FLUID INJECTION FLOW CONTROL DEVICE FOR USE IN OIL WELLS
A fluid injection flow control device for use in oil wells, designed to maintain, the injection rate within a determined layer between two packers, being the puncture zone of an injection well. The device, is axially coupled to a tubing string, consists of a variety of modules formed by an upper coil carrier onto which a primary coil is helically wound which, is connected to the pipe through which the fluid flows, causes a certain load drop in a side-pocket mandrel, which consists of two main parts namely a tubing string that allows for axial tubing continuity and a pocket in which a short or long flow direction vane is installed that determines the outflow towards the unit by way of a transverse opening or its passage to the next module's corresponding coil through transition tubing.
A FLUID INJECTION FLOW CONTROL DEVICE FOR USE IN OIL WELLS, designed to maintain an established range of the injection rate within a given layer between two packers, corresponding to the puncture zone of an injection well, causing a controlled pressure drop of the derived flow to a sector without damaging the molecule of the viscous fluid. The device, which is axially coupled to a tubing string, consists of a variety of modules formed by an upper coil support onto which a primary coil is helically wound, initially connected to the pipe through which the fluid runs, causing a certain load drop in an initial control component known as a side-pocket mandrel. The mandrel consists of two main parts namely the tubing string that allows for axial tubing continuity and the pocket in which a short or long flow direction vane is selectively installed that determines the outflow towards the unit by way of a transverse opening or its passage to the next module's corresponding coil through transition tubing. The implementation of the device for each layer embodies an upper module provided with a pipeline fluid intake port, as many intermediate modules as deemed necessary interconnected via said transition tubing and an end module in which said outlet passage may or may not be blind.
Specifically, the device, that enables Q injection flow rate control, responds to the concept that there are no fluid sources or basins within the control volume and that, pursuant to the Law of Conservation of Matter, the inflow of the bypass tube from the tubing is equal to the outflow, where the p1 pressure of the tube is in direct relation to the unit's p2 pressure.
Thus, as there is a relation between the Q flow that can be injected into the layer, the p1 tubing pressure and the pressure of layer p2, any increase or differential between both pressures would tend to increase or diminish the flow injected.
Accordingly, in order to mitigate flow variations resulting from variances in the p1−p2 pressure equilibrium, certain geometrical parameters can be acted on, that is the tube's inner diameter D (technically complex), or the length L of the tube, which is achieved through the modelling of the coils and their coupling and decoupling to successive modules, with the consequent respective increase or decline in load loss.
In this way discrete changes can be achieved in length L, thereby maintaining the injection flow rate within the range set against changes in the pressure differential.
The device in question is used for controlling the injection flow of viscous fluids, generally polymer chain based, in a specific layer of an oil injection well causing a controlled load loss without affecting its rheological properties.
While attempting to control the flow from surface devices, there is no known means capable of establishing such selective control automatically in each layer and preserving the polymer molecules which provide optimum viscosity.
BRIEF SUMMARY OF THE INVENTIONAccordingly, the primary aim of this patent application is to offer a device capable of maintaining the injection flow rate within a predetermined range in a given layer of an injection well, by producing a controlled pressure drop by virtue of the fact that the different coil length combinations developed as well as their inner diameter enable different flow ratios vs. pressure differentials.
In order to appreciate the advantages thus briefly mentioned and to help understand the constructive and functional characteristics of the flow control device in question for fluid injection in oil wells, a preferred example of the device is described below together with unscaled drawings attached hereto, in addition to a clear statement, that since it is an example, it should not be in any way restrictive, but rather should serve as a merely illustrative view of the basic concept on which it is based.
The fluids injection flow control device for use in oil wells described and exemplified herein falls within the scope of this application's protection, which is basically established by the text of the following claim sheets.
Claims
1. A fluid injection flow control device for use in oil wells designed to maintain, within an established range, the injection rate of a determined layer between two packers, corresponding to the puncture zone of an injection well, causing a controlled pressure drop of the flow derived to a zone without damaging the molecule of the viscous fluid, wherein the device, which is axially coupled to a tubing string, consists of a variety of successive modules of which an upper module is formed by an upper coil carrier onto which a primary coil is helically wound which is initially connected to piping through which the fluid flows, leads to an initial control element which shall be known as a side-pocket mandrel, which consists of two main parts namely a tubing string that allows for axial tubing continuity and a pocket in which a short or long flow direction vane is selectively installed that determines the outflow towards the unit by way of a transverse opening or its passage to a coil that corresponds to the intermediate module respectively, of similar embodiment, through transition tubing, where a lower module conforms in design to the intermediate module but the pocket outflow passage may or may not be blind.
2. The fluid injection flow control device for use in oil wells, as claimed in claim 1, wherein the device consists of a variety of intermediate modules.
3. The fluid injection flow control device for use in oil wells, as claimed in claim 1, wherein the pocket of the upper and intermediate modules is a cylindrical tubular body fixed to the body of the mandrel which defines tubing continuity but is isolated therefrom, the lower end of which is blind and the top end of which permits the insertion or removal of a long or short cylindrical direction vane, said tubular cavity being communicated, in its middle section with a parallel passage which connects its upper and lower ends to the transition tubes of the adjacent modules, whereas, near its lower end, which may or may not be blind, the cylindrical housing has a transverse outlet opening directed at the unit.
4. The fluid injection flow control device for use in oil wells, as claimed in claim 1, wherein the the pocket of the lower module is a cylindrical tubular body fixed to the body of the mandrel which defines tubing continuity but is isolated therefrom, the lower end of which is blind and the top end of which permits the insertion or removal of a long or short cylindrical direction vane; the tubular cavity being communicated in its middle section with a parallel passage which connects its upper end to the transition tubes approaching from the previous upper module and which lower end is blind, whereas, near its lower end, which may or may not be blind, the cylindrical housing has a transverse outlet opening directed at the unit.
5. The fluid injection flow control device for use in oil wells, as claimed in claim 1, wherein the long direction vane is a cylindrical stem provided with couplings for its installation at its upper end, which is positioned in the cylindrical pocket housings or, with two hydraulic seal gaskets, one of which is placed prior to the connection of the cylindrical housing with the passages or and the other following said connection and before the transverse outlet openings or, where the communication between said passages and said outlet openings is interrupted.
6. The fluid injection flow control device for use in oil wells, as claimed in claim 1, wherein the short direction vane is a cylindrical stem provided with couplings for its installation at its upper end, which is positioned in the cylindrical pocket housings or, prior to the connection of the cylindrical housing with the passages or without interrupting the communication between said passages and said outlet opening.
Type: Application
Filed: Dec 28, 2018
Publication Date: May 9, 2019
Applicant: Carlos F. Melo 630, Vicente Lópezó (Buenos Aires)
Inventors: Leoncio del Pozo (Buenos Aires), Julio Carbonetti (Buenos Aires), Gabriel Fernandez (Buenos Aires), Walter Daniel Daparo (Buenos Aires)
Application Number: 16/234,683