Portable Dual Cap Container And Method Of Use

Bottles and containers and methods of use have been disclosed. In an aspect, the bottle comprises a body that includes a first end forming a first aperture and a second end forming a second aperture. The first aperture has a first diameter and the second aperture has a second diameter. The first diameter can be larger than the second diameter. The bottle further includes a first cap removably coupled to the first end of the body and a second cap removably coupled to the second end of the body.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and the benefit of U.S. application patent Ser. No. 29/587,289, filed Dec. 12, 2016, and U.S. application patent Ser. No. 29/587,298, filed Dec. 12, 2016, the entire disclosures of which are hereby incorporated by reference.

TECHNICAL FIELD

This disclosure generally relates to containers for retaining and transporting a product, such as a liquid, solid, or powder product.

BACKGROUND

Supplements, such as protein powders, are used before, during, and after workouts. Transporting these supplements in plastic bags can result in difficulties during transportation and during mixing of the supplements for consumption. In addition, shaker or mixer bottles can be used to hold a serving of the protein powder to which water or a beverage is added before consumption. Among other problems, shaker or mixer bottles are bulky and inconvenient to carry.

SUMMARY

Disclosed herein are implementations of containers for retaining and transporting a product, such as a liquid, solid, or powder product.

In a first aspect, a bottle is disclosed. The bottle comprises: a body that includes a first end forming a first aperture and a second end forming a second aperture, the first aperture having a first diameter and the second aperture having a second diameter, the first diameter being larger than the second diameter; a first cap removably coupled to the first end of the body; and a second cap removably coupled to the second end of the body.

In a second aspect, a portable container is disclosed. The portable container comprises: a hollow body including a base portion including a base aperture defining a first diameter, a finish portion including a finish aperture defining a second diameter smaller than the first diameter, and a transition section positioned between and connecting the base portion and the finish portion; a base cap removably connected to the base portion to cover the base aperture; a finish cap removably connected to the finish portion to cover the finish aperture; and a carrier device removably connected to the finish cap.

In a third aspect, an apparatus for storing and transporting a substance is disclosed. The apparatus comprises: a body including opposing first and second ends, the first end including a first male mating section and the second end including a second male mating section, the first male mating section defining a first opening and a first outer diameter and the second male mating section defining a second opening and a second outer diameter; a first cap including a first female mating section configured and dimensioned to removably receive the first male mating section such that the first cap covers the first opening, the first female mating section defining a third outer diameter larger than the first outer diameter; a second cap including a second female mating section configured and dimensioned to removably receive the second male mating section such that the second cap covers the second opening, the second female mating section defining a fourth outer diameter larger than the second outer diameter; and a carrier configured and dimensioned to removably connect to any of the body, the first cap, and the second cap.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.

FIG. 1 is a perspective side view of an example of a dual cap container according to one embodiment of this disclosure.

FIG. 2 is an exploded perspective view of the embodiment of FIG. 1.

FIG. 3 is an underside view of the second cap of the embodiment of FIG. 1.

FIG. 4 is an exploded perspective view of an example of a dual cap container according to another embodiment of this disclosure.

DETAILED DESCRIPTION

The figures and the following description relate to various embodiments by way of illustration only. It should be noted that from the following description, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of what is claimed.

Embodiments according to this disclosure include a portable and miniature dual cap container or bottle that is adapted to contain a product (also referred to as a substance or material). The portable and miniature dual cap container can be used to carry servings or varying amounts of the product. For example, the portable and miniature dual cap container can be sized to accommodate one, two, or more servings of the product and 30 grams, 60 grams, or more grams of the product. The product may be purchased in individual servings or in bulk in a large container, which is inconvenient and impractical to carry around. For example, the product may be a supplement including but not limited to a protein powder, a whey powder, organic powder, all natural powder, vegan powder, a nutritional powder, a pre-workout powder, nutritional foods, nutritional liquids, and vitamins. Protein powder may be bought in a multiple serving (e.g., 50-serving) large tub or container having a heavy weight (e.g., 3.5 pounds).

