METHOD FOR TREATING A MEDICAL IMPLANT
A method for treating a medical implant uses plasma polymerization to apply a coating At least one treatment parameter is selected so that the reactive chemical groups of the coating are chemically modified to prevent an adsorption of interfering substances into the coating. An implant includes a plasma polymer coating that is biocompatible, and includes a antibiotically acting metal. The coating is free from aldehyde groups
The invention relates to a method for treating a medical implant and to coated medical implants.
BACKGROUNDImplants are used in medicine, which are introduced permanently or at least for an extended period into an animal body and/or a human body to fulfill replacement functions. Numerous implants and systems may be considered for this purpose, such as biosensors, dialysis tubing, drug delivery systems, pacemakers, cardiac implants, implants for joint replacement, vascular prostheses or stents.
Implants are typically identified by the organism as being foreign after they are introduced in the body. In response to the artificial surfaces, proteins aggregate thereon only a short time after implantation due to non-specific protein adsorption. These adsorbed proteins at least partially lose their three-dimensional structures and serve as anchoring substrates for the aggregation of cells. These proteins are recognized by cells (including by thrombocytes, if the implant is introduced into the blood stream). This triggers non-defined cell coverage and/or an extracellular matrix of protein fibers (such as collagen) on the surface of the implant. This process is generally referred to as a foreign body reaction or fouling. Quite frequently, even collagen-containing encapsulation of the implant can be observed.
Implants encapsulated in tissue may lose intended functionality (for example, an analyte is able to reach the biosensor only partially, with time delay, or not at all, pores of a polymer membrane of the biosensor become clogged, or a stimulus threshold for stimulating implants changes). Moreover, encapsulated implants are more difficult to explant (for example, defective stimulation electrodes are not explanted, but remain in the body). In the human body, the described protein adsorption furthermore acts as an initiator for a foreign body reaction and may ultimately also lead to the formation of encapsulations and thrombi, which can be life-threatening for the patient.
However, this is not the only severe risk for the patient. Despite extensive progress in surgical medicine, infections following the introduction of a sterilized implant still represent very frequent complications. The adhesion of microorganisms (adhesion phase) always marks the beginning of an implant infection following implantation. The surface morphology and the physicochemical properties of the implant material are relevant for the adhesion of organisms to the implant surfaces. Binding is favored if biopolymers (in particular polysaccharides) have already adhered to the surface. Reproduction of the microorganisms results in extensive, and later explosive, three-dimensional colonization of the surface. The simultaneous bacterial synthesis of epoxy polysaccharides and other organic molecules causes the bacteria to be sheathed by a mucus-like matrix, which is referred to as a biofilm. If the biofilm is formed across a large area, the body's own antibacterial mechanisms as well as antibiotics are no longer able to prevent the organisms from spreading further on the implant and throughout the entire body. At times, this may result in life-threatening situations. An infection manifests itself to the patient by necrosis, chronic inflammations, abscesses, endocarditis, myocarditis, sepsis and the like. As many as one in five patients suffering from such infection dies within one year of becoming infected.
The bacteria causing the infection are usually introduced during implantation/revision surgery and cause either acute or latent infections. Staphylococci are responsible for these infections in 60 to 80% of cases (S. epidermis and S. aureus), but other bacteria such as E. coli also play a role. If typical antibiotic-(multi)resistant nosocomial microbes are introduced into the body, the situation can become particularly critical. If an infection involving biofilms occurs, it is frequently necessary to replace the implant with a new implant (referred to as revision surgery), since an antibiotics therapy alone is generally not sufficient. From the point of view of health care costs, infections pose a major problem; the administration of antibiotics alone may result in costs of approximately 5000 euros in certain situations, to which the costs for the new implant and the implantation are added. Infections of the pacemaker pocket and/or of an electrode system can occur with an incidence rate of up to 12%, for example. Often times a single implant replacement does not suffice since biofilms represent a focus of continuously recurring infections.
If a combination of an encapsulation of the implant and a bacterial infection occurs, the patient's immune system is substantially defenseless since immune cells are not able to penetrate to the bacterial center. This is particularly critical when replacing the implant (for example, when the service life of the implant is exhausted). During these replacements, the implant is typically introduced into the capsule formed by the previous implant. In general, this automatically also results in bacteria being introduced into the body and the collagen capsule. An infection of what is known as the pacemaker pocket generally forms just the starting point. The infection can then spread along the electrodes that are anchored in the heart. Medical procedures to disrupt or even remove the collagen-containing capsule are complex and presumably associated with a longer healing process.
In view of an aging and multimorbid population, the complications that occur are particularly critical, and more implant replacements are needed at the same lifetime of the implants given patients' higher life expectancy. Multimorbidities, which is to say the simultaneous occurrence of multiple chronic diseases in a patient, pose additional risks. The risk of infection of patients with pacemakers/defibrillators/CRT devices is increased, for example, if they suffer from diabetes and renal insufficiency.
It is therefore of great importance to improve the compatibility of implants and substantially minimize a defense reaction of the patient's body against the implant. An improvement in the compatibility of visual prostheses, such as contact lenses, that can be attached externally to the body is known to be achievable by way of a coating, applied by way of plasma polymerization (Evaluation of plasma polymer-coated contact lenses by electrochemical impedance spectroscopy. Weikart C M, Matsuzawa Y, Winterton L, Yasuda H K. J Biomed Mater Res. 2001 Mar. 15; 54(4):597-607.). While the coating protocols established for this purpose achieved a successful reduction in accumulations, adsorption still remains on such a critical scale that it is not suitable for implants.
SUMMARY OF THE INVENTIONThe invention provides methods for treating a medical implant which drastically reduce, or else completely suppress, non-specific adhesion of proteins and/or bacteria and consequently allow a long-term use of implants that is low-risk for a patient. The invention also provides an implant that evokes few to no defense responses in the patient's body, and can thus be used to treat pathological or undesirable disorders of a patient without risk, the implant optionally being explantable again.
A preferred embodiment is a method for treating a medical implant. At least one coating is applied to at least one surface of the implant by way of plasma polymerization, and more particularly to at least a portion of a surface. The coating generally includes reactive chemical groups that are chemically modified to prevent an adsorption of interfering substances into the coating.
A preferred embodiment medical implant is coated, at least partially, with plasma polymer coating that is biocompatible and mechanically, chemically and biologically stable. The coating suppresses non-specific adhesion of proteins and/or bacteria. Particular preferred coatings include at least aldehyde groups that are chemically modified to suppress adhesion. A preferred embodiment coating include carbon, nitrogen, oxygen and a metal, which is selected from the group comprising or consisting of titanium, silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium, and the alloys thereof.
The invention will be described in more detail hereafter by way of example based on exemplary embodiments illustrated in the drawings. In the drawings:
Preferred methods of treatment select at least one treatment parameter so that the reactive chemical groups of the coating are chemically modified in a suitable manner. In this way, the adsorption of interfering substances on the coating can be prevented or minimized. As a result of the embodiment according to the invention, it is possible to considerably reduce the adsorption of interfering substances compared to surface modifications from the related art. The method is used to generate a mechanically, chemically and biologically stable coating, which was deposited in the form of a plasma polymer and is treated such that it represents a biocompatible interface, wherein the basic properties of the surface, such as adhesion to the coated surface or a general camouflaging function of the surface (for details see below), remain intact over time. The modification of the coating is a surface modification for implants to reduce the implantation risk. The specifically selected physicochemical properties of the coating, and thus of the implant surface, in combination with the modification according to the invention of the reactive chemical groups, reduce the aggregation of biomolecules and/or cells. This prevents interactions with interfering substances, such as constituent components of structures, such as tissue and/or body fluids, which may come in contact with the implant, and more particularly cells and/or molecular components, such as proteins, salts, ions and/or any other interfering substance deemed harmful by a person skilled in the art. This improves the suitability of the implant for long-term uses in the body compared to coatings from the related art. In particular, implants coated by way of a method described herein are particularly suited for implantation, preferably for long-term implantation, since the coating prevents or minimizes ingrowth into the organism, whereby complication-free, or at least complication-minimized, explantation is made possible. This represents a significant advantage with respect to a replacement of the implant compared to implants that were coated according to a method from the prior art. Due to the method proposed herein, it is furthermore possible to provide implants that are not biocompatible with a biocompatible coating and prepare a later explantation by way of the proposed coating.
A reactive chemical group shall be understood to mean a group that has binding properties that favor an attachment to other structures. Possible groups include, for example, van der Waals forces, hydrogen bonds, ionic bonds, hydrophobic interactions, interactions between charge-dipole, dipole-dipole, charge-nonpolar, dipole-nonpolar, polar-polar or an entropy gain due to structural changes of the protein (such as conformational entropy). A modification represents a reversible or irreversible change, which in particular transforms the reactive chemical group into another group, and more particularly into a less reactive group or into a group having lower binding energies. The modification in particular causes a masking of the selected reactive chemical group of the coating. Possible reactive chemical groups of the plasma polymer layer would be hydroxyl, carboxyl, amine and/or aldehyde groups, for example.
