Vaporizable Tobacco Wax Compositions and Container thereof
The invention relates to tobacco wax compositions suitable for use in a vaporizer. The tobacco wax may comprise additional excipients including vapor agents, penetration agents, buffer agents, and rheological agents. The composition contains nicotine. The tobacco wax composition leaves a minimum of residue in the vaporizer when used. In another aspect, the invention relates to a portion-sized container (“pod”) of a tobacco wax composition for administration to a mammal or person. The pod is intended for use in a personal (or other) vaporizer.
Latest BOND STREET MANUFACTURING LLC (a Florida LLC) Patents:
This application is a continuation-in-part of application Ser. Nos. 15/276,902 and 15/403,472 filed Sep. 27, 2016 and Jan. 11, 2017 respectively.
This invention is directed towards tobacco wax, including methods of manufacture, tobacco wax compositions, and the vaporization of tobacco wax for use in a vaporizer-inhalation device. The present invention also relates to a portion-sized container (“pod”) of a tobacco wax composition for administration to a mammal or person. The pod is intended for use in a personal (or other) vaporizer.
BACKGROUNDIn 1926, Samual Amster of Richmond, Ky. described the extraction of a “wax like substance” from tobacco using a hot water process and then subjecting the resulting liquor to an evaporative step. Despite this extraction, Amster teaches that the (extracted) tobacco “may still be employed for smoking and chewing tobacco.” Amster teaches the use of the tobacco “wax like substance” in candles, shoe polishes and varnish (U.S. Pat. No. 1,624,155).
In 1936, James Garner of Mount Lebanon, Pa., described a method to de-nicotinize tobacco, whereby ammonia treated tobacco is subjected to a butane-solvent based extraction method. When the butane is evaporated, “there is left a mass of nicotine and tobacco wax which together may amount to as much as 6-8% by weight of the tobacco used . . . . Tobacco wax or resin is dark brown in color, burns with the production of acrid fumes, and has a strong odor resembling that of an “old” pipe.” The tobacco wax may be used as an insecticide or may be “returned to the residual tobacco leaves and also to untreated tobacco leaves to impart thereto desirable flavors.” Like Amster, Garner teaches that the extracted tobacco is still suitable use in smoking and other tobacco products (U.S. Pat. No. 2,128,043).
Despite this eighty year old work, Applicants are not aware that the teachings of Amster or Garner have been used in commercial processes or products.
Entering the present era, Keritsis et al (assigned to Philip Morris) (U.S. Pat. No. 4,936,920) (1990) mentions tobacco wax in a list of saccharides and polysaccharides that may be used as a bonding agent when making manufactured tobacco (more typically referred to as reconstituted tobacco sheet).
Renaud et al., in U.S. Pat. No. 8,863,754 (assigned to Philip Morris) (2014) describe compositions for heat not burn applications. The patent mentions tobacco wax in a reference to degradation products the presence of which evidences (unwanted) combustion: “Isoprene is a pyrolysis product of isoprenoid compounds present in tobacco, for example in certain tobacco waxes, and can be present in the aerosol only if the strands of homogenized tobacco material are heated to a temperature substantially higher than that required to generate an aerosol. Thus, isoprene yield can be taken as representative of the amount of homogenized tobacco material that is “over heated.”” Nothing in the disclosure indicates that tobacco wax has been purposefully used in this composition or otherwise present than through the natural presence of wax in the tobacco used to manufacture the “homogenized tobacco material.” Applicant understands the substrate described in this art to be a reconstituted tobacco sheet intended for use in heat not burn applications.
Brown et al. (assigned to Lorillard) (U.S. Pat. No. 9,038,644) (2015) teaches tobacco wax for use as a phase transition material to impart reduced ignition propensity to a cigarette. The wax is applied to the cigarette paper using high precision wax jet printing.
THE PRESENT INVENTIONEach of U.S. Pat. No. 1,624,155; U.S. Pat. No. 2,128,043; U.S. Pat. No. 4,936,920; U.S. Pat. No. 4,936,920; U.S. Pat. No. 8,863,754; and U.S. Pat. No. 9,038,644, is expressly incorporated herein together with all citations in these references.
The vaporization of nicotine containing liquids is well known and popular, including using devices such as electronic cigarettes and tank-style (and non tank) personal vaporizers. Typically such compositions include USP (99.9% pure) nicotine oil as an ingredient, though zero-liquids without any nicotine are also used.
Heat not burn tobacco systems are known in the tobacco industry. Heat not burn systems like Pax Lab's Pax® and Philip Morris' IQOS® (as well as earlier versions of IQOS® sold as Heatbar® and Accord®) heat tobacco compositions substantially without burning the tobacco, thereby aerosolizing volatile constituents of the tobacco composition. After use, the non-vaporized components of the tobacco composition remain minus those components what were successfully vaporized (or inadvertently burned).
In the case of both Pax® and IQOS® this residue is substantial and represents the substantial mass of the original tobacco composition.
Philip Morris International (PMI) describes the rationale behind heat not burn systems thusly: “[t]he concept behind ‘heat-not-burn’ is that heating tobacco, rather than burning it, reduces or eliminates the formation of many of the compounds that are produced at the high temperatures associated with combustion. Research has demonstrated that most of the harmful and potentially harmful constituents (HPHCs) in cigarette smoke are formed by thermal breakdown of the tobacco when it is burned. Heat-not-burn therefore offers the possibility of significantly reducing both the number and the levels of HPHCs generated by tobacco products, whilst retaining an acceptable sensory experience for current adult smokers” (from pmiscience.com).
Now, some criticism has been leveled against heat not burn systems, which ostensibly is premised on the notion that tobacco and heat will always tend lead to toxicant formation. Stephen Stotesbury, head of scientific and regulatory affairs for Imperial Tobacco has been quoted saying about Philip Morris International's IQOS [heat not burn] system: “There's a lot of black crud in the iQOS device after using it . . . . It smells like an ashtray.” Perhaps not surprisingly, Imperial Tobacco has stated it will not develop a heat not burn product—presumably to rely solely on its electronic nicotine delivery systems (ENDS).
Pax is a loose-leaf style vaporizer for use with “loose-leaf plant material” supplied by the user herself (https://www.paxvapor.com/support/pax-2-faq/#can-i-use-liquids-in-pax-2). An earlier heat not burn composition—Pax Labs' Ploom® used a tobacco-humectant composition contained in nescafe style pod—however this product has been discontinued.
Philip Morris' IQOS is a more sophisticated product wherein the user uses a manufacturer-supplied “cigarette” in the heating device. The cigarette itself is comprised of reconstituted tobacco sheet made with high amounts of humectant (glycerin) that, together with other volatiles, create a vapor like experience when used.
Applicants believe the composition of the reconstituted sheet used in IQOS is akin to that described in WO2016050472A1, assigned to Philip Morris. One of the present inventors has extensive experience working with film and sheet systems, principally for pharmaceutical applications and is a named inventor on Fuisz et al. U.S. Pat. Nos. 9,108,340; 8,906,277; 8,685,437; 8,663,687; 8,652,378; 8,617,589; 8,613,285; 8,603,514; 8,241,661; 8,017,150; 7,972,618; 7,897,080; 7,824,588; 7,666,337; and 7,425,292.
