MECHANICAL AXIS ALIGNMENT USING MRI IMAGING
A method of imaging a body part includes locating a first, second and third anatomical reference area. The third anatomical reference area is disposed generally between the first and second anatomical reference areas. Furthermore, the method includes positioning a first member of a reference tool relative to the first anatomical reference area, positioning a second member of the reference tool relative to the second anatomical reference area, and a pivotal coupling member relative to the third anatomical reference area. The pivotal coupling member pivotally couples the first and second members of the reference tool. In addition, the method includes imaging a target area of the body part to produce an image. The image includes the target area of the body part and the first and second members. The first member indicates a first axis of the body part, and the second member indicates a second axis of the body part.
The present disclosure relates to magnetic resonance imaging (MRI), computed tomography (CT) or fluoroscopy imaging and, more particularly, relates to mechanical axis alignment using MRI, CT, traditional x-ray scans or fluoroscopy imaging.
BACKGROUNDThe statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Anatomical imaging is often performed prior to surgical procedures. MRI, CT or x-ray is often performed, for instance, before implantation of a prosthetic joint, such as a knee joint. The MRI, CT or x-ray image illustrates the joint, allowing doctors to study the joint prior to surgery. Furthermore, cut guides and/or anatomically matching instrumentation can be generated according to the images. As such, the components of the prosthetic device are more likely to be properly aligned, thereby improving comfort and performance for the patient, decreasing wear of the prosthetic components, and increasing longevity of the components.
In the case of a knee joint, it can be preferable for the reconstructed knee to fulfill a number of anatomical relationships. For instance, the mechanical axis of the leg, which extends from the center of the femoral head (i.e., the acetabulum head of the femur) to the center of the ankle, should pass through the middle of the knee joint. The axis of the femur should be inclined at a predetermined “valgus” angle (e.g., 7 degrees) with the mechanical axis of the leg. Furthermore, the axis of the tibia should be collinear with the mechanical axis of the leg. In addition, the mechanical axis of the leg, the axis of the femur, and the axis of the tibia should lie in a common plane when the leg is straightened. MRI, CT, x-ray or fluoroscopic imaging helps in analyzing the knee joint and to plan for surgery to repair the knee joint in order that the prosthesis achieves these and other relationships. More specifically, the MRI, CT, x-ray or fluoroscopic image can help in planning cut guides and other surgical procedures such that forces in the leg are transferred through the prosthetic components along the mechanical axis of the leg, from the center of the femoral head, through the middle of the knee joint, and to the ankle.
In the case of a knee joint prosthesis, an MRI, CT, x-ray or fluoroscopic image is often taken of multiple areas of the leg. More specifically, an MRI, CT or fluoroscopic image is taken of the knee joint where the prosthetic components will be implanted. Separate images are generated for areas spaced away from the knee joint as well. For instance, images are generated for the hip and/or the ankle in order to obtain a more complete analysis of the leg and to locate the centers of the hip joint and ankle joint.
However, this type of imaging can take a long time and can be a complex process. Specifically, in the case of MRI, the patient is positioned in an MRI system, an MRI imaging coil is placed over the target area of the body, and the MRI image is taken of that target area. Then, the imaging coil is moved to the next target area of the body, and another MRI image is taken. Thus, in the above examples, the knee, hip and ankle are imaged separately. Several MRIs may be necessary, and if the patient moves, the images may be degraded. In addition, in an instance wherein CT, x-ray or fluoroscopy imaging is used, a patient may be subjected to unnecessary radiation as each of the knee, ankle and hip are imaged.
SUMMARYA method of imaging a body part is disclosed. The method includes locating a first, second and third anatomical reference area of the body part. The third anatomical reference area is disposed generally between the first and second anatomical reference areas. Furthermore, the method includes positioning a first member of a reference tool relative to the first anatomical reference area. The method also includes positioning a second member of the reference tool relative to the second anatomical reference area. Moreover, the method includes positioning a pivotal coupling member relative to the third anatomical reference area. The pivotal coupling member pivotally couples the first and second members of the reference tool. In addition, the method includes imaging a target area of the body part to produce an image. The image includes the target area of the body part and at least a portion of the first and second members. The portion of the first member indicates a first axis of the body part in the image, and the portion of the second member indicates a second axis of the body part in the image.
