ROBOTIC ACCESSORY MOUNTING ASSEMBLY
A robotic accessory mounting assembly used in connection with a robot to attach an accessory to the robot, the mounting assembly including a cable connected to an implement mounted on the robot; the cable having a cable length; the implement including a first component having a first length, wherein the implement with the first component has an implement length that corresponds to the cable length; and a second component adapted to replace the first component, the second component having a length less than the first component, wherein replacement of the first component with the second component reduces the implement length defining a clearance relative to the cable length to receive an accessory mount in-line with the implement.
This U.S. patent application is a continuation of U.S. patent application Ser. No. 14/032,795 filed on Sep. 20, 2013 and published as U.S. Published Patent Application No. 2014/0374399 A1 published on Dec. 25, 2014 which is incorporated herein by reference in its entirety and claims priority to and the benefit of U.S. provisional patent application Ser. No. 61/837,365 filed on Jun. 20, 2013 which is also incorporated herein by reference in its entirety.
FIELDEmbodiments of the present invention generally relate to a robotic welding system and more particularly to a robotic accessory mounting assembly for a welding system.
BACKGROUNDIf an accessory is attached in-line with a robot manipulator and implement, its thickness effectively increases the length of the manipulator and implement. A cable associated with the implement may not be designed to accommodate the additional length of the accessory and, therefore, the cable is too short and does not have sufficient slack to accommodate movement of the implement. As a result, the robot may bind or the cable may wear or fail prematurely. Providing a custom length cable in such instances is one possible solution.
SUMMARYOne embodiment generally provides a robotic accessory mounting assembly used in connection with a robot to attach an accessory to the robot, the mounting assembly including a cable connected to an implement mounted on the robot; the cable having a cable length; the implement including a first component having a first length, wherein the implement with the first component has an implement length that corresponds to the cable length; and a second component adapted to replace the first component, the second component having a length less than the first component, wherein replacement of the first component with the second component (i.e., the components are substitutable with each other) reduces the implement length defining a clearance relative to the cable length to receive an accessory mount in-line with the implement.
One embodiment provides a robotic accessory mounting assembly for attaching an accessory having an accessory mount to the robot in line with an implement, the robotic accessory mount including a component attachable to the implement in a first configuration having a first length corresponding to a length of a cable extending from the robot and connected to the implement and a second configuration having a second length less than the first length defining a clearance for receipt of the accessory mount.
One embodiment provides a robot accessory mounting assembly for attaching an accessory to a robot, the robot accessory mounting assembly including an implement having a component supported on an end of the robot and having a power cable extending there-along; and means for reducing the length of the component to provide a clearance relative to the cable for receiving the accessory in line with the implement.
Numerous aspects of the general inventive concepts will become readily apparent from the following detailed description of exemplary embodiments, from the claims, and from the accompanying drawings.
The following description and the annexed drawings set forth in detail certain illustrated aspects of the claimed subject matter. These aspects illustrate, however, but a few of the various ways in which the principles of the innovation may be employed and the claimed subject matter is intended to include all such aspects and their equivalents. Other advantages and novel features of the claimed subject matter will become apparent from the following detailed description of the innovation when considered in conjunction with the drawings.
As used herein, spatially orienting terms such as “above,” “below,” “upper,” “lower,” “inner,” “outer,” “right,” “left,” “vertical,” “horizontal,” “top,” “bottom,” “upward,” “downward,” “laterally,” “upstanding,” et cetera, can refer to respective positions of aspects as shown in or according to the orientation of the accompanying drawings. “Inward” is intended to be a direction generally toward the center of an object from a point remote to the object, and “outward” is intended to be a direction generally away from an internal point in the object toward a point remote to the object. Such terms are employed for purposes of clarity in describing the drawings, and should not be construed as exclusive, exhaustive, or otherwise limiting with regard to position, orientation, perspective, configuration, and so forth.
A welding system according to one embodiment is generally indicated by the number 10 in the drawings. Welding system 10 incorporates a robot 15. Robot 15 is any system for manipulating the position of the welding torch or simply torch T relative to a workpiece WP and may take on a variety of forms. In the example shown, robot R includes a manipulator 20 having one or more joints 25 (
As best seen in
It may be desirable to add an accessory. The need to add an accessory, however, may vary depending on the customers, and often the decision to add an accessory is made by the customer without consulting the manufacturer of the welding system. The type of accessory also may vary based on a particular customer's needs. The examples of accessories discussed herein, therefore, should not be considered limiting. Example accessories include but are not limited to vision systems and material handling tools.