Heat not burn systems are associated with reduced HPHCs as stated by the PMIScience excerpt above. The toxicant profile of burning tobacco is well understood. Researchers have estimated that cigarette smoke contains 7,357 chemical compounds from many different classes (Warnatz, J, U Maas and R W Dibble. Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation. 2006). There is broad scientific agreement that several of the major classes of chemicals in the combustion emissions of burned tobacco are toxic and carcinogenic (Rodgman, A, and T A Perfetti. The chemical components of tobacco and tobacco smoke. 2013: CRC press).
The present invention teaches a composition that comprises tobacco wax and other ingredients suitable for vaporization and use by a mammal. Applicants have found that the vaporization of a tobacco wax based composition provides excellent organaleptics and nicotine delivery. Moreover, unlike existing heat not burn compositions, applicants have found tobacco wax compositions of the present invention vaporize substantially in their entirety (i.e. substantially without residue).
Tobacco wax based compositions allow for a heat-not-burn tobacco product that is not a readily flowable liquid, and does not require specialized reconstituted sheet production or use, or use conventional tobacco leaf products (like Pax).
It is an aim of the present invention to allow for a heat not burn tobacco product which does not have, or substantially does not comprise, reconstituted tobacco sheet.
The role of plant wax for plants is understood. Plants secrete waxes into and on the surface of their cuticles as a way to control evaporation, wettability and hydration. The epicuticular waxes of plants are mixtures of substituted long-chain aliphatic hydrocarbons, containing alkanes, alkyl esters, fatty acids, primary and secondary alcohols, diols, ketones, aldehydes. From the commercial perspective, the most important plant wax is carnauba wax, a hard wax obtained from the Brazilian palm Copernicia prunifera.
B. R. Jordan describes tobacco wax as consisting of three major components: straight chain hydrocarbon (C27-C33 comprising 59%); branched-chain hydrocarbons (C25-C32 comprising 38%) and fatty acids (C14-C18 comprising 3%) (Advances in Botanical Research, Vol 22, “UV-B Radiation: A Molecular Perspective, hereby incorporated by reference as if fully set forth herein).
Various processes for extracting wax from plant materials can be employed in connection with the present invention. These extraction methods include, without limitation, subcritical CO2 extraction; supercritical CO2 extraction; supercritical extraction with additional (non-CO2) solvents; maceration; digestion (a heated form of maceration); decoction; percolation; hot continuous extraction (Soxlet); Aqueous Alcoholic Extraction by Fermentation; Counter-current Extraction; Ultrasound Extraction (Sonication); and the Phytonics Process. This list is non-limitative as skilled artisans will appreciate and other suitable extraction methods may be employed. Solvents used may be polar or non-polar. Various combinations and/or sequential series of these methods can be used.
The non-limitative preferred embodiment is supercritical CO2 extraction. The use of supercritical CO2 extraction to de-nicotinize tobacco is disclosed in Howell et al U.S. Pat. No. 8,887,737 (2014), which is hereby incorporated by reference as if fully set forth herein.
Extraction, including the preferred embodiment supercritical CO2 extraction, can be used to generate several partitions form tobacco, broadly speaking, including oils and waxes. Both of these partitions contain nicotine. The wax partition yield should exceed 1.5% of the starting tobacco weight, preferably 2% or greater, most preferably 4% or greater.
All forms of tobacco may be used including tobacco leaf, stem, and waste tobacco dust. Blends of tobacco may be employed. Cigar tobaccos may be employed. Tobacco varieties with high nicotine content are preferred. Because the extraction process may bring flavors and aromas from the leaf into the wax and oil, the tobacco inputs may be selected in whole or in part for taste.
It is contemplated that the tobacco blending process will be carried out prior to extraction, or after extraction. For example, a blend may be made of one or more tobaccos (e.g. flue cured, burley and Turkish) and extraction made therefrom. Alternatively, the three tobaccos of the prior example may be separately extracted, and blended to taste and other characteristics using the extracted wax partitions (and oil partitions, optionally) of each extracted tobacco type.
It is important to note that extraction techniques to remove the wax partition may also function to extract undesired TSNA's from tobacco. In particular, supercritical CO2 extraction may solubilize TSNA's from the tobacco, concentrating them in the resulting wax and oil partitions. Since it is desirable to minimize TSNA's in the final product, it is desirable to use tobacco inputs with very low TSNA's. This will result in a product with low TSNA's without the need for optional pre or post processing steps to remove TSNA's from the wax partition. Preferably, the tobacco input have a TSNA level below 3 ppm, more preferable below 2 ppm, still more preferably below 1 ppm, and even more preferably below 0.3 ppm).
Extraction parameters may impact the nature of the wax partition, including various parameters including flavor, nicotine levels, TSNA levels, and the rheology of the wax partition itself. In certain embodiments, it may be desirable to extract a non-flowable wax partition, or a substantially non-flowable wax partition. The wax partition may be viscous and somewhat flowable in certain embodiments.
It is expressly contemplated that oils may be mixed into the resulting wax to increase the yield of wax and nicotine. High shear mixers (and other mixing methods) may be used for this purpose. Preferably, the mass of the oil partition added to the wax partition will be less than or about 75% of the mass of the wax partition, preferably less than or about 30% and most preferably less than 15% of the mass of the wax partition (measured by mass). The oil partition can serve to increase nicotine, enhance flavor, increase vapor production and generally extend the yield from tobacco. However, TSNA levels may concentrate in the oil partition, and so it is desirable to specifically monitor the TSNA level of the oil partition when considering the desired combination of the two partitions.
Additional excipients may be employed to develop a final composition for vaporization.
Vapor agents may be added to the wax. Vapor agents increase the vapor from the composition when heated. Vapor agents may include, without limitation, vegetable glycerin, non-vegetable forms of glycerin, propylene glycol, polyethylene glycol, polysorbates including polysorbate 20 (polyoxyethylene sorbitan monolaurate), polysorbate 40 (polyoxyethylene (20) sorbitan monlopalmitate), polysorbate 60 (polyoxyethylene sorbitan monostearate) and polysorbate 80 (polyoxyethylene sorbitan monooleate.), and other agents suitable for increasing the “vapor” from a heated composition. Vapor agents may be added to about 70% of the composition (by mass), preferably 30-60% of the composition (by mass), most preferably 45-55% (by mass) of the composition. Lower levels of vapor agents may also be employed, resulting in a stronger, more concentrated final composition. Above 60%, the final composition may become too flowable for certain vaporization devices.
In certain embodiments, substantially all of the vapor agent employed is vegetable glycerin. This is because vegetable glycerin has a relatively high viscosity, and flowability of the final composition is undesired in certain embodiments. For example, a flowable composition may “spill” out of the heating chamber when a vaporizer is left on its side. Of course, film formers and gelling agents may optionally be employed to increase viscosity as needed.
