NOVEL HARRINGTONINES SALTS IN THE CRYSTALLINE STATE, THEIR USE FOR THE PURIFICATION OF THE CORRESPONDING DRUG SUBSTANCE AND AS CHEMOTHERAPEUTIC AGENTS GIVEN ALONE OR COMBINED WITH RADIOTHERAPY OR AS IMMUNOMODULATING AGENTS

The present invention concerns harringtonines salts never described in the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having general formula 1, comprising solvates, made by reacting a cephalotaxine ester alkaloid base having formula 2, in which R1 is, but not limited to, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, and R2 is, independently, but not limited to H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, with an acid having general formula AH in a non-aqueous crystallization solvent, wherein said salt has a large water solubility. The invention also relates to a process for preparing and purifying these salts and their use as chemostherapeutic drugs, alone or combined with radiotherapy, or as immunomodulating agents.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The present invention concerns crystalline salts of harringtonines, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation allowing their use as drug substance for blending alone or in combination in pharmaceutical composition useful as chemotherapeutic agents, given alone or combined with radiotherapy, or useful for treating parasitic and viral diseases and/or as immunomodulating agents, particularly in using oral or parenteral modes of administration.

Among harringtonines, homoharringtonine (=HHT, named omacetaxine D.C.I. as drug substance) is a natural ester of cephalotaxine (see scheme 1 and table 1), an alkaloid of Cephalotaxus harringtonia, a rare and endangered Asian conifer belonging to the Cephalotaxaceae family. HHT content in renewable parts of Cephalotaxus is about a few dozen of mg only per kilo of dry plant material. This characteristic, in despite of considerable efforts performed by the U.S. National Cancer Institute, hampered clinical development of omacetaxine for more than thirty-years. On March 1998, the discovering of a new hemi-synthetic process by the Applicant, allowed industrial production of homoharringtonine at the kilo scale (U.S. Pat. No. 6,831,180 and Robin et al. Tet. Lett. 1999. p.2931)] and divided by 70 the need of rare plant material (Nicolini et al., Leukemia Research, 2014, 38, p.11545).

Important Note:

It should be noted that chemical structure of hemi-synthetic omacetaxine is strictly identical to the natural one version: omacetaxine is not a semi-synthetic derivative as indicated in some article published in literature (see scheme 1 and table 1). All denominations of omacetaxine (OMA) or homoharringtonine (HHT) included in this document are strictly equivalent regarding molecular structure. The sentence “omacetaxine is a semi-synthetic derivative of cephalotaxine” encountered in literature, is totally devoid of scientific significance: the semi-synthetic appellation suggests that a moiety of the molecule (cephalotaxine) would natural and that the other moiety (the side chain) would be unnatural (man designed) while the latter is strictly natural. When only a portion of a molecule was produced by synthesis, the process name is hemi-synthesis and the molecule is sometimes also called hemi-synthetic.

Short History of Recent Development of Homoharringtonine.

Initially, all above esters of cephalotaxine were discovered by U.S. teams (Powel et al., J. Pharm. Sc., 1972, 61, p.1227) and a large development program was performed by the United States National Cancer Institute (Suffness et al., J. Nat. Cancer Inst., 1988, 80, p.1095). In October 2012, the United States Food and Drug Administration (FDA) granted accelerated approval for omacetaxine mepesuccinate for the treatment of adult patients with chronic or accelerated phase chronic myeloid leukemia (CML) who failed to respond to two or more tyrosine kinase inhibitors (TKIs) [ref fda]. Since this approval, hundreds of articles or reviews related to OMA/HHT were published in literature (more than 400 articles listed in SciFinder database). Definitive approval of OMA was granted in 2014 (Alvandi et al., The Oncologist, 2014, 19, p 94). This occurred after a very long and tumultuous period of clinical development (Kantarjian et al., Clin. Lymph. Myel. Leuk. 2013 p. 530), including early clinical development of HHT and, to a lesser extent, its congeners harringtonine (HA) and deoxyharringtonine (DHA) in various institution in the U.S. and in China. Finally, the successive involvement of seven pharmaceutical companies (Vivorex/American Bioscience; Oncopharm; Stragen; Chemgenex; Cephalon; TEVA) dispatched in 5 countries occurred before approval of omacetaxine! More than 50 clinical trials in USA, China and France involving more than 2000 patients.

Definition (See Scheme 1 and Table 1)

Homohamingtonine/Omacetaxine Mepesuccinate/Synribo/Myelostat

The INN (Intemational Non-proprietary Name) “omacetaxine mepesuccinate” (OMA) is a name reserved for homoharringtonine HHT drug substance dedicated for pharmaceutical and medicinal use regardless its natural, hemi-synthetic or synthetic origin [formely named homoharringtonine]. Synribo (TEVA) and Myelostat (Oncopharm corporation) are trademark (F-D-C Reports, Pharmaceutical Approvals Monthly, 2001, 6, p.35).

Cephalotaxanes Including Numbering

Cephalotaxanes are particular alkaloids to date exclusively extracted from the Cephalotaxaceae family which exhibit the structural formula 1. Several substituants may be encountered on this core structure: hydroxyl, ether, acyloxy etc. The eventual presence of some additional double bound or intramolecular bridge achieve to definite cephalotaxanes. Cephalotaxines 2 are cephalotaxanes without acyloxy side-chain.

Cephalotaxine 2a and drupacine 2b are example of cephalotaxines. Harringtonines 5 are particular cephalotaxanes formed by attachment of a branched α-hydroxyacyloxy side-chain at the 3-position of various cephalotaxines moieties. Cephalotaxines 2 and harringtonines 5, are examples of cephalotaxanes. Several dozen of cephalotaxanes have been isolated from various Cephalotaxus species. 4 is the generic formula of cephalotaxine esters (Takano et al., Phytochemistry, 1997, 44, p. 735 and cited references).

Harringtonines 5 (i. e. harringtonine=HA and homoharringtonine=HHT) are particular cephalotaxine esters. Cephalotaxine and its natural ester are gathered under the generic term of cephalotaxane.

Harringtoids are semi-synthetic derivatives of harrintonines.

Harringtonic acids are side-chain of harringtonines.

TABLE 1 NATURAL AND SEMI-SYNTHETIC ESTERS OF CEPHALOTAXINE # Trivial name R2 R3 R4 Note # Activity* 5a harringtonine (CH3)2COH—(CH2)2 Me H (1) anticancer 5b homoharringtonine (CH3)2COH—(CH2)3 Me H (2) anticancer 5c norharringtonine (CH3)2COH—CH2 Me H (3) none 5d deoxyharringtonine (CH3)2CH—(CH2)2 Me H (4) anticancer 5e bishomoharringtonine (CH3)2COH—(CH2)4 Me H (5) none 5f isoharringtonine (CH3)2CH(CH2)2 Me OH (6) none 5g neoharringtonine C6H5—CH2 Me H (7) cytotoxic 5h harringtonines R2 Me R4 (8) N/A 5i harringtoids R2 R3 R4 (9) cytotoxic

(1) The first cephatotaxine ester isolated from oephalotaxus harringtonia *In cancer area, for definition of term see [Suffness et al in Journal of Natural Products 1982 p 1 Current Status of the NCI Plant and Animal Product Program] CYTOTOXICITY is toxicity to tumor cells in culture; ANTITUMOR is in vivo activity in experimental systems; ANTINEOPLASTIC or ANTICANCER are the reserved terms for reported clinical trials data.

(2) “Homo” means one more carbon than harringtonine; Named omacetaxine (D.C.I.) as active pharmaceutical ingredient

(3) “nor” means one more less carbon.

Two haringtonines are very promising drugs in the treatment of certain leukemia such as Chronic Myelogenous Leukemia (CML). Both homoharringtonine and harringtonine were used in human chemotherapy of leukemia for 30 years (see above Suffness et al.) and a large number of semi-synthetic analogs such as 5 on scheme 1 were synthesized (see “5.2 Cephalotaxus Esters With Side Chain Analogs” in above cited reference of Dumas et al.).

Surprisingly, never crystalline salts of harringtonines have been isolated and described in literature.

However, in spite of the progress recorded in production, purification and therapeutic use of homoharringtonine, several disadvantages persist:

i) The cost of treatment for omacetaxine (Synribo) is prohibitive: $28,000 for induction, $14,000 for monthly treatments), this give about 180.000 $ per year, per patient [Kantarjian et al. Journal of Clinical Oncology, 2013, p3600; Hagop Kantarjian, personal communication]

ii) The use of the parenteral route of administration even retards the development of this drug

iii) Preparation of formulations for parenteral use is complicated by the use of lyophilization

iv) Formation of non-crystalline salts of harrintonines give not as accurately defined compound as crystalline salts

v) There is some local intolerance to this product when administered subcutaneously

vi) On the other hand, although it has been known for almost 40 years, there is still a slight doubt regarding the absolute configuration of this series of natural product.

Recent Scientific Discovering Regarding Mechanism of Activity of Harringtonines

The team of Steitz (Journal of Molecular Biology 2009, 389, p. 146) recently demonstrated that homoharringtonine when in place in its active site was protonated in a neutral media, implying that alkaloid nitrogen protonation is imperative condition for the manifestation of the activity of this ligand.

In addition, the team of Takano et al [J. Org. Chem. 1997 p. 8251) demonstrated experimentally that when the nitrogen lone pair of homoharringtonine was occupied by an oxygen atom, the cytotoxic activity was divided by a factor of at least 50. The authors conclude that “the nitrogen lone pair on the cephalotaxine skeleton appears to be essential for its activity”.

The above mentioned team of Steitz showed that the absolute configuration of homoharringtonine deposited in the Cambridge Structural Database seems to be the opposite of that commonly adopted in the literature.

The present invention relates to overcome the problems mentioned above. It also demonstrated that the absolute configuration in the deposited homoharringtonine Cambridge Structural Database seems to be the opposite of that commonly retained in the literature.

The eight example of single crystal X-ray diffraction of homoharringtonine salt exhibited in FIGS. 2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.9.1, 2.11.1 and 2.12.1 clearly indicates that the alkaloid moiety was efficiently protonated by the processes described in the present invention. Moreover, the shortest distance between said proton carried by the nitrogen is close to two angstroms, showing the reality of the formation of a salt and not a mere co-crystal.

The present invention relates to overcome the problems mentioned above, namely:

    • raise doubt on the absolute configuration of harringtonines
    • provide a method of administration of harringtonines protonated on their nitrogen atom

As detailed above, the fact that the real active form of harringtonines would be their nitrogen-protonated version was recently supported by the above cited works of Seitz et al. and Takano et al.

The present invention concerns novel water soluble crystalline salts of homoharringtonine and their use as new chemical entities for the formulation of new cancer chemotherapeutic, or immunomodulating or antiparasitic agents and to implement new processes for purification including enantiomeric and determine the absolute configuration of the series.

The present invention describes the preparation of crystalline salts of harringtonines as nitrogen-protonated form, stable and soluble in water and their use for the manufacture of pharmaceutical composition useful in the treatment of cancers, leukemias, immune disease and as reversal agents.

The present invention describes an unambiguously proved method of protonation of harringtonine nitrogen.

The present invention provides salts of harringtonines in the crystalline state, protonated on their alkaloid nitrogen, definite by their solid state analysis patterns, their process of preparation from harringtonines and commercial organic acid allowing their use as drug substance for blending alone or in combination with other chemotherapeutic agents such as, but not limited to, cytarabine or interferon or imatinib mesylate or dasatinib or arsenic trioxide or all-trans-retinoic acid, in a pharmaceutical composition particularly useful for treatment of cancer, alone or combined with radiotherapy, in using oral or parental modes of administration.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1.1 is infra-red (IR) spectrum of Homoharringtonine (base alkaloid). FIG. 1.1 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.1 (ii) is IR(ATR) spectrum in the amorphous state.

FIG. 1.2 is infra-red (IR) spectrum of Homoharringtonine hydrogen (S)-malate in the solid state. FIG. 1.2 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.2 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.3 is infra-red (IR) spectrum of Homoharringtonine hydrogen (R)-malate in the solid state. FIG. 1.3 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.3 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.4 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2S, 3S)-tartrate in the solid state. FIG. 1.4 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.4 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.5 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2R, 3R)-tartrate in the solid state. FIG. 1.5 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.5 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.6 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2′″S)-citramalate in the solid state. FIG. 1.6 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.6 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.7 is infra-red (IR) spectrum of Homoharringtonine hydrogen (2′″R)-citramalate in the solid state. FIG. 1.7 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.7 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.8 is infra-red (IR) spectrum of Homoharringtonine succinate. FIG. 1.8 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.8 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.9 is infra-red (IR) spectrum of Homoharringtonine hydrogen itaconate in the solid state. FIG. 1.9 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.9 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.10 is infra-red (IR) spectrum of salt named homoharringtonine hydrogen fumarate in the solid state. FIG. 1.10 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.10 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.11 is infra-red (IR) spectrum of Homoharringtonine hydrogen tartronate in the solid state. FIG. 1.11 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.11 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.12 is infra-red (IR) spectrum of Homoharringtonine malonate in the solid state. FIG. 1.12 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.12 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.13 is infra-red (IR) spectrum of Homoharringtonine dihydrogen citrate in the solid state. FIG. 1.13 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.13 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 1.14 is infra-red (IR) spectrum of Homoharringtonine salicyclate in the solid state. FIG. 1.14 (i) is IR(ATR) spectrum in the crystalline state. FIG. 1.14 (ii) is IR(ATR) spectrum in the amorphous state (film).

FIG. 2.2.1 is single crystal x-ray diffraction of homoharringtonine base, form A (ORTEP-3 software).

FIG. 2.2.2 is single crystal x-ray diffraction of homoharringtonine base, form B (ORTEP-3 software).

FIG. 2.2.3 is single crystal x-ray diffraction of homoharringtonine base, form B with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.3.1 is single crystal x-ray diffraction of homoharringtonine hydrogen (2S)-(−)-malate (ORTEP-3 software).

FIG. 2.3.2 is single crystal x-ray diffraction of homoharringtonine hydrogen (2S)-(−)-malate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.3.3 is x-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2S)-(−)-malate.

FIG. 2.4.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(+)-malate (created by ORTEP-3 software).

FIG. 2.4.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(+)-malate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.4.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R)-(+)-malate.

FIG. 2.5.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2S,3S)-(−)-tartarate (created by ORTEP-3 software).

FIG. 2.5.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2S,3S)-(+)-tartarate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.5.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2S,3S)-(−)-tartarate.

FIG. 2.6.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R,3R)-(+)-tartarate (created by ORTEP-3 software).

FIG. 2.6.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R,3R)-(+)-tartarate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.6.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R,3R)-(+)-tartarate.

FIG. 2.7.1 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2′″S)-citramalate.

FIG. 2.8.1 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(−)-citramalate (created by ORTEP-3 software).

FIG. 2.8.2 is single crystal X-ray diffraction of homoharringtonine hydrogen (2R)-(−)-citramalate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.8.3 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen (2R)-(−)-citramalate.

FIG. 2.9.1 is single crystal X-ray diffraction of homoharringtonine hydrogen itaconate (created by ORTEP-3 software).

FIG. 2.9.2 is single crystal X-ray diffraction of homoharringtonine hydrogen itaconate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.10.1 is X-ray powder diffraction (XRPD) of homoharringtonine hydrogen fumarate.

FIG. 2.11.1 is single crystal X-ray diffraction of homoharringtonine dihydrogen citrate (created by ORTEP-3 software).

FIG. 2.11.2 is single crystal X-ray diffraction of homoharringtonine dihydrogen citrate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 2.11.3 is X-ray powder diffraction (XRPD) of homoharringtonine dihydrogen citrate.

FIG. 2.12.1 is single crystal X-ray diffraction of homoharringtonine salicyclate (created by ORTEP-3 software).

FIG. 2.12.2 is single crystal X-ray diffraction of homoharringtonine salicyclate (PLUTO drawing).

FIG. 2.12.3 is single crystal X-ray diffraction of homoharringtonine salicyclate (stick drawing).

FIG. 2.12.4 is single crystal X-ray diffraction of homoharringtonine salicydate with corresponding packing with unit cell content (PLUTO drawing, ORTEP-3 software).

FIG. 3.1 is DSC pattern of homoharringtonine base.

FIG. 3.2 is DSC pattern of homoharringtonine hydrogen (2S)-malate.

FIG. 3.3 is DSC pattern of homoharringtonine hydrogen (2R)-malate.

FIG. 3.4 is DSC pattern of homoharringtonine hydrogen (2S,3S)-tartrate.

FIG. 3.5 is DSC pattern of homoharringtonine hydrogen (2R,3R)-tartrate.

FIG. 3.6 is DSC pattern of homoharringtonine hydrogen (2S)-citramalate.

FIG. 3.7 is DSC pattern of homoharringtonine hydrogen (2R)-citramalate.

FIG. 3.8 is DSC pattern of homoharringtonine hydrogen succinate.

FIG. 3.9 is DSC pattern of homoharringtonine hydrogen itaconate.

FIG. 3.10 is DSC pattern of homoharringtonine hydrogen fumarate.

FIG. 3.11 is DSC pattern of homoharringtonine hydrogen tartronate.

FIG. 3.12 is DSC pattern of homoharringtonine hydrogen malonate.

FIG. 3.13 is DSC pattern of homoharringtonine dihydrogen citrate.

FIG. 3.14 is DSC pattern of homoharringtonine salicyclate.

DETAILED DESCRIPTION

In one embodiment, the crystalline salts of the invention are used as drug substance for blending alone or in combination with other therapeutical agents in pharmaceutical composition useful as immunomodulating agents, particularly in using oral or parenteral modes of administration.

A major embodiment of the invention is a new efficient process of purification of natural, semi-synthetic or synthetic version of harringtonines and their analogs using formation of a crystallogenic salt and its fractional crystallization in organic solvents, all the resulting purified compounds having the same level of purity.

Another aspect of the invention is a new efficient process of purification of natural homoharringtonine using formation of crystallogenic salts and their fractional crystallization in organic solvents giving the same level of purity as homoharringtonine of hemi/semi-synthetic origin.

Another aspect of the invention is a new efficient process of purification of natural harringtonine using formation of crystallogenic salts and their fractional crystallization in organic solvents giving the same level of purity as harringtonine of hemi/semi-synthetic origin.

In one embodiment, the present invention relates to a harringtonines salt in the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having formula 1,

comprising solvate, made by reacting a cephalotaxine ester having formula 2,

in which R1 is, but not limited to, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, and R2 is, independently, but not limited to H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocydoalkyl, with an acid having general formula AH in a crystallization solvent, wherein the said salt has a water or alkohol solubility ranged approximately from 5 mg/mL to approximately 100 mg/Ml.

In a preferred embodiment, the acid having general formula AH is an organic acid. In a preferred embodiment, the organic acid is selected among the following list: fumaric, maleic, citramalic, malic, tartaric, tartronic, succinic, itaconic, citric acid or salicylic acid.

A preferred embodiment of the invention is a crystalline homohaningtonine hydrogen 2S-malate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.2, the same single crystal X-ray diffractogram as set out in FIGS. 2.3.1 and 2.3.2, the same X-ray powder pattern as set out in FIG. 2.3.3 and the same DSC curve as set out in FIG. 3.2.

A further preferred embodiment of the invention provides a crystalline homoharringtonine hydrogen 2R-malate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.3, the same single crystal X-ray diffractogram as set out in FIGS. 2.4.1 and 2.4.2, the same X-ray powder pattern as set out in FIG. 2.4.3 and the same DSC curve as set out in FIG. 3.3.

A further preferred aspect of the invention is a crystalline homoharringtonine hydrogen (2S,3S)-tartrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.4, the same single crystal X-ray diffractogram as set out in FIGS. 2.5.1 and 2.5.2, the same X-ray powder pattern as set out in FIG. 2.5.3 and the same DSC curve as set out in FIG. 3.4.