An implant here represents an aid that is introduced permanently, or at least for an extended time period, into an animal body and/or a human body, in particular invasively, to fulfill a replacement function (long-term implant). The replacement function is to be assumed over multiple days or weeks, and preferably over multiple years or decades. The implant can be any implant deemed appropriate by a person skilled in the art and may be inserted intravenously, intraarterially, subcutaneously, intracardially and epicardially, intravascularly and extravascularly, for example. The implant is in particular selected from the group consisting of: a biosensor, a dialysis device, a drug delivery system, an electrode, a vascular sleeve, a pacemaker, a cardiac pacemaker, a defibrillator, a cardioverter, a brain pacemaker, a neuroprosthesis, electrodes/electronics for artificial extremities, a neurostimulator, a barostimulator, a kidney pacemaker, a duodenal pacemaker, a cardiac implant, a tumor monitoring implant, an artificial heart, an artificial heart valve, a shunt, a brain shunt, a hydrocephalus implant, a telemetry unit, a receiver, a transmitter, a pressure sensor, an organ substitute, an energy harvesting implant, a bio fuel cell, a catheter, a cochlear implant, a retinal implant, a dental implant, an artificial implantable lens system, an implant for joint replacement, a vascular prosthesis or a stent. The method proposed herein may furthermore be used to coat contact lenses and bone implants, such as nails or screws. Preferred fields of use include, for example, cardiac rhythmic management (CRM) devices, cardiac pacemakers/defibrillators, implants for cardiac resynchronization therapy (CRT), leadless pacers/defibrillators, as well as implantable sensors (biosensors, pressure sensors), and drug delivery systems. The implant can in particular also include electrical components since it has been shown that these can also be coated by way of the coating protocols according to the invention without loss of unction.
In a preferred embodiment, the implant is selected from the group comprising or consisting of a drug delivery system, a cardiac pacemaker, a defibrillator, a biosensor, an electrode, an artificial heart valve, a pacemaker, a receiver, and a transmitter, or parts thereof.
In a further preferred embodiment, the implant is selected from the group comprising or consisting of a drug delivery system, a defibrillator, and an electrode.
Accordingly, the invention is furthermore based on an implant treated by way of a method according to the invention proposed herein, wherein the implant is selected from one of the above-mentioned groups of possible implants.
An implant thus treated evokes few to no defense responses in the patient's body and can thus be used to treat pathological or undesirable disorders without risk. Moreover, the risks of encapsulation and/or of a bacterial infection are minimized, whereby, in the event of a loss of function, such an implant can also be replaced in a way that is gentle on the patient. It was therefore found that implants, which were coated according to a method proposed herein, can advantageously be explanted since growth of biological material on the implant is prevented, or minimized to such an extent that explantation is possible without complications.
Without being bound to this theory, it is assumed that aldehyde groups, serving as reactive chemical groups, are responsible, among other things, for the interaction activity of the coating with adhering structures. It is thus particularly advantageous if at least one treatment parameter is selected so that at least aldehyde groups of the coating are chemically modified. In this way, a less reactive coating is generated. Effective modification can be achieved when the reactive chemical groups or the aldehyde groups are reduced by way of a reducing reagent. This process can moreover take place easily and quickly when done chemically. The reduction can be carried out by way of any reagent deemed appropriate by a person skilled in the art. The reactive chemical groups of the coating or the aldehyde groups are preferably reduced by way of at least one reducing reagent from the group comprising or consisting of sodium borohydride, tris(hydroxymethyl)aminomethane (TRIS), ethanolamine and glycine. This selection allows usage of proven substances having well-known properties. Sodium borohydride proved to be the most effective for this purpose. The approach of subsequently chemically masking reactive chemical groups that may interact with biomolecules helps significantly improve the properties of the surfaces compared to coatings from the related art. The treatment is carried out as follows: dissolve 1 mg/ml NaBH4 in 10 mM PBS buffer, incubate the surface to be modified for 1 hour at room temperature, followed by one or more washing steps.
An interesting field of use would be that of modifying the coating a biosensor, which includes at least one medical sensor system, for example. A biosensor here shall be understood to mean a sensor that is used to qualitatively and quantitatively ascertain one or more medically relevant parameters. Furthermore, a sensor system shall be understood to mean a system comprising at least one sensor and/or a specific configuration or arrangement of measuring or ascertaining components—this being a detection system—of the biosensor. This sensor is described in more detail hereafter by way of example. Such an implant can be used in particular to better monitor and treat diseases, such as cardiac insufficiency, high blood pressure, renal insufficiency and/or diabetes mellitus, which are frequent, treatment-intensive and consequently expensive chronic diseases. The described modification of the surface coating, for example of a membrane of the biosensor, is suited particularly well for an implant since many of the implant surfaces come in contact with body fluid on a regular basis, in particular blood, where defined ingrowth, or precisely no ingrowth, is of particularly high significance.
Implant surfaces susceptible to adsorption include, for example, those made of metal, metal alloys and/or transition metals, compound materials, and resorbable materials. For example, surfaces made of titanium, medical stainless steel, such as preferably 316L, CoCr, gold, magnesium and polymers, are conceivable for this purpose. Polymers may be either degradable in the body under usage conditions or remain permanently in the body. Furthermore, the sensor system may include further components, such as additional sensors, a housing, electronic components, a power supply unit, a telemetry unit, a control unit comprising evaluation electronics, an anchoring element and/or any other component that appears appropriate to a person skilled in the art.
Proteins represent a class of substances that are of medical interest. These are involved in many important processes in the blood in the body, for example as enzymes, transport means for other molecules, or as clotting factors. It is of great interest, in particular when a disease is present, to detect such proteins, or the quantity or concentration of the same, in the blood, for example. For this purpose, diagnostics employs, for example, chemical, enzymatic, biochemical, molecular biological, biotechnological, microbiological, nanotechnological, radioactive, physical or optical methods. Proteins have a three-dimensional structure that is defined by the amino acid sequence of the same and that is used by the immune system employing specific antibody recognition, wherein antibodies are able to distinguish foreign from native proteins. This interaction between the antibody and what is known as the antigen can be used for immunological detection and has become established as a common method in in vitrodiagnostics. This principle is also used in what is known as a competitive displacement assay (“competition assay”) to determine a concentration of the antigen. Furthermore, in vitro methods using no optically measurable markings for molecule detection are known. For this purpose, field effect transistors (FETs) are used in vitro, for example.
In recent decades, it has been shown that an in vitro determination of analytes is often not sufficient to reliably ascertain a current and up-to-date state of the analyte and a condition of a patient associated therewith. Rapid intervention is needed in particular with acute changes, for example in chronically ill patients. In particular, continuous monitoring of analytes and of the concentrations of the same over months, or even years, is advisable. Accordingly, a need exists for a sensor system that is able to reliably and quickly monitor analytes, for example, in vivo over an extended period. It is particularly important in this regard that the functionality is preserved for the longest time possible, which can be ensured by the coating applied according to the invention.
Using such a biosensor, it is possible to ascertain numerous parameters, such as a pH value, an osmolality, a charge, such as of an ion, a polyelectrolyte or a protein, a temperature, a configuration, such as of a binding site, a size, a mass, a state of matter, the water content, the hematocrit level, the partial thromboplastin time, the plasma thrombin clotting time, the Quick's value, a presence or an absence and/or a quantity of a substance and/or of an analyte and/or any other parameter that is deemed useful by a person skilled in the art.
In the majority of cases, however, a specific analyte is measured, such as an electrolyte, a fat, a salt, an ion, a polyelectrolyte, a carbohydrate, a fatty acid, a lipid, a sugar, a nucleotide, a deoxyribonucleic acid, a ribonucleic acid, an amino acid, a peptide, a protein, an antibody, a hormone, a neurotransmitter, a metabolite, a metabolic product, an antigen, an active ingredient, a drug, a nanoparticle, a toxin, water and/or any other substance that is deemed expedient by a person skilled in the art. It is also possible to ascertain a certain state of a molecule, or what is known as a biomarker, which form a variable component of the human or animal body, such as albumins/globulins, alkaline phosphatase, alpha-1-globulin, alpha-2-globulin, alpha-1-antitrypsin, alpha-1-fetoprotein, alpha-amylase, alpha-hydroxybutyrate-dehydrogenase, ammonia, antithrombin III, bicarbonate, bilirubin, carbohydrate antigen 19-9, carcinoembryonic antigen, chloride, cholesterol, cholinesterase, chylomicron remnants, cobalamin/Vitamin B12, coeruloplasmin, C-reactive proteins, cystatin C, d-dimers, iron, erythropoetin, erythrocytes, ferritin, fetuin A, fibrinogen, folic acid/Vitamin B9, free tetraiodothyronine (fT4), free triiodothyronine (fT3), gamma-glutamyltransferase, glucose, glutamate dehydrogenase, glutamate oxalacetate transaminase, glutamate pyruvate transaminase, glycohemoglobin, packed cell volume, hemoglobin, haptoglobin, uric acid, urea, HDL cholesterol, homocysteine, immunoglobulin A, immunoglobulin E, immunoglobulin G, immunoglobulin M, INR, potassium, calcium, creatinine, creatine kinase, copper, lactate, lactate dehydrogenase, LDL cholesterol, leukocytes, lipase, lipoprotein, magnesium, corpuscular hemoglobins, myoglobin, sodium, NT-proBNP/BNP, phosphate, prostate-specific antigens, reticulocytes, rheumatoid factor, thrombocytes, thyreoidea stimulating hormone, transferrin, triglycerides, troponin T, and VLDL cholesterol.