A shaker, mixer, blender, or the like bottle (collectively referred to herein as shaker bottle) may be used to carry at least one serving of the product. Shaker bottles usually have capacities of 16, 20, 28, 32, or more or less ounces. As such, they are more portable than, for example, a 3.5-pound large tub or container. A typical use of the shaker bottle may be that a person, using a scoop, pours at least one serving (e.g., two tablespoons or 30 grams) of the supplement powder (e.g., whey protein powder) into the shaker bottle; the person carries the shaker bottle to the gym; after a workout, the person adds water or another liquid (e.g., milk) to the shaker bottle, closes the lid tightly and shakes the shaker bottle to mix the powder with the liquid to form a dietary or nutritional mixture that is consumed. The shaker bottle may be washed after the person consumes the mixture. The shaker bottle may include a whisk ball, which aids in the mixing and may prevent the clumping of the supplement powder during mixing.

Many disadvantages are associated with shaker bottles. Shaker bottles are bulky and inconvenient. Shaker bottle caps can easily crack causing leaks and splashes during shaking. Shaker bottles can be prone to retaining odors when not immediately cleaned. Even if immediately washed, it may be difficult to remove powder sediments accumulated in the bottom and other corners of the shaker bottles. Other disadvantages are associated with shaker bottles. For example, it can be sub-optimal to drink from a shaker bottle due to the large top cap and nozzle area and the whisk ball can be difficult to clean and can be easily lost.

As such, a method and system in accordance with the present disclosure provides a portable container with carrier device (also referred to as a “bottle” or “container”) that does not exhibit the above-mentioned disadvantages. The portable container can be small enough to fit in a pocket or can be easily and efficiently carried on the carrier device (e.g., keychain) attached to the portable container. The container can be clipped or attached to a bag (e.g., gym bag) or an article of clothing (e.g., belt loops) via the keychain. A container according to this disclosure can be used for carrying a small amount of a product, such as one serving of a protein powder. The container is portable and miniature with a dual cap and includes a keychain that can be optional. The design of the container can be shaped to have a similar design as a large tub or container. The container can comprise a plurality of pieces including but not limited to a main hollow body (also referred to as a “body”), a bottom cap coupled to a bottom end of the main hollow body, and a top cap coupled to a top end (that is opposite the bottom end) of the main hollow body. An optional keychain (e.g., carabiner keychain) can be coupled to any of the main hollow body, top cap, and bottom cap.

The container includes a first opening at one end (e.g., a bottom end) for receiving the product. For example, the first opening enables the scooping of one or more servings of the powder into the container from another bulk container. That is, when the bottom cap of the container is removed (e.g., unscrewed), the body of the container (more specifically, a bottom end of the body) can be used to scoop the product into to the body for storage and transportation. The bottom cap can then be reattached to the first opening to secure the product inside the container. As such, the container eliminates the need for a separate scoop, such as one that is used as described above with respect to shaker bottles. The first opening can be closed with different types of mating structures (e.g., the bottom cap) and via different attachment mechanisms (e.g., screwing, clipping, etc.) that seals the first opening. The seal can be airtight.

The container includes a second opening at an opposite end of the one end (e.g., a top end) for transferring or releasing the product into another container or bottle (e.g., a mixing container, a water bottle, a soda bottle, etc.). The second opening can be formed within a portion of the container (e.g., a nozzle also referred to as a finish portion) that is formed within the container proximate to where the container couples with the top cap. In other words, when the top cap is coupled to the body, the top cap can conceal the nozzle portion of the main body. The mixing container can be, for example, a disposable or recyclable standard water bottle that can be found at various grocery markets. As such, the second opening of the container can be substantially similar and slightly smaller (e.g., by one or more microns) in size to that of an opening of a receiving bottle (e.g., a water bottle) to enable the nozzle to be inserted into the receiving bottle. The second opening can be at least slightly smaller than that of the receiving bottle (also referred to as a mixing container) such that the product can be easily poured into the mixing container without causing any of the product to spill outside the mixing container. For example, if the mixing container is a water bottle with an opening size of 0.75 inches, then the second opening of the container can be smaller or equal to 0.75 inches. For example, the second opening can be 0.5 to 0.7 inches. Desirably, the second opening is sized so as to fit into the opening of the mixing container. The second opening can be sealed with a cap. The term ‘substantially’ as used herein can include but is not limited to variations on the order ±20%.