High shear mixing is important to ensure uniform distribution of the vapor agent (or other added excipient) in the composition. The tobacco wax may tend towards hydrophobicity, which may present mixing challenges. The use of an emulsifying agent may be desired to assist in emulsifying the mixed composition. Without limitation, the following emulsifying agents are examples of emulsifying agents that may be employed: agar, albumin, alginates, casein, ceatyl alcohol, cholic acid, desoxycholic acid, diacetyl tartaric acid esters, egg yolk, glycerol, gums, carrageenan, lecithin, mono- and diglycerides, monosodium phosphate, monostearate, ox bile extract, propylene glycol, soaps, or taurocholic acid (or its sodium salt). As a practical matter, non-glycerol emulsifying agents are preferred.
Similarly, surfactants may be employed in certain embodiments to promote mixing. Surfactants lower tension between a surface and a liquid or between two or more immiscible substances. Anionic surfactants contain anionic functional groups at their head, such as sulfate, sulfonate, phosphate, and carboxylates. Prominent alkyl sulfates include ammonium lauryl sulfate, sodium lauryl sulfate (sodium dodecyl sulfate, SLS, or SDS), and the related alkyl-ether sulfates sodium laureth sulfate (sodium lauryl ether sulfate or SLES), and sodium myreth sulfate. Others include: Docusate (dioctyl sodium sulfosuccinate) Perfluorooctanesulfonate (PFOS) Perfluorobutanesulfonate, Alkyl-aryl ether phosphates, and Alkyl ether phosphates. Carboxylates are the most common surfactants and comprise the alkyl carboxylates (soaps), such as sodium stearate. More specialized species include sodium lauroyl sarcosinate and carboxylate-based fluorosurfactants such as perfluorononanoate, perfluorooctanoate (PFOA or PFO). Certain surfactants contain cationic head groups. Zwitterionic (amphoteric) surfactants have both cationic and anionic centers attached to the same molecule. The cationic part is based on primary, secondary, or tertiary amines or quaternary ammonium cations. The anionic part can be more variable and include sulfonates, as in the sultaines CHAPS (3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate) and cocamidopropyl hydroxysultaine. Betaines such as cocamidopropyl betaine have a carboxylate with the ammonium. The most common biological zwitterionic surfactants have a phosphate anion with an amine or ammonium, such and the phospholipids phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, and sphingomyelins. Many long chain alcohols exhibit some surfactant properties. Prominent among these are the fatty alcohols, cetyl alcohol, stearyl alcohol, and cetostearyl alcohol (consisting predominantly of cetyl and stearyl alcohols), and oleyl alcohol.
In certain embodiments, a wetting agent may be employed. A wetting agent is a surfactant that, when dissolved in water, lowers the advancing contact angle, aids in displacing an air phase at the surface, and replaces it with a liquid phase. Examples of application of wetting to pharmacy and medicine include the displacement of air from the surface of sulfur, charcoal, and other powders for the purpose of dispersing these drugs in liquid vehicles; the displacement of air from the matrix of cotton pads and bandages so that medicinal solutions can be absorbed for application to various body areas; the displacement of dirt and debris by the use of detergents in the washing of wounds; and the application of medicinal lotions and sprays to surface of skin and mucous membranes Polysborbate (Tween) is a nonionic surfactant and emulsifier that is particularly useful in connection with certain embodiments of the present invention. Various Tweens can be used, including inter alia Tween 20 and Tween 80.
Tobacco leaf may be added to the wax composition, in any known form, including without limitation shreds, dust, particles and the like. Said tobacco leaf may be leaf from which the tobacco wax was extracted in certain embodiments. Tobacco leaf, including reconstituted tobacco leaf, may be present from 0.01 to 30% mass of the composition in certain embodiments.
The nicotine content of the final composition is preferably less than 12%, more preferably less than 7.5% and most preferably 1.5-4% (by mass). Low nicotine compositions with nicotine less than 1.5% may also be made for users seeking lower nicotine delivery. Nicotine, natural or synthetic, may be added where the tobacco extraction yields a less than desired level. The product can be made from low-nicotine containing tobacco to achieve a low nicotine level, or otherwise subject to known processes to dinicotinize the composition or starting input tobacco.
Flavors may be added to the wax. Flavors may be synthetic or natural. For purposes hereunder, menthol, wintergreen, peppermint and similar oils used in menthol tobacco products are understood to be flavors, together with traditional flavors (e.g. grape, cherry etc). Menthol crystals may be employed. Tobacco flavors, and traditional tobacco top flavors may be used to impart a rich tobacco flavor. Sustained release flavors, coated particle flavor systems, and flavor capsules with volatile flavors may all be employed. Flavors may preferably comprise 0.5% to 20% of the final composition. Special concern should be paid to miscibility of the flavor with the wax composition.
Penetration agent(s) may be added to the tobacco wax. By penetration agents, we mean an agent that promotes transfer of the active—i.e., a substance that enhances absorption through the mucosa, mucosal coating and epithelium. otherwise known (see U.S. Patent Application Publication No. 2006/0257463 A1, the content of which is incorporated herein by reference). The penetration agent may comprise but is not limited to polyethylene glycol (PEG), diethylene glycol monoethyl ether (Transcutol), 23-lauryl ether, aprotinin, azone, benzalkomin chloride, cetylperidium chloride, cetylmethylarnmonium bromide, dextran sulfate, lauric acid, lauric acid/propylene glycol, lysophosphatilcholine, menthol, methoxysalicylate, oleic acid, phosphandylcholine, polyoxyethylene, polysorbate 80, sodium EDTA, sodium glycholated, sodium glycodeoxycholate, sodium lauryl sulfate, sodium salicylate, sodium taurocholate, sodium taurodeoxycholate, sulfoxides, and various alkyl glycosides or, as described in U.S. Patent Application Publication No. 2006/0257463, bile salts, such as sodium deoxycholate, sodium glycodeoxycholate, sodium taurocholate and sodium glycocholate, surfactants such as sodium lauryl sulfate, polysorbate 80, laureth-9, benzalkonium chloride, cetylpyridinium chloride and polyoxyethylene monoalkyl ethers such as the BRIJ® and MYRJ® series, benzoic acids, such as sodium salicylate and methoxy salicylate, fatty acids, such as lauric acid, oleic acid, undecanoic acid and methyl oleate, fatty alcohols, such as octanol and nonanol, laurocaprarn, the polyols, propylene glycol and glycerin, cyclodextrins, the sulfoxides, such as dimethyl sulfoxide and dodecyl methyl sulfoxide, the terpenes, such as menthol, thymol and limonene, urea, chitosan and other natural and synthetic polymers. Preferably, the penetration agent is selected to be capable of transfer through vaporization.