An analyte shall also be understood to mean an “active ingredient,” wherein the term “active ingredient” includes typical pharmaceuticals, or else metabolites, which are administered for treating diseases, such as muscarinic receptor antagonists, neuromuscular blocking agents, cholesterol esterase inhibitors, adrenoceptor agonists, indirectly acting sympathomimetic drugs, methylxanthine, alpha-adrenoreceptor antagonists, ergot alkaloids, beta-adrenoceptor antagonists, inactivator inhibitors, antisympathonic drugs, 5-HT receptor agonists, histamine receptor agonists, histamine receptor antagonists, analgesics, local anesthetics, sedatives, anticonvulsant drugs, convulsant drugs, muscle relaxers, anti-Parkinson's drugs, neuroleptics, antidepressants, lithium, tranquillizers, immunosuppressants, anti-rheumatism drugs, antiarrhythmic drugs, antibiotics, ACE inhibitors, aldosterone receptor antagonists, diuretics, vasodilators, positive inotropic agents, antithrombotic/thrombolytic substances, laxatives, antidiarrheal drugs, pharmaceuticals for adiposity, uricostatic drugs, uricosuric drugs, lipid lowering drugs, antidiabetics, antihypoglycemic drugs, hormones, iodized salts, threostatic drugs, iron, vitamins, trace elements, virostatics, antimycotics, antitubercular drugs, and substances for tumor chemotherapy. The feature to be analyzed preferably relates to a variable component of the animal and/or human body. Many of these analytes can be determined in a body fluid, such as lymph fluid, saliva, urine, gastric juice, secretions of the pancreas, bile, sudor, lacrimal fluid and the interstitial fluid, extracellular fluid, breast milk, female vaginal secretion, lacrimal fluid, nasal discharge, ejaculate, menstrual fluid, aqueous humor of the eye, cerebrospinal fluid, ascites, pleural fluid, pericardial fluid, synovial fluid, amniotic fluid, cerumen, pus, liquor and/or in particular blood, so as to characterize the state of health of individuals, in particular in the case of chronic diseases, such as cardiac insufficiency, or renal insufficiency. The sensor system could be used, for example, to detect a member of the cystatin family of the cysteine protease inhibitors or to detect cystatin C, and would thus be a cystatin C sensor.
A sensor shall in particular be understood to mean a component that is able to qualitatively and/or quantitatively detect an optical, physical, chemical, biochemical, molecular biological, biotechnological, microbiological, nanotechnological, radioactive, enzymatic and/or electrochemical property of the feature in an environment of the sensor, for example in the form of a measured variable. The detection system integrated into the sensor is specifically tailored to the parameter to be ascertained/measured, or the desired property, for this purpose.
Such a sensor can include at least one semiconductor component, for example. A semiconductor component here shall be understood to mean a FET-based (field effect transistor-based) active component, such as an seFET (extended gate field effect transistor), an ISFET (ion-sensitive field effect transistor), an EPROM (electrically erasable programmable read-only memory) or an EEPROM (electrically erasable programmable read-only memory), a capacitor, a nanotube, a nanowire and/or any other semiconductor component deemed appropriate by a person skilled in the art. As an alternative, an impedimetric, amperometric, potentiometric, conductometric or capacitive system may be used as the sensor. This design allows the sensor system to be implemented particularly easily in a miniaturized format.
If implantable biosensors and dialysis devices are used, the membranes have pores on a nanometer scale. The size or the diameter of these pores is dependent on the size of the structure or substance that is to pass the membrane. If the structures are in the nanometer range, the pores can have a maximum diameter of 500 nm, preferably a maximum of 100 nm, more preferably a maximum of 50 nm, advantageously a maximum of 10 nm, and particularly preferably a maximum of 1 nm. In larger structures, in contrast, a pore diameter in the micrometer range, and more particularly of up to 50 μm, preferably a maximum of 10 μm, more preferably a maximum of 1 μm, and advantageously a maximum of 800 nm is conceivable.
The membrane can be made of any material deemed appropriate by a person skilled in the art, such as polysulfone, polyarylethersulfone (PAES), polyethersulfone (PES), cellulose ester (cellulose acetate, cellulose triacetate, cellulose nitrate), regenerated cellulose (RC), nanocellulose silicone, polyamide (nylon), polyamide imide, polyimide, polyamide urea, polycarbonate, ceramic, titanium oxide, aluminum oxide, silicon, zeolite (alumosilicate), polyarylonitrile (PAN), polyethylene (PE), polypropylene (PP), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyvinylchloride (PVC), polypiperazine amide, polyethylene terephthalate (PET), polycarbonate (PC), hydrogels, and the complexes and mixtures thereof.
The membrane is preferably an organic membrane. In this connection, the term “organic membrane” shall be understood to mean a separating layer and/or a thin film, which includes at least one carbon compound-based component. The organic membrane preferably includes a polymeric substance and/or is formed by a polymeric substance, wherein this substance can be chemically produced so that a pore size of the pores of the membrane is adapted to the molecules used and the measuring principle. The membrane is preferably a polymer membrane made of polyethersulfone.
As described above, the membrane, for example in the form of a polymer membrane, includes at least pores in the nanometer range. To prevent these membrane pores from collapsing in air, the pores are stabilized with at least one stabilizer. This stabilizer may be formed by any substance and/or organic compound deemed appropriate by a person skilled in the art, such as glycerol, glycerol stearates, glycerol esters, other alcohols, salts, or also carbohydrates, for example. The pores are preferably stabilized with glycerol, whereby a sufficiently characterized substance is used. The coating parameter, or the coating parameters, must be selected such here that the glycerol is preserved in the pores and the membrane pores do not collapse. 100% glycerol, or else glycerol diluted with deionized water, may be used for this purpose. The stabilization further serves to support a site-directed coating of the membrane. During the coating process proposed herein, the stabilizer remains in the pores and not only prevents the membrane from collapsing, and thus clogging, but coating of the interior of the pores in the plasma is also prevented. Thus, it becomes possible for an implant having permeability to be provided with a biocompatible, bioinert and antibiotic coating on the surface, whereby explanting can be implemented without complications, and moreover no loss of function for separation properties of the permeability region is suffered.
As mentioned above, the implant can include an organic membrane in the coated surface. At least one reservoir of the sensor can be closed off by way of this membrane. The term “closed off” here shall not mean that a transport of substances between the reservoir and an external region is entirely prevented; it merely means that a space is defined, in which certain components of the sensor system are disposed and/or retained. A “reservoir of a sensor” or a “sensor reservoir” here shall be understood to mean a space, a chamber and/or a cavity of the sensor, which the detection system of the sensor is in contact with and/or on, and preferably in, which the detection system or the competition assay is disposed. A bottom of the reservoir, located opposite the semipermeable membrane, preferably has what is known as a “gate” of a semiconductor component or of an seFET. The sensor reservoir furthermore encloses at least one volume, and more particularly a sample volume, which can include or contain the feature that is to be detected. The organic membrane can advantageously be used to establish which molecules can come in contact with the sensor, and which cannot. This again demonstrates how crucial it is that the functionality of the membrane in the body is preserved.
The goal of coating the implant surface and of the subsequent modification or reduction is that the membrane pores remain freely passable to the analyte or the molecules migrating during dialysis, and are not closed by what is known as fouling, when in contact with body fluids and tissue.
It was found that the composition of the coating on the surface, applied by way of plasma polymerization, decisively influences the adhesion of interfering substances to the implant surfaces. It is possible to vary or specifically adapt different coating parameters for this purpose. A coating parameter here represents any parameter of a plasma polymerization system, preferably a magnetic field-enhanced plasma polymerization system, deemed settable or variable by a person skilled in the art considers. With respect to the methods proposed herein, it is particularly advantageous for the coating of implants if the coating process by way of plasma polymerization is carried out in the presence of oxygen. In a further preferred embodiment of the methods proposed herein, it is particularly advantageous for the coating of implants if the coating process by way of plasma polymerization is carried out in the presence of at least one saturated hydrocarbon, which is preferably selected from the group comprising or consisting of saturated C1 to C6 hydrocarbons, and more preferably selected from the group comprising or consisting of methane, ethane, propane and butane. In a particularly preferred embodiment, the coating process is carried out in the presence of methane. Hydrocarbons here shall be understood to mean traditional compounds composed of carbon and hydrogen, which moreover include only single bonds when in the “saturated” form. Moreover, for example, the pressure, composition of the coating gas, flow rates (rate of fluid flow) of the coating gas or of the different components thereof, current intensity or output of the plasma polymerization system, frequency and curve progression of the electrical field (pulsed, periodic) of the electrical field of the plasma polymerization system, rotational speed or angular position of a sample holder of the plasma polymerization system, material of the electrodes, presence of further materials influencing the plasma process, process duration, and the like, so as to obtain an advantageous coating. Advantageously, a plurality of coating parameters are specifically selected.
The method proposed herein furthermore preferably includes a step in the form of treating the coating with a reducing reagent. For this purpose, the coating was applied by way of a plasma polymerization process proposed herein. By treating the coating by way of a reducing reagent, reactive chemical groups on the surface of the coating can be modified so that the biocompatibility is drastically increased and ingrowth of the implant is prevented. As already described herein, this also furthermore allows the implant to be explanted.
If interfering substances should nonetheless still adsorb in low quantities onto the modified surface, despite modification of the reactive chemical groups, these adhering biomolecules are present in a native three-dimensional structure, whereby the surface (coating) presented to the body is not identified as being foreign at any time. There is natural “camouflaging” of the material with the body's own components. As a result, the surface is advantageously not sheathed/encapsulated in the body's own tissue. Moreover, the surface is likewise not thrombogenic. This coating is long-term stable even in a biological environment.