A reference tool for indicating anatomical features of a body part is also disclosed. The reference tool includes a first member positionable relative to a first anatomical reference area of the body part. The reference tool further includes a second member positionable relative to a second anatomical reference area of the body part. Furthermore, the reference tool includes a pivotable coupling member pivotally coupling the first member and the second member. The pivotable coupling member is locatable relative to a third reference point of the body part disposed generally between the first and second anatomical reference areas. The first member and the second member are detectable on an image of a target area of the body part such that the first member indicates a first axis of the body part in the image and the second member indicates a second axis of the body part in the image.
In another aspect, a method of imaging a knee joint of a leg is disclosed. The method includes locating an approximate center of a femoral head of the leg, locating an approximate center of an ankle joint of the leg, and locating an approximate center of a knee joint of the leg. Furthermore, the method includes positioning a pivotal coupling member over the approximate center of the knee joint of the leg. The pivotal coupling member pivotally couples a first and a second member of a reference tool. Additionally, the method includes pivoting the first member of the reference tool to position the first member over the approximate center of the femoral head and pivoting the second member of the reference tool to position the second member over the approximate center of the ankle joint. Also, the method includes imaging the knee joint to produce an image of the knee joint and at least a portion of the first and second members. The portion of the first member indicates a mechanical axis of the leg in the image, and the portion of the second member indicates a tibial axis of the leg in the image.
In still another aspect, a method of imaging a body part is disclosed that includes locating a first and a second anatomical reference area of the body part. The method also includes positioning a first member of a reference tool relative to the first anatomical reference area. Furthermore, the method includes positioning a second member of the reference tool relative to the second anatomical reference area, wherein the second member is disposed at a positive angle relative to the first member. Moreover, the method includes imaging a target area of the body part to produce an image. The image includes the target area of the body part and at least a portion of the first and second members. The first member indicates a first axis of the body part in the image, and the second member indicates a second axis of the body part in the image.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
Initially referring to
In some embodiments, the pivotable coupling member 14 is a ball joint 24 that pivotally couples the first and second members 12a, 12b. However, it will be appreciated that the pivotable coupling member 14 could be of any suitable type, such as a hinge joint, ball and socket joint, or a flexible coupling member, without departing from the scope of the present disclosure.
Furthermore, in some embodiments, the first member 12a is an elongate member having a substantially straight axis. The first member 12a defines a terminal end 16 and a second end 18 that is coupled to the coupling member 14. Likewise, the second member 12b is an elongate member having a substantially straight axis. The second member 12b defines a terminal end 20 and a second end 22 that is coupled to the coupling member 14. The first and second members 12a, 12b can be made out of a hard, rigid material of any suitable type, such as plastic or carbon fibers.
In some embodiments, at least one of the first and second members 12a, 12b has an adjustable length. For instance, in the embodiment represented in
Additionally, in some embodiments, the reference tool 10 includes a scale 19. In the embodiment illustrated, the scale 19 includes a plurality of evenly spaced demarcations, which could indicate length in inches, millimeters, or any other appropriate unit of measurement. The scale 19 can be used to measure the distance between the terminal end 20 and the center of rotation of the coupling member 14. More specifically, in some embodiments, the sum of the length of the hollow shaft 27 and the radius of the coupling member 14 is known, and the scale 19 is demarcated in order to indicate this sum and the additional distance that the telescoping member 26 is extended out of the hollow shaft 27. Thus, in some embodiments, the user adjusts the position of the telescoping member 26 relative to the shaft 27, and at an intersection of the telescoping member 26 and the shaft 27, the scale 19 indicates the approximate distance between the terminal end 20 and the center of rotation of the coupling member 14.
As will be discussed, the reference tool 10 can be used for indicating features of a body part, such as a knee joint of a leg. In some embodiments, the reference tool 10 is used in conjunction with MRI. In this case, the first member 12a, the second member 12b and the pivotable coupling member 14 are made of a non-magnetic and non-metallic material such that the first member 12a, the second member 12b and the pivotable coupling member 14 are detectable on a MR image of the knee joint. As will be discussed, the reference tool 10 indicates a plurality of axes of the leg for such imaging. It will be appreciated that the reference tool 10 can be used in associated with any other type of imaging process other than MRI (e.g., CT scanning, fluoroscopy, etc.). Furthermore, it will be appreciated that the reference tool 10 can be used for imaging any suitable body part other than a knee joint without departing from the scope of the present disclosure.