Buffer agents may be added to the tobacco wax, including without limitation to create static or a dynamic buffer systems. Preferably, the buffer agent is used to raise the pH of the mouth in order to increase nicotine absorption in the buccal cavity in a manner which is based on pka and the Henderson Hasselbach equation. For nicotine, preferably, the pH of the mouth is increased to 7 to 10, preferably 7.8 to 10, most preferably from 8.5 to 9.5. Preferably, the buffer agent increases the pH of the oral cavity for a period of ten minutes or more after administration
Buffering agents may be used to control pH, including without limitation, sodium bicarbonate, potassium bicarbonate, sodium carbonate, potassium carbonate, calcium carbonate, dipotassium phosphate, potassium citrate, sodium phosphate and any other such buffer system. The buffer system may be designed to dynamically control the pH of the product taking into consideration the effect of saliva during use, i.e., a dynamic buffer system. Examples of buffer systems to obtain the preferred pH include dibasic sodium phosphate and monobasic sodium phosphate. Both are FDA accepted buffer materials used and listed in the inactive ingredients list. For example, for a pH of 7, the ratio of monobasic/dibasic can be 4.6/8.6; for a pH of 7.5 the ratio of monobasic/dibasic can be 1.9/11.9; and for a pH of 8.0 the ratio of monobasic/dibasic can be 0.6/13.4. These are mathematically calculated buffer numbers and will need to be adjusted according to the other ingredients added to the formula. Thus this dynamic buffer range is adjusted by the amounts of the buffer system since saliva is freshly renewable in the mouth. See Fuisz U.S. Patent Application Publication Nos. 2009/0098192 A1 and US 2011/0318390 A1 discussing dynamic buffering and incorporated herein by reference.
Nicotine salts may be employed in certain embodiments. This involves complexing nicotine with an acid, to form a salt. Suitable acids may include without limitation: pyruvic acid, salicylic acid, sorbic acid, lauric acid, levulinic acid, or benzoic acid. U.S. Pat. No. 9,215,895 (Nicotine salt formulations for aerosol devices and methods thereof) is hereby incorporated by reference as if fully stated herein. In a preferred embodiment, the extracted nicotine oil is complexed with an acid and then mixed with the wax partition. The nicotine salt may also be mixed with glycerin and then mixed with the wax. In still other embodiments, the acid is complexed with the wax partition to form the salt.
Crystallization inhibitors may be employed, including inter alia to avoid precipitation of the nicotine salt when the acid is complexed with the nicotine. Crystallization inhibitors are described in US 2016/0038406 (Chemically stable and oromucosally absorbable gel compositions of a pharmaceutical active agent in a multi-chambered delivery system).
Preservatives may be added to the tobacco wax to preserve freshness and inhibit microbial growth.
A pasteurization process step may be employed, inter alia, to prohibit microbial growth.
Preferably, the composition has maintains a wax like or relatively high viscosity and/or consistency despite the addition of any excipients. It is generally advantageous that the tobacco wax composition does not readily flow until under heavy-vaporizing heat. However, it may be beneficial to adjust the rheological properties of the tobacco wax composition. For example, a reduced viscosity and or surface tension may be desired for various reasons, such as packaging convenience (e.g a squeezable tube may be easier to use with reduced viscosity). The use of PG as a vapor agent may serve this purposes, having a much lower viscosity than vegetable glycerin.
It may also be beneficial to increase viscosity, for example to prevent flow off a flat heating surface (e.g. a hookah platform. Etc.). Rheology agents may employed to adjust the viscosity, surface tension and other rheological properties of the final product. Suitable excipients including film formers, gelling agents, and surfactants. In certain embodiments, film formers are used 0.01%-20%, gelling agents are used 0.01%-20%, and surfactant 0.01%-5%. Where film formers and gelling agents are employed, a solvent may be used and then removed as appropriate.
The resulting wax composition may be used by itself, or mixed with other vaporizable compositions both solid and liquid formats. Such mixing may be done by the manufacturer or by the user. Liquid formats including without limitation e-liquid type products. Solid formats include without limitation other waxes from tobacco or other plant or botanical materials. Mixing can also take place by blending the plant or botanical materials which are subjected to the extraction process.
The wax composition of the present invention is intended to be vaporized. Suitable devices include any device capable of sufficiently heating the composition to cause it to vaporize and still not substantially burn the composition. Non-limitative examples of suitable devices include devices marketed as dry herb vaporizers. Suitable temperature ranges for the vaporizer heating element range from temperature needed to vaporize the composition and below the auto ignition temperature of the composition.
Suitable battery parameters ranging from 1 Amp continuous output to 30 Amp continuous output.
The wax composition of the present invention is substantially vaporizable, meaning that it will be substantially vaporized when heated in a suitable device. It is desirable in certain embodiments that residue is minimized, including inter alia to avoid the need to clean the device between uses. Where a pod is used, residue is of less concern, since the pod is regularly replaced by the user.
The tobacco wax composition of the present invention when vaporized, emits lower levels or HPHC's than conventional tobacco products, e.g. cigarettes. The tobacco wax composition, when used in a suitable vaporizer, results in less than 25%, on average, of the levels of HPHC's from a US-sold Marlboro Red (using comparable methods to measure e.g. Canadian method), preferable less than 10% and more preferably less than 5% and even more preferable less than 1%. Ideally, as disclosed in the examples, toxicants measure below quantifable limits. It is desirable to mitigate the levels of tobacco specific nitrosamines in the composition. The tobacco wax composition has TNSA levels preferably less than 10 parts per million (ppm, more preferably less than 3 ppm, most preferably less than 1 ppm. As shown in the examples, when vaporized the emissions of the tobacco wax composition may result in TSNA levels below quantifiable limits.
Inventors have discovered surprising results in emissions testing of a tobacco wax composition, in the form negligible levels of formaldehyde, which has been associated with the relatively low heating temperatures of heat not burn products.
In another aspect, the present invention relates to a portion-sized container (“pod”) of a tobacco wax composition for administration to a mammal or person. The pod is intended for use in a personal (or other) vaporizer.
The pod is most commonly in a cup like shape. The top is commonly open, and temporarily covered by a covering that is removed just prior to, or in connection with use of the portion sized container.
By portion-sized, the portion may be for multiple uses and sessions by the user. The tobacco wax composition portion may range from 1 mg to 3 grams, preferably from 250 mg to 2 grams, most preferably 400 mg to 1.2 grams.
The pod is received, or mated to a receiving chamber. The receiving chamber comprises—or is adjacent to—the heating system. The receiving chamber and pod are shaped to maintain close contact, with the absence or substantial absence of air between the two respective surfaces (so the pod surfaces are substantially in contact with the receiving chamber). This promotes heat transfer from the receiving chamber to the pod.
Preferably, the receiving chamber comprises a ceramic type material (e.g. porcelain or ceramic). In certain embodiments, the ceramic type material is a positive temperature coefficient (PTC) ceramic, allowing the receiving chamber itself to serve as a heating element or heat source.
In certain embodiments, the PTC ceramic (or comparable receiving chamber material) is composed such that the Curie point discourages or retards heating of the tobacco wax composition above a high (upper) threshold.
