844 −0.058432 01110110 0.366199 −0.349348 01110111 0.261819 −0.363870 01111000 0.262841 −0.689677 01111001 0.249677 −0.780505 01111010 0.347351 −0.553715 01111011 0.238875 −0.569146 01111100 0.254190 −0.129082 01111101 0.178447 −0.154862 01111110 0.285410 −0.232281 01111111 0.211277 −0.280009 10000000 −0.704805 0.709401 10000001 −0.653485 0.647271 10000010 −0.839635 0.536645 10000011 −0.779762 0.466418 10000100 −0.950855 0.309585 10000101 −0.898873 0.237975 10000110 −0.791594 0.179828 10000111 −0.816680 0.306330 10001000 −0.505509 0.556460 10001001 −0.578086 0.594539 10001010 −0.604085 0.430430 10001011 −0.675607 0.467474 10001100 −0.995507 0.093945 10001101 −0.927144 0.066550 10001110 −0.798416 0.068850 10001111 −0.692878 0.075290 10010000 −0.479391 0.863511 10010001 −0.505225 0.774265 10010010 −0.484617 0.414350 10010011 −0.520888 0.310957 10010100 −0.381499 0.038864 10010101 −0.487670 0.092097 10010110 −0.411849 0.258755 10010111 −0.487732 0.202001 10011000 −0.406573 0.655126 10011001 −0.462736 0.718925 10011010 −0.664047 0.289395 10011011 −0.596484 0.264203 10011100 −0.355974 0.107909 10011101 −0.560999 0.039644 10011110 −0.359573 0.187393 10011111 −0.615102 0.131990 10100000 −0.115389 0.992829 10100001 −0.099077 0.892498 10100010 −0.049649 0.509714 10100011 −0.145149 0.483577 10100100 −0.041063 0.109972 10100101 −0.054519 0.039305 10100110 −0.056636 0.417591 10100111 −0.146141 0.395735 10101000 −0.120064 0.703253 10101001 −0.072859 0.801344 10101010 −0.058365 0.627881 10101011 −0.138895 0.590276 10101100 −0.039437 0.207733 10101101 −0.107948 0.211695 10101110 −0.044117 0.330946 10101111 −0.135942 0.306297 10110000 −0.296688 0.951488 10110001 −0.300001 0.845945 10110010 −0.381891 0.443738 10110011 −0.259783 0.465152 10110100 −0.258503 0.034355 10110101 −0.161844 0.058432 10110110 −0.366199 0.349348 10110111 −0.261819 0.363870 10111000 −0.262841 0.689677 10111001 −0.249677 0.780505 10111010 −0.347351 0.553715 10111011 −0.238875 0.569146 10111100 −0.254190 0.129082 10111101 −0.178447 0.154862 10111110 −0.285410 0.232281 10111111 −0.211277 0.280009 11000000 −0.704805 −0.709401 11000001 −0.653485 −0.647271 11000010 −0.839635 −0.536645 11000011 −0.779762 −0.466418 11000100 −0.950855 −0.309585 11000101 −0.898873 −0.237975 11000110 −0.791594 −0.179828 11000111 −0.816680 −0.306330 11001000 −0.505509 −0.556460 11001001 −0.578086 −0.594539 11001010 −0.604085 −0.430430 11001011 −0.675607 −0.467474 11001100 −0.995507 −0.093945 11001101 −0.927144 −0.066550 11001110 −0.798416 −0.068850 11001111 −0.692878 −0.075290 11010000 −0.479391 −0.863511 11010001 −0.505225 −0.774265 11010010 −0.484617 −0.414350 11010011 −0.520888 −0.310957 11010100 −0.381499 −0.038864 11010101 −0.487670 −0.092097 11010110 −0.411849 −0.258755 11010111 −0.487732 −0.202001 11011000 −0.406573 −0.655126 11011001 −0.462736 −0.718925 11011010 −0.664047 −0.289395 11011011 −0.596484 −0.264203 11011100 −0.355974 −0.107909 11011101 −0.560999 −0.039644 11011110 −0.359573 −0.187393 11011111 −0.615102 −0.131990 11100000 −0.115389 −0.992829 11100001 −0.099077 −0.892498 11100010 −0.049649 −0.509714 11100011 −0.145149 −0.483577 11100100 −0.041063 −0.109972 11100101 −0.054519 −0.039305 11100110 −0.056636 −0.417591 11100111 −0.146141 −0.395735 11101000 −0.120064 −0.703253 11101001 −0.072859 −0.801344 11101010 −0.058365 −0.627881 11101011 −0.138895 −0.590276 11101100 −0.039437 −0.207733 11101101 −0.107948 −0.211695 11101110 −0.044117 −0.330946 11101111 −0.135942 −0.306297 11110000 −0.296688 −0.951488 11110001 −0.300001 −0.845945 11110010 −0.381891 −0.443738 11110011 −0.259783 −0.465152 11110100 −0.258503 −0.034355 11110101 −0.161844 −0.058432 11110110 −0.366199 −0.349348 11110111 −0.261819 −0.363870 11111000 −0.262841 −0.689677 11111001 −0.249677 −0.780505 11111010 −0.347351 −0.553715 11111011 −0.238875 −0.569146 11111100 −0.254190 −0.129082 11111101 −0.178447 −0.154862 11111110 −0.285410 −0.232281 11111111 −0.211277 −0.280009