A typical use of the portable dual cap container comprising the main body, the top cap removably coupled to the main body, and the bottom cap removably coupled to the main body can include the steps of: removing the bottom cap to expose the first opening of the main body; using the initially altered dual cap container (that now only includes the main body and the top cap coupled to the main body because the bottom cap has been removed/detached) as a scoop to scoop an amount (e.g., a small amount, at least one serving, more than two servings, etc.) of product (e.g., supplement powder) from a large tub or container into the initially altered dual cap container for storage and/or transportation; resealing the first opening by coupling or reattaching the bottom cap back to the main body to provide the dual cap container in original form factor; when ready to consume the product housed or stored within the dual cap container in original form factor, removing the top cap to expose the second opening formed via a nozzle portion of the main body; pouring or releasing or dumping the product from the subsequently altered dual cap container (that now only includes the main body and the bottom cap coupled to the main body because the top cap has been removed/detached), via the second opening formed by the nozzle portion, into a water or drink bottle with an opening that is slightly larger in diameter than the diameter of the nozzle portion (i.e., so that the nozzle portion can be inserted into the opening of the water or drink bottle) where the product can be mixed with the liquid of the water or drink bottle; and resealing the second opening with the top cap to reform the dual cap container in original form factor for future usage.

FIG. 1 is a perspective side view of a dual cap container 100 according to one embodiment of this disclosure. The dual cap container 100 can be structured as a container or as a bottle. The dual cap container 100 is in a closed state. As such, the dual cap container 100 includes a body 102, a shoulder 104 (also referred to as a transition portion), a first cap 106 (also referred to as a bottom cap), and a second cap 108 (also referred to as a top cap). The body 102 can be generally vertical with a constant outer diameter. The shoulder can have a variable outer diameter and decreases in diameter as the shoulder moves away from the first cap 106 and towards the second cap 108. The body 102 is shown as circular but can also be shaped to be in a variety of shapes including but not limited to square, rectangle, elongated cylindrical, hexagonal, trapezoidal, and other shapes.

The first cap 106 is removably connected or coupled or attached (e.g., via screwing, clipping, snapping, etc.) to a bottom end of the dual cap container 100 proximate to the body 102. The first cap 106 can be used as a base upon which the dual cap container 100 can rest or stand. The first cap 106 can be removed from the dual cap container 100 to expose a first opening (also referred to as a first aperture) of the dual cap container 100. As mentioned above, the removal of the first opening enables the dual cap container 100 to be used to scoop a product, such as from a bulk container, into an internal chamber of the dual cap container 100. As the first cap 106 can be used as a base, a surface of the first cap 106 which can rest on a horizontal surface is closed such that, when the first cap 106 is connected to the body 102, and the dual cap container 100 is rested on a horizontal surface and the product contained therein is retained inside the dual cap container 100.

The second cap 108 is removably connected or coupled or attached (e.g., via screwing, clipping, snapping, etc.) to a top end of the dual cap container 100 proximate to the shoulder 104. The second cap 108 can be removed to expose a second opening (e.g., second opening 123 shown in FIG. 2) of the dual cap container 100. The top end of the dual cap container 100 includes a nozzle or finish portion (not shown in FIG. 1) that is concealed when the second cap 108 is coupled to the top end of the dual cap container 100. The nozzle or finish portion includes the second opening (also referred to as a second aperture). As mentioned above, the second opening can be used to transfer the product stored within the dual cap container 100 to another container, such as to a mixing container, which may be a water bottle. The product can be transferred to the mixing container by inserting the nozzle of the dual cap container 100 into an opening or aperture of the mixing container.