It has been shown that an adhesion of interfering substances can be prevented particularly efficiently if the surface is coated using the following coating parameters: pressure: 1 pascal (Pa) to 10 Pa, flow rate of a coating gas: 0 standard cubic centimeters per minute (sccm) to 10 sccm, current intensity of the plasma polymerization system: 100 milliamperes (mA) to 500 mA, rotational speed of the sample holder: 0 revolutions per minute (rpm) to 5 rpm, coating time: 1 minute (min) to 200 min, preferably 20 min to 100 min, and particularly preferably 60 min, electrode of the plasma polymerization system: titanium, titanium content: between 50% and 100% titanium. The flow rate can also be referred to as the rate of fluid flow and is indicated in ml/min. It shall be noted that the rotational speed of the sample holder becomes negligible at coating times of greater than 5 minutes.
In a preferred embodiment, a coating is applied according to a method proposed herein using the following coating parameters: 1 pascal (Pa) to 10 Pa, flow rate of oxygen and at least one saturated hydrocarbon: 0 standard cubic centimeters per minute (sccm) to 10 sccm, current intensity of the plasma polymerization system: 100 milliamperes (mA) to 500 mA.
In a preferred implementation, the at least one coating parameter is selected so that an oxygen-containing hydrocarbon coating or layer is formed. This can be achieved in particular when the coating process is carried out in the presence of oxygen and at least one saturated hydrocarbon, which is preferably selected from the group comprising or consisting of methane, ethane, propane and butane, and more preferably methane. The high hydrophilicity and the further advantageous physical and chemical properties of such layers make these particularly suitable for “camouflaging” the implant surface. The few adhering proteins remain in the native structure thereof, whereby the body does not identify these implant surfaces as being foreign at any time. Ingrowth of an implant that is coated according to the invention is thus in particular made more difficult or prevented.
It has been shown that a coating using the following coating parameters is advantageous for an implant: pressure: 5 Pa, flow rate of the methane coating gas: 2.5 sccm, flow rate of the oxygen coating gas: 1.3 sccm, current intensity of the plasma polymerization system: 200 mA, electrode of the plasma polymerization system: 100% titanium. A rotational speed of the sample holder is preferably 2 rpm. A coating time is advantageously 1 min to 200 min, preferably 20 min to 100 min, and particularly preferably 60 min. Potential pretreatments, such as special cleaning steps (hydrofluoric acid bath, for example) or the application of an adhesion promoter layer (see below), are not absolutely necessary. An implant thus coated essentially exhibits an inconspicuous behavior of the implant surface in the body, which is particularly important in an implant that can be introduced into a bloodstream of an animal body and/or a human body, since a life-threatening formation of thrombi is possible here.
As described above, when coating a membrane, and more particularly a polymer membrane, in particular the presence of the stabilizer (preferably glycerol) is critical, or the integrity of the same during the coating process is decisive for ensuring that the biosensor continues to operate reliably. The coating parameters are selected so that the glycerol on the surface of the membrane evaporates, and the glycerol in the pores is preserved, prior to applying the plasma polymer layer. In this way, the surface of the membrane may be coated with plasma polymers, while the stabilizer remains preserved in the pores. This was successfully achieved by optimizing the method parameters, in which the glycerol on the surface of the membrane is removed, not however in the pores. This approach takes advantage of the fact that the vapor pressure of glycerol is in the pressure range that prevails or is set during the coating process in the plasma polymerization system. When the vacuum is generated by a butterfly valve to the vacuum pump being opened, the optimized vacuum cycle can be influenced, for example by way of the pumping capacity, whereby the glycerol begins to evaporate due to the vapor pressure. This can be monitored based on the progression of the pressure curve. In general, it can be observed that the time period until the desired final pressure is reached is longer in the presence of glycerol, compared to test conditions without glycerol.
It has been shown that it is particularly advantageous when a membrane of an implant is coated using the following coating parameters, wherein the membrane includes pores in the nanometer range: pressure: 1 Pa to 3 Pa, flow rate of the methane coating gas: 2.5 sccm, flow rate of the oxygen coating gas: 1.3 sccm, current intensity of the plasma polymerization system: between 200 mA and 400 mA, preferably 375 mA, electrode of the plasma polymerization system: 100% titanium. A rotational speed of the sample holder is preferably 2 rpm. A coating time is advantageously 1 min to 200 min, preferably 20 min to 100 min, and particularly preferably 60 min. Potential pretreatments, such as special cleaning steps (hydrofluoric acid bath, for example) or the application of an adhesion promoter layer (see below), are not absolutely necessary.
According to a further embodiment of the invention, the at least one coating parameter is selected so that a layer thickness of the coating of 1 nanometer (nm) to 200 nm, preferably of 2 nm to 100 nm, and particularly preferably of 15 nm to 50 nm is obtained. These layer thicknesses have proven particularly useful in experiments. A good balance between stable adhesion of the plasma polymer layer and reduced protein adsorption was found in particular in the medium layer range (15 nm to 50 nm). Moreover, thinner layers result in the advantage that shorter coating times suffice to obtain an adequate layer thickness. A layer thickness of approximately 25 nm was found to be particularly advantageous.
The present invention thus also relates to implants comprising a coating, wherein the coating includes the elements carbon, nitrogen, oxygen and a metal, which is selected from the group comprising or consisting of titanium, silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium, and the alloys thereof. In a preferred embodiment, the metal is titanium or a titanium alloy. In a further preferred embodiment, the coating has a layer thickness of 1 nanometer (nm) to 200 nm, preferably of 2 nm to 100 nm, and particularly preferably of 15 nm to 50 nm. In a further preferred embodiment, the implants proposed herein include coatings that are free from aldehyde groups.
A surprising effect that was furthermore found was that sensitive electrical components, such as those of a cardiac pacemaker, are not damaged by the coating conditions. The possibility of applying the plasma polymer coatings onto electrical components significantly increases the compatibility of implants with such components. If care is taken that the plasma polymer coatings do not have insulator properties at these layer thicknesses, it is also possible to apply plasma polymer coatings to electrodes (such as stimulation electrodes) or sensor electrodes. In this regard, in particular the layer thickness is the decisive factor. Thin layer thicknesses between 3 nm and 100 nm have negligible insulator properties. The selection of the output of the plasma polymer system has little influence on the formation of insulator properties. It has been shown that both encapsulation of the electrodes and a bacterial infection are prevented, while dielectric properties of the electrode remain substantially unimpaired.
As indicated above, it would be possible to subject the surface of the implant to a pretreatment prior to the plasma polymer coating process. For this purpose, any pretreatment deemed appropriate by a person skilled in the art would be conceivable, such as a special cleaning step (referred to as a hydrofluoric acid dip), an application of a primer by way of spraying, immersion, brushing, and the like.
The application of a plasma polymer layer having the above-described positive properties is only possible with difficulty, or insufficiently successful, on certain substrates. An increased range of materials can only be covered by improving adhesion properties. A particularly advantageous pretreatment, however, is the application of an adhesion promoter layer. By coating the substrates with adhesion-promoting layers (referred to as layer stacks), the plasma polymers can be applied to any conceivable substrate. Moreover, the use of adhesion-promoting layers allows the spectrum of coatable materials to be broadened by matching the surface energies of the individual layers in the layer stack to each other. Moreover, this yields a general improvement in the adhesion of the plasma polymer layers to the implant surface. To accomplish this, all that is needed is to adapt the material properties of the adhesion promoter layer to the coating by way of plasma polymerization. In this way, a universal coating protocol is obtained for all implant surfaces, which is merely dependent on the adhesion promoter layer. By using the layer stack, it is possible to coat any conceivable material with plasma polymers, wherein clever selection of the individual layers allows drastically improved adhesion to be achieved. An adhesion promoter layer here shall be understood to mean a layer that “mediates” an adhesion of the plasma polymer layer to the surface, or is needed to make the same possible in a stable and permanent manner. In principle, these may also be several consecutive—firmly adhering—layers.
In principle, the pretreatment to promote adhesion may also be a non-layer-forming pretreatment. This would be possible by way of plasma treatment using oxygen or argon, for example. A surface energy is likewise matched thereby, which enables coating with a plasma polymer layer.
The adhesion promoter layer is particularly preferably a polymer layer, and more particularly a plasma polymer layer, which is applied by way of plasma polymerization. Using the same technology for the target coating (interface interacting with the body) and the adhesion promoter layer reduces the apparatus-related complexity for generating these layers. An adhesion promoter layer that can be used for numerous implant surfaces and that is also easy to coat by way of plasma polymerization can be obtained when the adhesion promoter layer is applied using the following coating parameters: pressure: 5 Pa, flow rate of the methane coating gas: 2.5 sccm to 5 sccm, flow rate of the oxygen coating gas: 0 sccm to 2 sccm, current intensity of the plasma polymerization system: 200 mA. The electrode material can be any arbitrary conductive material, such as titanium, aluminum, stainless steel, copper, or gold. A rotational speed of the sample holder is preferably 2 rpm. A coating time is advantageously 1 min to 200 min.
The final interface, which is in contact with the biological environment, is applied to the adhesion promoter layer using the following coating parameters: pressure: 5 Pa, flow rate of the methane coating gas: 2.5 sccm, flow rate of the oxygen coating gas: 1.3 sccm, current intensity of the plasma polymerization system: 200 mA, electrode of the plasma polymerization system: 100% titanium. A rotational speed of the sample holder is preferably 2 rpm. A coating time is advantageously 1 min to 200 min, preferably 20 min to 100 min, and particularly preferably 60 min.