Through the descriptions of the preceding embodiments, the present invention may be implemented by using hardware only or by using software and a necessary universal hardware platform. Based on such understandings, the technical solution of the present invention may be embodied in the form of a software product. The software product may be stored in a non-volatile or non-transitory storage medium, which can be a compact disk read-only memory (CD-ROM), USB flash disk, or a removable hard disk. The software product includes a number of instructions that enable a computer device (personal computer, server, or network device) to execute the methods provided in the embodiments of the present invention. For example, such an execution may correspond to a simulation of the logical operations as described herein. The software product may additionally or alternatively include number of instructions that enable a computer device to execute operations for configuring or programming a digital logic apparatus in accordance with embodiments of the present invention.

Although the present invention has been described with reference to specific features and embodiments thereof, it is evident that various modifications and combinations can be made thereto without departing from the invention. The specification and drawings are, accordingly, to be regarded simply as an illustration of the invention as defined by the appended claims, and are contemplated to cover any and all modifications, variations, combinations or equivalents that fall within the scope of the present invention.

Claims

1. A method for wireless communication using digital Quadrature Amplitude Modulation (QAM), the method comprising: 1.484430 0.355657 1.103689 0.241419 0.483043 0.093713 0.757638 0.144839 1.150175 0.837105 0.876141 0.599840 0.335946 0.248000 0.608728 0.420395 0.255763 1.404577 0.189712 1.014604 0.088351 0.457627 0.166639 0.679954 0.768973 1.227892 0.588939 0.901538 0.105757 0.127560 0.433169 0.631655 and

translating between constellation symbols and bit sequences corresponding to the constellation symbols using a mapping module electronic component of a wireless communication device, in accordance with a 64-point constellation;
wherein normalized magnitudes of the constellation symbols in a first quadrant of the 64-point constellation are defined by the following coordinate pairs to at least three decimal places of precision:
transmitting, by a transmitter of the wireless communication device, a wireless signal, the wireless signal modulated in accordance with the constellation symbols to mitigate phase noise.

2. The method of claim 1, wherein normalized magnitudes of the constellation symbols in the first quadrant of the 64-point constellation are defined by the coordinate pairs to at least four decimal places of precision.

3. The method of claim 1, wherein normalized magnitudes of the constellation symbols in the first quadrant of the 64-point constellation are defined by the coordinate pairs to at least five decimal places of precision.

4. The method of claim 1, wherein normalized magnitudes of the constellation symbols in the first quadrant of the 64-point constellation are defined by the coordinate pairs to six decimal places of precision.

5. The method of claim 1, wherein the constellation is a reflection-symmetric constellation.

6. The method of claim 1, wherein:

the first coordinates of the coordinate pairs represent normalized magnitudes of one of: in-phase components; and quadrature components of the constellation symbols, and
the second coordinates of the coordinate pairs represent normalized magnitudes of the other one of the in-phase components and the quadrature components of the constellation symbols.