The shoulder 104 can include a stopper 110. The stopper 110 can be shaped as a ring around the top end of the dual cap container 100 that interfaces between the top end of the dual cap container 100 and the second cap 108 when the second cap 108 is attached. The stopper 110 is optional as the second cap 108 can be coupled to the top end of the dual cap container 100 so that the second cap would interface more directly or closely with the shoulder 104. The body 102 and the shoulder 104 of the dual cap container 100 can be formed as one continuous piece. Therefore, the dual cap container 100 can include separate pieces comprising the first cap 106 (i.e., the bottom cap), the body 102 and shoulder 104 continuous piece, the second cap 108, and a carrier device. As such, the shoulder 104 can have the same body diameter at a point 112 as the body 102. The shoulder 104 can slope inwardly toward the center of the dual cap container 100 such that the shoulder 104 has a second diameter (closer to the stopper 110 and away from the point 112) that is smaller than the constant diameter of the body 102. The shoulder 104 connects to the nozzle (not shown) with the stopper 110 acting as an intermediary structure.

In some embodiments, the dual cap container 100 can include a carrier device 116. The carrier device 116 can comprise a variety of devices including but not limited to a keychain, a carabiner keychain, a lanyard, a rope, a ring, a metal ring, and any combination thereof. The carrier device 116 can be attached to a top surface 118 of the second cap 108. The top surface 118 is a side of the second cap 108 that is opposite the side that is removably connected to the dual cap container 100 (e.g., via the nozzle). The top surface 118 comprises an outer surface of the second cap 108. The second cap 108 (i.e., the top cap) includes an inner surface (not shown) that comes into contact with the nozzle of the dual cap container 100.

The dual cap container 100 can be shaped to be a miniature sized container. In an embodiment that does not include the carrier device 116 (e.g., a carabiner keychain), the dual cap container 100, when the first cap 106 is attached to the body 102 and the second cap 108 is attached to the top end of the dual cap container 100, can be two to four inches in height with a body diameter that can be 1.5 to two inches. Other dimensions are also possible. In other embodiments, a length of body and the body diameter of the body 102 can be such that the body 102 is of sufficient volume to hold a desired amount of the product (e.g., one or two serving of protein powder). The diameter of an opening of the nozzle can also be varied based on varying openings of receiving devices.

FIG. 2 is an exploded perspective view of the embodiment of FIG. 1. FIG. 2 illustrates an exploded view of the dual cap container 100 of FIG. 1. Descriptions of elements with the same numerals as those of FIG. 1 are omitted.

The first cap 106 includes a first female mating structure 126 (also referred to as an internal mating structure) via which the first cap 106 can be removably connected to the body 102 via a first male mating structure 121 of the body 102. The first female mating structure 126 can include a first set of threaded screws and the first male mating structure 121 can include a set of threaded screws corresponding to the first set of threaded screws. The body 102 includes a ledge 120 and the first male mating structure 121 (also referred to as an external mating structure). The first cap 106 is removably connected to the body 102 by mating the first female mating structure 126 to the first male mating structure 121. The ledge 120 is a recess between the first male mating structure 121 and an outer wall of the body 102. In some implementations, the first male mating structure 121 and the first female mating structure 126 are threading mating structures. The first female mating structure 126 can be an interior threading that is formed on at least a portion of an interior wall of the first cap 106 (i.e., around an inner circumference of the first cap 106) such that when the first female mating structure 126 is mated with the first male mating structure 121, the exterior walls of the first cap 106 and the body 102 are aligned. In some implementations, the first cap 106 can include a different type of mating structure (e.g., a male mating structure) and the bottom end of the body 102 can include a different type of mating structure (e.g., a female mating structure).

The nozzle 114 (also referred to as a finish section) is shown to be positioned above the stopper 110 (also referred to as a collar) and a lip 124. The lip 124 borders the second opening 123 via which the product contained in the dual cap container 100 can be transferred out, poured out, or the like, such as to a mixing container. An outside wall of the nozzle 114 forms a mating structure (e.g., a male mating structure) that can be mated with a corresponding mating structure (e.g., a female mating structure) of the second cap 108 to seal or cover the second opening 123. The seal can be airtight. The stopper 110 includes a first collar side (not shown) and a second collar side 125. The first collar side is connected to the shoulder 104 and the second collar side 125 is connected to the nozzle 114. The mating structure of the nozzle 114 can include a threaded section that corresponds to a threaded section of the mating structure of the second cap 108.