When the accessory is attached in-line with the robot manipulator and implement, its thickness effectively increases the length of the manipulator and implement. Since the cable C is not designed to accommodate the additional length LA of the accessory, the cable is too short and does not have sufficient slack to accommodate movement of the implement. As a result, the robot may bind or the cable may wear or fail prematurely. Providing a custom length cable in such instances is one possible solution. Alternatively according to an embodiment of the present invention, a longer standard cable may be produced. This allows production of the longer cable in quantity to facilitate good cable tolerances and to provide a ready supply of replacement cables. This also aids in continued support of the welding system. For example, when a service technician may not be aware of any accessories added to the system, whether a custom cable had previously been used, or other circumstances that would cause the service technician to order the wrong sized cable.
To accommodate a longer standard cable and to allow accessories to be added, the length of the implement is adjusted. To add an accessory in-line with the implement, the length of the implement must be reduced to accommodate the length of the accessory at the point of attachment. The embodiments depicted show three approaches to adjusting the implement length. The embodiments shown in
Each embodiment will be described more completely below. These embodiments are not limiting as other configurations will be apparent to one of ordinary skill in view of the teachings provided herein.
With reference to
In general, implement 100 defines at least one passage 105 that receives the power cable C. Passage 105 may also receive wire from a feeder F and/or shielding gas depending on the type of welding performed by welding system 10. Passage 105 may also accommodate sensor wires or other conduits required by the welding system. Alternatively, additional passages may be defined within implement 100.
The passage 105 may be formed completely within the interior of implement 100, as shown, or be formed by a recessed surface on implement or a surface projecting outward from implement 100. Implement 100 includes one or more components (e.g., substitutable components having differing lengths) which define the implement length. As best shown in
As discussed more completely below, to accommodate a longer standard cable C, the components define a first length that corresponds to the cable length LC. Likewise, one or more of the components of the implement 100 can be shortened to provide a clearance for an accessory A. To attach the accessory A in-line with the implement, the accessory A may be attached to the end 30 of manipulator 20 or to a component within implement 100.
In the example depicted in the figures, implement is a welding torch. As best shown in
Cable C may be electrically connected to housing 101, which in turn is electrically connected to torch T by way of the nose 110. To that end, housing 101 and nose 110 may be constructed of a conductive material, for example, aluminum, copper or brass. It will be appreciated that electrical connection of the cable C to torch T may be achieved in other manners such that housing 101 and nose 110 may be constructed of non-conductive materials such that any material may be used.
An insulator may be provided between housing 101 and end 30 of manipulator 20 to electrically separate the torch T from manipulator 20. In addition, a buffer may be provided to protect the end 30 of manipulator 20 from impacts to the implement 100. The buffer may be made of a material that will absorb the impact, crush, or breakaway to reduce the likelihood of damage to the manipulator 20. In the example shown, the buffer is a disk 120. While the disk shown has a circular shape, this shape is not limiting. The disk 120 may have any shape. The disk also may be constructed of any suitable material or configuration to allow it to absorb an impact, crush, or breakaway to reduce the likelihood of damage to the manipulator 20, housing 101 or torch T. In the example shown, the disk 120 is designed to breakaway and is constructed of a material that is not as strong as housing 101. Optionally, as shown, disk 120 may be constructed of an insulative material, and serve as an insulator and a buffer. In the example shown, the disk is constructed of nylon to act as an insulator and a buffer. This example is not limiting as other materials may be used to serve both purposes including but not limited to other wood, other pulp products, rubber, other elastomeric materials, ceramics, glass, foam, plastics, other polymer materials, and combinations thereof.