Yet, a further embodiment of the invention is a crystalline homoharringtonine hydrogen (2R,3R)-tartrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.5, the same single crystal X-ray diffractogram as set out in FIGS. 2.6.1 and 2.6.2, the same X-ray powder pattern as set out in FIG. 2.6.3 and the same DSC curve as set out in FIG. 3.5.

Yet, another embodiment of the invention provides a crystalline homoharringtonine hydrogen (2S)-citramalate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.6, the same X-ray powder pattern as set out in FIG. 2.7.1 and the same DSC curve as set out in FIG. 3.6.

Yet, a preferred aspect of this invention is a crystalline homoharringtonine hydrogen (2R)-citramalate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.7, the same single crystal X-ray diffractogram as set out in FIGS. 2.8.1 and 2.8.2, the same X-ray powder pattern as set out in FIG. 2.8.3 and the same DSC curve as set out in FIG. 3.7.

Yet, another preferred aspect of this invention provides a crystalline homoharringtonine hydrogen succinate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.8, and the same DSC curve as set out in FIG. 3.8.

Yet, a further preferred aspect of this invention is a crystalline homoharringtonine hydrogen itaconate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.9, the same single crystal X-ray diffractogram as set out in FIGS. 2.9.1 and 2.9.2 and the same DSC curve as set out in FIG. 3.9.

Yet, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen fumarate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.10, the same X-ray powder pattern as set out in FIG. 2.10.1 and the same DSC curve as set out in FIG. 3.10.

Yet, an another aspect of the invention provides a crystalline homohamrngtonine hydrogen tartronate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.11 and the same DSC curve as set out in FIG. 3.11.

In addition, another embodiment provides a crystalline homoharringtonine hydrogen malonate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.12 and the same DSC curve as set out in FIG. 3.12.

Moreover, a preferred embodiment of this invention provides a crystalline homoharringtonine dihydrogen citrate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.13, the same single crystal X-ray diffractogram as set out in FIGS. 2.11.1 and 2.11.2, the same X-ray powder pattern as set out in FIG. 2.11.3 and the same DSC curve as set out in FIG. 3.13.

Also, a preferred aspect of this invention provides a crystalline homoharringtonine hydrogen salicylate having substantially the same IR spectrum, in the solid state as set out in FIG. 1.14, the same single crystal X-ray diffractogram as set out in FIGS. 2.12.1, 2.12.2, 2.12.3 and 2.12.4 and the same DSC curve as set out in FIG. 3.14.

Yet, a preferred aspect of this invention provides a pharmaceutical composition comprising an effective amount of one of the salts of this invention, together with one or more pharmaceutical acceptable inactive components such as carriers, excipients, adjuvants or diluents.

Yet, a preferred aspect of this invention provides a pharmaceutical dosage form dedicated to an oral mode of administration selected among, for example, capsules, dragees, emulsions, granules, pills, powders, solutions, suspensions, tablets, microemulsions, elixirs, syrups, tea or powders for reconstitution.

Yet, an another aspect of this invention provides a pharmaceutical dosage form dedicated to a subcutaneous mode of administration in non-acidic condition allowing a good locale tolerance.

Another aspect of the invention is the use of at least the solid form of one salt described in the invention for preparing the above pharmaceutical composition as (i) chemotherapeutic agent, (ii) enhancer of other chemotherapeutic agents (iii) after failure of other agents (iv) for inhibiting tumors growth in animal, (v) for inhibiting mammalian parasites, (vi) as immunosuppressive agent, or (vii) as reversal agent.

A preferred embodiment of the invention describes a method for treating mammalian tumors which comprises oral administering to a mammal an antitumor effective amount of the solid form of one salt described in this invention.

A further preferred embodiment of the invention describes a method for treating mammalian tumors which comprises implantable pharmaceutical preparation administering to a mammal an antitumor effective amount of the solid form of at least one salt described in this invention.

Yet, invention is also concerned with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of cancer, particularly brain cancer such as for example, but not limited to, neuroblastoma and eventually their metastasis, lung cancer such as for example non-small cells lung carcinoma eventually their metastasis, ovarian high-grade carcinoma, breast cancer including triple negative breast carcinoma and eventually their metastasis, and pancreatic cancer including ductal adenocarcinoma, this therapy being given alone or combined with at least another chemotherapeutic agent, eventually combined with radiotherapy.

Another embodiment of the present invention relates to a method of treating cancer, particularly brain cancer such as for example, but not limited to, neuroblastoma and eventually their metastasis, and lung cancer such as for example non-small cells lung carcinoma eventually their metastasis, ovarian high-grade carcinoma, breast cancer including triple negative breast carcinoma and eventually their metastasis, and pancreatic cancer including ductal adenocarcinoma, comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, eventually combined with radiotherapy.

Furthermore, invention also deals with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of autoimmune diseases, such as for example but not limited to multiple sclerosis, psoriasis, rheumatoid arthritis, dermatomyositis, Hashimoto's thyroiditis, systemic lupus erythematosus, this therapy being given alone or combined with at least another chemotherapeutic agent, said at least another chemotherapeutic agent being eventually combined with radiotherapy, or with at least another immunomodulating agent. Another embodiment of the present invention relates to a method of treating autoimmune diseases, such as for example but not limited to multiple sclerosis, psoriasis, rheumatoid arthritis, dermatomyositis, Hashimoto's thyroiditis, systemic lupus erythematosus, comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, said at least another chemotherapeutic agent being eventually combined with radiotherapy.

Finally, the invention is also concerned with the use of solid form of the salts of the invention as defined above, for the preparation of pharmaceutical compositions for the treatment of leukemias particularly acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and/or lymphoma such as but not limited to a multiple myeloma, a Hodgkin disease or a Burkitt lymphoma, said therapy being given alone or combined with at least another chemotherapeutic agent and/or with radiotherapy.

Another embodiment of the present invention relates to a method of treating leukemias particularly acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and/or, said method comprising administering to a patient or an animal in need thereof a pharmaceutical composition comprising solid form of the salts of the invention, said pharmaceutical composition being administered alone or combined with at least another chemotherapeutic agent, including the targeted one, eventually combined with radiotherapy.

In a preferred embodiment, the patient in need thereof according to the present invention is a de novo patient or a patient for which other therapy as failed to treat the disease from which he suffers.

Example 1: General Procedure for Experimental Methods

1.1 General Procedures for Salts Preparation

Cation and anion components are dissolved separately in a solvent at a concentration close of saturation and at a temperature close of boiling then both solutions are mixed under stirring then slowly cooled and evaporated. After a period ranging from a few minutes up to several days, crystal salt is collected. A sample of the batch of crystals is kept suspended in its mother liquors for the subsequent X-ray diffraction analysis. The remainder of the batch was dried under vacuum for further solid characterization, comparative stability studies and drug formulation.

1.2 General Procedures for Solid State Characterization

Single Crystal X-Ray Diffractions Material and Methods

KappaCCD, Nonius diffractometer, Mo—Kα radiation (λ=0.71073 Å). The structure was solved by direct methods using the SHELXS-97 program [Sheldrick G. M., Acta Cryst. A64 (2008), 112-122], and then refined with full-matrix least-square methods based on F2 (SHELXL-2013) [Sheldrick G. M., (2013)] with the aid of the WINGX [L. J. Farrugia, J. Appl. Cryst., 2012, 45, 849-854] program. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Except nitrogen and oxygen linked hydrogen atoms that were introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions.

Collected information: atomic positions; unit cell composition; crystal packing anisotropic displacement parameters; bond lengths, dihedral and torsion angles, hydrogen bounding.

Original files with all parameters are includes on a CD and may be visualized and handled in using ORTEP-3 software (ORTEP=Oak Ridge Thermal-Ellipsoid Plot Program) available free of charge on the Internet:

http://www.chem.gla.ac.uk/˜louis/software/ortep3/

X-Ray Diffraction Powder

Diagrams were measured on a Bruker AXS D8 Advance diffractometer, Bragg-Brentano geometry (θ-2 θ), CuK α=1.5406 Å, 600 ms/pixel, rotation: 0.25/sec. For each chart, the calculated pattern from the single crystal structure, when available, is upped mentioned.

Differential Scanning Calorimetry (DSC)

The DSC analysis was performed using a Perkin Elmer DSC 4000 apparatus. The scan rate was 5° C./min and the scanning range of of temperature 40 to 230° C. The accurately weighed quantity was ranged from 1 to 3 mg. All operations were performed under nitrogen atmosphere. The measured values were the Onset, the Peak and the value of the free enthalpy variation. The eventual product decomposition and the vaporization of solvent crystallization (methanol and/or water) were recorded. The value of the change in free energy, was given only as a guideline to assess the endothermicity or exotermicity of the transition.

Melting Point Checking

Melting points were measured manually for visual checking of the one determined with DSC. A Bücchi B-545 melting point apparatus was used and mp are uncorrected.

Infrared Spectra

All vibrational spectra were recorded on a Perkin Elmer IR FT Spectrum 2 apparatus equipped with diamond ATR accessory that is to say using Attenuated Total Reflection technique. The crystalline solids were crushed directly by in situ compression on the diamond window and the amorphous state has been demonstrated by dissolving the product in deuterated methanol then generating the film by in situ evaporation on the diamond window.

1.3 General Procedures for Liquid State and Solution Characterizations

Nuclear Magnetic Resonance

NMR spectra were recorded automatically on a Bruker Avance III spectrometer NanoBay—400 MHz (9.4 Tesla magnet) with a BBFO+probe and sampler 120 positions, allows for automatic mode NMR experiments one and two dimensions mainly for nuclei: 1H, 2H, 11B, 13C, 15N, 19F, 27Al, 31P, 119Sn or on Bruker Avance III—600 MHz spectrometer.

Dissolving salts for 13C NMR: 30 mg of compound were dissolved in 600 μL (5% m/V) of methanol D4 or deuterium oxyde (or both if specified)

Water suppression: The irradiation technique known as ‘watergate’ (Selective pulse flanked by gradient pulses) was used for proton NMR in the presence of D2O and/or MOD4 as solvents.

High Performance Liquid Chromatography

Routine experiments were performed on a Waters HPLC-MS-DAD coupled system (3100 pump, DAD 996 detector, 3100 mass detector).

Solubility Determination

Solubility in water at 25° C. was measured semi-quantitatively at a threshold of 5 g per 100 mL. All the homoharringtonine salts described in the below examples, unless otherwise stated, are soluble at this threshold. Homoharringtonine base itself is soluble at a threshold mower than 0.1 g per mL

Example 2: Analyses of Homoharringtonine Base for Comparison with its Salts

2.1 Analysis of Homoharringtonine Base Alkaloid

Commercial homoharringtonine is provided by Sigma Aldrich.NMR spectra were performed in deuterated methanol for comparison with salt in the same solvent

By methanol recrystallisation of a commercial alkaloid from natural source, it results fine white prisms (mp 145-146°, by DSC, see FIG. 3.1) used for all experiences.

1H NMR (400 MHz, Benzene-d6) δ 6.54 (s, 1H), 6.46 (s, 1H), 6.21-6.12 (m, 1H), 5.47 (d, J=1.4 Hz, 1H), 5.33 (d, J=1.4 Hz, 1H), 4.67 (s, 1H), 3.43 (d, J=9.8 Hz, 1H), 3.34 (s, 3H), 3.28 (s, 3H), 2.83 (td, J=8.5, 4.5 Hz, 1H), 2.75 (dd, J=11.5, 4.5 Hz, 1H), 2.55 (dd, J=10.8, 7.5 Hz, 1H), 2.41 (dd, J=16.2, 6.9 Hz, 2H), 2.23-2.11 (m, 2H), 1.78 (m, 1H), 1.67-1.56 (m, 2H), 1.48 (m, 5H), 1.34-1.19 (m, 2H), 1.04 (d, J=6.7 Hz, 6H).

1H NMR (300 MHz, Chloroform-d) δ 6.62 (s, 1H), 6.54 (s, 1H), 6.00 (d, J=9.8 Hz, 1H), 5.87 (s, 2H), 5.05 (s, 1H), 3.78 (d, J=9.8 Hz, 1H), 3.68 (s, 3H), 3.57 (s, 3H), 3.52 (s, 1H), 3.20-3.04 (m, 2H), 3.01-2.88 (m, 1H), 2.60 (t, J=7.2 Hz, 1H), 2.38 (dd, J=13.7, 6.3 Hz, 1H), 2.26 (d, J=16.5 Hz, 1H), 2.10-1.97 (m, 1H), 1.91 (d, J=16.5 Hz, 1H), 1.75 (s, OH), 1.39 (dd, J=13.5, 6.4 Hz, 5H), 1.19 (s, 7H).

1H NMR (400 MHz, Methanol-d4)*δ 6.7 (s, 1H), 6.59 (s, 1H), 5.98 (dd, J=9.8, 0.8 Hz, 1H), 5.89 (d, J=1.2 Hz, 1H), 5.85 (d, J=1.2 Hz, 1H), 5.22 (d, J=0.8 Hz, 1H), 3.89 (d, J=9.8 Hz, 1H), 3.70 (s, 3H), 3.55 (s, 3H), 3.20 (ddd, J=14.1, 12.4, 7.9 Hz, 1H), 2.96 (m, 1H), 2.88 (m, 1H), 2.64 (dd, J=11.4, 7.6 Hz, 1H), 2.44 (dd, J=14.3, 6.8 Hz, 1H), 2.17 (d, J=16.1 Hz, 1H), 2.03 (m, 1H), 1.95 (m, 1H), 1.90 (d, J=16.1 Hz, 1H), 1.49-1.30 (m, 5H), 1.25 (dd, J=9.8, 5.8 Hz, 1H), 1.17 (s, 3H), 1.16 (s, 3H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR (101 MHz, MeOD) δ 174.68, 171.76, 159.97, 148.21, 147.32, 134.49, 129.88, 114.02, 110.86, 102.10, 100.74, 76.03, 75.52, 72.14, 71.35, 58.04, 56.48, 54.60, 52.00, 49.64, 44.89, 44.15, 43.86, 40.87, 32.08, 29.27, 29.01, 20.82, 19.19.

IR (KBr, solid), cm−1 3551.9, 3412.3, 3000.4, 2976.1, 2966.0, 2958.6, 2911.4, 2876.0, 2814.4, 2740.8, 1743.0, 1653.5, 1624.7, 1505.3, 1488.1, 1454.8, 1436.1, 1411.2, 1392.8, 1377.7, 1367.2, 1346.3, 1306.4, 1274.3, 1261.5, 1230.0, 1190.8, 1162.1, 1135.3, 1119.9, 1082.0, 1027.9, 1000.5, 932.1, 900.6, 879.3, 854.2, 827.3, 804.9, 795.2, 772.4, 762.9, 738.3, 705.7, 674.0, 661.4, 610.8, 556.7, 540.9, 522.1, 512.8, 503.3. See FIG. 1.1

A) Single Crystal X Ray Diffraction of Homoharringtonine Base (Form A).

See Corresponding FIG. 2.2.1

From a suspension in its mother liquor, a suitable single crystal of size 0.5×0.4×0.4 mm was finally selected and implemented on the diffractometer.

Structural data: Formula weight 545.61 Temperature 293(2)K Wavelength 0.71073 Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions a = 11.9512(2) Å, α = 90° b = 15.2211(2) Å, β = 90° c = 15.9670(2) Å, γ = 90° Volume 2904.56(7) 3 Z, Calculated density 4, 1.248 (g · cm−1) Absorption coefficient 0.092 mm−1 F(000) 1168 Crystal size 0.5 × 0.4 × 0.4 mm Crystal color colourless Theta range for data collection 2.881 to 29.046° h_min, h_max −16, 16 k_min, k_max −20, 20 l_min, l_max −21, 21 Reflections collected/unique 35627/7642 [aR(int) = 0.049] Reflections [I > 2σ] 5925 Completeness to theta_max 0.99 Absorption correction type none Refinement method Full-matrix least-squares on F2 Data/restraints/parameters 7642/0/352 bGoodness-of-fit 1.034 Final R indices [I > 2σ] cR1 = 0.0495, dwR2 = 0.1256 R indices (all data) cR1 = 0.0719, dwR2 = 0.1411 Largest diff. peak and hole 0.284 and −0.203 e.Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of FIG. 2.2.1 corresponds to below table.

Atom x y z occ. U(eq) C1 0.9387(2) 0.25439(15) 0.89639(14) 1 0.0374(5) H1 1.0075 0.2226 0.8823 1 0.045 C2 0.9724(2) 0.34995(16) 0.90497(14) 1 0.0390(5) C3 1.0805(2) 0.37308(17) 0.87926(17) 1 0.0442(5) H3 1.1276 0.3319 0.8546 1 0.053 C4 1.1150(2) 0.45761(19) 0.89130(17) 1 0.0494(6) C5 1.2096(4) 0.5829(2) 0.8960(3) 1 0.0862(12) H5A 1.2163 0.6192 0.8463 1 0.103 H5B 1.2695 0.5986 0.9342 1 0.103 C6 1.0469(3) 0.51945(17) 0.92762(18) 1 0.0528(6) C7 0.9399(2) 0.49967(18) 0.95274(17) 1 0.0498(6) H7 0.8939 0.5421 0.9765 1 0.06 C8 0.9026(2) 0.41337(17) 0.94127(15) 1 0.0434(5) C9 0.7884(2) 0.38828(18) 0.97226(17) 1 0.0493(6) H9A 0.7497 0.3553 0.9291 1 0.059 H9B 0.7455 0.4411 0.9836 1 0.059 C10 0.7951(3) 0.3328(2) 1.05191(18) 1 0.0569(7) H10A 0.8046 0.3714 1.0997 1 0.068 H10B 0.7251 0.3014 1.0592 1 0.068 C11 0.8990(3) 0.2199(3) 1.12687(17) 1 0.0648(8) H11A 0.8277 0.1965 1.1455 1 0.078 H11B 0.9302 0.256 1.1711 1 0.078 C12 0.9767(5) 0.1482(3) 1.1039(2) 1 0.1012(16) H12A 1.0519 0.162 1.1227 1 0.121 H12B 0.9536 0.0937 1.1303 1 0.121 C13 0.9745(3) 0.1391(2) 1.0129(2) 1 0.0677(9) H13A 0.949 0.0808 0.9975 1 0.081 H13B 1.0488 0.148 0.99 1 0.081 C14 0.8927(2) 0.20973(17) 0.97856(14) 1 0.0426(5) C15 0.7844(2) 0.16871(17) 0.95088(16) 1 0.0457(5) H15 0.7362 0.1387 0.9865 1 0.055 C16 0.7655(2) 0.18031(16) 0.86960(15) 1 0.0407(5) C17 0.8541(2) 0.23162(15) 0.82622(14) 1 0.0374(5) H17 0.8905 0.1948 0.7839 1 0.045 C18 0.8201(2) 0.31714(16) 0.70344(14) 1 0.0415(5) C19 0.7614(2) 0.39953(17) 0.67082(15) 1 0.0470(6) C20 0.7996(3) 0.48109(18) 0.71967(18) 1 0.0574(7) H20A 0.7501 0.5295 0.7059 1 0.069 H20B 0.7916 0.4693 0.7791 1 0.069 C21 0.9168(4) 0.5087(2) 0.7031(2) 1 0.0712(10) C22 1.1000(4) 0.4595(4) 0.6716(3) 1 0.1074(16) H22A 1.1041 0.4831 0.6159 1 0.161 H22B 1.1425 0.4061 0.6745 1 0.161 H22C 1.1301 0.5014 0.7106 1 0.161 C23 0.6346(2) 0.38782(19) 0.67748(17) 1 0.0525(6) H23A 0.6135 0.3894 0.7361 1 0.063 H23B 0.5983 0.4369 0.6499 1 0.063 C24 0.5914(3) 0.3023(2) 0.6389(2) 1 0.0590(7) H24A 0.6233 0.2952 0.5834 1 0.071 H24B 0.6159 0.2531 0.6729 1 0.071 C25 0.4642(3) 0.3012(2) 0.6326(2) 1 0.0665(8) H25A 0.4338 0.3092 0.6884 1 0.08 H25B 0.4411 0.3513 0.5994 1 0.08 C26 0.4115(3) 0.2193(3) 0.5950(2) 1 0.0754(10) C27 0.2855(4) 0.2319(4) 0.5904(4) 1 0.1200(19) H27A 0.2691 0.2858 0.5617 1 0.18 H27B 0.2553 0.2343 0.6461 1 0.18

Single Crystal X Ray Diffraction of Homoharringtonine Base (Form B)

See Corresponding FIGS. 2.2.2 and 2.2.3

From a suspension in its mother liquor, a suitable single crystal of size 0.43×0.29×0.18 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C31H49N O12 Extended formula C29H39N O9, 2(CH4O), H2O Formula weight 627.71 Temperature 150(2)K Wavelength 0.71073 Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions a = 11.7738(10) Å, α = 90° b = 14.3907(13) Å, β = 90° c = 19.1368(15) Å, γ = 90° Volume 3242.4(5) 3 Z, Calculated density 4, 1.286 (g · cm−1) Absorption coefficient 0.098 mm−1 F(000) 1352 Crystal size 0.43 × 0.29 × 0.18 mm Crystal color colourless Theta range for data collection 3.02 to 27.46° h_min, h_max −15, 13 k_min, k_max −18, 18 l_min, l_max −24, 19 Reflections collected/unique 16236/4103 [aR(int) = 0.0334] Reflections [I > 2σ] 3764 Completeness to theta_max 0.99 Absorption correction type multi-scan Max. and min. transmission 0.982, 0.874 Refinement method Full-matrix least-squares on F2 Data/restraints/parameters 4103/2/421 bGoodness-of-fit 1.031 Final R indices [I > 2σ] cR1 = 0.0346, dwR2 = 0.0871 R indices (all data) cR1 = 0.039, dwR2 = 0.09 Largest diff. peak and hole 0.259 and −0.2 e.Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIGS. 2.2.2 and 2.2.3 corresponds to below table.