To further improve the compatibility of the implant, the coating on the surface of the implant is sterilized, and more particularly the reduced coating that has been treated with a reducing reagent is sterilized. According to an advantageous embodiment, the coating is sterilized by means of ethylene oxide. This represents an important advantage since there is no adverse effect of the ethylene oxide on the plasma polymer layer, and the reduced interaction of the same is also preserved after sterilization. In this way, a health risk of the implant for the body may be further reduced. Sterilization by way of ethylene oxide moreover has the advantage that, after the sterilization, the plasma polymer layer returns quickly to the original state, which is to say a state having a high degree of swelling and a small contact angle. This is attributed to the fact that the plasma polymer layer and ethylene oxide have similar chemical compositions.
In principle, it is possible to coat all implant surfaces or to modify all these coatings. However, it would also be conceivable to coat or modify only individual portions or regions of the implant. For this purpose, the resulting coating-free regions could be covered or taped off prior to the coating process. It would also be conceivable to apply an inhibiting substance so as to prevent the deposition of the plasma polymer layer or the modification. It would also be possible to apply a substance to the surface which is dissolved after the plasma polymer layer has been applied, whereby the substance and the plasma polymer layer are removed. Moreover reactive ion etching, wet-chemical etching, laser ablation, or electropolishing would be possible.
The implant can include at least one functional sector, for example in the form of an analysis sector or a delivery sector (for releasing substances), and at least one attachment sector or an anchoring component. So as to take the different functions into consideration, these regions can also be treated differently with respect to the coating of the surfaces of the same. They can be coated using different conditions and thus include coatings that differ from each other. Or it would be possible to coat only one of the regions. So as to ensure the reliable function of the functional sector or analysis sector (preventing the encapsulation at the functional (measuring) part so as to preserve the measuring function), the same is preferably coated. The attachment sector, in contrast, remains uncoated, whereby the same will be at least partially encapsulated, whereby a desirable improvement in or stabilization of the anchoring of the implant in the tissue may be enabled.
To reduce the risk of infection, it is particularly advantageous if the coating, and thus the implant surface, in addition to the reduced absorption property, has suitable properties that suppress the initial adhesion of microorganisms, or at least prevent the explosive reproduction and the formation of the biofilm. Accordingly, the at least one coating parameter is selected so that a coating having antibiotic properties is obtained. The antibiotic properties of the coating/of the surface result in fewer complications with implants, or the implantation thereof, or the replacement thereof. In this context, the term antibiotic shall be understood to mean “inhibiting the growth of microorganisms or killing the same.”
According to one advantageous implementation, it is provided that at least one antibiotically acting metal is introduced into the coating. This allows the antibiotic action to be preserved over a long period since the antibiotically acting reagent is implemented in one piece with the coating, and thus is inseparable from the same. It is possible for this purpose to carry out the introduction into the coating during or after the coating process. The method proposed herein thus furthermore includes the step of applying a coating by way of plasma polymerization in the presence of a metal, which is at least partially incorporated into the coating. Any method deemed appropriate by a person skilled in the art would be conceivable to introduce and/or apply the metal or the particles thereof. All—chemical or physical—methods for depositing thin films (thin-film deposition) would be conceivable for this purpose, such as a sol-gel process (dip coating, spraying, spin coating); plating (electroplating, electroless plating); chemical vapor deposition, metal-organic chemical vapor deposition (MOCVD), plasma-enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), thermal vapor deposition (thermal VD), atomic layer deposition (ALD); evaporation, ion plating, laser ablation, molecular beam epitaxy (MBE), electron beam evaporation, thermal evaporation, ion assisted deposition (IAD); sputtering (radio frequency sputtering (RF sputtering), direct current sputtering (DC sputtering), magnetron sputtering, and ion beam sputtering (IBS)).
The introduction is preferably carried out by applying the coating in the presence of at least one antibiotically acting metal. The embedding essentially results on its own by virtue of the coating conditions. It would be possible, for example, to place a small amount of the antibiotically acting metal in the reaction chamber, from which metal ions are knocked out by the excited field during operation of the plasma reactor and embedded in the coating.
As an alternative and/or in addition, it would be possible, and this would be achievable using a particularly simple design, to knock the antibiotically acting metal out of the electrode of the plasma polymerization system during the coating process. Metals selected from the group comprising or consisting of titanium, silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium, and the alloys thereof, can be used for the method proposed herein. Suitable metals that could be used further include silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium, and the alloys thereof, or preferably titanium and titanium alloys. In a preferred embodiment, titanium or a titanium alloy is introduced into the coating. It was found that the use of titanium or of a titanium alloy results in titanium particles or titanium alloy particles being found in the coating. While titanium or titanium alloys per se are not known to be antibiotic, it was furthermore surprisingly found that these coatings develop an antibiotic action. This antibiotic action also occurs, or remains, without any further irradiation of UV light.
A coating using the following coating parameters has proven to be particularly advantageous for a coating having antibiotic properties: pressure: 1 Pa to 10 Pa, flow rate of the methane coating gas: 1 sccm to 5 sccm, flow rate of the oxygen coating gas: 0.5 sccm to 2 sccm, current intensity of the plasma polymerization system: 100 mA to 300 mA, coating time: 1 minute (min) to 200 min, electrode of the plasma polymerization system: titanium, titanium content: >50%.
Considerably better results were achieved using the following coating parameters: pressure: 4 Pa to 6 Pa, flow rate of the methane coating gas: 2.5 sccm to 3 sccm, flow rate of the oxygen coating gas: 1 sccm to 1.5 sccm, current intensity of the plasma polymerization system: 150 mA to 250 mA, coating time: 10 min to 200 min, electrode of the plasma polymerization system: titanium, titanium content: 100%.
The best results were yielded using the following coating parameters: pressure: 4 Pa to 6 Pa, flow rate of the methane coating gas: 3 sccm, flow rate of the oxygen coating gas: 1 sccm, current intensity of the plasma polymerization system: 150 mA to 250 mA, coating time: 30 min to 200 min, electrode of the plasma polymerization system: titanium, titanium content: 100%. In all three listed protocols, a rotational speed of the sample holder was preferably 2 rpm. It was found, for example, that, by way of the layers thus generated, a layer thickness of approximately 20 nm, and embedded titanium of approximately 1%, allowed an improvement in the antibiotic action compared to control layers of 65% to 99% to be achieved.
A preferred embodiment of the invention is thus the use of the method of magnetic field-enhanced plasma polymerization to generate a biocompatible and antibacterial coating on an implant surface, which is then in turn modified so as to further reduce the properties of the adsorption of interfering factors. Or, in other words, a surface coating is to be obtained which not only suppresses the encapsulation of the implants and does not act thrombogenically, but is also antibiotically active.
To amplify the antibiotic action of the plasma polymer layer, it may be additionally advantageous for the method proposed herein to include a step in which the coating is treated with UV or near-UV light. This can take place during or after the treatment in the plasma reactor. The UV light, preferably having a wavelength of less than 385 nm, causes photocatalysis. This, in turn, leads to the formation of oxygen radicals, which have a damaging effect on bacteria. The antibiotic action of the plasma polymer layer can in particular be increased when a coating containing an antibiotically acting metal, as proposed herein, is treated with UV light or near-UV light. Due to the presence of the antibiotically acting metals, the formation of oxygen radicals can be drastically increased with UV light or near-UV light.
In the figures, functionally equivalent or equivalently acting elements are denoted by the same reference numerals. The figures are schematic illustrations of the invention. They depict non-specific parameters of the invention. In addition, the figures only reflect typical embodiments of the invention and are not intended to limit the invention to the shown embodiments.
To avoid unnecessary repetitions, elements in a figure that are not described in detail are provided with a reference to the respective description of the elements in the preceding figures.
The plasma polymerization system 22 is used to deposit a coating 12, 12′, 12″, 12′″ in the form of a nanofilm onto a substrate, such as a surface 14, 16 of an implant 10 (see below). The deposition is carried out at a pressure of 1 pascal (Pa) to 10 Pa in fine vacuum. A starting substance of the coating 12, 12′, 12″, 12′″ used here is a gas mixture composed of the coating gases methane 18 and oxygen 20. These gases are metered by way of mass flow regulators and conducted via a feed system 46 into a reactor volume 48 of the plasma polymer system 22. A flow rate of the coating gases 18, 20, or the rate of fluid flow, or also the mass flow, is between 0 standard cubic centimeters per minute (sccm) and 10 sccm, and preferably between 0 sccm and 5 sccm. The flow rate can also be indicated in ml/min. A current intensity of the plasma polymerization system 22 is between 100 milliampere (mA0 and 500 mA. In addition, the coating is carried out in the AF range (1000 to 2000 hertz (Hz)). The introduced power of the system is between 20 and 100 watt (W). The samples, or the implant 10 to be coated, are located on a sample holder 50 in the form of a wheel rotating in the rotational direction 52 axially between the electrodes 24 on what is known as a “floating” potential.
As mentioned above, the plasma polymerization system 22 is used to apply a coating 12, 12′, 12″, 12′″ onto a surface 14, 16 of an implant 10. Before going into greater detail of the coating process, first the operating principle of the implant 10 will be described to better illustrate the advantages of the method according to the invention.
As can be seen in
The detection system 60 includes a plurality of receptors 62, which are used to coat the lateral surface in a density known to a person skilled in the art, serving as the receptor layer. The bottom includes a semiconductor component 64 in the form of an extended gate field effect transistor (seFET) known from the prior art comprising a gate. The receptor 62 is formed by a molecule, which has an antigen recognition site and is a Fab fragment of a monoclonal antibody against a protein to be detected or an analyte 66 containing the antigen to be recognized.