Other polymer materials may include but are not limited to thermoplastics, thermosets, terpolymers, and/or polymers. Polymers of monoolefins and diolefins, for example would include polypropylene, polyisobutylene, polybutene-1, polymethylpentene-1, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), low density polyethylene (LDPE) and linear low density polyethylene (LLDPE) may be used. Mixtures of these polymers, for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE), may also be used. Also useful are copolymers of monoolefins and diolefins with each other or with other vinyl monomers, such as, for example, ethylene/propylene, LLDPE and its mixtures with LDPE, propylene/butene-1, ethylene/hexene, ethylene/ethyl pentene, ethylene/heptene, ethylene/octene, propylene/butadiene, isobutylene/isoprene, ethylene/alkyl acrylates, ethylene/alkyl methacrylates, ethylene/vinyl acetate (EVA) or ethylene/acrylic acid copolymers (EAA) and their salts (ionomers) and terpolymers of ethylene with propylene and a diene, such as hexadiene, dicyclopentadiene or ethylidene-norbornene; as well as mixtures of such copolymers and their mixtures with polymers mentioned above, for example polypropylene/ethylene-propylene copolymers, LDPE/EVA, LDPE/EAA, LLDPE/EVA and LLDPE/EAA.
Thermoplastic polymers may also include styrenic polymers, such as polystyrene, poly-(p-methylstyrene), poly(.alpha.-methylstyrene), copolymers of styrene, p-methylstyrene or alpha-methylstyrene with dienes or acrylic derivatives, such as, for example, styrene/butadiene, styrene/acrylonitrile, styrene/alkyl methacrylate, styrene/maleic anhydride, styrene/butadiene/ethyl acrylate, styrene/acrylonitrile/methacrylate; mixtures of high impact strength from styrene copolymers and another polymer, such as, for example, from a polyacrylate, a diene polymer or an ethylene/propylene/diene terpolymer; and block copolymers of styrene, such as, for example, styrene/butadiene/styrene, styrene/isoprene/styrene, styrene/ethylene/butylene/styrene or styrene/ethylene/propylene/styrene. Styrenic polymers may additionally or alternatively include graft copolymers of styrene or alpha-methylstyrene such as, for example, styrene on polybutadiene, styrene on polybutadiene-styrene or polybutadiene-acrylonitrile; styrene and acrylonitrile (or methacrylonitrile) on polybutadiene; styrene and maleic anhydride or maleimide on polybutadiene; styrene, acrylonitrile and maleic anhydride or maleimide on polybutadiene; styrene, acrylonitrile and methyl methacrylate on polybutadiene, styrene and alkyl acrylates or methacrylates on polybutadiene, styrene and acrylonitrile on ethylene/propylene/diene terpolymers, styrene and acrylonitrile on polyacrylates or polymethacrylates, styrene and acrylonitrile on acrylate/butadiene copolymers, as well as mixtures of the styrenic copolymers indicated above.
Nitrile polymers are also useful. These include homopolymers and copolymers of acrylonitrile and its analogs such as methacrylonitrile, such as polyacrylonitrile, acrylonitrile/butadiene polymers, acrylonitrile/alkyl acrylate polymers, acrylonitrile/alkyl methacrylate/butadiene polymers, acrylonitrile/butadiene/styrene (ABS), and ABS which includes methacrylonitrile.
Polymers based on acrylic acids, such as acrylic acid, methacrylic acid, methyl methacrylate acid and ethacrylic acid and esters thereof may also be used. Such polymers include polymethylmethacrylate, and ABS-type graft copolymers wherein all or part of the acrylonitrile-type monomer has been replaced by an acrylic acid ester or an acrylic acid amide. Polymers including other acrylic-type monomers, such as acrolein, methacrolein, acrylamide and methacrylamide may also be used.
Halogen-containing polymers may also be useful. These include resins such as polychloroprene, epichlorohydrin homopolymers and copolymers, polyvinyl chloride, polyvinyl bromide, polyvinyl fluoride, polyvinylidene chloride, chlorinated polyethylene, chlorinated polypropylene, fluorinated polyvinylidene, brominated polyethylene, chlorinated rubber, vinyl chloride-vinylacetate copolymer, vinyl chloride-ethylene copolymer, vinyl chloride propylene copolymer, vinyl chloride-styrene copolymer, vinyl chloride-isobutylene copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-styrene-maleic anhydride tercopolymer, vinyl chloride-styrene-acrylonitrile copolymer, vinyl chloride-isoprene copolymer, vinyl chloride-chlorinated propylene copolymer, vinyl chloride-vinylidene chloride-vinyl acetate tercopolymer, vinyl chloride-acrylic acid ester copolymers, vinyl chloride-maleic acid ester copolymers, vinyl chloride-methacrylic acid ester copolymers, vinyl chloride-acrylonitrile copolymer and internally plasticized polyvinyl chloride.