Atom x Y z occ. U(eq) C1   0.14461(16) 0.92123(13)   0.19855(10) 1 0.0185(4) H1   0.1645 0.9474   0.2424 1 0.022 C2   0.13507(16) 0.96935(13)   0.14015(10) 1 0.0182(4) C3   0.10057(15) 0.91236(13)   0.07788(10) 1 0.0162(4) H3   0.0245 0.9326   0.0604 1 0.019 C4   0.09461(15) 0.81122(13)   0.10658(10) 1 0.0156(4) H4   0.0135 0.7915   0.1024 1 0.019 C5   0.11993(15) 0.81891(13)   0.18697(10) 1 0.0173(4) C6   0.01795(18) 0.78404(16)   0.22996(10) 1 0.0236(4) H6A −0.0435 0.831   0.2309 1 0.028 H6B −0.0124 0.7254   0.2103 1 0.028 C7   0.06647(19) 0.76830(18)   0.30351(12) 1 0.0324(5) H7A   0.0543 0.8236   0.3334 1 0.039 H7B   0.0307 0.7137   0.326 1 0.039 C8   0.19354(19) 0.75150(15)   0.29115(10) 1 0.0250(4) H8A   0.2394 0.8   0.3146 1 0.03 H8B   0.2164 0.69   0.3095 1 0.03 N9   0.21006(14) 0.75555(11)   0.21387(8) 1 0.0190(3) C10   0.32858(17) 0.78051(14)   0.19706(11) 1 0.0214(4) H10A   0.3792 0.729   0.2115 1 0.026 H10B   0.3502 0.8363   0.2243 1 0.026 C11   0.34668(16) 0.80017(13)   0.11940(10) 1 0.0185(4) H11A   0.3221 0.8645   0.1092 1 0.022 H11B   0.4288 0.7958   0.1088 1 0.022 C12   0.28274(15) 0.73420(12)   0.07195(10) 1 0.0166(4) C13   0.16369(16) 0.74035(12)   0.06606(9) 1 0.0158(4) C14   0.10458(16) 0.68001(13)   0.02102(10) 1 0.0185(4) H14   0.0244 0.6838   0.0162 1 0.022 C15   0.16632(17) 0.61550(13) −0.01569(11) 1 0.0214(4) C16   0.28285(17) 0.60909(13) −0.00929(11) 1 0.0215(4) C17   0.34324(16) 0.66697(13)   0.03421(10) 1 0.0196(4) H17   0.4234 0.6616   0.0385 1 0.023 C18   0.2238(2) 0.49213(19) −0.07619(17) 1 0.0473(7) H18A   0.2304 0.4778 −0.1266 1 0.057 H18B   0.2144 0.433 −0.0504 1 0.057 C19   0.19032(19) 1.11428(14)   0.18498(12) 1 0.0283(5) H19A   0.2613 1.0871   0.2022 1 0.042 H19B   0.1334 1.1137   0.2224 1 0.042 H19C   0.2041 1.1785   0.1701 1 0.042 C21   0.15776(16) 0.96435(12) −0.03634(9) 1 0.0155(3) C22   0.25991(16) 0.96278(12) −0.08591(10) 1 0.0169(4) C23   0.29059(16) 0.86127(13) −0.10429(10) 1 0.0188(4) H23A   0.3594 0.8612 −0.134 1 0.023 H23B   0.3091 0.8276 −0.0607 1 0.023 C24   0.19701(16) 0.80987(13) −0.14192(10) 1 0.0187(4) C25   0.1561(2) 0.68927(17) −0.22153(14) 1 0.0361(5) H25A   0.1117 0.7289 −0.2529 1 0.054 H25B   0.1053 0.6598 −0.1875 1 0.054 H25C   0.195 0.6412 −0.2488 1 0.054 C31   0.36248(16) 1.00778(13) −0.04883(10) 1 0.0195(4) H31A   0.3848 0.9679 −0.009 1 0.023 H31B   0.4272 1.0094 −0.0819 1 0.023 C32   0.34172(18) 1.10662(12) −0.02159(11) 1 0.0212(4) H32A   0.3272 1.149 −0.0613 1 0.025 H32B   0.2742 1.1072   0.0092 1 0.025 C33   0.44570(19) 1.13955(14)   0.01904(12) 1 0.0273(5) H33A   0.5137 1.1282 −0.0102 1 0.033 H33B   0.453 1.1004   0.0613 1 0.033 C34   0.44740(19) 1.24164(14)   0.04199(11) 1 0.0248(4) C35   0.5515(2) 1.25841(17)   0.08801(15) 1 0.0416(6) H35A   0.5496 1.2159   0.128 1 0.062 H35B   0.5509 1.3227   0.1048 1 0.062 H35C   0.6206 1.2474   0.0607 1 0.062 C36   0.4479(2) 1.30687(14) −0.01973(12) 1 0.0311(5) H36A   0.4469 1.3713 −0.0031 1 0.047 H36B   0.3805 1.2954 −0.0486 1 0.047 H36C   0.5164 1.2963 −0.0477 1 0.047 O1   0.14964(13) 1.06111(9)   0.12688(7) 1 0.0244(3) O2   0.12829(13) 0.55129(11) −0.06415(9) 1 0.0329(4) O3   0.32361(13) 0.53951(11) −0.05252(9) 1 0.0328(4) O4   0.18522(11) 0.92032(9)   0.02297(7) 1 0.0169(3) O5   0.06782(11) 1.00004(10) −0.04854(7) 1 0.0215(3) O6   0.23721(13) 1.01397(10) −0.14731(7) 1 0.0221(3) HO6   0.170(3) 1.007(2) −0.1577(16) 1 0.0 O7   0.09736(13) 0.82269(11) −0.13360(9) 1 0.0326(4) O8   0.23961(13) 0.74537(10) −0.18490(8) 1 0.0289(3) O9   0.34591(17) 1.25612(12)   0.08302(10) 1 0.0403(4) HO9   0.346(3) 1.315(2)   0.0956(15) 1 0.0 C51   0.1062(3) 0.5267(2)   0.2091(2) 1 0.0688(11 H51A   0.105 0.4613   0.1948 1 0.103 H51B   0.0453 0.5604   0.1851 1 0.103 H51C   0.0948 0.531   0.2597 1 0.103 O52   0.21050(17) 0.56578(12)   0.19155(11) 1 0.0451(5) H52   0.204(3) 0.632(3)   0.1905(18) 1 0.068 O61   0.03166(17) 1.03110(13) −0.21801(10) 1 0.0431(4) H61 −0.026(3) 1.028(3) −0.1858(18) 1 0.065 C62 −0.0021(2) 0.96665(19) −0.26999(14) 1 0.0428(6) H62A   0.0298 0.9852 −0.3152 1 0.064 H62B −0.0852 0.9655 −0.2731 1 0.064 H62C   0.0257 0.9046 −0.2576 1 0.064 O71   0.35707(17) 1.45528(12)   0.12174(10) 1 0.0408(4) H71A   0.410(2) 1.489(2)   0.0914(15) 1 0.061 H71B   0.301(2) 1.498(2)   0.1443(16) 1 0.061

Example 3: Preparation and Analyses of Homoharringtonine Hydrogen (2S)-Malate (Synonymous: Homoharringtonine (2S)-Bimalate)

This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S)-(−)-malic acid (natural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205.4-207.7° C. from MeOH (measured by DSC, see FIG. 3.2). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

1H NMR (400 MHz. Methanol-d4)* δ 6.79 (s, 1H), 6.74 (s, 1H), 6.09 (dd, J=9.6, 0.6 Hz, 1H), 5.96 (d, J=1.1 Hz, 1H), 5.93 (d, J=1.1 Hz, 1H), 5.33 (d, J=0.6 Hz, 1H), 4.24 (dd, J=7.4, 5.4 Hz, 1H), 4.16 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.50 (dd, J=9.5, 4.3 Hz, 1H), 3.42-3.32 (m, 1H), 3.21-3.10 (m, 1H), 2.76 (dd, J=15.9, 5.5 Hz, 1H), 2.71-2.62 (m, 1H), 2.48 (dd, J=15.8, 7.4 Hz, 1H), 2.26-2.05 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

1H NMR (600 MHz, Deuterium oxide)* δ 6.84 (s, 1H), 6.76 (s, 1H), 6.01 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (d, J=0.6 Hz, 1H), 4.31 (dd, J=8.2, 4.2 Hz, 1H), 4.19 (d, J=9.6 Hz, 1H), 3.76 (s, 3H), 3.52 (s, 3H), 3.52 (m, 1H), 3.42-3.32 (m, 1H), 3.30-3.23 (m, 1H), 3.22-3.15 (m, 1H), 2.76 (dd, J=16.0, 4.2 Hz, 1H), 2.74-2.68 (m, 1H), 2.57 (dd, J=16.0, 8.2 Hz, 1H), 2.36 (d, J=17.0 Hz, 1H), 2.29-2.08 (m, 2H), 1.99 s(d, J=16.9 Hz, 1H), 1.97-1.89 (m, 1H), 1.45-1.37 (m, 2H), 1.36-1.26 (m, 3H), 1.12 (s, 6H), 1.12-1.02 (m, 1H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, MeOD) δ 179.23, 176.13, 174.23, 171.61, 165.05, 149.76, 148.75, 130.92, 126.86, 114.85, 111.80, 102.86, 96.12, 78.09, 76.08, 74.35, 71.27, 69.35, 59.01, 54.21, 53.27, 52.07, 48.94, 44.76, 44.06, 41.80, 40.88, 40.52, 29.25, 29.23, 29.17, 19.95, 19.09.

13C NMR APT* (101 MHz, D2O) δ 178.97, 176.21, 174.23, 171.93, 162.88, 147.83, 146.74, 129.74, 125.22, 113.38, 111.12, 101.62, 95.52, 76.98, 75.25, 73.68, 71.34, 68.50, 58.41, 52.95, 52.24, 51.25, 47.58, 42.71, 42.54, 40.00, 39.18, 38.76, 27.69, 27.58, 27.47, 18.58, 17.68. *APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3404, 2969, 2601, 1981, 1758, 1736, 1712, 1657, 1525, 1505, 1490, 1468, 1435, 1374, 1353, 1265, 1226, 1188, 1148, 1080, 1032, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510, 477. See FIG. 1.2

IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1596, 1506, 1490, 1440, 1373, 1266, 1224, 1168, 1084, 1033, 929, 710, 615, 566, 509, 477, 0, 983, 943, 925, 862, 830, 796, 770, 756, 708, 691, 674, 650, 615, 589, 565, 541, 510. See FIG. 1.2

Solubility in neutral water higher than 60 mg/mL

A. Single Crystal X-Ray Diffraction (See FIGS. 2.3.1 and 2.3.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.46×0.29 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C33H45N O14 Extended formula C29H40N O9, C4H5O5 Formula weight 679.7 Temperature 150(2)K Wavelength 0.71073 Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions a = 11.488(2) Å, α = 90° b = 15.399(3) Å, β = 90° c = 18.825(4) Å, γ = 90° Volume 3330.2(11) 3 Z, Calculated density 4, 1.356 (g · cm−1) Absorption coefficient 0.106 mm−1 F(000) 1448 Crystal size 0.58 × 0.46 × 0.29 mm Crystal color white Theta range for data collection 3.09 to 27.48° h_min, h_max −14, 14 k_min, k_max −19, 13 l_min, l_max −18, 24 Reflections collected/unique 28567/4233 [aR(int) = 0.1176] Reflections [I > 2σ] 2414 Completeness to theta_max 0.998 Absorption correction type multi-scan Max. and min. transmission 0.970, 0.688 Refinement method: Full-matrix least-squares on F2 Data/restraints/parameters 4233/0/440 bGoodness-of-fit 1.038 Final R indices [I > 2σ]: cR1 = 0.0735, dwR2 = 0.1727 R indices (all data): cR1 = 0.1366, dwR2 = 0.2124 Largest diff. peak and hole 0.555 and −0.27 e.Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.3.1 corresponds to below table.

Atom x y z occ. U(eq) C1 0.8902(5)   0.0603(4) 0.7067(3) 1 0.0450(15) H1 0.8742   0.0363 0.7521 1 0.054 C2 0.8846(5)   0.0175(4) 0.6464(3) 1 0.0405(13) C3 0.9163(5)   0.0678(4) 0.5821(3) 1 0.0412(14) H3 0.9896   0.0445 0.5606 1 0.049 C4 0.9359(4)   0.1614(4) 0.6109(3) 1 0.0355(13) H4 1.0189   0.1762 0.6007 1 0.043 C5 0.9255(5)   0.1528(4) 0.6934(3) 1 0.0391(13) C6 1.0363(5)   0.1790(5) 0.7327(3) 1 0.0501(16) H6A 1.0975   0.1343 0.7269 1 0.06 H6B 1.0662   0.2352 0.7148 1 0.06 C7 0.9996(6)   0.1865(5) 0.8099(3) 1 0.0584(18) H7A 1.0501   0.2277 0.836 1 0.07 H7B 1.0023   0.1293 0.8339 1 0.07 C8 0.8744(6)   0.2204(5) 0.8049(3) 1 0.0539(17) H8A 0.8215   0.1843 0.834 1 0.065 H8B 0.8701   0.2812 0.8219 1 0.065 N9 0.8411(4)   0.2153(4) 0.7276(3) 1 0.0432(12) H9 0.8561   0.2696 0.7081 1 0.052 C10 0.7137(5)   0.1984(5) 0.7172(3) 1 0.0496(16) H10A 0.6691   0.2495 0.7338 1 0.06 H10B 0.6904   0.148 0.7467 1 0.06 C11 0.6826(4)   0.1802(4) 0.6402(3) 1 0.0436(14) H11A 0.7034   0.1193 0.6287 1 0.052 H11B 0.5974   0.1864 0.6341 1 0.052 C12 0.7435(4)   0.2399(4) 0.5885(3) 1 0.0401(14) C13 0.8622(4)   0.2320(4) 0.5758(3) 1 0.0349(13) C14 0.9172(4)   0.2871(4) 0.5278(3) 1 0.0364(13) H14 0.9984   0.2823 0.5191 1 0.044 C15 0.8516(5)   0.3487(4) 0.4933(3) 1 0.0441(15) C16 0.7360(5)   0.3568(4) 0.5058(4) 1 0.0464(15) C17 0.6788(5)   0.3043(4) 0.5538(3) 1 0.0437(15) H17 0.598   0.3115 0.563 1 0.052 C18 0.7884(6)   0.4626(5) 0.4322(5) 1 0.076(2) H18A 0.8017   0.5203 0.4539 1 0.091 H18B 0.7749   0.4707 0.3807 1 0.091 C19 0.8154(7) −0.1118(5) 0.6969(4) 1 0.066(2) H19A 0.8787 −0.115 0.7317 1 0.099 H19B 0.7907 −0.1707 0.6841 1 0.099 H19C 0.7496 −0.0802 0.7175 1 0.099 C21 0.8355(4)   0.0154(4) 0.4745(3) 1 0.0382(13) C22 0.7306(5)   0.0234(4) 0.4248(3) 1 0.0412(14) C23 0.7103(5)   0.1202(4) 0.4059(3) 1 0.0379(13) H23A 0.6413   0.1246 0.3746 1 0.046 H23B 0.6932   0.1527 0.4501 1 0.046 C24 0.8129(5)   0.1618(4) 0.3693(3) 1 0.0409(14) C25 0.8695(6)   0.2717(5) 0.2887(4) 1 0.069(2) H25A 0.9088   0.31 0.3226 1 0.104 H25B 0.8353   0.3065 0.2505 1 0.104 H25C 0.9259   0.2308 0.2686 1 0.104 C31 0.6209(5) −0.0103(4) 0.4625(3) 1 0.0450(14) H31A 0.6041   0.028 0.5035 1 0.054 H31B 0.5544 −0.006 0.4293 1 0.054 C32 0.6293(5) −0.1031(4) 0.4889(4) 1 0.0491(16) H32A 0.6941 −0.108 0.5233 1 0.059 H32B 0.6462 −0.1422 0.4484 1 0.059 C33 0.5166(6) −0.1309(5) 0.5242(4) 1 0.0596(19) H33A 0.4518 −0.1174 0.4914 1 0.072 H33B 0.5056 −0.0947 0.5672 1 0.072 C34 0.5053(7) −0.2260(5) 0.5462(4) 1 0.069(2) C35 0.6051(10) −0.2507(6) 0.5911(5) 1 0.100(3) H35A 0.5942 −0.3101 0.6086 1 0.15 H35B 0.6107 −0.2108 0.6315 1 0.15 H35C 0.6769 −0.2477 0.563 1 0.15 C36 0.3912(10) −0.2401(7) 0.5849(6) 1 0.112(4) H36A 0.3267 −0.2205 0.5549 1 0.168 H36B 0.3914 −0.2069 0.6293 1 0.168 H36C 0.3818 −0.302 0.5955 1 0.168 O31 0.5016(6) −0.2752(4) 0.4798(3) 1 0.104(2) H31 0.4952 −0.3283 0.4889 1 0.156 O1 0.8553(4) −0.0674(3) 0.6348(2) 1 0.0543(11) O2 0.6901(4)   0.4222(3) 0.4640(3) 1 0.0625(13) O3 0.8872(4)   0.4087(3) 0.4432(2) 1 0.0560(13) O21 0.8226(3)   0.0660(2) 0.53083(19) 1 0.0371(9) O22 0.9152(3) −0.0342(3) 0.4646(2) 1 0.0507(11) O23 0.7478(3) −0.0256(3) 0.3627(2) 1 0.0426(10) H23 0.8145 −0.0155 0.3464 1 0.064 O24 0.9138(3)   0.1434(3) 0.3794(2) 1 0.0522(12) O25 0.7785(4)   0.2240(3) 0.3248(3) 1 0.0561(12) C51 0.8039(5)   0.4264(5) 0.7157(4) 1 0.0518(17) C52 0.7548(6)   0.5067(5) 0.6770(4) 1 0.0531(17) H52 0.7672   0.5593 0.7073 1 0.064 C53 0.6259(6)   0.4973(5) 0.6614(4) 1 0.060(2) H53A 0.606   0.5382 0.6226 1 0.072 H53B 0.6125   0.4379 0.6431 1 0.072 C54 0.5421(6)   0.5127(5) 0.7216(4) 1 0.065(2) O51 0.8885(4)   0.3887(3) 0.6897(3) 1 0.0557(12) O52 0.7540(6)   0.4053(4) 0.7716(3) 1 0.095(2) O53 0.8147(6)   0.5173(5) 0.6130(4) 1 0.100(2) H53 0.8805   0.4937 0.6161 1 0.15 O54 0.5697(6)   0.4866(5) 0.7821(3) 1 0.097(2) H54 0.5978   0.4363 0.7791 1 0.146 O55 0.4515(5)   0.5523(5) 0.7122(3) 1 0.110(3)