FIG. 3 is an underside view of the second cap 108 of the embodiment of FIG. 1. FIG. 3 depicts a perspective view 310 and a bottom view 320 of the second cap 108. The perspective view 310 shows an inner second cap wall 128, a gap 130, an outer second cap wall 132, and a portion of a bottom surface of the second cap 108. The gap 130 is an area between the inner second cap wall 128 and the outer second cap wall 132. The inner second cap wall 128 borders or contains a mating structure of the second cap 108 (e.g., female mating structure) that receives the nozzle 114 of the dual cap container 100 (i.e., receiving the male mating structure of the nozzle 114). In some implementations, the female mating structure of the inner second cap wall 128 includes a threading structure formed on an inside wall of the inner second cap wall 128 such that the second cap 108 can be mated with a threading structure formed on an outside wall of the nozzle 114 serving as a corresponding male mating structure. When the second cap 108 is coupled to the nozzle 114 of the dual cap container 100, the second cap 108 can rest or come in close proximity or form an airtight seal with the stopper 110. In some implementations, the gap 130 can be such that the outer second cap wall 132 aligns with an outer circumference of the second collar side 125. In FIG. 3, the portion of the nozzle 114 shown is not part of the second cap 108. The bottom view 320 reveals the inner second cap wall 128, the gap 130, and the outer second cap wall 132.

In some implementations, a dual cap container according to this disclosure does not include the stopper 110 between the shoulder 104 and the nozzle 114. As such, the nozzle 114 connects to the shoulder 104 at the point 112. In some implementations, the second cap 108 does not include the gap 130. As such, there is only one wall of the second cap 108 instead of separate walls comprising the inner second cap wall 128 and the outer second cap wall 132.

FIG. 4 is an exploded perspective view of an example of a dual cap container 400 according to another embodiment of this disclosure. The dual cap container 400 can include similar structures as the dual cap container 100. Descriptions of elements with the same numerals as those of FIG. 1 are omitted. The dual cap container 400 differs from the from the dual cap container 100, mainly, in that the dual cap container 400 does not include a shoulder component (e.g., the shoulder 104 of FIG. 1), and does not include a stopper (e.g., the stopper 110). By not including a shoulder component, the dual cap container 100 forms a straight-edge design (i.e., there is a vertical straight-edge aligning the first cap 106, the body 102, and the second cap 108). In the dual cap container 400, a top body side 402 of the body 102 encloses the side of the body 102 that is opposite the side (i.e., bottom side) that includes the first female mating structure 126. The nozzle 114 is connected to the top body side 402. In some implementations, the centers of the nozzle 114 and the top body side 402 are aligned. The nozzle 114 includes an opening for releasing contents of the dual cap container 400 into a receiving device. The diameter of the opening can be the same as the diameter of the second opening 123 or can be varied. Additionally, when the second cap 108 is mated with the nozzle 114, the second cap 108 can rest on the top body side 402 or come in close contact or form an airtight seal. In some implementations, the outer second cap wall 132 can align with an outer circumference of the top body side 402. In other words, they can share the same or a similar diameter.

In another embodiment, the portable dual cap container can be an elongated bottle (e.g., the same height and size as a water bottle). As such, the elongated portable dual cap container can have a capacity of 20, 28, 32 ounces. The elongated portable dual cap container can have larger or smaller volumes. In some implementations, the elongated portable dual cap container can have downward tapered sides or have a continuous outer diameter. The elongated portable dual cap container have come in varying shapes including but not limited to a cylindrical shape resembling that of a shaker bottle. The elongated portable dual cap container can include a mixer ball for mixing housed contents.

The body defines an interior chamber that can house a substance. The bottle can be formed from a material that is impermeable to fluids. The material can be a plastic material (e.g., PET, PETE, HDPE, PVC, LDPE, PP, PS) that is BPA free and recyclable. The material can also be other materials that can be used to store and/or transport food and/or fluids including but not limited to glass and certain spill proof fabrics.

An embodiment according to this disclosure is a bottle. The bottle comprises a body, the body including a first end forming a first aperture and a second end forming a second aperture, the first aperture having a first diameter and the second aperture having a second diameter, the first diameter being larger than the second diameter; a first cap removably coupled to the first end of the body; and a second cap removably coupled to the second end of the body. In some implementations, the bottle further comprises a carrier device removably coupled to the second cap.