Other useful thermoplastic polymers include homopolymers and copolymers of cyclic ethers, such as polyalkylene glycols, polyethylene oxide, polypropylene oxide or copolymers thereof with bis-glycidyl ethers; polyacetals, such as polyoxymethylene and those polyoxymethylene which contain ethylene oxide as a comonomer; polyacetals modified with thermoplastic polyurethanes, acrylates or methacrylonitrile containing ABS; polyphenylene oxides and sulfides, and mixtures of polyphenylene oxides with polystyrene or polyamides; polycarbonates and polyester-carbonates; polysulfones, polyethersulfones and polyetherketones; and polyesters which are derived from dicarboxylic acid and diols and/or from hydroxycarboxylic acids or the corresponding lactones, such as polyethylene terephthalate, polybutylene terephthalate, poly-1,4-dimethyliol-cyclohexane terephthalate, poly-[2,2,4-(4-hydroxyphenyl)-propane]terephthalate and polyhydroxybenzoates as well as block copolyetheresters derived from polyethers having hydroxyl end groups.
Polyamides and copolyamides which are derived from diamines and dicarboxylic acids and/or from aminocarboxylic acids or the corresponding lactams, such as polyamide-4, polyamide-6, polyamide-6/6, polyamide-6/10, polyamide-6/9, polyamide-6/12, polyamide-4/6, polyamide-11, polyamide-12, aromatic polyamides obtained by condensation of m-xylene, diamine and adipic acid; polyamides prepared from hexamethylene diamine and isophthalic and/or terephthalic acid and optionally an elastomer as modifier, for example, poly-2,4,4-trimethylhexamethylene terephthalamide or poly-m-phenylene isophthalamide may be useful. Further copolymers of the aforementioned polyamides with poly-olefins, olefin copolymers, ionomers or chemically bonded or grafted elastomers; or with polyethers, such as for instance, with polyethylene glycol, polypropylene glycol or polytetramethylene glycols, and polyamides or copolyamides modified with EPDM or ABS may be used.
As best seen in
According to one embodiment of the invention, to adjust the length of implement 100 to accommodate in-line attachment of an accessory A, the length of disk 120 is adjusted. With reference to
With respect to the disk, a standard disk 120 has a preselected length corresponding to the length of housing 101 and nose 110 being attached to robot 15 and the overall length of cable C with allowance for any slack. To provide clearance for the mounting of an accessory, a disk having a shorter length than the standard length disk may be substituted for the standard length disk. For example, disk 120A is 0.25 inch shorter than standard disk 120 providing 0.25 inch clearance for an accessory mount. Disk 120B is 0.50 inch shorter than disk 120 providing a 0.50 inch clearance for an accessory mount. Therefore, disks 120, 120A and 120B are substitutable with each other, depending on the clearance needed for mounting of an accessory.
The standard disk and/or replacement disk having a length less than the standard housing may be sold as a kit. For example, an accessory mounting kit for a robotic welding system may include at least one disk (e.g., a plurality of substitutable disks) having a length less than the standard disk. The at least one disk would be adapted to replace the standard disk and define an accessory mount clearance relative to the length of the cable. The kit may include one or more additional disks having a length different than a first disk in the kit to provide a different clearance than the first disk. For example, a kit may include a first disk having a first length and a second disk having a second length, where the first disk is 0.25 inch shorter than a standard disk, and the second disk is 0.25 inch shorter than the first disk. It will be appreciated that larger and smaller increments may be used. To facilitate retrofitting to existing systems, the kit may include a replacement cable that is longer than the cable in the welding system being retrofitted a standard disk having a length that corresponds to the length of the replacement cable, and at least one replacement disk having a length less than the standard disk to define a clearance for mounting an accessory.
While the implement described herein is a welding implement, it will be appreciated the concepts may be applied to non-welding applications where a cable provides power to the implement attached to a robot, and an accessory is attached in line with the implement.