B. X-Ray Powder Diffraction

The sample is pure and there is a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.3.3)

Example 4: Preparation and Analyses of Homoharringtonine Hydrogen (2R)-Malate (Diastereomer of Example 3)

This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2R)-(+)-malic acid (unnatural form) according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 205-208° C. from MeOH (measured by DSC, see FIG. 3.3). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.3)

1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.26 (dd, J=7.4, 5.5 Hz, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.55 (s, 3H), 3.53 (s, 1H), 3.34 (s, 2H), 3.22-3.12 (m, 1H), 2.77 (dd, J=15.9, 5.4 Hz, 1H), 2.72-2.64 (m, 1H), 2.49 (dd, J=15.9, 7.4 Hz, 1H), 2.29-2.05 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.18 (m, 6H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 179.21, 176.06, 174.25, 171.63, 165.07, 149.78, 148.77, 130.94, 126.88, 114.85, 111.80, 102.88, 96.10, 78.07, 76.09, 74.36, 71.28, 69.33, 59.00, 54.22, 53.31, 52.07, 44.77, 44.06, 41.76, 40.88, 40.54, 29.27, 29.22, 19.94, 19.10. *APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3467, 3384, 2970, 2051, 1762, 1737, 1708, 1655, 1607, 1533, 1509, 1494, 1469, 1440, 1376, 1349, 1333, 1292, 1258, 1230, 1208, 1167, 1147, 1121, 1080, 1032, 985, 942, 926, 888, 865, 820, 771, 754, 717, 690, 675, 648, 616, 563, 542, 513, 476. See FIG. 1.3

IR (Diamond ATR, film) cm−1 3422, 2964, 1742, 1656, 1598, 1506, 1490, 1440, 1373, 1266, 1224, 1169, 1084, 1033, 929, 709, 567, 511. See FIG. 1.3

A. Single Crystal X-Ray Diffraction (See FIGS. 2.4.1 and 2.4.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.55×0.48×0.4 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C34H49N O15 Extended formula C29H40N O9, C4H5O5, CH4O Formula weight 711.74 Temperature 150(2)K Wavelength 0.71073 Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions: a = 11.3958(8) Å, α = 90° b = 15.5163(16) Å, β = 90° c = 19.3680(16) Å, γ = 90° Volume 3424.7(5) 3 Z, Calculated density 4, 1.38 (g · cm−1) Absorption coefficient 0.108 mm−1 F(000) 1520 Crystal size 0.55 × 0.48 × 0.4 mm Crystal color colourless Theta range for data collection 3.06 to 27.47° h_min, h_max −14, 14 k_min, k_max −20, 11 l_min, l_max −25, 14 Reflections collected/unique 14680/4317 [aR(int) = 0.0515] Reflections [I > 2σ] 3608 Completeness to theta_max 0.989 Absorption correction type multi-scan Max. and min. transmission 0.958, 0.839 Refinement method: Full-matrix least-squares on F2 Data/restraints/parameters 4317/0/474 bGoodness-of-fit 1.034 Final R indices [I > 2σ]: cR1 = 0.0397, dwR2 = 0.0825 R indices (all data): cR1 = 0.0531, dwR2 = 0.0878 Largest diff. peak and hole 0.26 and −0.238 e.Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.4.1 corresponds to below table.

Atom x y z occ. U(eq) C1 0.8742(2)   0.06078(16)   0.19603(12) 1 0.0184(5) H1 0.8565   0.0356   0.2395 1 0.022 C2 0.8762(2)   0.01795(16)   0.13644(13) 1 0.0188(5) C3 0.9050(2)   0.07250(16)   0.07486(11) 1 0.0170(5) H3 0.9806   0.0529   0.0538 1 0.02 C4 0.9198(2)   0.16514(15)   0.10526(11) 1 0.0162(5) H4 1.0039   0.1809   0.098 1 0.019 C5 0.9039(2)   0.15418(16)   0.18536(12) 1 0.0174(5) C6 1.0098(2)   0.18290(17)   0.22700(12) 1 0.0235(6) H6A 1.037   0.2405   0.2119 1 0.028 H6B 1.0752   0.1413   0.2222 1 0.028 C7 0.9654(3)   0.18574(18)   0.30140(13) 1 0.0267(6) H7A 1.0095   0.2288   0.3288 1 0.032 H7B 0.9732   0.1286   0.3237 1 0.032 C8 0.8361(3)   0.21154(17)   0.29473(12) 1 0.0238(6) H8A 0.7851   0.1693   0.3186 1 0.029 H8B 0.8226   0.2692   0.3151 1 0.029 N9 0.81061(19)   0.21246(14)   0.21739(10) 1 0.0176(4) H9 0.825(3)   0.269(2)   0.2017(17) 1 0.05 C10 0.6851(2)   0.19196(17)   0.20232(13) 1 0.0218(6) H10A 0.635   0.2391   0.2201 1 0.026 H10B 0.6631   0.1385   0.227 1 0.026 C11 0.6617(2)   0.18021(15)   0.12509(12) 1 0.0191(5) H11A 0.6845   0.121   0.1116 1 0.023 H11B 0.5764   0.1864   0.1166 1 0.023 C12 0.7267(2)   0.24357(15)   0.07984(12) 1 0.0173(5) C13 0.8483(2)   0.23587(15)   0.07084(11) 1 0.0158(5) C14 0.9095(2)   0.29500(15)   0.02929(12) 1 0.0183(5) H14 0.9918   0.2903   0.0226 1 0.022 C15 0.8457(2)   0.35990(16) −0.00131(12) 1 0.0200(5) C16 0.7266(2)   0.36742(16)   0.00808(13) 1 0.0208(5) C17 0.6642(2)   0.31099(15)   0.04811(12) 1 0.0188(5) H17 0.582   0.3171   0.0542 1 0.023 C18 0.7889(2)   0.4844(2) −0.04641(17) 1 0.0369(7) H18A 0.802   0.5311 −0.0125 1 0.044 H18B 0.7814   0.5104 −0.0929 1 0.044 C19 0.8404(3) −0.11951(17)   0.18391(15) 1 0.0307(6) H19A 0.912 −0.1207   0.2119 1 0.046 H19B 0.8203 −0.1782   0.1695 1 0.046 H19C 0.7759 −0.0954   0.2113 1 0.046 C21 0.8370(2)   0.02556(14) −0.03526(12) 1 0.0158(5) C22 0.7342(2)   0.02954(15) −0.08511(12) 1 0.0162(5) C23 0.7016(2)   0.12332(15) −0.10139(12) 1 0.0187(5) H23A 0.6336   0.1238 −0.1332 1 0.022 H23B 0.6773   0.1523 −0.0582 1 0.022 C24 0.8000(2)   0.17318(15) −0.13336(12) 1 0.0184(5) C25 0.8506(3)   0.2801(2) −0.21480(17) 1 0.0398(8) H25A 0.8814   0.321 −0.1808 1 0.06 H25B 0.8156   0.3119 −0.2534 1 0.06 H25C 0.9146   0.2438 −0.232 1 0.06 C31 0.6261(2) −0.01467(15) −0.05365(12) 1 0.0180(5) H31A 0.599   0.02 −0.0139 1 0.022 H31B 0.5625 −0.0146 −0.0885 1 0.022 C32 0.6456(2) −0.10722(15) −0.02934(12) 1 0.0181(5) H32A 0.7012 −0.1076   0.0099 1 0.022 H32B 0.6803 −0.1416 −0.0673 1 0.022 C33 0.5293(2) −0.14767(15) −0.00701(13) 1 0.0196(5) H33A 0.4777 −0.151 −0.048 1 0.024 H33B 0.4913 −0.1082   0.0264 1 0.024 C34 0.5349(2) −0.23726(16)   0.02570(12) 1 0.0202(5) C35 0.4125(2) −0.26450(18)   0.04804(15) 1 0.0280(6) H35A 0.4172 −0.3188   0.0737 1 0.042 H35B 0.363 −0.2724   0.0072 1 0.042 H35C 0.3785 −0.2198   0.0777 1 0.042 C36 0.5878(3) −0.30546(16) −0.02198(14) 1 0.0261(6) H36A 0.6674 −0.2881 −0.0353 1 0.039 H36B 0.5391 −0.3111 −0.0634 1 0.039 H36C 0.591 −0.3609   0.0022 1 0.039 O1 0.85935(16) −0.06660(11)   0.12358(9) 1 0.0246(4) O2 0.88492(17)   0.42476(12) −0.04504(10) 1 0.0291(5) HO2 0.832(3) −0.035(2) −0.1469(17) 1 0.05 O3 0.68491(16)   0.43735(12) −0.02943(10) 1 0.0313(5) O4 0.81179(14)   0.06809(10)   0.02407(8) 1 0.0175(4) O5 0.92726(15) −0.01197(11) −0.04651(9) 1 0.0229(4) O6 0.76585(17) −0.01235(11) −0.14790(8) 1 0.0213(4) O7 0.90141(17)   0.16881(12) −0.11593(10) 1 0.0289(4) O8 0.76172(16)   0.22615(12) −0.18254(10) 1 0.0294(5) O9 0.60916(17) −0.22805(12)   0.08630(9) 1 0.0220(4) H09 0.624(3) −0.279(2)   0.1042(17) 1 0.05 C51 0.8226(2)   0.44762(17)   0.18302(13) 1 0.0236(6) C52 0.7112(2)   0.45571(16)   0.22623(13) 1 0.0224(6) H52 0.721   0.5059   0.2581 1 0.027 C53 0.6023(2)   0.47238(16)   0.18092(13) 1 0.0224(5) H53A 0.612   0.4418   0.1364 1 0.027 H53B 0.5323   0.4483   0.2042 1 0.027 C54 0.5820(2)   0.56740(17)   0.16673(12) 1 0.0207(5) O51 0.84243(18)   0.51249(12)   0.14213(10) 1 0.0327(5) O52 0.88827(16)   0.38509(12)   0.18781(10) 1 0.0289(4) O53 0.69947(19)   0.38065(13)   0.26660(10) 1 0.0341(5) H53 0.628(3)   0.377(2)   0.2833(17) 1 0.05 O54 0.48847(17)   0.60192(12)   0.18067(9) 1 0.0274(4) O55 0.67121(17)   0.60868(11)   0.14119(9) 1 0.0263(4) H55 0.757(3)   0.559(2)   0.1382(16) 1 0.05 C61 0.4392(3)   0.46918(18)   0.34036(15) 1 0.0321(7) H61A 0.3848   0.4648   0.3794 1 0.048 H61B 0.3981   0.4932   0.3003 1 0.048 H61C 0.5048   0.5069   0.3529 1 0.048 O62 0.4827(2)   0.38596(14)   0.32369(11) 1 0.0418(6) H62 0.457(3)   0.347(2)   0.3498(17) 1 0.05

B. X-Ray Powder Diffraction

The sample was pure, there is no doubt that this is the correct phase. However there is a gap of certain diffraction lines, which would be associated with a variation of unit cell parameters. There may be a change in the rate of hydration for example, to cause such a phenomenon (for view of diagrams and experimental details, see FIG. 2.4.3).

Example 5: Preparation and Analyses of Homoharringtonine Hydrogen (2S,3S)-Tartrate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S,3S-(−)-tartaric acid (unnatural form) according to the general procedure, then isolated as a white prismatic solid mp 202-205° C. (uncorrected) from MeOH. (198.1-203.9, measured by DSC, see FIG. 3.4). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.4)

1H NMR (400 MHz, Methanol-d4)*δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.5 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 2.24 (d, J=16.2 Hz, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 176.81, 174.28, 171.67, 165.24, 149.87, 148.85, 130.83, 126.76, 114.91, 111.89, 102.93, 96.04, 78.34, 76.13, 74.38, 74.10, 71.32, 59.10, 54.28, 53.22, 52.12, 44.80, 44.09, 40.91, 40.46, 29.20, 29.19, 19.95, 19.13. *APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3502, 3048, 2971, 2884, 2051, 1981, 1765, 1736, 1656, 1592, 1506, 1490, 1432, 1375, 1348, 1321, 1295, 1265, 1227, 1205, 1165, 1147, 1111, 1081, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510, 477. See FIG. 1.4

IR (Diamond ATR, film) cm−1 3419, 2963, 1741, 1656, 1611, 1506, 1489, 1440, 1373, 1265, 1224, 1168, 1118, 1083, 1035, 983, 928, 674, 614, 512, 477. See FIG. 1.4

X-Ray Crystallographic Studies

A. Single Crystal X-Ray Diffraction (See FIGS. 2.5.1 and 2.5.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.35×0.28×0.19 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula 33H45N O15 Extended formula C33H45N1 O15 Formula weight 695.7 Temperature 150(2)K Wavelength 0.71073 Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions a = 10.7962(3) Å, α = 90° b = 16.3649(5) Å, β = 90° c = 18.6773(5) Å, γ = 90° Volume 3299.88(16) 3 Z, Calculated density 4, 1.4 (g · cm−1) Absorption coefficient 0.111 mm−1 F(000) 1480 Crystal size 0.35 × 0.28 × 0.19 mm Crystal color colourless Theta range for data collection 3.12 to 27.48° h_min, h_max −14, 14 k_min, k_max −18, 21 l_min, l_max −23, 24 Reflections collected/unique 53493/4200 [aR(int) = 0.0357] Reflections [I > 2σ] 4022 Completeness to theta_max 0.997 Absorption correction type multi-scan Max. and min. transmission 0.979, 0.921 Refinement method Full-matrix least-squares on F2 Data/restraints/parameters 4200/0/464 bGoodness-of-fit 1.044 Final R indices [I > 2σ]: cR1 = 0.0289, dwR2 = 0.0766 R indices (all data): cR1 = 0.0308, dwR2 = 0.0781 Largest diff, peak and hole: 0.245 and −0.156 e.Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
Atom numbering of FIG. 2.5.1 corresponds to below table.

Atom x y z occ. U(eq) C1 0.60365(16) 0.56010(10) 0.77843(9) 1 0.0207(3) H1 0.6286 0.5375 0.7338 1 0.025 C2 0.59199(16) 0.51759(10) 0.83901(9) 1 0.0204(3) C3 0.54863(14) 0.56685(9) 0.90214(8) 1 0.0173(3) H3 0.4655 0.5475 0.9185 1 0.021 C4 0.53958(14) 0.65545(9) 0.87170(8) 1 0.0159(3) H4 0.4499 0.6705 0.8739 1 0.019 C5 0.57198(15) 0.64844(10) 0.79030(9) 1 0.0176(3) C6 0.46897(15) 0.68171(10) 0.74191(8) 1 0.0209(3) H6A 0.4358 0.7336 0.7612 1 0.025 H6B 0.4003 0.6418 0.738 1 0.025 C7 0.52972(18) 0.69568(12) 0.66864(9) 1 0.0279(4) H7A 0.4941 0.7444 0.6449 1 0.034 H7B 0.5177 0.6476 0.6372 1 0.034 C8 0.66784(17) 0.70863(10) 0.68489(9) 1 0.0232(3) H8A 0.7186 0.6657 0.6617 1 0.028 H8B 0.6957 0.7627 0.6674 1 0.028 N9 0.67903(13) 0.70357(8) 0.76564(7) 1 0.0175(3) H9 0.667(3) 0.7517(18) 0.7806(16) 1 0.05 C10 0.80715(16) 0.68107(11) 0.78842(9) 1 0.0233(3) H10A 0.8653 0.7246 0.7736 1 0.028 H10B 0.8321 0.6299 0.7641 1 0.028 C11 0.81574(15) 0.66918(10) 0.86982(9) 1 0.0211(3) H11A 0.7888 0.613 0.8818 1 0.025 H11B 0.9033 0.6749 0.8847 1 0.025 C12 0.73790(14) 0.72935(10) 0.91171(9) 1 0.0183(3) C13 0.60770(14) 0.72158(9) 0.91235(8) 1 0.0160(3) C14 0.53534(15) 0.77926(9) 0.94934(8) 1 0.0177(3) H14 0.4476 0.7753 0.9498 1 0.021 C15 0.59463(16) 0.84150(10) 0.98478(9) 1 0.0203(3) C16 0.72235(16) 0.84894(10) 0.98391(9) 1 0.0228(3) C17 0.79564(15) 0.79481(11) 0.94736(9) 1 0.0215(3) H17 0.8831 0.8013 0.9461 1 0.026 C18 0.64308(19) 0.95977(12) 1.03596(11) 1 0.0325(4) H18A 0.6364 1.0053 1.0012 1 0.039 H18B 0.6407 0.9827 1.085 1 0.039 C19 0.6668(2) 0.39314(10) 0.79407(10) 1 0.0279(4) H19A 0.7405 0.4221 0.7771 1 0.042 H19B 0.6068 0.3884 0.7549 1 0.042 H19C 0.6903 0.3384 0.8106 1 0.042 C21 0.60705(15) 0.51652(9) 1.01819(8) 1 0.0167(3) C22 0.72136(14) 0.50930(9) 1.06633(8) 1 0.0166(3) C23 0.77327(15) 0.59411(9) 1.08420(9) 1 0.0192(3) H23A 0.8471 0.5876 1.1151 1 0.023 H23B 0.8004 0.6208 1.0393 1 0.023 C24 0.68149(16) 0.64899(10) 1.12155(9) 1 0.0217(3) C25 0.6586(2) 0.76969(15) 1.18925(17) 1 0.0533(7) H25A 0.6067 0.7412 1.2243 1 0.08 H25B 0.6057 0.7964 1.1536 1 0.08 H25C 0.709 0.8109 1.2137 1 0.08 C31 0.82188(15) 0.46027(9) 1.02660(9) 1 0.0191(3) H31A 0.8479 0.4917 0.9839 1 0.023 H31B 0.8949 0.4551 1.0583 1 0.023 C32 0.78268(16) 0.37451(9) 1.00245(9) 1 0.0197(3) H32A 0.7604 0.3411 1.0447 1 0.024 H32B 0.709 0.3784 0.9711 1 0.024 C33 0.88905(17) 0.33394(10) 0.96190(10) 1 0.0233(3) H33A 0.9647 0.3386 0.9916 1 0.028 H33B 0.9038 0.3655 0.9175 1 0.028 C34 0.87253(17) 0.24391(10) 0.94135(9) 1 0.0230(3) C35 0.98538(19) 0.21661(13) 0.89846(13) 1 0.0370(5) H35A 0.9902 0.2482 0.854 1 0.055 H35B 0.9779 0.1584 0.8871 1 0.055 H35C 1.0605 0.2258 0.9268 1 0.055 C36 0.8548(2) 0.18850(12) 1.00617(11) 1 0.0385(5) H36A 0.8438 0.132 0.9901 1 0.058 H36B 0.7814 0.2059 1.0329 1 0.058 H36C 0.9279 0.192 1.0372 1 0.058 O1 0.61196(13) 0.43788(7) 0.85237(7) 1 0.0255(3) O2 0.54324(13) 0.90276(8) 1.02592(7) 1 0.0284(3) O3 0.75632(13) 0.91539(8) 1.02482(7) 1 0.0320(3) O4 0.63780(10) 0.56087(7) 0.95949(6) 1 0.0183(2) O5 0.50856(11) 0.48612(7) 1.02953(7) 1 0.0244(3) O6 0.69079(12) 0.46715(7) 1.13040(6) 1 0.0221(2) HO6 0.616(3) 0.4684(17) 1.1363(15) 1 0.05 O7 0.57142(13) 0.64049(9) 1.12151(10) 1 0.0408(4) O8 0.73882(13) 0.71156(8) 1.15402(8) 1 0.0352(3) O9 0.76355(13) 0.23916(8) 0.89708(8) 1 0.0302(3) HO9 0.751(3) 0.1897(18) 0.8886(15) 1 0.05 C51 0.69752(17) 1.00450(11) 0.84160(9) 1 0.0240(3) C52 0.75591(16) 0.92992(10) 0.80382(9) 1 0.0216(3) H52 0.8202 0.9054 0.8358 1 0.026 C53 0.81501(17) 0.95062(11) 0.73116(9) 1 0.0248(3) H53 0.7586 0.9885 0.7048 1 0.03 C54 0.94378(18) 0.99098(12) 0.73715(10) 1 0.0291(4) O51 0.76283(13) 1.06995(8) 0.84564(8) 1 0.0331(3) O52 0.59210(13) 0.99642(8) 0.86509(8) 1 0.0337(3) O53 0.65877(13) 0.87221(7) 0.79311(7) 1 0.0276(3) HO53 0.604(3) 0.8924(17) 0.8176(15) 1 0.05 O54 0.82858(17) 0.87829(10) 0.69067(9) 1 0.0424(4) HO54 0.905(3) 0.8812(18) 0.6760(15) 1 0.05 O55 1.02589(15) 0.96663(11) 0.69804(9) 1 0.0465(4) O56 0.95769(14) 1.05015(9) 0.78265(9) 1 0.0373(3) HO56 0.868(3) 1.0629(17) 0.8111(14) 1 0.05

B. X-Ray Powder Diffraction

The sample was pure. There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.5.3).