7. The method of claim 1, wherein the bit sequences are assigned to the constellation symbols using Gray mapping.

8. The method of claim 1, wherein each of the bit sequences is of length 6 bits, including 4 quadrant non-specific bits, and wherein, for an index value k ranging from k=1 to k=16 inclusive: the quadrant non-specific bits of the bit sequence corresponding to the constellation symbol defined by a kth-listed one of the coordinate pairs are equal to: a binary representation of k−1; the binary representation of k−1 added to a constant value under Modulo-16 addition; the binary representation of k−1 subjected to a consistent bit reordering, or the binary representation of k−1 added to a constant value under Modulo-16 addition and subjected to the consistent bit reordering.

9. The method of claim 8, wherein the constellation is a reflection symmetric constellation, and wherein bit sequences corresponding to constellation symbols within a common group of reflection symmetric constellation symbols have identical quadrant non-specific bits.

10. An apparatus for a wireless communication device configured for wireless communication using digital Quadrature Amplitude Modulation (QAM), the apparatus comprising: 1.484430 0.355657 1.103689 0.241419 0.483043 0.093713 0.757638 0.144839 1.150175 0.837105 0.876141 0.599840 0.335946 0.248000 0.608728 0.420395 0.255763 1.404577 0.189712 1.014604 0.088351 0.457627 0.166639 0.679954 0.768973 1.227892 0.588939 0.901538 0.105757 0.127560 0.433169 0.631655 and

a mapping module electronic component configured to translate between constellation symbols and bit sequences corresponding to the constellation symbols in accordance with a 64-point constellation;
wherein normalized magnitudes of the constellation symbols in a first quadrant of the 64-point constellation are defined by the following coordinate pairs to at least three decimal places of precision:
a transmitter configured to transmit a wireless signal, the wireless signal modulated in accordance with the constellation symbols to mitigate phase noise.

11. The apparatus of claim 10, wherein normalized magnitudes of the constellation symbols in the first quadrant of the 64-point constellation are defined by the coordinate pairs to at least four decimal places of precision.

12. The apparatus of claim 10, wherein normalized magnitudes of the constellation symbols in the first quadrant of the 64-point constellation are defined by the coordinate pairs to at least five decimal places of precision.

13. The apparatus of claim 10, wherein normalized magnitudes of the constellation symbols in the first quadrant of the 64-point constellation are defined by the coordinate pairs to six decimal places of precision.

14. The apparatus of claim 10, wherein the constellation is a reflection-symmetric constellation.

15. The apparatus of claim 10, wherein the left-hand-side coordinates the coordinate pairs represent normalized magnitudes of one of: in-phase components; and quadrature components of the constellation symbols, and the right-hand-side coordinates of the coordinate pairs represent normalized magnitudes of the other one of the in-phase components and the quadrature components of the constellation symbols.

16. The apparatus of claim 10, wherein the bit sequences are assigned to the constellation symbols using Gray mapping.

17. The apparatus of claim 10, wherein each of the bit sequences is of length 6 bits, including 4 quadrant non-specific bits, and wherein, for an index value k ranging from k=1 to k=16 inclusive: the quadrant non-specific bits of the bit sequence corresponding to the constellation symbol defined by a kth-listed one of the coordinate pairs are equal to: a binary representation of k−1; the binary representation of k−1 added to a constant value under Modulo-16 addition; the binary representation of k−1 subjected to a consistent bit reordering, or the binary representation of k−1 added to a constant value under Modulo-16 addition and subjected to the consistent bit reordering.

18. The apparatus of claim 17, wherein the constellation is a reflection symmetric constellation, and wherein bit sequences corresponding to constellation symbols within a common group of reflection symmetric constellation symbols have identical quadrant non-specific bits.

19-72. (canceled)

Patent History
Publication number: 20170288935
Type: Application
Filed: Apr 11, 2016
Publication Date: Oct 5, 2017
Inventors: Guido Montorsi (Torino), Sergio Benedetto (Torino), Yan Xin (Kanata), Min Yan (Shenzhen)
Application Number: 15/095,787
Classifications
International Classification: H04L 27/36 (20060101); H04B 1/02 (20060101);