The analyte 66, which in the present case is cystatin C by way of example, has a feature to be detected by the detection system 60, which is a positive charge here. Depending on the analyte used, the charge may also be negative. In addition, an antagonist 68 of the analyte 66 is present in the reservoir 58, the antagonist likewise carrying the antigen to be recognized by the receptor 62. This antagonist 68 is an artificial and recombinant protein developed with epitope mapping, which carries a poly-L-lysine modification. The antagonist 68 furthermore also carries the feature to be detected, or the positive charge. The antagonist 68 and the receptor 62 are moreover molecular biologically modified so that several amino acids, which are present in the sequences of the same and not important for binding of the respective opponent, however which are recognized as starting points for degradation by internal metabolic enzymes (such as serine of serine proteases), are replaced by other amino acids that do not change the protein structure. This will protect the molecules from enzymatic degradation in the body, whereby the long-term stability is increased (not shown in detail).
The organic polymer membrane 26 is designed so that the antagonist 68 is retained in the reservoir 58 at all times, and that the analyte 66 is able to pass the membrane. For this purpose, the polymer membrane 26 includes a plurality of pores 28, which are homogeneously distributed over the surface. The pores 28 are not shown true to scale, but are enlarged. A diameter 70 of the pore 28 of the polymer membrane 26 must be larger than approximately 5 nm for the analyte 66, this being cystatin C, to diffuse through. However, it must be smaller than 20 nm, so as to retain the antagonist 68 in the reservoir 58. Additional cells 72 or molecules 72, or interfering substances 72 in general, which are larger than the pore diameter 70, are retained by the polymer membrane 26. However, micromolecules 74 are able to pass the polymer membrane 26. The polymer membrane 26 and the semiconductor component 64 are connected to the housing 56 so that a mass transfer is possible only via the pores 28 of the polymer membrane 26, and not via a connecting point between the polymer membrane 26 and the housing 56.
If a sensor were to be used to detect or determine glucose or similarly small molecules, for example, a pore diameter of approximately 1 nm would suffice for the glucose to pass the membrane.
As mentioned above, both the analyte 66 and the antagonist 58 carry the feature to be detected or the positive charge. As a result of the poly-L-lysine modification, the antagonist 68 has a large positive charge and a higher charge than the analyte 66. These consequently differ in terms of the charge intensity.
The sensor principle is based on a marking-free immunological detection method, in which the analyte 66 can be measured reversibly and as a function of the concentration. The gate of the seFET includes the bound receptors 62 selectively recognizing the analyte 66. These are saturated by the antagonist 68 present in the sample volume when the analyte 66 is absent, and in particular also prior to the first measurement. The high charge of the antagonist 68 generates a measurable charge transfer on the sensitive surface of the semiconductor component 64, whereby a measurement signal is generated on the seFET, which can be ascertained by a measuring unit 94. Due to the saturation of the sensor with the antagonist 68, the measurement signal is 100% in the absence of the analyte 66.
If analyte 66 from the measuring substance, which surrounds the sensor and is blood, for example, now enters the sample volume of the sensor via the polymer membrane 26, this analyte may interfere with the existing bond between the antagonist 68 and the receptor 64. If the analyte 66 is present on the active surface, the analyte 66 and the antagonist 68, due to the similar respective antigen of the same, compete substantially equally and with equal intensity for the antigen recognition site of the antibody fragment (Receptor 64). The antigen of the analyte 66 thus causes a reversible displacement of several of the antagonists 68 that have a high charge and are bound to the receptor 64. A concentration-dependent equilibrium develops between bound analyte 66 and bound antagonist 68, wherein the charge transfer for the analyte 66 and the antagonist 68 is different. Overall, the more analyte 66 is bound, the lower is the measurement signal that can be derived.
The sensor ascertains the electrical state variable or a change in voltage. Due to the large difference in charge between the analyte 66 and the antagonist 68, the change in the concentration is clearly detectable. The analyte concentration is proportional to the measured signal. In the detection process, the sensor thus ascertains a change in charge, which is caused by the reversible displacement of the antagonist 68 from the receptor 64 by the analyte 66. If the concentration of analyte 66 in the blood, and thus also in the interior of the sensor, decreases, primarily antagonists 68 again bind to the receptor 64, and the measurement signal at the seFET rises again.
The receptor layer applied to the gate of the seFET does not occupy all binding valences of the surface of the gate. Additional free or unsaturated binding sites 76 of the seFET that are still present must be saturated, so that interferences by other charged molecules, such as micromolecules 78, can be effectively prevented. A passivation layer 78 is therefore applied to the seFET, which is designed to saturate non-specific binding sites 76. The passivation layer 88 is formed by a polymer, such as polyethylene glycol (PEG).
To prevent fouling caused by contact with tissue or measuring substances, surfaces 14, 16 of the implant, such as surfaces 14 of lateral walls of the housing 56 of the biosensor, made of titanium, for example, or the outer surface 16 of the polymer membrane 26, are coated with a coating 12 (Formulation I, see below) or a plasma polymer layer by way of plasma polymerization. The coating 12 is shown only in the right portion of the illustration of
The surfaces 14, 16 to be coated do not have a smooth surface. These have at least nanoroughness or are porous. Such surface properties or structures require a specially developed coating protocol so as to yield a coating 12 that adheres well and additionally has further advantageous properties (suppressing fouling, antibiotic property).
Four different coatings 12, 12′, 12″, 12′″ having different formulations (Formulations I, II, III, IV) were generated (layer thickness 24 nm±2 nm) and analyzed for the suitability of the same. The differences in the formulations and the resulting layer properties can be derived from Table 1 below.
The atomic compositions of the four coatings 12, 12′, 12″, 12′″ listed in Table 1 can also be seen in
Without being bound to this theory, it is assumed that nitrogen becomes embedded in the coating at the point in time at which the reactor, in which the plasma polymerization is carried out, is flooded after plasma polymerization, so that, after the plasma polymerization, the coating is surrounded by a nitrogen atmosphere, and more particularly an oxygen-free and/or waterless nitrogen atmosphere.
A discernible connection can be found between the formulations and the atomic compositions of coatings 12, 12′, 12″, 12′″. If the oxygen fraction is increased in the precursor gas, more oxygen is also integrated into the coatings 12, 12′, 12″, 12′″, wherein the carbon fraction, in terms of percent, decreases. A look at the element titanium shows that the fraction thereof, in terms of percent, likewise increases as the oxygen fraction in the starting material increases. It can be assumed that primarily conglomerates composed of titanium and oxygen are embedded into the plasma polymer. No trend can be observed for the different formulations with respect to the element nitrogen.
An examination of the coatings 12, 12′, 12″, 12′″ for the type of compounds or groups that are present in the plasma polymer based on a peak analysis shows the results listed by way of example in Table 2 for the coatings 12 and 12′″ of formulations I and IV.
It was found that the C2 component is of particular importance. A distinction must be made between the two possible groups of this component. Deliberations made, which are not described in greater detail here, result in the assumption that the C2 component is primarily present in these coatings 12, 12′, 12″, 12′″ in the form of a C—O—C bond. However, it is also possible for smaller amounts of C—OH bonds to be present. This means that essentially oxygen-containing hydrocarbon coatings are formed.
Another option for characterizing the surface properties is to examine the interaction of two media having different states of matter, which make contact with each other at the interface, for example based on a dynamic contact angle measurement. The result of this examination is shown in the diagram of
As can be seen in
To supplement the determination of the hydrophilicity, what is known as the swelling factor of the coatings 12, 12′, 12″, 12′″ was ascertained. The result of this examination is discernible from the diagram of
For the ascertainment of the non-specific protein absorption of the coatings 12, 12′, 12″, 12′″ was ascertained. For this purpose, the coatings 12, 12′, 12″, 12′″ were incubated with the protein fibrinogen occurring in blood (2 mg/ml in PBS buffer), and thereafter the layer thickness of the adhering fibrinogen was ascertained by way of surface plasmon resonance spectroscopy. As can be seen in the diagram of
It is further proposed for the coating to have a moderate swelling factor, preferably a swelling factor in the range of 1.2 to 3.5, and more preferably in the range of 1.5 to 3.0. The advantage of such a coating is that a swelling factor of this magnitude keeps the adsorption of the body's own proteins low, while the few proteins that do adsorb remain in the native conformal structure thereof. In this way, particularly effective masking of an implant by the body is achieved, which makes ingrowth of the implant more difficult or prevents the same, and thereby furthermore enables explantation without complications.
The adsorption of fibrinogen allowed the progression from an elevated amount of protein on surfaces low in oxygen to little protein on surfaces rich in oxygen to be tracked very well. The reduction in the amount of protein is associated with an increased degree of swelling and increasing hydrophilicity. It is now of interest to explore the structure in which the proteins are present after adsorption, and whether the secondary structure thereof is preserved. In this respect, a structure that is similar to the native structure in solution was able to be shown both for albumin and for fibrinogen on oxygen-rich coatings (not shown). Despite this native structure on the surface, it was not possible to wash these proteins off the surface; instead, they bind to the same. This native structure of the proteins on the surface represents the principle of good biological compatibility. They ultimately form the direct interface, and no foreign body reaction is triggered by virtue of the native structure. The proteins on the surface are bound firmly, wherein the hydrophilicity and swelling ensure that liquid surrounds the proteins on the surface and that the mobility of the polymer chains favors the formation of a bond with the protein, however that this bond does not exceed the intramolecular forces of the protein, and consequently as little a deformation of the proteins as possible occurs on the foreign body surface.