According to another embodiment of the invention, to adjust the length of implement 100 to accommodate in-line attachment of an accessory A, the length of housing 101 is adjusted. With reference to
With respect to the housing 101, a standard housing 101 has a preselected length corresponding to the length of the disk and nose 110 being attached to robot 15 and the overall length of cable C with allowance for any slack. It is anticipated that in some configurations, the nose or disk may be omitted based on the torch design and the attachment of the torch. In these instances the length of the housing may be greater to account for the omitted item(s) or the cable length LC may be shorter.
To provide clearance for the mounting of an accessory, a housing having a shorter length than the standard length housing may be substituted for the standard length housing 101. For example, housing 101A is 0.25 inch shorter than standard housing 101 providing 0.25 inch clearance for an accessory mount. Housing 101B is 0.50 inch shorter than housing 101 providing a 0.50 inch clearance for an accessory mount.
In accordance with another embodiment of the invention, rather than adjusting the length of the housing 101 or disk 120, a spacer 130 may be provided to increase the effective length of implement 100 to correspond to the longer standard cable C. This embodiment may be useful for customers wishing to retrofit existing systems with the longer standard cable C. In such instances, a spacer 130 may be created with a length corresponding to the difference in the length of cable C less the length of the portions of the implement 100 through which the cable runs. In the example shown in
The standard spacer and/or replacement spacers having a length less than the standard spacer may be sold as a kit. For example, an accessory mounting kit for a robotic welding system may include at least one spacer having a length less than the standard spacer. The at least one spacer would be adapted to replace the standard spacer and define an accessory mount clearance relative to the length of the cable. The kit may include one or more additional spacers having a length different than a first spacer in the kit to provide a different clearance than the first spacer. For example, a kit may include a first spacer having a first length and a second spacer having a second length, where the first spacer is 0.25 inch shorter than a standard spacer, and the second spacer is 0.25 inch shorter than the first spacer. It will be appreciated that larger and smaller increments may be used. To facilitate retrofitting to existing systems, the kit may include a replacement cable that is longer than the cable in the welding system being retrofitted a standard spacer having a length that corresponds to the length of the replacement cable, and at least one replacement spacer having a length less than the standard spacer to define a clearance for mounting an accessory.
According to another embodiment of the invention, one or more components forming the implement 100 may have an adjustable length. For example, the spacer 101, nose 110, disk 120, or spacer 130 in the above examples may have an adjustable length. In this embodiment, the component would have a first length corresponding to the length of the cable C when no accessory is mounted in line with implement 100 and robot 15. The component could be configured to have a second length L2 less than the first length L1. One such component is generally indicated by the number 150 in
In the example shown, a cam assembly is used. Component 150 has a first half 151 and a second half 152. Both halves 151,152 define a central bore through which the cable C extends. As shown, the bore of each half 151, 152 may have a different dimension. Although not shown, the bore of each half may also have the same dimension. First half 151 has a first wall 153 that defines a first bore 155. Second half 152 has a second wall 154 that defines a second bore 156.
First wall 153 may include a projecting surface, which will be referred to as a tab, that extends toward the second half to space the first half and second half from each other. Use of the term tab is not limiting to any particular shape or number of projecting surfaces. In the example shown, a pair of tabs 160 extend toward second half 152. Tabs 160 may have sloped or rounded leading and trailing edges 161,162 to facilitate their rotation as discussed below. The tabs 160 shown each have the same shape and profile. In the section (
As an option, to prevent material from entering the gap between halves 151,152 or the bore defined between halves 151,152, a flexible gasket or boot 180 may be provided between halves 151,152 to fill the gap created by the halves in the area surrounding tabs 160.
As in the previous embodiments, an adjustable length component 150 could be sold as part of a kit to retrofit existing welding systems. For example, an accessory mounting kit for a robotic assembly may include a replacement cable C that is longer than the existing cable and an adjustable length component 150 that would replace an existing component within the implement 100.
Likewise, as discussed above, to define a clearance to mount an accessory any component within the implement may be shortened. Therefore, an accessory mounting kit for a robotic assembly may include any component used in the implement having a shorter length than the standard component and a replacement cable that is sized to the length of the implement with the standard component. In addition, the kit may include different components that when combined provide a shorter implement length relative to the replacement cable. For example, a kit may include a replacement cable, a replacement disk and a replacement housing. The kit may also include a spacer that fills the clearance created by either or both of the replacement disk and replacement housing. In this way, the user may use the spacer to fill the clearance created by replacement disk and replacement housing when the accessory is not used.