Example 6: Preparation and Analyses of Homoharringtonine Hydrogen (2R,3R)-Tartrate (Diastemomer of Example 5)

This ionic compound was obtained from commercial homoharringtonine mixed with commercial (+)-(2R,3R)-tartaric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 206-208° C. (uncorrected) from MeOH. (204.6-208.5, measured by DSC, see FIG. 3.5). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.5)

1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.7 Hz, 1H), 5.97 (d, J=1.0 Hz, 1H), 5.94 (d, J=1.1 Hz, 1H), 5.34 (s, 1H), 4.36 (s, 2H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.44-3.32 (m, 2H), 3.28-3.16 (m, 1H), 2.69 (dd, J=13.7, 5.9 Hz, 1H), 2.27-2.21 (m, 2H), 2.21-1.97 (m, 2H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.18 (m, 6H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 176.80, 174.24, 171.62, 165.20, 149.84, 148.83, 130.81, 126.73, 114.86, 111.85, 102.89, 96.00, 78.29, 76.09, 74.34, 74.07, 71.28, 59.05, 54.22, 53.18, 52.07, 44.76, 44.05, 40.87, 40.43, 29.23, 29.17, 29.15, 19.91, 19.10. *APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3491, 3044, 2969, 1762, 1737, 1654, 1587, 1506, 1489, 1464, 1431, 1375, 1320, 1295, 1259, 1229, 1210, 1172, 1149, 1107, 1082, 1028, 984, 940, 924, 866, 819, 804, 735, 690, 616, 565, 512, 476. See FIG. 1.5

IR (Diamond ATR, film) cm−1 3417, 2963, 1741, 1655, 1611, 1505, 1489, 1440, 1373, 1265, 1223, 1167, 1118, 1082, 1034, 983, 928, 769, 675, 614, 565, 510, 478, 0, 1031, 984, 939, 921, 887, 866, 831, 810, 727, 691, 675, 615, 564, 510. See FIG. 1.5

X-Ray Crystallographic Studies

A. Single Crystal X-Ray Diffraction (See FIGS. 2.6.1 and 2.6.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.54×0.41×0.34 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C33H45NO15 Extended formula C29H40NO9, C4H5O6 Formula weight 695.7 Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions: a = 10.6770(3) Å, α = 90° b = 16.6169(6) Å, β = 90° c = 18.7442(7) Å, γ = 90° Volume 3325.6(2) Å3 Z, Calculated density 4, 1.39 (g · cm−1) Absorption coefficient 0.110 mm−1 F(000) 1480 Crystal size 0.54 × 0.41 × 0.34 mm Crystal color colourless Theta range for data collection 3.11 to 27.48° h_min, h_max −13, 10 k_min, k_max −21, 19 l_min, l_max −23, 15 Reflections collected/unique 15282/4165 [aR(int) = 0.0328] Reflections [I > 2σ] 3523 Completeness to theta_max 0.979 Absorption correction type multi-scan Max. and min. transmission 0.963, 0.891 Refinement method Full-matrix least-squares on F2 Data/restraints/parameters 4165/0/458 bGoodness-of-fit 1.021 Final R indices [I > 2σ]: cR1 = 0.0368, dwR2 = 0.0759 R indices (all data): cR1 = 0.0498, dwR2 = 0.0816 Largest diff. peak and hole 0.23 and −0.195 e · Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.6.1 corresponds to below table.

Atom x y z occ. U(eq) C1 0.8908(2)   0.06521(13) 0.73105(13) 1 0.0187(5) H1 0.8694   0.0434 0.7763 1 0.022 C2 0.9037(2)   0.02207(13) 0.67131(13) 1 0.0194(5) C3 0.9421(2)   0.06998(13) 0.60762(12) 1 0.0170(5) H3 1.0267   0.0525 0.5907 1 0.02 C4 0.94749(19)   0.15799(13) 0.63555(12) 1 0.0149(5) H4 1.0376   0.1742 0.6331 1 0.018 C5 0.91467(19)   0.15286(12) 0.71688(12) 1 0.0164(5) C6 1.0130(2)   0.19306(14) 0.76376(13) 1 0.0210(5) H6A 1.0399   0.2449 0.7427 1 0.025 H6B 1.0873   0.1579 0.7691 1 0.025 C7 0.9504(2)   0.20687(17) 0.83590(14) 1 0.0310(6) H7A 0.9805   0.2574 0.858 1 0.037 H7B 0.9677   0.1616 0.8688 1 0.037 C8 0.8100(2)   0.21218(14) 0.81897(12) 1 0.0218(5) H8A 0.7635   0.1686 0.8434 1 0.026 H8B 0.7756   0.2646 0.8345 1 0.026 N9 0.80013(17)   0.20331(11) 0.73928(10) 1 0.0167(4) H9 0.808(3)   0.2532(19) 0.7212(17) 1 0.05 C10 0.6742(2)   0.17363(14) 0.71581(13) 1 0.0212(5) H10A 0.609   0.2121 0.7316 1 0.025 H10B 0.6569   0.1211 0.7386 1 0.025 C11 0.6677(2)   0.16426(14) 0.63473(13) 1 0.0200(5) H11A 0.6969   0.1096 0.622 1 0.024 H11B 0.5792   0.1689 0.6196 1 0.024 C12 0.7446(2)   0.22516(13) 0.59340(13) 1 0.0178(5) C13 0.87646(19)   0.22060(12) 0.59378(12) 1 0.0142(5) C14 0.9478(2)   0.27752(13) 0.55633(12) 1 0.0176(5) H14 1.0367   0.2753 0.5567 1 0.021 C15 0.8861(2)   0.33632(13) 0.51922(13) 1 0.0188(5) C16 0.7568(2)   0.34102(14) 0.51918(13) 1 0.0229(5) C17 0.6842(2)   0.28758(13) 0.55610(13) 1 0.0210(5) H17 0.5955   0.2924 0.5566 1 0.025 C18 0.8325(3)   0.44907(16) 0.46298(16) 1 0.0358(7) H18A 0.8347   0.4683 0.413 1 0.043 H18B 0.8367   0.4963 0.4951 1 0.043 C19 0.8337(2) −0.10152(13) 0.71742(14) 1 0.0278(6) H19A 0.8918 −0.1024 0.7579 1 0.042 H19B 0.8166 −0.1568 0.702 1 0.042 H19C 0.7552 −0.0756 0.7319 1 0.042 C21 0.8802(2)   0.01342(12) 0.49504(13) 1 0.0172(5) C22 0.7657(2)   0.00350(13) 0.44714(12) 1 0.0171(5) C23 0.7075(2)   0.08447(12) 0.42747(13) 1 0.0185(5) H23A 0.637   0.0752 0.3942 1 0.022 H23B 0.6731   0.1097 0.4711 1 0.022 C24 0.7990(2)   0.14152(13) 0.39345(13) 1 0.0203(5) C25 0.8218(2)   0.26011(16) 0.32546(17) 1 0.0354(7) H25A 0.8661   0.2903 0.3626 1 0.053 H25B 0.7713   0.2972 0.2968 1 0.053 H25C 0.8828   0.2329 0.2947 1 0.053 C32 0.6115(2) −0.17869(13) 0.54608(14) 1 0.0218(5) H32A 0.5368 −0.179 0.5147 1 0.026 H32B 0.5885 −0.1491 0.59 1 0.026 C37 0.7146(2) −0.13192(12) 0.50853(13) 1 0.0197(5) H37A 0.7423 −0.1619 0.4657 1 0.024 H37B 0.7874 −0.1262 0.5409 1 0.024 C38 0.6679(2) −0.04831(12) 0.48638(13) 1 0.0192(5) H38A 0.6402 −0.0191 0.5296 1 0.023 H38B 0.594 −0.0549 0.455 1 0.023 C42 0.6411(2) −0.26590(13) 0.56665(13) 1 0.0214(5) C44 0.5296(2) −0.30128(16) 0.60626(15) 1 0.0310(6) H44A 0.5486 −0.3567 0.6205 1 0.047 H44B 0.456 −0.301 0.575 1 0.047 H44C 0.5122 −0.2689 0.6488 1 0.047 C45 0.6740(3) −0.31800(14) 0.50279(15) 1 0.0351(7) H45A 0.7474 −0.2955 0.4785 1 0.053 H45B 0.603 −0.3193 0.4697 1 0.053 H45C 0.6928 −0.3728 0.5189 1 0.053 O1 0.88885(17) −0.05711(9) 0.65947(9) 1 0.0254(4) O2 0.93569(16)   0.39596(10) 0.47637(9) 1 0.0273(4) O3 0.71970(17)   0.40404(11) 0.47595(10) 1 0.0334(4) O4 0.85067(13)   0.06035(9) 0.55137(8) 1 0.0176(3) O5 0.97892(14) −0.01899(9) 0.48520(9) 1 0.0250(4) O6 0.80450(16) −0.03582(10) 0.38304(9) 1 0.0231(4) HO6 0.878(3) −0.0464(19) 0.3873(17) 1 0.05 O7 0.91117(15)   0.13633(11) 0.39748(11) 1 0.0374(5) O8 0.74109(15)   0.20093(9) 0.35831(10) 1 0.0275(4) O9 0.74716(17) −0.26262(10) 0.61420(11) 1 0.0320(5) HO9 0.755(3) −0.307(2) 0.6285(18) 1 0.05 C51 0.5651(2)   0.49263(15) 0.76865(15) 1 0.0299(6) C52 0.6393(2)   0.42749(13) 0.72898(15) 1 0.0237(5) H52 0.6068   0.4235 0.6791 1 0.028 C53 0.7815(2)   0.44249(13) 0.72627(14) 1 0.022 H53 0.8101   0.4609 0.7744 1 0.026 C54 0.8215(2)   0.50558(14) 0.67017(14) 1 0.0241(5) O51 0.5872(2)   0.56776(10) 0.75398(12) 1 0.0416(5) HO51 0.663(3)   0.5688(18) 0.7178(18) 1 0.05 O52 0.48857(19)   0.47183(12) 0.81317(11) 1 0.0462(6) O53 0.61742(18)   0.35372(10) 0.76410(12) 1 0.0383(5) HO53 0.566(3)   0.361(2) 0.7939(18) 1 0.05 O54 0.84448(16)   0.36948(10) 0.70908(10) 1 0.0275(4) HO54 0.887(3)   0.3812(19) 0.6718(18) 1 0.05 O55 0.90625(17)   0.48767(11) 0.62938(10) 1 0.0342(4) O56 0.76291(16)   0.57314(9) 0.67107(11) 1 0.0323(4)

A. X-Ray Powder Diffraction

The sample was pure and there was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.6.3).

Example 7: Preparation and Analyses of Homoharringtonine Hydrogen (2′″S)-Citramalate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2S)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 195.9-198.9° C. (measured by DSC, see FIG. 3.6). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.6)

1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.45-3.31 (m, 2H), 3.19 (dd, J=10.6, 6.9 Hz, 1H), 2.70 (d, J=15.7 Hz, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.26-2.12 (m, 4H), 1.94 (d, J=16.1 Hz, 2H), 1.45-1.29 (m, 9H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR (101 MHz, MeOD) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 114.58, 111.53, 102.58, 95.71, 78.24, 76.08, 74.03, 73.18, 71.27, 58.75, 53.91, 52.90, 51.79, 48.63, 46.32, 44.47, 43.77, 40.59, 40.15, 28.94, 28.89, 28.87, 26.22, 19.62, 18.80.

IR (Diamond ATR, solid) cm−1 2965, 1759, 1739, 1710, 1651, 1506, 1489, 1371, 1341, 1225, 1162, 1079, 1033, 972, 944, 925, 885, 866, 830, 786, 714, 690, 643, 615, 584, 562, 511. See FIG. 1.6

IR (Diamond ATR, film) cm−1 3434, 2968, 1744, 1656, 1590, 1505, 1490, 1374, 1265, 1224, 1166, 1084, 1033, 930, 710, 565. See FIG. 1.6

X-Ray Powder Diffraction

The powder sample is well crystallised, with a peak width of 0.102° (2θ) at 17.597° (2θ) (for view of diagrams and experimental details, see FIG. 2.7.1).

Example 8: Preparation and Analyses of Homoharringtonine Hydrogen (2′″R)-Citramalate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 202.7-204.7° C. (measured by DSC, see FIG. 3.7). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.7)

1H NMR (400 MHz, Methanol-d4)*δ 6.79 (s, 1H), 6.74 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 5.95 (d, J=1.0 Hz, 1H), 5.93 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.43-3.31 (m, 2H), 3.22-3.14 (m, 1H), 2.73-2.66 (m, 2H), 2.63 (d, J=15.7 Hz, 1H), 2.23 (d, J=16.0 Hz, 2H), 2.19 (s, 1H), 1.94 (d, J=16.1 Hz, 1H), 1.44-1.29 (m, 8H), 1.29-1.17 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 181.21, 176.08, 174.23, 171.62, 165.18, 149.81, 148.79, 130.84, 126.78, 114.87, 111.82, 102.87, 96.00, 78.24, 76.08, 74.33, 73.18, 71.27, 59.04, 54.21, 53.20, 52.07, 48.94, 46.62, 44.76, 44.05, 40.87, 40.45, 29.23, 29.19, 29.17, 26.50, 19.92, 19.09. *APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3681, 3512, 2969, 2845, 1764, 1740, 1707, 1652, 1605, 1513, 1495, 1469, 1440, 1369, 1332, 1292, 1260, 1227, 1204, 1167, 1147, 1124, 1080, 1048, 1033, 1023, 991, 971, 930, 885, 869, 824, 786, 753, 718, 689, 676, 644, 614, 564, 512, 475. See FIG. 1.7

IR (Diamond ATR, film) cm−1 3434, 2968, 2845, 1742, 1655, 1582, 1506, 1490, 1458, 1374, 1265, 1224, 1166, 1084, 1047, 1033, 930, 831, 710, 565, 476. See FIG. 1.7

X-Ray Crystallographic Studies

A. Single Crystal X-Ray Diffraction (See FIGS. 2.8.1 and 2.8.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.44×0.32×0.16 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C34H47NO14 Extended formula C29H40NO9, C5H7O5 Formula weight 693.73 Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions a = 10.3550(3) Å, α = 90° b = 17.0899(6) Å, β = 90° c = 19.2854(7) Å, γ = 90° Volume 3412.9(2) Å3 Z, Calculated density 4, 1.35 (g · cm−1) Absorption coefficient 0.105 mm−1 F(000) 1480 Crystal size 0.44 × 0.32 × 0.16 mm Crystal color colourless Theta range for data collection 3.09 to 27.48° h_min, h_max −13, 13 k_min, k_max −22, 20 l_min, l_max −19, 25 Reflections collected/unique 16497/7790 [aR(int) = 0.0336] Reflections [I > 2σ] 6790 Completeness to theta_max 0.996 Absorption correction type multi-scan Max. and min. transmission 0.983, 0.880 Refinement method Full-matrix least-squares on F2 Data/restraints/parameters 7790/0/462 bGoodness-of-fit 1.026 Final R indices[I > 2σ] cR1 = 0.0413, dwR2 = 0.0899 R indices (all data) cR1 = 0.0508, dwR2 = 0.0948 Largest diff. peak and hole 0.403 and −0.199 e · Å3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.8.1 corresponds to below table.