In another preferred embodiment, heating element(s) are coated and/or printed (or otherwise applied) directly onto the ceramic heating chamber. Such an approach enables various heating element patterns and shapes to readily be made, which will generally be optimizes for desired heating characteristics (e.g. even heating, speed of heating). Such application of the heating element may similarly be performed on non-ceramic heating chambers.
High threshold s may be associated with toxicant and degradant production and are to be avoided regardless of the method in which the receiving chamber is heated. It is preferable that the tobacco wax composition in the pod not be heated to greater than 750 F, preferably less than 550 F, more preferably less than 450 F, still more preferably less than 350 F, still more preferably less than 325 F, and most preferably under 300 F. Relatively low temperatures may be employed given the propensity of the tobacco wax composition of the present invention to vaporize. A preferred operating temperature range is 225 F to 350 F, or 250 F to one of the temperature bounds set forth in this paragraph. In any case, in the preferred embodiment, a upper threshold temperature is not exceeded, or not generally or likely to be exceeded in normal consumer use.
At the same time, it is desirable that that the device be capable of rapidly reaching operating temperatures (without overshooting target operating temperatures or exceeding high threshold temperatures), or otherwise sufficient temperatures. Preferably, the device is capable of heating the tobacco wax composition in the pod reach the preferred operating temperature range rapidly, meaning in less than 10 seconds, preferably in less than 5 seconds, more preferably in less than 2 seconds, most preferably in less than 1 second.
By “otherwise sufficient temperatures” Applicants refer to temperature at which the tobacco wax composition readily vaporizes.
In contrast, the leading commercial heat not burn product, Philip Morris' IQOS system, requires approximately 20 seconds for the IQOS device containing the heat stick, to reach operating temperatures (see IQOS operating instructions, available here: https://www.pmiscience.com/sites/default/files/appendix_3_-ths_safety_warnings_and_instructions.pdf). After reaching operating temperature, the entire heat stick must be used within “approximately six minutes” (id). Moreover, the IQOS device must be recharged in its charging case after each use: “After each session your IQOS holder must be recharged” (id). The IQOS holder has a larger battery capacity. Again, according to the same source, “The IQOS pocket charger can recharge your IQOS holder up to 20 times before it must be recharged itself” (id). Again per the operating instructions, each Heatstick provides approximately fourteen puffs (id). Because the Heatstick comprises reconstituted tobacco that is pierced by the IQOS heating blade, when heated the reconstituted tobacco will tend to lose plasticity, and may adhere or otherwise crumble into or stick to the IQOS device after use. Accordingly, IQOS provides extensive instructions on how to “release any Heatstick fragments” (id). This description of IQOS provides a number of difficulties for a user: the need to wait twenty seconds for the device to reach operating temperature; the need to consumer the entire heat stick within six minutes, need to recharge from the larger battery back (the “holder”) every fourteen puffs.
It is an object of the present invention to traverse these issues by allowing virtually instant vapor from the tobacco wax composition, and to allow a vapor pen using a standard on-off heating scheme.
While ignition of the tobacco wax composition is unlikely, it is an express intention that the tobacco wax not be ignited or otherwise burned by or in the device. A review of the emissions data contained in the examples below, including the absence of toxicants, confirms that the tobacco wax composition of the present invention experience substantially no combustion at temperatures sufficient to vaporize the tobacco wax composition. In the examples, sufficiency of temperature to vaporize the tobacco wax composition is evidenced by the mass-loss during the puff emissions tests.
Airflow is an important feature of a vaporizer system, for the user experience.
In many embodiments, tt is desirable to have no or effectively no bottom airflow into the cup. Bottom airflow is the primary design currently used in cigarettes and vapor pens. Bottom airflow directs air directly over the heating coil (where vapor is created). The wick for e-liquid helps to prevent leaking of the e-liquid.
In a system for the tobacco wax composition, wicking is not possible. The tobacco wax composition will simply not wick as a conventional e-liquid will. Moreover, an unplugged bottom hole is problematic with tobacco wax. This is because hot wax will tend to leak down, re-solidify and clog the bottom airflow (leakage of a conventional e-liquid in a convention tank is unpleasant but does not clog the device in a disabling manner). Moreover, the now solid tobacco wax is fairly difficult to remove. Side airflow, and/or top airflow is less likely to clog and is thus preferred (either in whole, in part, or substantially). Top airflow has the benefit that xxx.
In both top and side airflow, turbulence is relied upon to mix air currents with vapor, since the prevailing airflow is towards the mouthpiece (and the vacuum created by the user's inhalation).
In the present invention, the tobacco wax composition containing pod is heated. Vapor forms—often at the bottom and sides of the pod closest to the heat, and the wax product is vaporized (and climbs through the top of the wax product).
The closer the airflow is to the top of the tobacco wax composition product, the easier it is for turbulence to join the vapor into the prevailing airflow. Thus it is desirable to have side airflow occur in relatively close proximity to the top of the composition product level. However, if the side airflow is too close to the top of the composition product level then the side airflow holes will be more prone to blockage.
Side airflow may enter through the sides of the pod. In this embodiment, the pod itself has holes that correspond to side airholes located in the sides of the receiving chamber (and permitting airflow, being connected to the outside of the vaporizer). Such side holes in the pod are covered prior to use (to protect the product), and such cover is removed by the user prior to use or automatically by the device.
It is also possible for the device to create side airholes in the pod material (as opposed to removing the covering from pre-formed airholes), where a relatively weak material is used that can be readily punctured.
The side airflow must enter above the tobacco wax composition product fill level (as distinct from the top of the pod).
The product fill level must be calibrated to the location of the side airholes, if any, in the sides of the pod. Side airflow (and airholes) may also enter from the side of the receiving chamber above the top of the pod. Where there are side airholes above the top of the pod, similarly the product fill level is still calibrated to the distance from the product fill to the airholes. If the distance is too short, blockage is more likely. Similarly, if the distance is too long vapor production will be lessened. In certain non-limitative embodiments, the side airholes are less than 4 mm from the starting product fill level, preferably less than 2 mm from the starting product fill level, preferably more than 0.5 mm from the starting fill level, more preferably more than 1 mm from the starting fill level.
Side airholes may be directed downwards (i.e. at a downwards trajectory) to increase the air vortices and turbulence.
Airholes may be protected from wax blockage in a number of ways. First, a physical obstruction may be employed (e.g. a physical lip). Such physical obstructions can make it harder for melted wax to flow into the airhole (particularly when the user physically moves the pen during use—for example, starting with a vaporizer perpendicular to the flow and then moving the vaporizer to a parallel position for use). Similarly, materials (including coatings) may be selected to minimize or direct the flow of liquid wax away from the airholes to prevent blockage. Physical channels (e.g.) grooves may be similarly employed to direct the flow if liquid wax away from the airholes.