In accordance with another embodiment of the invention shown in
Various embodiments herein need not include the described and/or illustrated geometries. The cylindrical shaped disks, spacers, and spacers shown in the figures and described herein merely suggest some possible embodiments that can be recognized under the disclosures herein. For example, various regular and irregular polygonal shapes, irregular shapes or custom shapes and cross-sections can be employed. Straight-line geometries can be employed in place of rounded portions and vice versa. Thus, while one or more particular embodiments have been described in detail, these details are not to be interpreted as exhaustive or exclusive.
While principles and modes of operation have been explained and illustrated with regard to particular embodiments, it must be understood that this may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
What has been described above includes examples of the subject innovation. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the claimed subject matter, but one of ordinary skill in the art may recognize that many further combinations and permutations of the subject innovation are possible. Accordingly, the claimed subject matter is intended to embrace all such alterations, modifications, and variations that fall within the spirit and scope of the appended claims.
Specific embodiments of an innovation are disclosed herein. One of ordinary skill in the art will readily recognize that the innovation may have other applications in other environments. In fact, many embodiments and implementations are possible. The following claims are in no way intended to limit the scope of the subject innovation to the specific embodiments described above. In addition, any recitation of “means for” is intended to evoke a means-plus-function reading of an element and a claim, whereas, any elements that do not specifically use the recitation “means for”, are not intended to be read as means-plus-function elements, even if the claim otherwise includes the word “means”.
Although the subject innovation has been shown and described with respect to a certain preferred embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (e.g., enclosures, sides, components, assemblies, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (e.g., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the innovation. In addition, while a particular feature of the innovation may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application. Although certain embodiments have been shown and described, it is understood that equivalents and modifications falling within the scope of the appended claims will occur to others who are skilled in the art upon the reading and understanding of this specification.
In addition, while a particular feature of the subject innovation may have been disclosed with respect to only one of several implementations, such feature may be combined with one or more other features of the other implementations as may be desired and advantageous for any given or particular application. Furthermore, to the extent that the terms “includes,” “including,” “has,” “contains,” variants thereof, and other similar words are used in either the detailed description or the claims, these terms are intended to be inclusive in a manner similar to the term “comprising” as an open transition word without precluding any additional or other elements.
While the disclosed embodiments have been illustrated and described in considerable detail, it is not the intention to restrict or in any way limit the scope of the appended claims to such detail. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the various aspects of the subject matter. Therefore, the disclosure is not limited to the specific details or illustrative examples shown and described. Thus, this disclosure is intended to embrace alterations, modifications, and variations that fall within the scope of the appended claims, which satisfy the statutory subject matter requirements of 35 U.S.C. § 101. The above description of specific embodiments has been given by way of example. From the disclosure given, those skilled in the art will not only understand the general inventive concepts and attendant advantages, but will also find apparent various changes and modifications to the structures and methods disclosed. It is sought, therefore, to cover all such changes and modifications as fall within the spirit and scope of the general inventive concepts, as defined by the appended claims, and equivalents thereof.
Claims
1. A robotic system, the system comprising:
- a robot;
- a plurality of substitutable breakaway disks of differing lengths;
- an implement mounted on the robot via a first breakaway disk of the plurality of substitutable breakaway disks;
- a cable having a standard cable length with the cable connectable to the implement; and
- a first accessory having a first thickness;
- wherein the first accessory is configured to be attached in line with the implement by substituting the first breakaway disk with a second breakaway disk of the plurality of substitutable breakaway disks by removing the first breakaway disk and attaching the first accessory in line with the implement and the second breakaway disk, with the cable connectable to the implement, to provide a first clearance for the first accessory based on the standard cable length when mounted in-line with the implement.
2. The system of claim 1, wherein the implement includes a central passage configured to receive the cable therethrough.
3. The system of claim 1, wherein the first clearance is defined between the implement and an end of the robot, and wherein the first accessory is configured to be mounted to the end of the robot.