Atom x y z occ. U(eq) C1   0.11571(16)   0.05636(10) 0.26511(9) 1 0.0175(4) H1   0.1363   0.0342 0.2213 1 0.021 C2   0.09856(16)   0.01523(10) 0.32323(9) 1 0.0171(4) C3   0.06120(16)   0.06351(11) 0.38472(9) 1 0.0162(3) H3 −0.0279   0.0492 0.4002 1 0.019 C4   0.06272(15)   0.14871(10) 0.35705(9) 1 0.0143(3) H4 −0.0287   0.1675 0.3589 1 0.017 C5   0.09821(15)   0.14231(10) 0.27823(9) 1 0.0159(4) C6   0.00002(16)   0.18455(11) 0.23179(9) 1 0.0195(4) H6A −0.0761   0.1508 0.2234 1 0.023 H6B −0.0293   0.2336 0.254 1 0.023 C7   0.06914(19)   0.20226(14) 0.16369(10) 1 0.0282(5) H7A   0.0457   0.255 0.1465 1 0.034 H7B   0.046   0.1632 0.1279 1 0.034 C8   0.21369(17)   0.19809(11) 0.18060(9) 1 0.0190(4) H8A   0.2545   0.153 0.1569 1 0.023 H8B   0.2581   0.2467 0.166 1 0.023 N9   0.22010(13)   0.18836(9) 0.25825(7) 1 0.0156(3) HN9   0.215(2)   0.2413(15) 0.2762(14) 1 0.05 C10   0.34708(16)   0.15611(11) 0.28115(9) 1 0.0187(4) H10A   0.4167   0.193 0.2681 1 0.022 H10B   0.3634   0.1059 0.2571 1 0.022 C11   0.35010(16)   0.14274(11) 0.35966(9) 1 0.0182(4) H11A   0.313   0.0906 0.3698 1 0.022 H11B   0.4411   0.1423 0.3753 1 0.022 C12   0.27690(16)   0.20378(10) 0.40075(9) 1 0.0161(3) C13   0.14095(15)   0.20673(10) 0.39833(9) 1 0.0142(3) C14   0.07316(17)   0.26533(10) 0.43397(9) 1 0.0168(4) H14 −0.0183   0.2688 0.4315 1 0.02 C15   0.14387(18)   0.31747(10) 0.47263(9) 1 0.0200(4) C16   0.27616(18)   0.31308(11) 0.47618(9) 1 0.0207(4) C17   0.34575(17)   0.25856(11) 0.43994(9) 1 0.0190(4) H17   0.4374   0.258 0.4414 1 0.023 C18   0.2137(2)   0.41952(12) 0.53342(11) 1 0.0334(5) H18A   0.2207   0.4679 0.5055 1 0.04 H18B   0.2103   0.4343 0.583 1 0.04 C19   0.1546(2) −0.10852(11) 0.27911(11) 1 0.0300(5) H19A   0.0911 −0.1088 0.2414 1 0.045 H19B   0.1691 −0.1622 0.2952 1 0.045 H19C   0.2361 −0.0864 0.2622 1 0.045 C21   0.11247(16)   0.01321(10) 0.49827(9) 1 0.0161(3) C22   0.22813(16)   0.00398(10) 0.54736(9) 1 0.0178(4) C23   0.29449(17)   0.08219(10) 0.56296(10) 1 0.0189(4) H23A   0.369   0.0729 0.594 1 0.023 H23B   0.3277   0.1048 0.5192 1 0.023 C24   0.20436(17)   0.13941(10) 0.59644(10) 1 0.0196(4) C25   0.18690(19)   0.25170(12) 0.66695(12) 1 0.0293(5) H25A   0.1478   0.2853 0.6315 1 0.044 H25B   0.2392   0.2837 0.6984 1 0.044 H25C   0.1187   0.2253 0.6933 1 0.044 C31   0.32662(17) −0.05075(11) 0.51274(10) 1 0.0204(4) H31A   0.361 −0.0244 0.4709 1 0.025 H31B   0.3997 −0.0586 0.5451 1 0.025 C32   0.27492(18) −0.13115(11) 0.49143(10) 1 0.0222(4) H32A   0.2495 −0.1609 0.5333 1 0.027 H32B   0.1973 −0.1245 0.462 1 0.027 C33   0.37715(18) −0.17662(11) 0.45161(11) 1 0.0248(4) H33A   0.4587 −0.1741 0.4783 1 0.03 H33B   0.3923 −0.1495 0.407 1 0.03 C34   0.34851(18) −0.26269(11) 0.43594(11) 1 0.0240(4) C36   0.4577(2) −0.29453(13) 0.39087(14) 1 0.0423(6) H36A   0.4411 −0.3497 0.3801 1 0.063 H36B   0.5397 −0.2899 0.4159 1 0.063 H36C   0.4623 −0.2644 0.3477 1 0.063 C35   0.3354(2) −0.31160(13) 0.50108(12) 1 0.0363(5) H35A   0.2616 −0.2929 0.5283 1 0.054 H35B   0.4144 −0.3071 0.5288 1 0.054 H35C   0.3216 −0.3665 0.4884 1 0.054 O1   0.10699(13) −0.06191(7) 0.33525(7) 1 0.0244(3) O2   0.32223(14)   0.37011(8) 0.52078(7) 1 0.0304(3) O3   0.09930(13)   0.37738(8) 0.51464(7) 1 0.0288(3) O4   0.15171(11)   0.05193(7) 0.44075(6) 1 0.0171(3) O5   0.00628(12) −0.01257(8) 0.50746(7) 1 0.0222(3) O6   0.18733(13) −0.03191(8) 0.60999(7) 1 0.0221(3) HO6   0.120(3) −0.0138(16) 0.6222(14) 1 0.05 O7   0.08889(13)   0.13801(9) 0.59158(9) 1 0.0357(4) O8   0.26816(12)   0.19381(8) 0.63389(7) 1 0.0243(3) O9   0.22961(14) −0.26485(9) 0.39752(9) 1 0.0348(4) HO9   0.203(3) −0.3138(17) 0.3982(14) 1 0.05 C51   0.17383(18)   0.50529(11) 0.36479(10) 1 0.0247(4) C52   0.31671(18)   0.48833(12) 0.35581(12) 1 0.0299(5) H52A   0.3411   0.4469 0.3892 1 0.036 H52B   0.3654   0.5361 0.3686 1 0.036 C53   0.36065(18)   0.46262(12) 0.28366(12) 1 0.0288(5) C54   0.2995(2)   0.51004(15) 0.22598(13) 1 0.0470(6) H54A   0.3131   0.5659 0.2348 1 0.071 H54B   0.2067   0.4991 0.2242 1 0.071 H54C   0.3392   0.4958 0.1816 1 0.071 C55   0.33695(18)   0.37452(11) 0.26995(10) 1 0.0243(4) O51   0.13621(14)   0.56592(9) 0.39014(9) 1 0.0361(4) O52   0.09277(13)   0.45011(9) 0.34618(8) 1 0.0300(3) HO52   0.147(2)   0.4107(15) 0.3218(14) 1 0.05 O53   0.49802(14)   0.47478(10) 0.28234(10) 1 0.0438(4) HO53   0.530(2)   0.4274(17) 0.2667(14) 1 0.05 O54   0.42729(14)   0.33586(9) 0.24647(8) 1 0.0368(4) O55   0.22436(12)   0.34821(8) 0.28413(7) 1 0.0261(3)

A. X-Ray Powder Diffraction

The sample was pure and well crystallised, with a peak width of 0.107° (2θ) at 16.992° (2θ). There was a very good match between the experimental pattern and the calculated pattern (for view of diagrams and experimental details, see FIG. 2.8.3).

Example 9: Preparation and Analyses of Homoharringtonine Hydrogen Succinate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial succinic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 158.1-160.0° C. (measured by DSC, see FIG. 3.8).

DSC Analysis (See FIG. 3.8)

1H NMR (400 MHz, Methanol-d4)*δ 6.77 (s, 1H), 6.71 (s, 1H), 6.07 (dd, J=9.6, 0.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.31 (d, J=0.6 Hz, 1H), 4.12 (d, J=9.6 Hz, 1H), 3.79 (s, 3H), 3.54 (s, 3H), 2.49 (s, 4H), 2.22 (d, J=16.2 Hz, 1H), 1.93 (d, J=16.1 Hz, 2H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13 C NMR APT* (101 MHz, D2O) δ 179.49, 174.22, 171.93, 162.89, 147.84, 146.75, 129.74, 125.23, 113.38, 111.12, 101.62, 95.53, 76.99, 75.26, 73.68, 71.33, 58.41, 52.95, 52.23, 51.27, 48.86, 47.58, 42.72, 42.55, 39.19, 38.77, 31.20, 27.59, 18.59, 17.69. *APT=Attached Proton Test

IR (KBr, solid), cm−1 3571.1, 3375.3, 3083.4, 2964.4, 1755.4, 1736.7, 1661.8, 1575.5, 1504.8, 1489.7, 1375.0, 1346.3, 1326.1, 1267.2, 1227.1, 1188.3, 1151.7, 1083.4, 1034.7, 929.4, 859.4, 802.8, 758.1, 709.9, 658.9, 617.9, 561.2, 510.6. See FIG. 1.8

Example 10: Preparation and Analyses of (3S,4S,5R,2′R)-Homoharringtonine Hydrogen Itaconate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial itaconic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 178.3-181.2° C. (measured by DSC, see FIG. 3.9). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.9)

1H NMR (400 MHz, Methanol-d4)*δ 6.78 (s, 1H), 6.72 (s, 1H), 6.08 (d, J=9.6 Hz, 1H), 6.01 (d, J=1.7 Hz, 1H), 5.95 (d, J=1.1 Hz, 1H), 5.92 (d, J=1.1 Hz, 1H), 5.51 (q, J=1.2 Hz, 1H), 5.32 (s, 1H), 4.14 (d, J=9.6 Hz, 1H), 3.80 (s, 3H), 3.54 (s, 3H), 3.51-3.42 (m, 1H), 3.25-3.07 (m, 2H), 2.72-2.60 (m, 1H), 2.26-2.20 (m, 2H), 2.20-2.07 (m, 2H), 1.94 (d, J=16.1 Hz, 2H), 1.47-1.29 (m, 5H), 1.23 (d, J=10.6 Hz, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR (101 MHz, MeOD)** δ 125.11, 114.53, 111.47, 102.52, 96.09, 74.12, 58.66, 53.95, 53.18, 48.70, 44.48, 43.78, 41.66, 40.59, 40.44, 29.12, 28.94, 28.87, 19.70, 18.81. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (Diamond ATR, solid) cm−1 3473.2, 2968.4, 2899.8, 2564.7, 1760.7, 1733.5, 1657.6, 1569.7, 1506.4, 1488.9, 1436.1, 1374.9, 1348.9, 1264.2, 1240.7, 1226.2, 1185, 1168.8, 1149.8, 1112.1, 1082.4, 1043.1, 1032.9, 1022.2, 982, 928.1, 890, 866.7, 819.8, 772.1, 722.1, 690.1, 616.7, 543. See FIG. 1.9

IR (ATR, film) cm−1 3458.8, 2967, 1741.5, 1654.8, 1576.7, 1505.2, 1489.3, 1464.3, 1373.4, 1223.8, 1167, 1083.1, 1033.3, 933.6, 563.4. See FIG. 1.9

X-Ray Crystallographic Studies

Single Crystal X-Ray Diffraction (See FIGS. 2.9.1 and 2.9.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.39×0.22×0.1 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C34H45NO13 Extended formula C29H40NO9, C5H5O4 Formula weight 675.71 Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions a = 10.9895(4) Å, α = 90° b = 16.1963(6) Å, β = 90° c = 18.7277(5) Å, γ = 90° Volume 3333.33(19) Å3 Z, Calculated density 4, 1.346 (g · cm−1) Absorption coefficient 0.103 mm−1 F(000) 1440 Crystal size 0.39 × 0.22 × 0.1 mm Crystal color colourless Theta range for data collection 3.12 to 27.48° h_min, h_max −11, 14 k_min, k_max −13, 20 l_min, l_max −16, 24 Reflections collected/unique 15962/4207 [aR(int) = 0.0449] Reflections [I > 2σ] 3444 Completeness to theta_max 0.986 Absorption correction type multi-scan Max. and min. transmission 0.990, 0.844 Refinement method: Full-matrix least-squares on F2 Data/restraints/parameters 4207/0/446 bGoodness-of-fit 1.054 Final R indices [I > 2σ] cR1 = 0.0411, dwR2 = 0.0914 R indices (all data) cR1 = 0.0557, dwR2 = 0.0986 Largest diff. peak and hole 0.312 and −0.249 e · Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.9.1 corresponds to below table.

Atom x y z occ. U(eq) C1   0.4085(2) 0.94954(16) 0.28454(13) 1 0.0246(6) H1   0.3897 0.972 0.239 1 0.029 C2   0.4040(2) 0.99163(16) 0.34531(13) 1 0.0239(5) C3   0.4399(2) 0.94237(16) 0.40941(12) 1 0.0206(5) H3   0.5169 0.9646 0.4305 1 0.025 C4   0.4605(2) 0.85392(16) 0.38019(11) 1 0.0187(5) H4   0.548 0.8406 0.3893 1 0.022 C5   0.4471(2) 0.86236(16) 0.29702(12) 1 0.0216(5) C6   0.5613(2) 0.83684(18) 0.25641(12) 1 0.0244(6) H6A   0.5945 0.7845 0.2755 1 0.029 H6B   0.6247 0.8801 0.2599 1 0.029 C7   0.5195(3) 0.8261(2) 0.17935(13) 1 0.0330(7) H7A   0.5696 0.7843 0.1544 1 0.04 H7B   0.5244 0.879 0.153 1 0.04 C8   0.3878(3) 0.7973(2) 0.18586(13) 1 0.0347(7) H8A   0.3332 0.8339 0.1582 1 0.042 H8B   0.3791 0.7402 0.1675 1 0.042 N9   0.35665(19) 0.80066(14) 0.26453(10) 1 0.0225(5) H9   0.3728 0.749 0.284 1 0.027 C10   0.2240(2) 0.81867(19) 0.27555(14) 1 0.0293(6) H10A   0.1752 0.7717 0.2576 1 0.035 H10B   0.2013 0.8683 0.2477 1 0.035 C11   0.1946(2) 0.83313(19) 0.35427(13) 1 0.0280(6) H11A   0.2153 0.8908 0.3668 1 0.034 H11B   0.1061 0.8258 0.3617 1 0.034 C12   0.2625(2) 0.77534(17) 0.40351(12) 1 0.0218(5) C13   0.3876(2) 0.78580(16) 0.41518(12) 1 0.0197(5) C14   0.4503(2) 0.73128(16) 0.45992(12) 1 0.0226(5) H14   0.5349 0.7378 0.4685 1 0.027 C15   0.3868(2) 0.66846(18) 0.49096(13) 1 0.0281(6) C16   0.2644(2) 0.65757(18) 0.47829(14) 1 0.0300(6) C17   0.1998(2) 0.70918(17) 0.43475(13) 1 0.0274(6) H17   0.1156 0.7006 0.426 1 0.033 C18   0.3315(3) 0.5504(2) 0.5409(2) 1 0.0595(10) H18A   0.3503 0.5025 0.5101 1 0.071 H18B   0.3207 0.5305 0.5905 1 0.071 C19   0.3222(3) 1.11383(18) 0.29761(14) 1 0.0333(7) H19A   0.2562 1.0809 0.277 1 0.05 H19B   0.3856 1.1225 0.2616 1 0.05 H19C   0.2902 1.1674 0.3132 1 0.05 C21   0.3633(2) 0.98532(16) 0.52334(12) 1 0.0193(5) C22   0.2491(2) 0.98238(16) 0.56983(12) 1 0.0210(5) C23   0.2120(2) 0.89286(16) 0.58578(12) 1 0.0225(5) H23A   0.1406 0.8932 0.618 1 0.027 H23B   0.1873 0.8659 0.5406 1 0.027 C24   0.3118(2) 0.84293(17) 0.61968(12) 1 0.0228(5) C25   0.3602(3) 0.7333(2) 0.69781(18) 1 0.0448(8) H25A   0.4231 0.7681 0.7195 1 0.067 H25B   0.3973 0.6974 0.6618 1 0.067 H25C   0.3218 0.6994 0.7348 1 0.067 C31   0.1446(2) 1.02575(17) 0.53105(13) 1 0.0239(5) H31A   0.1214 0.9918 0.4892 1 0.029 H31B   0.0735 1.0275 0.5635 1 0.029 C32   0.1704(2) 1.11351(17) 0.50526(13) 1 0.0272(6) H32A   0.1946 1.1483 0.5463 1 0.033 H32B   0.2387 1.1127 0.4708 1 0.033 C33   0.0585(3) 1.1503(2) 0.46982(16) 1 0.0367(7) H33A −0.0106 1.1443 0.5033 1 0.044 H33B   0.0395 1.1164 0.4272 1 0.044 C34   0.0638(3) 1.2404(2) 0.44632(14) 1 0.0348(7) C35 −0.0534(3) 1.2636(3) 0.4090(2) 1 0.0667(12) H35A −0.0642 1.2289 0.3667 1 0.1 H35B −0.0499 1.3217 0.3946 1 0.1 H35C −0.122 1.2554 0.4417 1 0.1 C36   0.0885(3) 1.2991(2) 0.50777(16) 1 0.0518(9) H36A   0.0919 1.3558 0.4897 1 0.078 H36B   0.1664 1.2849 0.5301 1 0.078 H36C   0.0232 1.2944 0.5432 1 0.078 O1   0.37336(17) 1.07063(11) 0.35827(9) 1 0.0295(4) O2   0.2228(2) 0.58991(14) 0.51681(12) 1 0.0481(6) O3   0.4284(2) 0.60914(13) 0.53788(11) 1 0.0427(5) O4   0.34267(14) 0.94422(11) 0.46170(8) 1 0.0201(4) O5   0.45495(15) 1.02085(12) 0.53858(9) 1 0.0266(4) O6   0.27352(16) 1.02392(12) 0.63524(9) 1 0.0251(4) HO6   0.342(3) 1.033(2) 0.6369(17) 1 0.05 O7   0.41851(16) 0.85198(13) 0.60753(11) 1 0.0356(5) O8   0.26888(16) 0.78534(13) 0.66423(11) 1 0.0366(5) O9   0.1644(2) 1.24749(16) 0.39741(12) 1 0.0513(6) HO9   0.160(3) 1.307(2) 0.3826(17) 1 0.05 C51   0.1037(3) 0.4553(2) 0.31090(15) 1 0.0388(7) C52   0.1159(3) 0.5480(2) 0.3010(2) 1 0.0512(9) H52A   0.0462 0.5679 0.2723 1 0.061 H52B   0.1112 0.5749 0.3484 1 0.061 C53   0.2325(3) 0.57416(19) 0.26485(16) 1 0.0403(8) C54   0.3464(3) 0.57891(18) 0.30905(13) 1 0.0285(6) C55   0.2404(5) 0.5906(2) 0.19500(19) 1 0.0747(14) H55A   0.3166 0.6049 0.1745 1 0.09 H55B   0.1697 0.5881 0.1659 1 0.09 O51   0.00971(18) 0.41958(16) 0.29455(13) 1 0.0529(6) O52   0.19701(19) 0.41745(13) 0.33812(11) 1 0.0377(5) HO52   0.262(3) 0.454(2) 0.3511(17) 1 0.05 O53   0.41850(17) 0.63675(12) 0.30044(10) 1 0.0344(5) O54   0.36137(17) 0.52002(13) 0.35372(10) 1 0.0346(5)

Example 11: Preparation and Analyses of Homoharringtonine Hydrogen Fumarate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial fumaric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 103.5-107.2° C. (measured by DSC, see FIG. 3.10).

DSC Analysis (See FIG. 3.10)

1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.74 (s, 1H), 6.65 (s, 2H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.93 (d, J=0.9 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.43-3.32 (m, 2H), 3.24-3.10 (m, 1H), 2.75-2.61 (m, 1H), 2.30-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.47-1.30 (m, 5H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate” irradiation

13C NMR (101 MHz, MeOD)** δ 135.91, 114.59, 111.56, 102.57, 95.74, 74.03, 58.74, 53.89, 52.92, 51.79, 49.56, 48.62, 44.47, 43.77, 40.59, 40.16, 28.94, 28.90, 28.88, 19.64, 18.81. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (ATR, solid), cm−1 3607.9, 3212.6, 2955.6, 1980.4, 1777.4, 1731.4, 1708.1, 1653.6, 1584.3, 1505.9, 1488.6, 1440.0, 1372.4, 1338.6, 1292.0, 1251.1, 1221.1, 1173.3, 1150.9, 1119.3, 1088.7, 1034.0, 982.0, 934.1, 903.3, 839.6, 790.3, 761.8, 646.0, 613.5, 563.6, 510.2. See FIG. 1.10

X-Ray Powder Diffraction

The powder sample is well crystallised, with a peak width of 0.119° (2θ) at 19.564° (2θ) (for view of diagrams and experimental details, see FIG. 2.7.1).

Example 12: Preparation and Analyses of Homoharringtonine Hydrogen Tartronate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial tartronic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 163.1-167.6° C. (measured by DSC, see FIG. 3.11).

DSC Analysis (See FIG. 3.11)

1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (d, J=0.9 Hz, 1H), 5.94 (d, J=0.9 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.54 (s, 3H), 2.69 (m, 1H), 2.22 (m, 4H), 2.04-1.91 (m, 2H), 1.47-1.29 (m, 5H), 1.23 (m, 1H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate” irradiation

13C NMR (101 MHz, MeOD)** δ 114.60, 111.55, 102.61, 95.67, 74.02, 58.77, 53.94, 52.86, 51.79, 48.67, 44.47, 43.77, 40.59, 40.10, 28.94, 28.88, 28.84, 19.63, 18.80. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (Diamond ATR, solid) cm−1 3451, 2969, 2898, 2051, 1763, 1730, 1657, 1507, 1490, 1467, 1437, 1376, 1352, 1316, 1294, 1266, 1228, 1208, 1186, 1148, 1126, 1083, 1032, 1002, 985, 943, 927, 891, 866, 802, 753, 720, 690, 675, 652, 614, 563, 510, 477. See FIG. 1.11

IR (Diamond ATR, film) cm−1 3429, 2965, 1744, 1655, 1505, 1489, 1440, 1374, 1266, 1224, 1165, 1084, 1033, 928, 807, 615. See FIG. 1.11

Example 13: Preparation and Analyses of Homoharringtonine Hydrogen Malonate

This ionic compound was obtained from commercial homoharringtone mixed with commercial (2R)-citramalic acid according to the general procedure in which the solvent was methanol-d4, then isolated as a white prismatic solid mp 127.0-131.9° C. (measured by DSC, see FIG. 3.12).