Placement of airhole locations can be oriented to avoid or reduce blockage. Typically, the personal vaporizer may be raised to mouth of a user and held parallel to the ground when used. However, in a conventional vaporizer, there is no way to predict how the vaporizer will be oriented by the user. A conventional heat button can be readily used by the thumb or an opposing finger, and is not a good predictor for orientation (although the user will typically have the battery button pointing up or down). The mouthpiece however can be shaped in such a way that is intuitive to the user to orient the vaporizer in a certain direction (as a non-limitative example, a plastic cigarillo tip is typically formed in a way that a user would know how to orient the cigarillo). In this embodiment, the side airholes can be oriented such that the airholes are biased to the up-wards plane when the vaporizer is oriented parallel to the ground plane (since we know how the user will orient the vaporizer because of the mouthpiece. For example, three airholes may be used (in the receiving chamber potentially with aligned pod holes) that are positioned with a bias against the downward side (meaning the airholes are biased towards the upward side when the device is uses as expected including through use of a shaped or marked mouthpiece).
The vaporizer, pod and/or receiving chamber may have up to ten side airholes, preferably 2-6 side airholes most preferably 3-5 side airholes. Where a mesh or similar covers the airhole opening, the number of airholes would be understood to be the number of air channels.
The device may similarly be marked or shaped on a part of the device other than the mouthpiece to indicate a desired orientation (with corresponding placement of airholes as described above to reduce blockage potential). For example and without limitation, shape indentations may be provided to signal a desired holding of the device in the hand.
In certain non-limitative embodiments, the pod has a diameter of 3-15 mm, preferably 6-10 mm (with a corresponding internal diameter for the receiving chamber).
In certain non-limitative embodiments, the pod has a height of 0.5 to 22 mm, preferably 2 to 10 mm (with a corresponding size for the receiving chamber).
In certain embodiments, the pod itself may comprise the heating chamber, optionally including the heating element as a component of the pod. While this embodiment may be more costly to manufacture (as compared with a pod that merely mates with a heating chamber), such embodiment offers the advantage of providing a fresh heating elements with each pod. Such advantage may be associated with increased puff consistency since degradation of the heating element is avoided through less use (i.e. replacement or substantial replacement with each new pod).
Heated tobacco wax compositions in a pod can be explosive (in terms of physical motion—not ignition) when wax at the bottom of a pod is vaporized, and the vapor pressure is such as to disrupt the wax above to allow the vapor to escape. It is desirable to have a “shield”—a physical obstruction that prevents direct passage of heated tobacco wax composition material from the pod or cup to the mouthpiece. Generally the shield is attached to the mouthpiece (but it may equally attach to other parts of the vaporizer). The shield may also employ features intended to increase airflow turbulence, without adversely effecting the user's “draw” on the vaporizer.
The Pod may similarly be designed to minimize the possibility of wax explosions. For example (and without limitation), a rim or brim on the pod may act in the same manner as the shield to obstruct wax explosions from traversing the mouth piece.
The pod-receiving chamber may have a rail, slot or comparable alignment interface to ensure the pod is appropriately aligned in the receiving chamber, including for other reasons, so that the airholes from the receiving chamber align or substantially align with the pod airholes. In this embodiment, the pod has complimentary features to mate with the alignment interface. Such alignment may also be used for other purposes, i.e. to facilitate other connections between pod and receiving chamber (e.g. data link, ejector system, etc).
The vaporization device may have an ejection system to facilitate ejection of the pod from the receiving chamber (as opposed to relying upon shaking or use of inertia to evacuate the pod). Such system may comprise, without limitation, a physical ejector to lift the pod out of the receiving chamber.
A mouthpiece sits above the pod-receiving chamber assembly. The mouthpiece employs a combination of distance and relatively low heat transfer properties to ensure the mouthpiece is not uncomfortably warm for the user. The mouthpiece may be integrated with a shield and/or a device to increase turbulent airflow.
Distinct from the concept of the shield described herein, certain embodiments will have a sleeve designed to ease cleaning of the mouthpiece. Wax may form on the inside mouthpiece during use of the material, either from explosion of wax or from condensation of materials. Such remainder wax may be unsightly and require manual cleaning. In certain embodiments, a sleeve may be shaped such that it adheres or substantially adheres to the mouthpiece. The sleeve may be disposable, allowing a user to simply dispose of the sleeve (rather than cleaning the mouthpiece), akin to a disposable coffee filter. The sleeve may comprise any suitable material, including without limitation, a paper, pressed paper, cardboard, a cellulosic, or other suitable material. The selected material for the sleeve should resist formation from air vortices, or from trapped wax or condensate. The sleeve material may be coated. Coatings may be designed (and sleeve materials selected) to resist adhesion of wax (to encourage the adhered material to drop back to the heating chamber), or to encourage adhesion. Encouraging adhesion may useful to avoid contact of the user with condensate when removing the sleeve. The sleeve may be absorbent to better catch the wax or condensate.
A reusable sleeve may also be employed in certain embodiments. In such embodiments, the sleeve may be removed, cleaned, and replaced. For such reusable embodiments, any suitable material may be employed that can be readily re-used.
For embodiments for which the mouthpiece can be used with a sleeve, the mouthpiece must be capable of being easily placed into the mouthpiece, as well as capable of being readily released by the user for disposal or cleaning. A latch or locking mechanism may be employed. In some embodiments, the sleeve is held in place by simple screwing the mouthpiece onto the heating chamber. Preferably, the sleeve can be released in less than 5 seconds by the user, preferably in less than 2 seconds, most preferably in less than one second.
The sleeve may be any suitable color. In certain embodiments, a shade of brown may be used to better mask the appearance of the adhered or trapped wax. In general, but without limitation, dark colors are preferred.
In certain embodiments, the pod itself may be fashioned from a material that heats, e.g. a PTC ceramic. Other materials may also be used that heat when electric current is supplied. In this embodiment, the receiving chamber acts as a physical receiving area, may provide airflow (airholes) and may integrate power to the pod. The pod may further comprise a thermistor to measure temperature, either of the pod itself or wax contained therein.
Empty pods may also be offered to allow the user to treat the device as an open system (meaning they can use their own vaporizable materials).
The pod may be made from any suitable material. Special care must be given that the pod material does not emit undesirable elements when heated. The material will generally be a solid material, but flexible materials may also be employed.
While a pod with a flat or substantially flat bottom surface is desirable for handling by the consumer, other shapes may be used. Specifically, a shape whereby the cup is half a circle will mean reduce mean geographic distance from the receiving chamber walls. Other shapes can be selected with this same purposes, i.e. to reduce geographic distance. Corners may, ceteris paribus, create higher heat areas within the tobacco wax contained in the pod.
In certain embodiments, the pod may be integrated with the sleeve function. For example, the pod may be in the shape of a circular cauldron—which is heated—connected to an upper conical shape that prevents the mouthpiece from getting wax or wax condensate adhered. In such embodiments, the pod may be comprised of multiple materials—the lower portion designed for heating, and a separate upper material that is designed to function as a sleeve. In some embodiment, it may be desirable to have a separating material between the heatable portion of the pod and the sleeve portion. It in cases where adequate power is available, the design may allow the sleeve to heat. Such heat may be useful to reduce adhered wax composition.