4. The system of claim 1, wherein the implement includes a welding torch and the cable is electrically connectable to the welding torch.
5. The system of claim 1, wherein the implement includes a housing, wherein the cable is connectable to the housing, and wherein the first breakaway disk and the second breakaway disk are configured to be mounted between the housing and an end of the robot, but not at the same time.
6. The system of claim 1, wherein a length of the second breakaway disk is less than a length of the first breakaway disk.
7. The system of claim 1, further comprising a second accessory having a second thickness, wherein the second accessory is configured to be attached in line with the implement by substituting the first breakaway disk with a third breakaway disk of the plurality of substitutable breakaway disks by removing the first breakaway disk and attaching the second accessory in line with the implement and the third breakaway disk, with the cable connectable to the implement, to provide a second clearance for the second accessory based on the standard cable length when mounted in-line with the implement.
8. The system of claim 7, wherein a length of the second breakaway disk is less than a length of the first breakaway disk, and wherein a length of the third breakaway disk is less than a length of the second breakaway disk.
9. A kit for a robotic system, the kit comprising:
- a plurality of substitutable breakaway disks of differing lengths,
- wherein a first breakaway disk of the plurality of substitutable breakaway disks is configured to attach a first accessory of the robotic system, having a first thickness, in line with an implement of the robotic system, with a cable of the robotic system having a standard cable length and being connectable to the implement, to provide a first clearance for the first accessory based on the standard cable length when mounted in-line with the implement, and
- wherein a second breakaway disk of the plurality of substitutable breakaway disks is configured to attach a second accessory of the robotic system, having a second thickness, in line with the implement, with the cable being connectable to the implement, to provide a second clearance for the second accessory based on the standard cable length when mounted in-line with the implement.
10. The kit of claim 9, further comprising a replacement cable, for the cable of the robotic system, having the standard cable length.
11. The kit of claim 9, wherein each of the plurality of substitutable breakaway disks includes a central passage configured to receive the cable therethrough.
12. The kit of claim 9, wherein a length of the second breakaway disk is less than a length of the first breakaway disk.
13. The kit of claim 9, wherein a third breakaway disk of the plurality of substitutable breakaway disks is configured to attach a third accessory of the robotic system, having a third thickness, in line with the implement, with the cable being connectable to the implement, to provide a third clearance for the third accessory based on the standard cable length when mounted in-line with the implement.
14. The kit of claim 13, wherein a length of the second breakaway disk is less than a length of the first breakaway disk, and wherein a length of the third breakaway disk is less than a length of the second breakaway disk.
15. A kit for a robotic system, the kit comprising:
- a breakaway disk having a length; and
- a plurality of substitutable spacers of differing lengths,
- wherein the breakaway disk and a first spacer of the plurality of substitutable spacers are configured to attach a first accessory of the robotic system, having a first thickness, in line with an implement of the robotic system, with a cable of the robotic system having a standard cable length and being connectable to the implement, to provide a first clearance for the first accessory based on the standard cable length when mounted in-line with the implement, and
- wherein the breakaway disk and a second spacer of the plurality of substitutable spacers are configured to attach a second accessory of the robotic system, having a second thickness, in line with the implement, with the cable being connectable to the implement, to provide a second clearance for the second accessory based on the standard cable length when mounted in-line with the implement.
16. The kit of claim 15, further comprising a replacement cable, for the cable of the robotic system, having the standard cable length.
17. The kit of claim 15, wherein each of the plurality of substitutable spacers includes a central passage configured to receive the cable therethrough.
18. The kit of claim 15, wherein a length of the second spacer is less than a length of the first spacer.
19. The kit of claim 15, wherein the breakaway disk and a third spacer of the plurality of substitutable spacers are configured to attach a third accessory of the robotic system, having a third thickness, in line with the implement, with the cable being connectable to the implement, to provide a third clearance for the third accessory based on the standard cable length when mounted in-line with the implement.
20. The kit of claim 19, wherein a length of the second spacer is less than a length of the first spacer, and wherein a length of the third spacer is less than a length of the second spacer.
Type: Application
Filed: Jan 8, 2019
Publication Date: May 9, 2019
Inventor: Jeffrey L. Kachline (Highland Heights, OH)
Application Number: 16/242,046