In addition, the influence of the layer thicknesses 30 of the coatings 12, 12′, 12″, 12′″ on the absorption of fibrinogen was examined. So as to obtain an adequate measurement range, these measurements were carried out using varying thicknesses of the coatings 12″, produced according to Formulation III. The result is shown in the diagram of
It is assumed that low or no protein adsorption can be equated to good biocompatibility. The low adsorption of fibrinogen on the coating 12, produced according to Formulation I, was therefore taken as an opportunity to provide the implant 10, or the surfaces 14 and 16, with such a coating 12. For this purpose, the coating parameters were, or coating time was, selected so that a layer thickness 30 of 15 nm to 25 nm was deposited (see
The surfaces 14 of the housing 56 of the implant 10, which can be introduced into a bloodstream of an animal body and/or a human body, were coated using the following coating parameters: pressure: 5 Pa, flow rate of the methane coating gas 18: 2.5 sccm, flow rate of the oxygen coating gas 20: 1.3 sccm, current intensity of the plasma polymerization system 22: 200 mA, electrodes 24 of the plasma polymerization system 22: 100% titanium, rotational speed of the sample holder 50: 2 rpm, and coating duration 1 min to 200 min, preferably 20 min to 100 min, and particularly preferably 60 min.
In the coating of the surface 16 or of the polymer membrane 26, it had to be taken into consideration that the pores 28 of the polymer membrane 26 are stabilized with a stabilizer 42 in the form of glycerol so as to prevent collapsing on air (In
For the actual coating process of the membrane 26, the sample is mounted on the sample holder 50 as is customary. Thereafter, the vacuum is generated by the butterfly valve to the vacuum pump being opened (not shown in detail). The optimized vacuum cycle is influenced by way of the pumping capacity, among other things. The glycerol thus begins to evaporate due to the vapor pressure. This can be observed based on a curve progression of the pressure in the coating chamber of the plasma polymerization system 22 when evacuating the coating chamber.
A curve progression of the pressure as a function of the time is shown in the diagram of
When a membrane 26, which is stabilized with glycerol, is introduced into the coating chamber (curve B), it is apparent compared to a reference measurement without membrane (curve A) that the time until the final pressure is achieved is reached not until after a long time period (see arrow). Based on the shape of the curve progression with membrane 26 (curves B and C), a clearly reduced gradient at the beginning of the process is apparent. In the case of multiple membranes (curve C), the “belly” of the curve becomes larger since more glycerol is being evaporated. The curve progression for loading D, in which the glycerol of the membrane 26 was already evaporated in advance, is similar to that of the control without membrane in the coating chamber (curve A). The shape of the membrane is observed as a control measure to ensure that the amount of glycerol that was evaporated is not excessive—the membrane 26 would bend if a loss of glycerol in the pores 28 were to occur. When a constant final pressure is reached, the plasma polymer coating commences.
It has been shown that such a polymer membrane 26 can be coated using the following coating parameters: pressure: 1 Pa to 3 Pa, flow rate of the methane coating gas 18: 2.5 sccm, flow rate of the oxygen coating gas 20: 1.3 sccm, current intensity of the plasma polymerization system 22: 100 mA to 400 mA, for example 375 mA, electrodes 24 of the plasma polymerization system 22: 100% titanium, rotational speed of the sample holder 50: 2 rpm, and coating duration 1 min to 200 min, preferably 60 min to 160 min, particularly preferably 140 min. A good layer thickness 30 of approximately 15 nm to 25 nm can be achieved with a coating time of 140 min. The coating protocol differs slightly from the above-described protocol for Formulation I and is denoted by Ia.
Accordingly, the coating parameters were selected so that it was possible to coat a rough surface 14, 16. In addition, the coating parameters were selected so that it was possible to coat a surface 16 having permeability, which is to say the polymer membrane 26. Furthermore, so as to obtain the coating 12 according to Formulation I, the coating parameters were selected so that an oxygen-containing hydrocarbon coating 12 is formed.
The coated polymer membrane 26 of the implant 10 was subjected to a functional test. In this test, the permeabilities of the coated biosensor or of the polymer membrane 26 thereof were compared to those of an uncoated sensor. In addition, the permeability of a coated membrane 26 was examined after explantation in an in vivo incubation. As can be seen in the diagram of
The application of a plasma polymer layer having the above-described positive properties is only possible with difficulty on some substrates. This may be remedied by pretreating the surface 14, 16 to be coated. For example, one or more adhesion-supporting layers could be applied. To this end, an adhesion promoter layer 32 is applied as a mediating layer between the surface 14, 16 of the implant 10 which is to be coated and the plasma polymer layer or the coating 12, 12′, 12″, 12′″. This is shown by way of example in
The coating with the adhesion promoter layer 32 is carried out using the following coating parameters: pressure: 5 Pa, flow rate of the methane coating gas 18: 2.5 sccm to 5 sccm, flow rate of the oxygen coating gas 20: 0 sccm to 2 sccm, current intensity of the plasma polymerization system 22: 200 mA, electrodes 24 of the plasma polymerization system 22: 100% titanium, rotational speed of the sample holder 50: 2 rpm, and coating duration 1 min to 200 min. By coating the surface 14 with an adhesion-promoting layer or with adhesion-promoting layers (referred to as layer stacks), the plasma polymers can be applied to any conceivable substrate.
A protocol having the following coating parameters has proven useful for applying the coatings 12, 12′, 12″, 12′″ to the adhesion promoter layer 32: pressure: 5 Pa, flow rate of the methane coating gas 18: 2.5 sccm, flow rate of the oxygen coating gas 20: 1.3 sccm, current intensity of the plasma polymerization system 22: 200 mA, electrodes 24 of the plasma polymerization system 22: 100% titanium. rotational speed of the sample holder 50: 2 rpm, and coating duration 1 min to 200 min, preferably 20 min to 100 min, and particularly preferably 60 min.
When using implants such as the implant 10/biosensor described here, it is also desirable, in addition to minimizing accumulations of interfering substances 72 and a resulting encapsulation, to reduce, or even entirely prevent, an adherence of bacteria and the attendant inflammation at the implantation site. Accordingly, the four coatings 12, 12′, 12″, 12′″, produced according to Formulations I to IV, were examined with respect to the antibiotic action thereof, which is to say the action thereof to inhibit or prevent bacterial growth. For this purpose, the adhesion of the bacteria on the different coatings 12, 12′, 12″, 12′″ (applied to a silicon substrate, which also serves as a positive control) was ascertained over a time period of 24 hours.
As can be seen in the diagram of
The difference in bacterial adhesion can also be seen well in the fluorescence microscopy images of GRP (green fluorescent protein)-marked bacteria 72 (magnification 1:200) of
When examining the influence of the layer thickness 30 of the coating 12″ according to Formulation III on the adhesion of bacteria, the results shown in the diagram of
Starting at a layer thickness 30 of 24 nm (left bar), a reduction in the number of bacteria on the coating 12″ of 99% can likewise be seen. This value holds up to a layer thickness 30 of 6 nm. It is only starting at a layer thickness 30 of 3.6 nm and 2.4 nm that more bacteria can be found on the surface. This involves insular growth, where polymerized species or clusters, resembling the later nanofilm in terms of the properties of the same, form on the surface. These clusters already influence the settling of bacteria, but cannot prevent growth across the entire area. It has thus been shown that the antibacterial property of the coating 12″ occurs starting at a layer thickness of 6 nm.
These results were now used to coat the implant 10 such that a coating 12, 12′, 12″, 12′″ having antibiotic properties is obtained. For this purpose, the following coating parameters were used: pressure: 1 Pa to 10 Pa, flow rate of the methane coating gas 18: 1 sccm to 5 sccm, flow rate of the oxygen coating gas 20: 0.5 sccm to 2 sccm, current intensity of the plasma polymerization system 22: 100 mA to 300 mA, coating time 1 minute (min) to 200 min, electrodes 24 of the plasma polymerization system 22: titanium, titanium content: >50%, rotational speed of the sample holder 50: 0 rpm to 5 pm.
Particularly good results were achieved using the following coating protocol: pressure: 4 Pa to 6 Pa, flow rate of the methane coating gas 18: 3 sccm, flow rate of the oxygen coating gas 20: 1 sccm, current intensity of the plasma polymerization system 22: 150 mA to 250 mA, coating time: 1 min to 200 min, electrodes 24 of the plasma polymerization system 22: titanium, titanium content: 100%, rotational speed of the sample holder 50: 2 rpm.
It was found that the antibiotic action of the plasma polymer layers is based on titanium becoming embedded in the polymer layer. The coating parameters are thus selected such that at least one antibiotically acting metal 40 is introduced into the coating 12, 12′, 12″, 12′″. The fact that this takes place during the plasma polymerization process is apparent from the resulting atomic compositions of the coatings 12, 12′, 12″, 12′″ (see Table 1 and
As described above, a wide variety of collisions, such as excitation, ionization and recombination of the involved species, take place in the plasma during plasma polymerization. Likewise, electrode material (such as titanium) is “sputtered out” during these processes, which is then likewise embedded in the nanofilm/the coating 12, 12′, 12″, 12′″. If the parameters are selected correctly, a polymer is formed from the starting substances, this being methane and oxygen, and titanium becomes embedded therein. During the incorporation of titanium oxide into the polymer network, photocatalysis takes place as a result of UV light or near-UV light. This photocatalysis can already take place during the process. This, in turn, leads to the formation of oxygen radicals, which have a damaging effect on bacteria 72. The photocatalysis then forms radicals, which can destroy bacteria 72. A particular result that was able to be shown is that the surface maintains the antibacterial properties thereof even when the coating is stored under dark conditions directly after the coating process.