DSC Analysis (See FIG. 3.12)

1H NMR (400 MHz, Methanol-d4)*δ 6.81 (s, 1H), 6.75 (s, 1H), 6.10 (d, J=9.6 Hz, 1H), 5.97 (d, J=1.1 Hz, 1H), 5.94 (d, J=1.0 Hz, 1H), 5.34 (s, 1H), 4.18 (d, J=9.6 Hz, 1H), 3.82 (s, 3H), 3.55 (s, 3H), 3.24-3.17 (m, 1H), 2.74-2.64 (m, 1H), 2.30-2.09 (m, 4H), 1.95 (d, J=16.1 Hz, 2H), 1.48-1.30 (m, 5H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT* (101 MHz, Methanol-d4) δ 174.83, 174.22, 171.62, 165.26, 149.82, 148.81, 130.79, 126.75, 114.88, 111.83, 102.90, 95.90, 78.32, 76.09, 74.30, 71.27, 59.04, 54.21, 53.18, 52.07, 48.94, 44.75, 44.05, 40.87, 40.42, 29.22, 29.17, 29.14, 19.91, 19.09. See FIG. 1.12 *APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 3453.1, 2967.5, 2933.2, 2899.3, 1765.0, 1735.2, 1654.6, 1505.9, 1489.1, 1463.7, 1439.1, 1374.9, 1349.7, 1292.0, 1266.2, 1226.5, 1207.5, 1148.4, 1083.3, 1060.6, 1032.3, 1002.1, 985.4, 944.1, 925.5, 891.0, 858.5, 830.6, 797.6, 756.7, 721.5, 710.8, 690.8, 615.1, 565.1, 510.8, 498.3, 489.9, 478.9, 472.8. See FIG. 1.12

Example 14: Preparation and Analyses of Homoharringtonine Dihydrogen Citrate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial citric acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 170.35-173.9° C. (measured by DSC, see FIG. 3.13). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.13)

1H NMR (400 MHz, Methanol-d4)*δ 6.80 (s, 1H), 6.75 (s, 1H), 6.09 (d, J=9.6 Hz, 1H), 5.96 (s, 1H), 5.94 (s, 1H), 5.33 (s, 1H), 4.17 (d, J=9.7 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 2.79 (d, J=15.4 Hz, 2H), 2.71 (d, J=15.4 Hz, 2+1H), 2.23 (d, J=16.2 Hz, 1H), 1.95 (d, J=16.1 Hz, 1H), 1.49-1.17 (m, 6H), 1.15 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation

13C NMR APT*(101 MHz, Methanol-d4) δ 179.22, 174.90, 174.22, 171.61, 165.22, 149.83, 148.81, 130.80, 126.75, 114.89, 111.84, 102.89, 95.97, 78.30, 76.09, 74.33, 74.01, 71.29, 59.05, 54.23, 53.21, 52.07, 48.95, 44.76, 44.06, 40.88, 40.44, 29.22, 29.18, 29.16, 19.92, 19.10. *APT=Attached Proton Test

IR (Diamond ATR, solid) cm−1 2959, 1757, 1732, 1715, 1651, 1580, 1508, 1489, 1464, 1432, 1371, 1305, 1262, 1224, 1186, 1151, 1111, 1081, 1032, 985, 944, 922, 909, 864, 829, 806, 705, 690, 614, 581, 563, 510, 486. See FIG. 1.13

IR (Diamond ATR, film) cm−1 3442, 2967, 1738, 1654, 1585, 1505, 1489, 1440, 1373, 1264, 1223, 1115, 1083, 1033, 928. See FIG. 1.13

X-Ray Crystallographic Studies

Single Crystal X-Ray Diffraction (See FIGS. 2.11.1 and 2.11.2)

From a suspension in its mother liquor, a suitable single crystal of size 0.58×0.36×0.28 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C36H51NO17 Extended formula C29H40NO9, C6H7O7, CH4O Formula weight 769.78 Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space group orthorhombic, P 21 21 21 Unit cell dimensions a = 9.9967(3) Å, α = 90° b = 18.8971(5) Å, β = 90° c = 19.2826(7) Å, γ = 90° Volume 3642.6(2) Å3 Z, Calculated density 4, 1.404 (g · cm−1) Absorption coefficient 0.112 mm−1 F(000) 1640 Crystal size 0.58 × 0.36 × 0.28 mm Crystal color colourless Theta range for data collection 2.94 to 27.48° h_min, h_max −12, 12 k_min, k_max −20, 24 l_min, l_max −25, 13 Reflections collected/unique 18037/4637 [aR(int) = 0.0424] Reflections [I > 2σ] 4165 Completeness to theta_max 0.998 Absorption correction type multi-scan Max. and min. transmission 0.969, 0.858 Refinement method Full-matrix least-squares on F2 Data/restraints/parameters 4637/0/513 bGoodness-of-fit 1.032 Final R indices [I > 2σ] cR1 = 0.0367, dwR2 = 0.0851 R indices (all data) cR1 = 0.0427, dwR2 = 0.0884 Largest diff. peak and hole 0.289 and −0.214 e · Å−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.11.1 corresponds to below table.

Atom x y z occ. U(eq) C1 0.3491(2) 0.92951(11) 0.25699(11) 1 0.0149(4) H1 0.3259 0.9482 0.2129 1 0.018 C2 0.3729(2) 0.96852(11) 0.31322(11) 1 0.0152(4) C3 0.4025(2) 0.92636(11) 0.37724(10) 1 0.0138(4) H3 0.4934 0.9384 0.3953 1 0.017 C4 0.3993(2) 0.84827(11) 0.35162(11) 1 0.0119(4) H4 0.4942 0.8317 0.3535 1 0.014 C5 0.3638(2) 0.85222(11) 0.27257(11) 1 0.0136(4) C6 0.4667(2) 0.81449(12) 0.22685(11) 1 0.0176(5) H6A 0.4901 0.7677 0.2464 1 0.021 H6B 0.5492 0.8431 0.2224 1 0.021 C7 0.3972(3) 0.80632(13) 0.15620(12) 1 0.0220(5) H7A 0.4181 0.8469 0.1256 1 0.026 H7B 0.4258 0.7621 0.133 1 0.026 C8 0.2475(3) 0.80407(12) 0.17319(11) 1 0.0212(5) H8A 0.2 0.8437 0.1504 1 0.025 H8B 0.2075 0.7589 0.1575 1 0.025 N9 0.2393(2) 0.81069(9) 0.25106(9) 1 0.0141(4) HN9 0.251(4) 0.7629(18) 0.2669(17) 1 0.05 C10 0.1057(2) 0.83634(12) 0.27463(11) 1 0.0172(5) H10A 0.0365 0.8014 0.2612 1 0.021 H10B 0.0848 0.8815 0.251 1 0.021 C11 0.1006(2) 0.84755(11) 0.35335(11) 1 0.0144(4) H11A 0.1348 0.8955 0.364 1 0.017 H11B 0.0062 0.8455 0.3686 1 0.017 C12 0.1806(2) 0.79388(11) 0.39455(11) 1 0.0130(4) C13 0.3209(2) 0.79563(10) 0.39455(11) 1 0.0118(4) C14 0.3947(2) 0.74640(11) 0.43291(11) 1 0.0141(4) H14 0.4897 0.7472 0.433 1 0.017 C15 0.3252(2) 0.69701(11) 0.47031(11) 1 0.0153(4) C16 0.1875(2) 0.69386(11) 0.46951(11) 1 0.0153(4) C17 0.1124(2) 0.74148(11) 0.43253(11) 1 0.0159(4) H17 0.0174 0.7392 0.4325 1 0.019 C18 0.2626(2) 0.59964(11) 0.52687(12) 1 0.0212(5) H18A 0.2671 0.5574 0.4966 1 0.025 H18B 0.2624 0.5837 0.5758 1 0.025 C19 0.3571(3) 1.07978(12) 0.25888(13) 1 0.0270(6) H19A 0.2638 1.0737 0.2445 1 0.041 H19B 0.4165 1.0631 0.2219 1 0.041 H19C 0.3746 1.13 0.2679 1 0.041 C21 0.3353(2) 0.98104(10) 0.48356(11) 1 0.0126(4) C22 0.2160(2) 0.99292(11) 0.53183(11) 1 0.0140(4) C23 0.1479(2) 0.92348(11) 0.55222(11) 1 0.0162(4) H23A 0.0747 0.9336 0.5854 1 0.019 H23B 0.1079 0.9015 0.5105 1 0.019 C24 0.2446(2) 0.87236(11) 0.58470(11) 1 0.0160(4) C25 0.2645(3) 0.77137(12) 0.65633(13) 1 0.0259(5) H25A 0.3417 0.7932 0.6792 1 0.039 H25B 0.2957 0.7397 0.6195 1 0.039 H25C 0.2129 0.7442 0.6904 1 0.039 C31 0.1157(2) 1.04230(11) 0.49544(12) 1 0.0172(5) H31A 0.0748 1.0168 0.4559 1 0.021 H31B 0.0433 1.0545 0.5284 1 0.021 C32 0.1792(2) 1.11061(11) 0.46873(12) 1 0.0195(5) H32A 0.2259 1.1006 0.4245 1 0.023 H32B 0.247 1.1269 0.5026 1 0.023 C33 0.0774(2) 1.16973(11) 0.45699(13) 1 0.0185(5) 33A 0.0362 1.1819 0.5021 1 0.022 H33B 0.0055 1.1515 0.4265 1 0.022 C34 0.1343(2) 1.23774(11) 0.42451(12) 1 0.0177(5) C35 0.1490(3) 1.23004(14) 0.34612(13) 1 0.0286(6) H35A 0.1813 1.2747 0.3264 1 0.043 H35B 0.062 1.2182 0.3257 1 0.043 H35C 0.2132 1.1923 0.3358 1 0.043 C36 0.2649(3) 1.26062(13) 0.45770(15) 1 0.0279(6) H36A 0.2555 1.26 0.5083 1 0.042 H36B 0.2874 1.3086 0.4423 1 0.042 H36C 0.3363 1.228 0.4439 1 0.042 O1 0.38145(18) 1.03942(8) 0.32111(8) 1 0.0215(4) O2 0.14401(17) 0.63966(8) 0.51222(8) 1 0.0216(4) O3 0.37524(16) 0.64530(8) 0.51409(8) 1 0.0188(3) O4 0.30170(15) 0.93996(7) 0.42992(8) 1 0.0145(3) O5 0.44249(16) 1.00917(8) 0.49151(8) 1 0.0177(3) O6 0.26234(18) 1.02640(8) 0.59345(8) 1 0.0185(3) HO6 0.345(4) 1.0383(18) 0.5906(18) 1 0.05 O7 0.36240(17) 0.87121(9) 0.57473(9) 1 0.0269(4) O8 0.18077(17) 0.82599(8) 0.62673(8) 1 0.0204(4) O9 0.03435(17) 1.29295(8) 0.43436(9) 1 0.0194(4) HO9 0.039(4) 1.3068(17) 0.4747(18) 1 0.047 C51 0.2081(2) 0.62031(12) 0.26814(12) 1 0.0197(5) C52 0.2431(2) 0.55356(11) 0.31079(11) 1 0.0165(4) C53 0.1183(2) 0.53099(11) 0.35211(12) 1 0.0196(5) H53A 0.1 0.5667 0.3885 1 0.023 H53B 0.0402 0.5298 0.3205 1 0.023 C54 0.1343(2) 0.45913(12) 0.38583(12) 1 0.0215(5) O51 0.2755(2) 0.67426(8) 0.28230(9) 1 0.0293(4) O52 0.11948(19) 0.61575(9) 0.22240(10) 1 0.0300(4) O53 0.34983(17) 0.57012(9) 0.35660(9) 1 0.0221(4) HO53 0.358(4) 0.6160(18) 0.3535(18) 1 0.05 O54 0.2279(2) 0.44156(10) 0.42120(12) 1 0.0433(6) O55 0.03274(18) 0.41626(9) 0.37134(8) 1 0.0204(4) HO55 0.044(4) 0.3790(18) 0.3902(18) 1 0.05 C60 0.2959(2) 0.49411(12) 0.26327(12) 1 0.0204(5) H60A 0.3642 0.5153 0.2324 1 0.025 H60B 0.3427 0.4594 0.2931 1 0.025 C61 0.1992(3) 0.45307(13) 0.21778(13) 1 0.0251(5) O62 0.0989(2) 0.48721(10) 0.18875(10) 1 0.0344(5) H062 0.104(3) 0.5364(18) 0.2012(18) 1 0.05 O63 0.2167(2) 0.39075(9) 0.20666(11) 1 0.0381(5) O71 0.5434(2) 1.13984(10) 0.43673(10) 1 0.0321(4) HO71 0.498(4) 1.1011(18) 0.4527(18) 1 0.05 C72 0.6645(3) 1.11097(17) 0.41010(17) 1 0.0443(8) H72A 0.6436 1.0742 0.376 1 0.066 H72B 0.7165 1.0903 0.4481 1 0.066 H72C 0.7167 1.1485 0.3879 1 0.066

X-Ray Powder Diffraction

The powder sample is well crystallised, with a peak width of 0.127° (2θ) at 18.255° (2θ). The powder is constituted in major part by the expected sample referenced HOCIT 5776. However, the powder pattern reveals the presence of a second phase, with significant lines at 7.001° (2θ) and 12.317° (2θ) for example, not calculated from the structure determined with a single crystal (for view of diagrams and experimental details, see FIG. 2.11.3).

Example 15: Preparation and Analyses of Homoharringtonine Salicylate

This ionic compound was obtained from commercial homoharringtonine mixed with commercial salicylic acid according to the general procedure in which the solvent was methanol, then isolated as a white prismatic solid mp 148.7-151.3° C. (measured by DSC, see FIG. 3.14). Several potentially acceptable crystals were kept suspended in their mother liquors for the subsequent X-ray diffraction analysis. (see below).

DSC Analysis (See FIG. 3.14)

1H NMR (400 MHz, Methanol-d4)*δ 7.80 (dd, J=7.7, 1.7 Hz, 1H), 7.26 (ddd, J=8.8, 7.2, 1.8 Hz, 1H), 6.80-6.70 (m, 4H), 6.09 (d, J=9.6 Hz, 1H), 5.92 (d, J=1.0 Hz, 1H), 5.88 (d, J=1.0 Hz, 1H), 5.33 (s, 1H), 4.17 (d, J=9.6 Hz, 1H), 3.81 (s, 3H), 3.54 (s, 3H), 3.18 (dd, J=11.0, 6.9 Hz, 1H), 2.71-2.62 (m, 1H), 2.28-2.08 (m, 4H), 1.95 (d, J=16.1 Hz, 1H), 1.47-1.30 (m, 5H), 1.30-1.18 (m, 1H), 1.16 (s, 6H). *Partial presuppression of water signal using ‘watergate’ irradiation.

13C NMR (101 MHz, MeOD)** δ 133.50, 131.36, 118.66, 116.85, 114.49, 111.46, 102.48, 95.80, 74.04, 58.71, 53.86, 52.96, 51.78, 49.56, 48.62, 44.45, 43.75, 40.58, 40.24, 28.96, 28.94, 28.86, 19.65, 18.79. **DEPT135: Distortionless Enhancement by Polarization Transfer (non-quaternary carbons only)

IR (Diamond ATR, solid) cm−1 2961.4, 2622.5, 1760.5, 1748, 1740.7, 1722.8, 1651.8, 1625.2, 1590.4, 1579.2, 1503.9, 1487.7, 1459.3, 1374, 1334.4, 1293.2, 1224.3, 1167.4, 1082.6, 1043.9, 1030.5, 995.4, 924.5, 890.7, 857.3, 832.8, 805.3, 763.6, 704.8, 666.2, 613.2, 565.6. See FIG. 1.14

IR (Diamond ATR, film) cm−1 3416.8, 2962.9, 2377.4, 2156.9, 1746.7, 1655.2, 1628.2, 1591.3, 1504.8, 1488.2, 1459.5, 1375.8, 1330.2, 1223.6, 1084.2, 1034.5, 930.1, 858.3, 807.3, 763.1, 705.4. See FIG. 1.14

X-Ray Crystallographic Studies

Single Crystal X-Ray Diffraction (See FIG. 2.12.1 to 2.12.4)

From a suspension in its mother liquor, a small single crystal of size 0.15×0.11×0.04 mm was finally selected and implemented on the diffractometer.

Structural data Empirical formula C72H94N2O26 Extended formula 2(C29H40NO9), 2(C7H5O3), 2(H2O) Formula weight 1403.5 Temperature 150(2) K Wavelength 0.71073 Å Crystal system, space group monoclinic, P 21 Unit cell dimensions a = 11.6871(3) Å, α = 90° b = 25.8294(6) Å, β = 114.6320(10)° c = 12.6300(3) Å, γ = 90° Volume 3465.69(15) Å3 Z, Calculated density 2, 1.345 (g · cm−1) Absorption coefficient 0.102 mm−1 F(000) 1496 Crystal size 0.15 × 0.11 × 0.04 mm Crystal color colourless Theta range for data collection 2.96 to 27.48° h_min, h_max −15, 15 k_min, k_max −33, 33 l_min, l_max −11, 16 Reflections collected/unique 29505/8078 [aR(int) = 0.0621] Reflections [I > 2σ] 6299 Completeness to theta_max 0.994 Absorption correction type multi-scan Max. and min. transmission 0.996, 0.886 Refinement method: Full-matrix least-squares on F2 Data/restraints/parameters 8078/1/928 bGoodness-of-fit 1.076 Final R indices [I > 2σ] cR1 = 0.0619, dwR2 = 0.121 R indices (all data) cR1 = 0.086, dwR2 = 0.1312 Largest diff. peak and hole 0.531 and −0.3 eÅ−3

Atomic coordinates, site occupancy (%) and equivalent isotropic displacement parameters (A2×103).

U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom numbering of FIG. 2.12.1 corresponds to below table.