In certain embodiments, the top of the pod is covered with a porous layer which remains on top of the pod during use. This porous layer is sufficiently porous to allow for transmission of sufficient vapor for the user. The porous layer is similarly sufficiently porous not to interfere or prevent a desired pressure drop.
In certain embodiments, the pressure drop of the device used to vaporize the pod will have a pressure drop of 20 (mm H20) to 175 (mm H20), preferably 75 (mm H20) to 130 mm (H20), most preferably 90 (mm H20) to 110 (mm H20).
The porous layer is sufficiently non-porous to prevent (or substantially prevent or partly prevent) parts of the wax composition from exploding upwards and escaping from the heating chamber to whence they may adhered to the mouthpiece.
The porous layer may be made from any suitable material. In certain embodiments, a thermo-conductive material is used, such that the permeable layer. Thermo-conduction may be used to encourage parts of the wax composition that are caught or trapped on the permeable layer to drip off and re-join the wax composition in the heating chamber (and/or themselves be vaporizer).
In certain embodiments, the porous layer may be selected or coated so as to resist adhesion of wax composition components to the layer.
In certain embodiments, the porous layer includes heating element(s).
In certain embodiments, the top of the pod is covered with two layers. The outer layer is an impermeable or semi-impermeable layer for barrier purposes (i.e. product stability and freshness) (a “barrier layer”). Underneath the outer layer is the porous layer which remains on during use.
In certain embodiments, porous materials—akin to those described for the porous top layer, may be used to cover sideholes or other airholes.
The top of the pod may be configured to allow for easy access by a consumer. This allows a consumer to add other waxes or extracts to the Pod. Conversely, the system may be configured to make it difficult for a consumer to add their own materials to the pod.
A temperature meter can be built into the pod, the receiving chamber, or both. The pod and receiving chamber are used as part of a vaporizing system, further comprising a power source (typically electric, but it may also be a carbon-based source, or butane based source or other source of heat), and a control module that allows the user to select heat settings, turn the device on or off, as well as other features. The device may be able to store and communicate use data.
The Pod may be able to communicate to the device (or the device determine from the Pod) the type of Pod (flavor, quantity of wax composition, nicotine strength, etc).
It will be appreciated that the use of a Pod will give additional flexibility to the wax composition formulation, because non-vaporizable ingredients may be used in the composition without leaving the non-vaporizable ingredients as residue that require cleaning by a user. Film formers or molassess (and other sugars and sweeteners) are non-limitative examples of non-vaporizable ingredients that may be employed.
The use of the pod is not limited to tobacco wax compositions but may also be employed with other botanical or plant wax compositions, as well as e-liquids. Such materials may be used in combination with tobacco wax. References herein to tobacco wax compositions can also refer to these products and compositions comprising them.
Some distinctions in heat transfer are important to understand in connection with various embodiments of the present invention. In IQOS and BATs GLO, the tobacco stick (comprising reconstituted tobacco) requires airspaces in the reconstituted tobacco stick to allow for the aerosolized components to travel from the reconstituted sheet and out through the mouthpiece. Were such air spaces absent, and the tobacco stick comprised of a solid reconstituted plug, it would be extremely difficult (and require substantial heat) to force the aerosol through the solid plug. As a practical matter, only components on edge of a solid plug would successfully vaporize.
The IQOS device has an operational temperature of 350 C; in contrast the GLO uses has a lower operating temperature of 240 C. This difference in operating heating temperatures can likely be explained by the different heating configurations of the two devices. IQOS employs a flat, thin, heated blade or knife upon which the tobacco stick is impaled. The knife does not reach the outer edges of the heat stick (tobacco stick) (otherwise it would destroy the tipping paper on the outside of the tobacco stick). Approximately, it can be thought of as having the width of 0.8 of the tobacco stick. In contrast, GLO reportedly heats from the circumference surrounding the tobacco stick. Assuming a heating element of the same length, the circumference approach has greater surface area (circumference*length). Assuming a diameter of 1, and identical length, the GLO approach offers a surface heating area of 1*3.14, as opposed to two sides of the flat blade (0.8*2=1.6). This greater surface heating area (again assuming identical lengths) likely explains in part the lower operating temperature of the GLO system.
However, in both GLO and IQOS, heat is required to travel through airspaces. Air must be drawn in by convection current to be heated, and air is understood to be a very poor heat conductor. Heat transfer by air convection is an essential component of both IQOS and GLO. The use of air convection, together with the relative difficulty of aerosolizing components from a solid matrix, helps to explain the relatively long warm up period for these products (20 seconds) and relatively high operating temperatures.
In contrast, the tobacco wax of the composition has no or substantially air spaces. In various embodiments, it is a solid, semi-solid or viscous liquid. All of these embodiments substantially lack air spaces. The result is that the tobacco wax composition has efficient heat transfer attributes. Glycerin and propylene glycol both have excellent heat transfer properties (sufficiently good for use in anti-freeze systems), as does the tobacco wax itself. The tobacco wax composition is heated in preferred embodiments with the absence or substantial absence of air convection to heat the tobacco wax composition.
In certain embodiments, the tobacco wax composition of the present invention has a thermal conductivity at 300 k (80.3 F) of greater than 0.1, preferably greater than 0.2, more preferably greater than 0.25 (W/m K).
The substantial absence of air in the tobacco wax composition may also serve to prevent or reduce oxidation when the tobacco wax composition is heated.
Certain embodiments of the invention are described herein with reference to
Tobacco wax was removed from tobacco leaf using supercritical CO2 extraction. Tobacco oil was mixed in with the wax, while retaining a wax consistency. The material was fragrant and dark brown in color. A nicotine assay indicated a nicotine strength for the tobacco wax of 4%. The wax was placed in a dry herb vaporizer and vaped by a healthy adult male. The tobacco wax vaporized creating a nice vapor volume. The nicotine delivery was strong and the product was fragrant with tobacco fragrance. The tobacco wax substantially vaporized leaving minimal residue on the heating coil.
Example BThe tobacco wax of Example A was taken and 10% of vegetable glycerin and 5% of propylene glycol (measuring by weight of the final composition) was added. The tobacco wax accepted the addition of these vapor agents. The resulting composition was placed in a dry herb vaporizer and used by a healthy adult male. The flavor was excellent and the vapor production was increased from Example A.
Example CThe tobacco wax of Example A was taken and grape flavor from Tobacco Technology, Maryland was added, at 3.5% of the composition. The resulting tobacco wax composition was placed in a dry herb vaporizer and used by a healthy adult male. The grape taste was enjoyed by the user.
Example DTobacco wax was extracted from a different of blend tobacco leaf using supercritical CO2 extraction. The tobacco wax was dark with a slightly green tinge. The nicotine content of the tobacco wax was approximately 1.5%. Nicotine glycerin solution (10%) was added to 10% of the final composition weight. The product vaped well but the flavor notes where not as attractive as the tobacco wax of Example A. It was observed that additional flavors could improve the product.