As is apparent from
So as to yield sectional and/or only partial coating, regions that are to remain uncoated can be covered during the coating process.
An embodiment comprising coated and uncoated regions may even be advantageous, since these regions can individually assume different functions. For example, if the implant 10 includes a functional sector 36 in the form of an analysis sector, such as the sensor system 54, it is advantageous to coat this analysis sector or functional sector 36 to suppress fouling, which may interfere with the measurement process or render it impossible. If the implant 10 moreover includes an attachment sector 38, it may be useful to leave the same uncoated (see
Moreover, a compatibility of the implant 10 can be improved by sterilizing the implant 10, and more particularly by way of ethylene oxide. This is particularly advantageous, since the coating 12 or plasma polymer coatings can also be sterilized by way of ethylene oxide, without impairing the structure or properties of the same.
It was even shown that the properties of the plasma polymer layers improve as a result of the treatment with ethylene oxide. The coatings 12, 12′, 12″, 12′″ exhibit an aging process when stored on air. During this aging process, slowly increasing contact angles θ develop over the course of weeks. This is caused by translatory movements of polar groups in the polymer matrix. In a nonpolar environment (air), these groups become oriented in the direction of the bulk or in the polymer network. This manifests itself in an increased contact angle θ. This aging process can be reversed by storing this coating 12, 12′, 12″, 12′″ in a polar liquid (such as water) (revitalization process). The preceding paragraphs explained that hydration of the plasma polymer layer is needed for the positive effects of the coating 12, 12′, 12″, 12′″. In contact with water, the hydration of the layer can be observed based on the contact angle θ. It was possible to demonstrate that sterilization by way of ethylene oxide particularly advantageously affects this “revitalization process.”
As can be seen in the diagram of
As a result of the physicochemical properties of the surfaces 14, 16 of the implant 10, no encapsulation of the implant 10 in collagen-containing tissue structures takes place, and additionally no thrombi are formed. On the other hand, the properties of the surfaces 14, 16 of the implant 10 allow a drastically reduced adhesion of bacteria 72 to be achieved.
To ascertain which chemical groups could be involved in the attachment of interfering substances 72, the coating 12 was examined based on a Fourier transform infrared spectroscopy. The result of the same is shown in
A considerable reduction in the adsorption of interfering substances 72 can be achieved when the coating 12, 12′, 12″, 12′″ is treated using a treatment parameter that is selected such that reactive chemical groups 34, and more particularly aldehyde groups 34, of the coating 12 are chemically modified. In terms of the chemical modification, a reduction of the groups 34 is a good approach. Possible reducing reagents include, for example, sodium borohydride, tris(hydroxymethyl)aminomethane (TRIS), ethanolamine or glycine.
For examination, the coating 12 was treated differently and then an immunoassay was carried out for analysis purposes, which shows the degree of protein adsorption on the differently treated coatings 12. The result is shown in the diagram of
The substrates used included uncoated and untreated surfaces 14, untreated coatings 12, and coatings 12-red reduced with sodium borohydride (NaBH4), and with sodium borohydride (NaBH4).
The functional principle of the immunoassay is based on the detection of binding between a substrate or a surface and a protein, in this case an antibody, which is coupled with a marker enzyme (by way of example here: antibody: goat anti-rabbit (GAR), marker enzyme: horseradish peroxidase (HRP). If the substrates are incubated with the antibody, the antibody individual adsorbs onto the substrate. Unbound antibody can be washed away using a washing step. The amount of bound GAR/HRP can now be examined by interaction with a fluorescence marker in the immunoassay. The antibody complex was used in two dilutions (1:1000, 1:2000). All incubation times were one hour. The coating time of the microtiter plate that was used was 5 minutes.
The uncoated surface 14 served as the positive control. As expected, a large amount of protein or antibodies adsorbs thereon, which is apparent from the two high measurement signals (first group of bars on the left). The approach using bovine serum albumin (BSA) is used to ascertain the background signal of the non-specific bonds of GAR/HRP with arbitrary proteins. The binding structures of the surface 14 were blocked by BSA prior to the incubation with antibodies. Since all binding structures are blocked by BSA, and only minimal accumulations of the antibody can take place, the measurement signals are low, as expected (second group of bars from left). However, the effect of the variably diluted GAR/HRP is already apparent here; the measurement signal of the left bar (dilution 1:1000) is approximately twice that of the measurement signal of the right bar (dilution 1:2000). A reduction in antibody attachment takes place in the approaches with the coating 12 (see also
If the reactive chemical groups 34 of the coating 12 are now reduced using sodium borohydride (coating 12-red), the absorption of the antibody decreases further (first group of bars from right).
It was thus possible to impressively and surprisingly demonstrate that the adsorption of interfering substances 72 onto the coating 12 can be reduced considerably, or to approximately 24% to 20%, by reducing the same, for example by way of sodium borohydride.
The implant 10a of the exemplary embodiment of
As a model of this sensor system, an implant 10a was developed, which includes a titanium cylinder 80 serving as the housing, having a silicone cuff 82 disposed around the rear portion of the titanium cylinder 80 (see
As is apparent from
The implant 10b of the exemplary embodiment of
As a model of the sensor, an implant 10b was designed, which includes a band-shaped silicone carrier 88, which can be closed by a Kapton closure 90 (see
After explantation of the implants 10b, electron microscopic images of the coatings 12, 12″ were created. In the case of the uncoated substrate, it can be seen that interfering substances 72 have adsorbed onto the surface, even in the form of large conglomerates. Considerably fewer interfering substances 72 have settled on the coatings 12, 12″.
As is apparent from
It will be apparent to those skilled in the art that numerous modifications and variations of the described examples and embodiments are possible in light of the above teaching. The disclosed examples and embodiments may include some or all of the features disclosed herein. Therefore, it is the intent to cover all such modifications and alternate embodiments as may come within the true scope of this invention.
Claims
1. A method for treating a medical implant, the method comprising the steps of:
- placing the implant into a plasma reactor; and
- applying at least one coating to at least a portion of a surface of the implant by plasma polymerization in the presence of oxygen and at least one saturated hydrocarbon.
2. The method according claim 1, wherein said applying is carried out in the presence of at least one saturated hydrocarbon selected from the group consisting of saturated C1 to C6 hydrocarbons.
3. The method according to claim 1, wherein the coating is treated with at least one reducing agent selected from the group consisting of sodium borohydride, tris(hydroxymethyl)aminomethane (TRIS), ethanolamine and glycine.
4. The method according to claim 1, wherein said applying is conducted with coating parameters of 1 pascal (Pa) to 10 Pa, flow rate of oxygen and at least one saturated hydrocarbon: 0 standard cubic centimeters per minute (sccm) to 10 sccm, current intensity of the plasma polymerization system: 100 milliamperes (mA) to 500 mA.
5. The method according to claim 1, wherein the plasma polymerization is carried out in the presence of a metal, which is thereby partially incorporated into the coating.
6. The method according to claim 5, wherein the metal is selected from the group consisting of titanium, silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium, and the alloys thereof.
7. The method according to claim 1, wherein said applying is conducted in the presence of methane using the following coating parameters: pressure: 5 Pa, flow rate of the methane coating gas: 2.5 sccm, flow rate of the oxygen coating gas: 1.3 sccm, current intensity of the plasma polymerization system: 200 mA, electrode of the plasma polymerization system: 100% titanium.
8. The method according to claim 1, further comprising sterilizing the coating on the surface of the implant.
9. (canceled)
10. The implant according to claim 11, wherein the implant is selected from the group comprising or consisting of: a biosensor, a dialysis device, a drug delivery system, an electrode, a vascular sleeve, a pacemaker, a cardiac pacemaker, a defibrillator, a cardioverter, a brain pacemaker, a neuroprosthesis, electrodes/electronics for artificial extremities, a neurostimulator, a barostimulator, a kidney pacemaker, a duodenal pacemaker, a cardiac implant, a tumor monitoring implant, an artificial heart, an artificial heart valve, a shunt, a brain shunt, a hydrocephalus implant, a telemetry unit, a receiver, a transmitter, a pressure sensor, an organ substitute, an energy harvesting implant, a bio fuel cell, a catheter, a cochlear implant, a retinal implant, a dental implant, an artificial implantable lens system, an implant for joint replacement, a vascular prosthesis and a stent.
11. An implant comprising a coating, the coating comprising carbon, nitrogen, oxygen and a metal, which is selected from the group consisting of titanium, silver, copper, zinc, mercury, tin, lead, bismuth, cadmium, chromium, and thallium, and the alloys thereof.
12. The implant according to claim 11, wherein the metal is titanium or a titanium alloy.
13. The implant according to claim 11, wherein the coating has a layer thickness of 1 nanometer (nm) to 200 nm.
14. (canceled)
15. The implant according to claim 11, wherein the coating is free from aldehyde groups.
16. An implant comprising a plasma polymer coating that is biocompatible and includes a antibiotically acting metal, wherein the coating is free from aldehyde groups.
Type: Application
Filed: Oct 21, 2015
Publication Date: Oct 26, 2017
Inventors: Andreas Bunge (Leipzig), Michael Bergmann (Freiburg), Loic Ledernez (Freiburg), Josef Horak (Brno), Gerald Urban (Freiburg)
Application Number: 15/510,235