Atom x y z occ. U(eq) C1 −0.3818(4)   0.00999(17)   0.1577(4) 1 0.0196(9) H1 −0.3779 −0.0157   0.1054 1 0.024 C2 −0.3310(4)   0.00487(17)   0.2729(4) 1 0.0193(9) C3 −0.3588(4)   0.04946(17)   0.3333(4) 1 0.0186(9) H3 −0.4173   0.038   0.3682 1 0.022 C4 −0.4266(4)   0.08958(17)   0.2350(4) 1 0.0172(9) H4 −0.5126   0.0945   0.2325 1 0.021 C5 −0.4453(4)   0.06061(18)   0.1208(4) 1 0.0183(9) C6 −0.5832(4)   0.0587(2)   0.0314(4) 1 0.0298(11 H6A −0.627   0.0292   0.0483 1 0.036 H6B −0.6271   0.091   0.0347 1 0.036 C7 −0.5836(6)   0.0525(3) −0.0867(5) 1 0.0523(19 H7A −0.6431   0.0772 −0.1428 1 0.063 H7B −0.6082   0.0169 −0.1162 1 0.063 C8 −0.4507(5)   0.0637(2) −0.0699(4) 1 0.0287(11 H8A −0.4066   0.0313 −0.0719 1 0.034 H8B −0.4502   0.0871 −0.1318 1 0.034 N9 −0.3883(4)   0.08909(15)   0.0468(3) 1 0.0179(8) HN9 −0.406(6)   0.119(3)   0.038(6) 1 0.0 C10 −0.2485(4)   0.08986(18)   0.0908(4) 1 0211(10 H10A −0.2248   0.1127   0.0402 1 0.025 H10B −0.2186   0.0545   0.0856 1 0.025 C11 −0.1831(4)   0.10881(17)   0.2165(4) 1 0.0176(9) H11A −0.1748   0.0794   0.2696 1 0.021 H11B −0.0973   0.1207   0.2312 1 0.021 C12 −0.2525(4)   0.15248(17)   0.2444(4) 1 0.0165(9) C13 −0.3674(4)   0.14288(17)   0.2526(4) 1 0.0151(9) C14 −0.4317(4)   0.18343(17)   0.2773(4) 1 0.0167(9) H14 −0.5087   0.1775   0.2838 1 0.0 C15 −0.3799(4)   0.23192(17)   0.2919(4) 1 0.0181(9) C16 −0.2683(4)   0.24154(17)   0.2810(4) 1 0.0179(9) C17 −0.2022(4)   0.20246(17)   0.2595(4) 1 0.0175(9) H17 −0.1243   0.209   0.2551 1 0.021 C18 −0.3495(5)   0.3174(2)   0.2989(6) 1 0.0342(13 H18A −0.3276   0.3447   0.3591 1 0.041 H18B −0.3985   0.3333   0.2218 1 0.041 C19 −0.2286(5) −0.07362(19)   0.2749(5) 1 0.0287(11 H19A −0.3051 −0.09   0.218 1 0.043 H19B −0.1753 −0.0999   0.329 1 0.043 H19C −0.1826 −0.0574   0.2342 1 0.043 C21 −0.2376(4)   0.07232(16)   0.5324(4) 1 0.0150(9) C22 −0.1193(4)   0.10173(17)   0.6134(4) 1 0.0181(9) C23 −0.1290(4)   0.15962(16)   0.5815(4) 1 0.0210(10 H23A −0.0436   0.1748   0.6184 1 0.025 H23B −0.1574   0.1625   0.4961 1 0.025 C24 −0.2154(4)   0.19169(17)   0.6156(4) 1 0.0191(9) C25 −0.4265(5)   0.2160(2)   0.5670(5) 1 0.0293(12 H25A −0.4225   0.2098   0.645 1 0.044 H25B −0.5115   0.2084   0.5085 1 0.044 H25C −0.4059   0.2523   0.5602 1 0.044 C31 −0.0033(4)   0.07965(17)   0.6007(4) 1 0.0186(9) H31A −0.0119   0.0866   0.5206 1 0.022 H31B   0.0725   0.0983   0.6551 1 0.022 C32   0.0168(4)   0.02207(17)   0.6244(4) 1 0.0219(10 H32A −0.059   0.003   0.5716 1 0.026 H32B   0.0297   0.0148   0.7056 1 0.026 C33   0.1312(4)   0.00353(17)   0.6058(4) 1 0.0203(10 H33A   0.2055   0.0237   0.6578 1 0.024 H33B   0.117   0.0115   0.5246 1 0.024 C34   0.1622(4) −0.05425(18)   0.6277(4) 1 0.0224(10) C35   0.0526(5) −0.0876(2)   0.5504(5) 1 0.0333(12) H35A   0.0218 −0.0755   0.4698 1 0.05 H35B −0.0153 −0.0853   0.5766 1 0.05 H35C   0.0803 −0.1237   0.555 1 0.05 C36   0.2022(6) −0.0690(2)   0.7544(5) 1 0.0418(14) H36A   0.2289 −0.1053   0.7657 1 0.063 H36B   0.1312 −0.0643   0.7756 1 0.063 H36C   0.2724 −0.0469   0.8038 1 0.063 O1 −0.2627(3) −0.03428(12)   0.3396(3) 1 0.0245(7) O2 −0.4215(3)   0.27736(13)   0.3215(3) 1 0.0295(8) O3 −0.2371(3)   0.29334(12)   0.3015(3) 1 0.0291(8) O4 −0.2456(3)   0.07096(12)   0.4237(3) 1 0.0193(7) O5 −0.3115(3)   0.05224(13)   0.5638(3) 1 0.0272(8) O6 −0.1014(3)   0.09442(13)   0.7304(3) 1 0.0232(7) HO6 −0.159(6)   0.100(3)   0.736(6) 1 0.05 O7 −0.1806(3)   0.22291(14)   0.6937(3) 1 0.0343(9) O8 −0.3364(3)   0.18247(12)   0.5481(3) 1 0.0231(7) O9   0.2605(3) −0.06667(14)   0.5922(4) 1 0.0349(9) HO9   0.319(6) −0.049(3)   0.633(6) 1 0.05 C41 −0.4061(4)   0.20979(18) −0.0709(4) 1 0.0185(9) C42 −0.4133(4)   0.26758(17) −0.0845(4) 1 0.0190(9) C43 −0.4734(4)   0.29825(18) −0.0317(4) 1 0.0236(10) C44 −0.4734(5)   0.3520(2) −0.0387(5) 1 0.0348(13) H44 −0.5137   0.3723 −0.0014 1 0.042 C45 −0.4139(5)   0.3755(2) −0.1008(5) 1 0.0361(13) H45 −0.4138   0.4122 −0.106 1 0.043 C46 −0.3542(5)   0.3463(2) −0.1557(5) 1 0.0320(12) H46 −0.3132   0.3627 −0.1977 1 0.038 C47 −0.3558(4)   0.2929(2) −0.1480(4) 1 0.0252(11) H47 −0.3169   0.2728 −0.1868 1 0.03 O41 −0.3392(3)   0.18505(13) −0.1087(3) 1 0.0267(8) O42 −0.4676(3)   0.18943(12) −0.0187(3) 1 0.0218(7) O43 −0.5327(4)   0.27633(14)   0.0297(4) 1 0.0331(9) HO43 −0.525(6)   0.249(3)   0.031(6) 1 0.05 C51   0.0847(4)   0.26596(17) −0.0909(4) 1 0.0198(10) H51   0.0267   0.2505 −0.161 1 0.024 C52   0.1215(4)   0.31517(18) −0.0810(4) 1 0.0200(10) C53   0.2190(4)   0.32915(16)   0.0374(4) 1 0.0164(9) H53   0.3014   0.3357   0.0333 1 0.02 C54   0.2289(4)   0.27955(16)   0.1123(4) 1 0.0136(9) H54   0.3181   0.2674   0.1417 1 0.016 C55   0.1468(4)   0.23828(16)   0.0226(4) 1 0.0142(8) C56   0.2210(4)   0.18952(17)   0.0199(4) 1 0.0199(9) H56A   0.2763   0.1964 −0.0202 1 0.024 H56B   0.2728   0.1769   0.0997 1 0.024 C57   0.1175(4)   0.15039(18) −0.0484(4) 1 0.0243(10) H57A   0.0894   0.1551 −0.1334 1 0.029 H57B   0.148   0.1144 −0.0276 1 0.029 C58   0.0111(4)   0.16215(17) −0.0123(4) 1 0.0216(10) H58A   0.0026   0.134   0.0371 1 0.026 H58B −0.0697   0.166 −0.0817 1 0.026 N59   0.0475(3)   0.21301(14)   0.0560(3) 1 0.0161(8) HN59   0.088(5)   0.199(2)   0.139(5) 1 0.05 C60 −0.0649(4)   0.24526(18)   0.0388(4) 1 0.0199(10) H60A −0.1166   0.2267   0.0718 1 0.024 H60B −0.1165   0.2495 −0.0458 1 0.024 C61 −0.0319(4)   0.29898(18)   0.0951(4) 1 0.0188(9) H61A −0.0155   0.3225   0.0412 1 0.023 H61B −0.1057   0.3126   0.1056 1 0.023 C62   0.0809(4)   0.29972(16)   0.2115(4) 1 0.0143(9) C63   0.2020(4)   0.28854(16)   0.2193(4) 1 0.0135(8) C64   0.3049(4)   0.28691(17)   0.3276(4) 1 0.0156(9) H64   0.3865   0.2784   0.3338 1 0.019 C65   0.2853(4)   0.29777(17)   0.4240(4) 1 0.0179(9) C66   0.1677(4)   0.31120(17)   0.4167(4) 1 0.0197(10) C67   0.0638(4)   0.31097(16)   0.3130(4) 1 0.0188(9) H67 −0.0174   0.3182   0.3094 1 0.023 C68   0.3079(5)   0.3226(2)   0.6008(4) 1 0.0320(12) H68A   0.3372   0.3589   0.6181 1 0.038 H68B   0.3258   0.3046   0.6753 1 0.038 C69 −0.0155(6)   0.3400(2) −0.2692(5) 1 0.0428(15) H69A   0.014   0.314 −0.3086 1 0.064 H69B −0.0446   0.3707 −0.3186 1 0.064 H69C −0.0852   0.3256 −0.2545 1 0.064 C71   0.2427(4)   0.41910(16)   0.0877(4) 1 0.0159(9) C72   0.2104(5)   0.45689(17)   0.1661(5) 1 0.0244(11) C73   0.2446(5)   0.4339(2)   0.2868(4) 1 0.0288(11) H73A   0.2371   0.4613   0.3385 1 0.035 H73B   0.1834   0.4063   0.2808 1 0.035 C74   0.3766(5)   0.4115(2)   0.3417(4) 1 0.0286(11) C75   0.5447(5)   0.3850(3)   0.5159(5) 1 0.0448(15) H75A   0.5447   0.3514   0.4801 1 0.067 H75B   0.5651   0.3802   0.5988 1 0.067 H75C   0.6078   0.4076   0.5075 1 0.067 C81   0.0688(5)   0.46846(19)   0.1066(5) 1 0.0297(12) H81A   0.0225   0.4358   0.1018 1 0.036 H81B   0.0477   0.4926   0.1566 1 0.036 C82   0.0219(5)   0.4915(2) −0.0146(5) 1 0.0379(14) H82A   0.0717   0.477 −0.0546 1 0.045 H82B   0.0364   0.5294 −0.0077 1 0.045 C83 −0.1172(5)   0.4814(2) −0.0889(5) 1 0.0378(13) H83A −0.1271   0.4443 −0.111 1 0.045 H83B −0.1636   0.4874 −0.0399 1 0.045 C84 −0.1788(5)   0.5126(2) −0.1973(5) 1 0.0353(13) C85 −0.3125(6)   0.4957(3) −0.2704(6) 1 0.0532(17) H85A −0.3601   0.4953 −0.2222 1 0.08 H85B −0.3123   0.4609 −0.3012 1 0.08 H85C −0.352   0.52 −0.3352 1 0.08 C86 −0.1053(6)   0.5173(3) −0.2700(5) 1 0.0439(15) H86A −0.1535   0.5378 −0.3398 1 0.066 H86B −0.0895   0.4828 −0.2931 1 0.066 H86C −0.0248   0.5345 −0.2246 1 0.066 O51   0.0848(3)   0.35381(13) −0.1615(3) 1 0.0285(8) O52   0.3708(3)   0.29717(14)   0.5395(3) 1 0.0264(8) O53   0.1754(3)   0.32134(13)   0.5276(3) 1 0.0260(7) O54   0.1836(3)   0.37380(11)   0.0855(3) 1 0.0184(7) O55   0.3039(3)   0.42839(12)   0.0351(3) 1 0.0225(7) O56   0.2839(4)   0.50176(14)   0.1739(4) 1 0.0364(9) HO56   0.272(6)   0.531(3)   0.200(6) 1 0.05 O57   0.4356(3)   0.39631(15)   0.2885(3) 1 0.0382(9) O58   0.4187(4)   0.40908(16)   0.4575(3) 1 0.0409(10) O59 −0.1879(4)   0.56408(15) −0.1531(4) 1 0.0467(10) H59 −0.2274   0.5839 −0.2093 1 0.07 C91   0.2069(5)   0.15694(19)   0.3512(5) 1 0.0274(11) C92   0.2274(4)   0.16464(17)   0.4767(4) 1 0.0223(10) C93   0.1463(3)   0.19621(14)   0.5016(3) 1 0.0268(11) H93   0.0736   0.2099   0.4399 1 0.032 C94   0.1706(3)   0.20812(14)   0.6171(3) 1 0.0321(12) H94   0.1166   0.2309   0.6341 1 0.039 C95   0.2751(5)   0.1862(2)   0.7069(5) 1 0.0376(13) H95   0.2916   0.1937   0.7856 1 0.045 C96   0.3549(5)   0.1536(2)   0.6824(5) 1 0.0340(13) H96   0.4255   0.1386   0.7441 1 0.041 C97   0.3320(5)   0.1430(2)   0.5688(5) 1 0.0286(11) O91   0.1084(3)   0.17337(13)   0.2713(3) 1 0.0265(8) O92   0.2952(4)   0.13363(15)   0.3347(3) 1 0.0370(9) O93   0.4150(3)   0.11174(15)   0.5479(4) 1 0.0363(9) HO93   0.369(6)   0.114(3)   0.462(6) 1 0.05 OW1   0.4458(4)   0.01162(15)   0.6698(4) 1 0.0458(10) OW2   0.6810(3)   0.11024(14)   0.7538(3) 1 0.0318(8)

Example 16: Purification of Natural Homoharringtonine as Hydrogen (2R,3R)-Tartaric Salt

All operations were performed in a sterile isolator using dedicated or single-use equipment. The reagents were of pharmacopoeial quality and all the quality control and quality assurance written procedures were carried out according to the current good manufacturing practices. Commercial homoharringtonine base (100 grams) exhibiting at least 97% of purity was dried then introduced in a dedicated sterile flask equipped with a stirring and a refrigerant, and flushed by sterile argon, then 1.2 molar equivalent of (2R,3R)-(+)-tartaric acid (natural version, pharmacopoeia quality) was introduced. Then 350 mL of anhydrous methanol was added under reflux until all solid phase disappeared. A volume of dry methanol was added to move away from the point of supersaturation. The homogeneous solution was then withdrawn and directly filtered hot under vacuum on a microporous filter (0.5 micron). After 15 minutes, fine translucent prismatic crystals of homohamrngtonine hydrogen (2R, 3R) tartrate begin to form. The stirred suspension is allowed to stand for 12 hours. At this stage an in process control (CIP) to check the impurity content of the crystals and mother liquors. The suspension is drained on a filter funnel (Buchner) and the crystals are dissolved in hot methanol. The crystallization operation and the corresponding CIPs are renewed twice. After the last wringing, the crystals were dried under vacuum at a temperature of 45c, 20 hours, and then packaged. Final samples are taken to carry out an analysis report in accordance with the specifications. The impurity content is less than 0.3% and the purity (HPC) exceeds 99.7% (the current purity of semi-synthetic batches). In addition to the usual tests including microbiological testing and endotoxin detection, all batches of drug substance were subjected to a high resolution NMR analysis and a control for in vivo toxicity.

Claims

1. A harringtonines salt in the crystalline state exhibiting a protonated nitrogen seen in solid state analysis and having formula 1,

comprising solvate, made by reacting a cephalotaxine ester having formula 2,
in which R1 is, but not limited to, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, and R2 is, independently, but not limited to H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, with an acid having general formula AH in a crystallization solvent, wherein the said salt has a water or alkohol solubility ranged approximately from 5 mg/mL to approximately 100 mg/Ml.

2. The salt of claim 1 wherein the cephalotaxine ester reactant is homoharringtonine (=omacetaxine) having formula 2 in which R2 is hydrogen and R1 have below formula 3.

3. The salts of claim 1 wherein the acid is an organic acid but not limited to, selected among the following list: fumaric, maleic, citramalic, malic, tartaric, tartronic, succinic, itaconic, citric acid or salicylic acid.

4. The salts of claim 1, having below formula in which the malic acid is of configuration 2S having formula

5. The salts of claim 4, wherein the malic acid is of configuration 2R having formula

6. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen (R)-malate exhibiting the below formula:

7. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtone hydrogen succinate exhibiting the below formula:

8. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″S,3′″S)-tartrate exhibiting the below formula:

9. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen (2′″R,3′″R)-tartrate exhibiting the below formula:

10. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen itaconate exhibiting the below formula:

11. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen fumarate exhibiting the below formula:

12. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen tartronate exhibiting the below formula:

13. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine hydrogen malonate exhibiting the below formula:

14. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine dihydrogen citrate exhibiting the below formula:

15. The salt of claim 1, named (3S,4S,5R,2′R)-homoharringtonine salicate exhibiting the below formula:

16. The salt of claim 1 as crystalline form comprising solvate and co-crystal.

17. The cation (3S,4S,5R,2′R)-homoharringtoninium as described in FIGS. 2.3.1, 2.4.1, 2.5.1, 2.6.1, 2.8.1, 2.9.1, 2.11.1, and 2.12.1, exhibiting the below formula

18. The process of preparation and purification of salts of claim 1 comprising contacting a natural, hemi-synthetic or synthetic harringtonine or its semi-synthetic analog with a weak acid in suspension or in solution in a suitable non-aqueous solvent, preferably an alcohol or mixed at the solid state either at the amorphous state or at the crystalline state then recrystallized said salt in a suitable non aqueous solvent, preferably an alcohol, the said process being also when repeated a method of purification including enantiomeric (fractional crystallization).

19. The process of claim 18 wherein the harringtonine is homoharringtonine having formula represented in claim 2.

20. The process of claim 18 wherein the harringtonine is an harringtonine analog having general formula:

in which R1 is, but not limited to, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl, and R2 is, independently, but not limited to H, alkyl, aryl, cycloalkyl, heteroalkyl, heteroaryl or heterocycloalkyl.

21. The process of claim 18, wherein the acid is, but not limited to, selected among the following list: fumaric, maleic, citramalic, malic, tartaric, tartronic, succinic, itaconic, salicylic or citric acid.

22. A pharmaceutical dosage form comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of a mineral or organic salt or solvate or co-crystal of claim 1.

23. A method of treatment comprising administering a therapeutically effective amount of a pharmaceutical dosage form of claim 22 to a patient or an animal suffering from cancer including their metastasis, leukemia, lymphoma, parasitic disease, ocular proliferation and/or immune disorder and/or from viral disease.

24. A method of treating cancer, leukemia and/or lymphoma, comprising administering to a patient or an animal in need thereof the pharmaceutical dosage of claim 22, said pharmaceutical dosage being administered alone or in combination with at least another chemotherapeutic agents, eventually combined with radiotherapy.

25. The method of claim 24, wherein the leukemia is acute myelod leukemia (AML), myelodysplastic syndrome (MDS) and myeloproliferative disorders including chronic myelogenous leukemia, polycythemia vera, essential thrombocythemia, myelosclerosis, and

wherein the lymphoma is a multiple myeloma, a Hodgkin disease or a Burkitt lymphoma, and
wherein the cancer is a breast cancer, a brain cancer or a lung cancer.

26. The method of claim 25, wherein the breast cancer is a triple negative breast cancer (TNBC).

27. The method of claim 25 wherein the brain cancer is a neuroblastoma.

28. The method of claim 25, wherein the lung cancer is a non small cell lung cancer (NSCLC).

29. A method for treating autoimmune disorder, comprising administering to a patient or an animal in need thereof the pharmaceutical dosage of claim 22, said pharmaceutical dosage being administered alone or in combination with at least another chemotherapeutic agent.

30. The method of claim 29, wherein the autoimmune disorder is a systemic lupus erythematosus (SLE), a dermatomyositis, a psoriasis or a lichen planopilaris (LPP).

31. The method of claim 30, wherein the lichen planopilaris (LPP) is a frontal fibrosis alopecia (FFA).

Patent History
Publication number: 20190161493
Type: Application
Filed: Nov 14, 2018
Publication Date: May 30, 2019
Inventors: Jean-Pierre ROBIN (Geneve), Nina RADOSEVIC (Geneve), Julie BLANCHARD (Puyricard), Thierry ROISNEL (Thorigne-Fouillard), Thierry BATAILLE (Thorigne-Fouillard)
Application Number: 16/191,007
Classifications
International Classification: C07D 491/147 (20060101); C07D 491/14 (20060101);