The first cap includes a first threaded section and the first end of the body includes a second threaded section, the first and the second threaded sections being configured and dimensioned for engagement such that the first cap is attachable to and removable from the first end of the body by rotation. The second cap includes a third threaded section and the second end of the body includes a fourth threaded section, the third and the fourth threaded sections being configured and dimensioned for engagement such that the second cap is attachable to and removable from the second end of the body by rotation.

The second end of the body includes a male mating portion, the male mating portion defining the second aperture and including the fourth threaded section. The male mating portion is removably inserted into an opening of a receiving device to release a substance into the receiving device. The body defines an interior chamber that houses the substance. The bottle is formed from a material that is impermeable to fluids. The body includes a main body portion having a constant outer diameter and a transition portion having a variable outer diameter. In some implementations, the bottle further comprises a stopper configured and dimensioned for engagement with the second cap, the stopper being positioned between the transition portion of the body and the second aperture. The transition portion includes a first end positioned adjacent the main body portion and a second end positioned adjacent the stopper, an outer diameter of the transition portion decreasing from the first end to the second end.

The second cap includes an outer ring portion defining a first inner diameter and an inner ring portion defining a second inner diameter, the first inner diameter being larger than the second inner diameter, the inner ring portion including the fourth threaded section. An outer diameter of the male mating portion is smaller than the second inner diameter such that the male mating portion is received by a female mating portion of the inner ring portion, and an outer diameter of the stopper is similar to the first inner diameter such that the stopper is substantially flush with the second cap. The second cap includes a receiver configured and dimensioned for mechanical connection to the carrier device such that the carrier device is attachable to and removable from the receiver, the receiver defining an opening configured and dimensioned to receive the carrier device. The carrier device comprises a carabiner keychain coupled to a ring, the ring configured and dimensioned for removable positioning within the opening defined by the receiver to facilitate the mechanical connection of the carrier device to the receiver.

Another embodiment according to this disclosure is a portable container. The portable container comprises a hollow body including a base portion including a base aperture defining a first diameter, a finish portion including a finish aperture defining a second diameter smaller than the first diameter, and a transition section positioned between and connecting the base portion and the finish portion; a base cap removably connected to the base portion to cover the base aperture; a finish cap removably connected to the finish portion to cover the finish aperture; and a carrier device removably connected to the finish cap. The base cap is removably connected to the base portion via screw threads positioned on an inner circumference of the base cap and an outer circumference of the base portion. The finish cap is removably connected to the finish portion via screw threads positioned on an inner circumference of the finish cap and an outer circumference of the finish portion.

Another embodiment according to this disclosure is an apparatus for storing and transporting a substance. The apparatus comprises a body including opposing first and second ends, the first end including a first male mating section and the second end including a second male mating section, the first male mating section defining a first opening and a first outer diameter and the second male mating section defining a second opening and a second outer diameter; a first cap including a first female mating section configured and dimensioned to removably receive the first male mating section such that the first cap covers the first opening, the first female mating section defining a third outer diameter larger than the first outer diameter; a second cap including a second female mating section configured and dimensioned to removably receive the second male mating section such that the second cap covers the second opening, the second female mating section defining a fourth outer diameter larger than the second outer diameter; and a carrier configured and dimensioned to removably connect to any of the body, the first cap, and the second cap. A diameter of a top surface of the first cap is larger than a diameter of a top surface of the second cap.

While the disclosure has been described in connection with certain embodiments, it is to be understood that the disclosure is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

Claims

1. A bottle, comprising:

a body, the body including a first end forming a first aperture and a second end forming a second aperture, the first aperture having a first diameter and the second aperture having a second diameter, the first diameter being larger than the second diameter;
a first cap removably coupled to the first end of the body; and
a second cap removably coupled to the second end of the body.

2. The bottle of claim 1, further comprising:

a carrier device removably coupled to the second cap.

3. The bottle of claim 1, wherein the first cap includes a first threaded section and the first end of the body includes a second threaded section, the first and the second threaded sections being configured and dimensioned for engagement such that the first cap is attachable to and removable from the first end of the body by rotation.