Example EOil from the extraction of tobacco described in Example D was added to the tobacco wax of Example D, and the composition was mixed using strong shear forces. The resulting product vaped well and left very little residue.
Example FTobacco wax from Example A was placed in a vaporizer. A small amount of zero nicotine flavored e-liquid was added to the vaporizer. The two were not otherwise mixed other than to insert them together. The wax and the zero were vaporized together. A fair amount of residue was left by this mix in the vaporizer. The exercise was repeated with a yet smaller amount of e-liquid with improve results including much less residue.
Example GTobacco wax from Example A was compounded with a small amount of sodium carbonate as a buffer agent to effect a more basic pH.
Example HTobacco wax was extracted from flue cured tobacco with low TSNA levels. The extraction was performed using supercritical CO2 extraction. The wax partition was approximately 4% of the mass of the starting tobacco. Tobacco wax was also extracted from burley tobacco with low TSNA levels, again using supercritical CO2 extraction, and again with a yield of approximately 4%.
Example IThe tobacco wax partitions of Example H were blended, at a ratio of 70% flue cured to 30% burley. The combined wax partition was then mixed with vegetable glycerin, for a final composition of 50% tobacco wax, and 50% vegetable glycerin.
Example JThe final composition of example I was sent to a third party laboratory for nicotine testing. The composition was measured to contain 3.3% nicotine, implying that the blended wax partition had a starting nicotine level of 6.6% (prior to dilution with vegetable glycerin). LOQ for the testing was 0.16%.
Example KThe final composition of Example I was sent to a third party laboratory for emissions testing. Results were as follows.
Carbonyls testing results were as follows.
TNSA results were as follows.
The smoke regime for the above testing was: 55 mL puff/30 sec interval/3 sec duration. The composition was vaporized in a vaporization pen, on high heat.
Inventors compared the above results with those publicly available for Philip Morris International's IQOS system (see papers linked from www.pmiscience.com, including inter alia, Zenzen at al. “Reduced exposure evaluation of an Electrically Heated Cigarette Smoking System. Part 2: Smoke chemistry and in vitro toxicological evaluation using smoking regimens reflecting human puffing behavior” Regulatory Toxicology and Pharmacology, Volume 71, Issue 2, March 2015). The inventors concluded that the tobacco wax composition of the present invention provides superior toxicant profile (i.e. substantially lower levels of the measured toxicants) as compared with IQOS. This was particularly notable in the case of formaldehyde, which is considered to be a lower temperature degradant product, and hence one that is difficult to substantially reduce in heat not burn tobacco products (as compared with combustibles). For an excellent discussion of combustion and tobacco, see Thomas McGrath's presentation entitled “What is combustion and why is the absence of combustion important for heat not burn prodicts” (Jun. 16, 2017 presentation at the Global Forum on Nicotine 2017) (available here: https:///gfn.net.co/downloads/Presentations 2017/Dr%20Thomas%20Mc%20Grath.pdtf. All of the above references are hereby incorporated by reference as if fully stated herein.
Whereas McGrath describes reduced toxicant formation (as compared with combustibles) of >90 to >95% (and such results with a less rigorous 2 second puff testing, 55 ml, 30 second intervals), Applicants achieved superior reductions with the above results, i.e. >98% reduction and in many cases below quantifiable limits. Applicants noted that achieving superior toxicant reductions is particularly surprising in view of the multi-billion dollar R&D effort (publicly disclosed) associated with the development of IQOS.
Applicants postulated that the basis for this surprising result may reflect in part reduced energy requirements to volatilize the tobacco wax compositions of the present invention, as compared to the energy requirements needed aerosolize the components contained in the solid matrix which is the reconstituted tobacco comprising the Heat Stick used in IQOS.
Applicants noted that below quantifiable limits indicates that no amount of the analyte exists above the limit of quantification. Thus, in the case of each analyte measuring below quantifiable limits, the analyte is understood to exist at a level ranging from zero to less than the quantifiable limit.
Example LPolysorbate (Tween 20) was added to the composition of Example I, and the resulting composition was placed in 5 ml tubes, alongside of 5 ml tubes filled with the composition of I. It was noted that the addition of polysorbate substantially reduced separation of the vegetable glycerin from the tobacco wax.
Example MA healthy male volunteer vaped the tobacco extracts described in Example H separately, i.e. as flue cured and burley (each with glycerin), and a 70-30 blend (each with glycerin). The blend was particularly pleasant, offered excellent tobacco flavor and rich tobacco satisfaction.
Example NA healthy male volunteer took a Ploom Model 2 device, and removed the tobacco from the product's pod, and replaced this tobacco with the tobacco wax composition of L. The Model 2 was then started in accordance with its directions. The Model 2 has a thirty second warm up period, and reaches an operating temperature of 175 C/347 F. The tobacco wax composition violently vaporized during the warm up phase (the indicating light blinks during said phase), and bubbled out of the mouthpiece. This demonstrated that the tobacco wax composition, in certain embodiments of the present invention, readily vaporizes under 347 F. The inventors attributed the ability of the tobacco wax vaporization to be readily vaporized—using on-off heating (as opposed to a prolonged warm up stage—meaning a warm up stage taking over 3, 4 or 5 seconds).
Claims
1) A system for vaporizing a tobacco wax composition, comprising tobacco wax and at least one a vapor agent, wherein said tobacco composition is contained in a pod.
2) The invention of claim 1 wherein the tobacco wax composition has a nicotine content of greater than 2%.
3) The invention of claim 1, wherein the pod comprises ceramic.
4) The invention of claim 1, wherein the tobacco wax composition comprises at least one selected from the group of: an emulsifying agent, or a surfactant, and the tobacco wax composition is substantially free of separation of the tobacco wax from the vapor agent.
5) The invention of claim 1, wherein the pod has a top porous layer.
6) The invention of claim 1, wherein the mouthpiece has a sleeve.
7) The invention of claim 2, wherein system has vapor emissions with TSNA levels below quantifiable limits on a per puff basis, when measured using: 55 mL puff/30 sec interval/3 sec duration, and the quantifiable limit is 0.20 ng/puff
8) The invention of claim 2, wherein the system as formaldehyde emissions of below quantifiable limits on a per puff basis, when measured using 55 mL puff/30 sec interval/3 sec duration, and the quantifiable limit is 0.20 μL/puff
9) A heat not burn tobacco product, which comprises 30% or more tobacco wax.
10) The product of claim 9, wherein the heat not burn tobacco product substantially vaporizes as a temperature of less than 350 F.
Type: Application
Filed: Jun 30, 2017
Publication Date: Mar 29, 2018
Applicant: BOND STREET MANUFACTURING LLC (a Florida LLC) (Surfside, FL)
Inventors: Joseph Fuisz (Surfside, FL), Seamus Henry (Ft Lauderdale, FL)
Application Number: 15/638,609