Referring now to
Next, referring to
Then, the reference tool 10 is positioned relative to the center points 34, 36, 41 as represented in
The reference tool 10 can be secured to the patient's skin such that the terminal end 16 remains over the center point 34, the terminal end 20 remains over the center point 36, and the coupling member 14 remains over the center point 41. Further, the jig 30 shown in
Once the reference tool 10 is positioned relative to the center points 34, 36, 41, the scale 19 can be used to measure relative distances. For instance, in the embodiments illustrated, the scale 19 indicates the distance from the center point 36 of the ankle joint and the center point 41 of the knee joint 35. It will be appreciated that this data can be useful for subsequent analysis of the leg and for determining the appropriate knee joint prosthesis. It will also be appreciated that the scale 19 could be included on the first member 12a for measuring the distance between the center point 34 of the femoral head and the center point 41 of the knee joint 35.
Next, the patient is positioned within a MRI system 43 as represented schematically in
Referring still to
Thus, the image 40 is substantially localized over the knee joint 35 and excludes the center point 34 of the femoral head and the center point 36 of the ankle joint. This image 40 can be produced in a relatively short amount of time. However, because the mechanical axis XMA, tibial axis XT, and femoral axis XF are included in the image 40 along with the bone anatomy of the patient, the image 40 provides a greater amount of information about the leg than imaging methods of the prior art.
The image 40 can be used for generating one or more custom cut guides for surgically cutting the leg along a cutting direction 45. In some embodiments, the cutting direction 45 is substantially perpendicular to the mechanical axis XMA of the leg as shown in
In other embodiments, the reference tool 10 includes a first member 12a and a second member 12b substantially similar to the embodiments discussed above; however, the first and second members 12a, 12b are free from each other and are not attached. Thus, during use, the terminal end 16 of the first member 12a is positioned generally over the center point 34 of the femoral head and the opposite end of the first member 12a is positioned generally over the center point 41 of the knee joint 35. Likewise, the terminal end 20 of the second member 12b is positioned generally over the center point 36 of the ankle joint, and the opposite end of the second member 12b is positioned generally over the center point 41 of the knee joint 35. Then, the medical professional performs imaging the imaging steps discussed above.
Referring now to
The reference tool 110 includes a first member 112a and a second member 112b that is pivotally coupled by a coupling member 114. In some embodiments, the coupling member 114 is a hinge having a first portion 115a, and a second portion 115b rotationally coupled by a pin 117. In some embodiments, the first portion 115a is tubular. The first member 112a defines a terminal end 116 and a second end 118 that is slidably received by the first portion 115a of the coupling member 114. The second member 112b defines a terminal end 120 and a second end 122 that, in some embodiments, is fixedly coupled to the second portion 115b of the coupling member 114.
Furthermore, the first portion 115a of the coupling member 114 includes a scale, generally indicated at 119. In some embodiments, the scale 119 includes a window 123 with an indicator 125 in the first portion 115a and a plurality of spaced demarcations 129 included on the first member 112a. As the first member 112a slides relative to the first portion 115a, the indicator 125 indicates the demarcation 129 that corresponds to the distance between the terminal end 116 and the center of rotation of the coupling member 114. Thus, the scale 119 can be used to quickly determine the distance between the center point 34 of the femoral head and the center 41 of the knee joint 35 as described above with respect to the embodiment of
In summary, the reference tool 10, 110 and the imaging method disclosed above allow for imaging that is highly effective and accurate. The imaging method can be completed in a relatively short amount of time. Furthermore, the image 40 allows the knee joint 35 to be analyzed based on the anatomic alignment (i.e., the anatomy of the knee joint 35), and the reference tool 10 indicates the axes of the leg in the same image 40 for more accurate analysis of the knee joint 35. Accordingly, the prosthesis can be implanted more accurately and/or custom implant positioning guide can be made to orientate the implant relative to a desired axis.