4. The bottle of claim 1, wherein the second cap includes a third threaded section and the second end of the body includes a fourth threaded section, the third and the fourth threaded sections being configured and dimensioned for engagement such that the second cap is attachable to and removable from the second end of the body by rotation.

5. The bottle of claim 4, wherein the second end of the body includes a male mating portion, the male mating portion defining the second aperture and including the fourth threaded section.

6. The bottle of claim 5, wherein the male mating portion is removably inserted into an opening of a receiving device to release a substance into the receiving device.

7. The bottle of claim 6, wherein the body defines an interior chamber that houses the substance.

8. The bottle of claim 7, wherein the bottle is formed from a material that is impermeable to fluids.

9. The bottle of claim 5, wherein the body includes a main body portion having a constant outer diameter and a transition portion having a variable outer diameter.

10. The bottle of claim 9, further comprising:

a stopper configured and dimensioned for engagement with the second cap, the stopper being positioned between the transition portion of the body and the second aperture.

11. The bottle of claim 10, wherein the transition portion includes a first end positioned adjacent the main body portion and a second end positioned adjacent the stopper, an outer diameter of the transition portion decreasing from the first end to the second end.

12. The bottle of claim 5, wherein the second cap includes an outer ring portion defining a first inner diameter and an inner ring portion defining a second inner diameter, the first inner diameter being larger than the second inner diameter, the inner ring portion including the fourth threaded section.

13. The bottle of claim 12, wherein an outer diameter of the male mating portion is smaller than the second inner diameter such that the male mating portion is received by a female mating portion of the inner ring portion, and an outer diameter of a stopper is similar to the first inner diameter such that the stopper is substantially flush with the second cap.

14. The bottle of claim 2, wherein the second cap includes a receiver configured and dimensioned for mechanical connection to the carrier device such that the carrier device is attachable to and removable from the receiver, the receiver defining an opening configured and dimensioned to receive the carrier device.

15. The bottle of claim 14, wherein the carrier device comprises a carabiner keychain coupled to a ring, the ring configured and dimensioned for removable positioning within the opening defined by the receiver to facilitate the mechanical connection of the carrier device to the receiver.

16. A portable container, comprising:

a hollow body including: a base portion including a base aperture defining a first diameter, a finish portion including a finish aperture defining a second diameter smaller than the first diameter, and a transition section positioned between and connecting the base portion and the finish portion;
a base cap removably connected to the base portion to cover the base aperture;
a finish cap removably connected to the finish portion to cover the finish aperture; and
a carrier device removably connected to the finish cap.

17. The portable container of claim 16, wherein the base cap is removably connected to the base portion via screw threads positioned on an inner circumference of the base cap and an outer circumference of the base portion.

18. The portable container of claim 16, wherein the finish cap is removably connected to the finish portion via screw threads positioned on an inner circumference of the finish cap and an outer circumference of the finish portion.

19. An apparatus for storing and transporting a substance, comprising:

a body including opposing first and second ends, the first end including a first male mating section and the second end including a second male mating section, the first male mating section defining a first opening and a first outer diameter and the second male mating section defining a second opening and a second outer diameter;
a first cap including a first female mating section configured and dimensioned to removably receive the first male mating section such that the first cap covers the first opening, the first female mating section defining a third outer diameter larger than the first outer diameter;
a second cap including a second female mating section configured and dimensioned to removably receive the second male mating section such that the second cap covers the second opening, the second female mating section defining a fourth outer diameter larger than the second outer diameter; and
a carrier configured and dimensioned to removably connect to any of the body, the first cap, and the second cap.

20. The apparatus of claim 19, wherein a diameter of a top surface of the first cap is larger than a diameter of a top surface of the second cap.

Patent History
Publication number: 20180162582
Type: Application
Filed: Dec 12, 2017
Publication Date: Jun 14, 2018
Inventors: Farbod Deylamian (New York, NY), David Jacobsen (San Diego, CA), Kyle Lewis (San Mateo, CA), Kayvon Pourmirzaie (San Jose, CA)
Application Number: 15/839,328
Classifications
International Classification: B65D 1/06 (20060101); B65D 23/12 (20060101); B65D 41/04 (20060101); B65D 83/06 (20060101);