Moreover, the foregoing discussion discloses and describes merely exemplary embodiments of the present disclosure. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings and claims, that various changes, modifications and variations may be made therein without departing from the spirit and scope of the disclosure as defined in the following claims. For instance, the sequence of the steps of the method described herein can be changed without departing from the scope of the present disclosure.
Claims
1.-10. (canceled)
11. A reference tool for indicating anatomical features of a body part, the reference tool comprising:
- a first member positionable relative to a first anatomical reference area of the body part;
- a second member positionable relative to a second anatomical reference area of the body part; and
- a pivotable coupling member pivotally coupling the first member and the second member, the pivotable coupling member locatable relative to a third reference point of the body part disposed generally between the first and second anatomical reference areas, the first member and the second member being detectable on an image of a target area of the body part such that the first member indicates a first axis of the body part in the image and the second member indicates a second axis of the body part in the image.
12. The reference tool of claim 11, wherein the first member and the second member each have a substantially straight axis.
13. The reference tool of claim 11, wherein the pivotable coupling member is at least one of a ball joint and a hinge that pivotally couples the first and second members.
14. The reference tool of claim 11, wherein the first member, the second member, and the pivotable coupling member are made out of a non-magnetic material.
15. The reference tool of claim 11, wherein at least one of the first and second members has an adjustable length.
16. The reference tool of claim 11, further comprising a scale that is operably coupled to one of the first and second members to indicate a distance between the pivotable coupling member and an end of the one of the first and second members.
17. The reference tool of claim 16, wherein the second member comprises:
- a hollow shaft; and
- a telescoping member inserted into the hollow shaft, the telescoping member including the scale.
18. The reference tool of claim 11, wherein the pivotable coupling member comprises a hinge comprising:
- a first portion coupled to the first member;
- a second portion coupled to the second member; and
- a pin connecting the first portion and the second portion.
19. The reference tool of claim 18, wherein:
- the first portion is tubular; and
- the first member is received within the first portion.
20. The reference tool of claim 19, wherein the
- the first portion includes a window and an indicator; and
- the first member includes spaced demarcations.
21. A reference tool for indicating anatomical features of a body part, the reference tool comprising:
- a first elongate member extending along a first axis from a first originating end to a first terminal end;
- a second elongate member extending along a second axis from a second originating end to a second terminal end;
- a coupling member pivotally coupling the first originating end and the second originating end at a pivot point; and
- a sliding scale on the first elongate member to indicate a distance between the first terminal end and the pivot point.
22. The reference tool of claim 21, further comprising a second sliding scale on the second elongate member to indicate a distance between the second terminal end and the pivot point.
23. The reference tool of claim 21, wherein the first sliding scale comprises:
- a hollow shaft comprising the first elongate member; and
- a telescoping member inserted into the hollow shaft, the telescoping member including demarcations indicating distances between the first terminal end and the pivot point.
24. The reference tool of claim 21, wherein the coupling member comprises a ball joint.
25. The reference tool of claim 21, wherein the first sliding scale comprises a first tubular portion and the first originating end of the first elongate member is disposed in the first tubular portion.
26. The reference tool of claim 25, wherein the
- the first tubular portion includes a window and an indicator; and
- the first elongate member includes spaced demarcations.
27. The reference tool of claim 21, wherein the coupling member comprises a hinge joint.
28. The reference tool of claim 21, wherein the first elongate member and the second elongate member are each made of non-magnetic material, rigid and extend along a straight axis.
29. A reference tool for indicating anatomical features of a body part, the reference tool comprising:
- a first rigid elongate member extending straight along a first axis from a first originating end to a first terminal end;
- a second rigid elongate member extending straight along a second axis from a second originating end to a second terminal end; and
- a sliding scale on the first elongate member to indicate a distance between the first terminal end and the first originating end;
- wherein both of the first rigid elongate member and the second rigid elongate member are made of a material that is detectable on an image of a target area of a body part so that the relative positions of the first axis and the second axis are visible in the image.
30. The reference tool of claim 29, wherein the sliding scale comprises a coupling member pivotally coupling the first originating end and the second originating end at a pivot point.
Type: Application
Filed: Jul 14, 2017
Publication Date: Nov 2, 2017
Inventor: Troy W. Hershberger (Winona Lake, IN)
Application Number: 15/650,035