BACKLIGHT MODULE
A backlight module for an LCD display includes backlight units. Each backlight unit includes a backplane unit, a first reflecting unit on the backplane unit, and an LED on the backplane unit extending through the first reflecting unit. Each backlight unit further includes a second reflecting unit on a side of the first reflecting unit away from the backplane unit. The second reflecting unit is spaced apart from the first reflecting unit. The second reflecting unit includes at least one reflecting region and at least one transmitting region. The reflecting region reflects light, the transmitting region transmits light.
The subject matter herein generally relates to a backlight module.
BACKGROUNDA liquid crystal display device needs a backlight module to emit light and display images. As the liquid crystal display devices become thinner, the backlight module also needs to be thinner and lighter. A conventional direct-type backlight module includes a back plate, a reflection sheet on the back plate, a plurality of LEDs (light emitting diodes) on the reflection sheet, a diffusion sheet, and a brightness enhancement film above the LEDs. Reducing a thickness of the backlight module is usually achieved by reducing a distance (mixing distance) between the back plate and the diffusion sheet. However, the density of the LEDs disposed on the back panel needs to be increased correspondingly to ensure a uniform light-emitting effect of the backlight module. An increase of the density of the LEDs may result in an increased energy consumption of the backlight module.
Therefore, there is room for improvement within the art.
Implementations of the present technology will now be described, by way of embodiments only, with reference to the attached figures.
It will be appreciated that for simplicity and clarity of illustration, where appropriate, reference numerals have been repeated among the different figures to indicate corresponding or analogous elements. In addition, numerous specific details are set forth in order to provide a thorough understanding of the embodiments described herein. However, it will be understood by those of ordinary skill in the art that the embodiments described herein may be practiced without these specific details. In other instances, methods, procedures, and components have not been described in detail so as not to obscure the related relevant feature being described. Also, the description is not to be considered as limiting the scope of the embodiments described herein. The drawings are not necessarily to scale and the proportions of certain parts may be exaggerated to better illustrate details and features of the present disclosure.
The term “coupled” is defined as coupled, whether directly or indirectly through intervening components, and is not necessarily limited to physical connections. The connection can be such that the objects are permanently coupled or releasably coupled. The term “comprising” when utilized, means “including, but not necessarily limited to”; it specifically indicates open-ended inclusion or membership in the so-described combination, group, series, and the like.
Each of the backlight units 10 further includes a diffusing unit 15 on a side of the second reflecting unit 20 away from the LED 13 and a brightness-enhancement unit 17 on a side of the diffusing unit 15 away from the second reflecting unit 20.
As shown in
As shown in
When light is emitted from the LED 13, a part of the light directly passes through the second reflecting unit 20 from the transmitting region 23. Another part of the light incidenting on the reflecting region 21 is reflected by the reflecting region 21, and then incidents on the first reflecting unit 12 and is reflected by the first reflecting unit 12, and finally passes through the second reflecting unit 20 from the transmitting region 23.
Referring to
In the second reflecting unit 20 shown in
By introducing the second reflecting unit 20 having a specific design of width into the backlight unit 10 of the backlight module 100, light passing through the second reflecting unit 20 can have sufficient intensity and is uniform, and the thickness (mixing distance) of the backlight unit 10 can be reduced without increasing the density of the LEDs 13.
Referring to
Referring to
Referring to
Referring to
It can be understood that the reflecting regions 21 and the transmitting regions 23 of the second reflecting unit 20 are not limited to the ones described above, and may be other various regular or irregular shapes.
Referring to
Referring to
Referring to
In the present embodiment, as shown in
In other embodiments, as shown in
Referring to
Light intensity distribution diagrams of a backlight module are shown in
Light intensity distribution diagrams of a backlight module are shown in
It is to be understood, even though information and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the present embodiments, the disclosure is illustrative only; changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the present embodiments to the full extent indicated by the plain meaning of the terms in which the appended claims are expressed.
Claims
1. A backlight module, comprising:
- a plurality of backlight units, each of the plurality of backlight units comprising: a backplane unit; a first reflecting unit on the backplane unit; and a light emitting diode (LED) on the backplane unit and extending through the first reflecting unit; wherein each of the plurality of backlight units further comprises a second reflecting unit on a side of the first reflecting unit away from the backplane unit; the second reflecting unit is spaced apart from the first reflecting unit; and the second reflecting unit comprises at least one reflecting region and at least one transmitting region; the reflecting region is configured to reflect light; the transmitting region is configured to transmit light.
2. The backlight module of claim 1, wherein the at least one reflecting regions comprises at least two reflecting regions; and the at least one transmitting regions comprises at least two transmitting regions; every adjacent two of the reflecting regions are spaced apart from each other by one of the transmitting regions; every adjacent two of the transmitting regions are spaced apart from each other by one of the reflecting regions.
3. The backlight module of claim 1, wherein the LED aligns with a center of the second reflecting unit.
4. The backlight module of claim 1, wherein the at least one reflecting regions comprises a plurality of reflecting regions spaced apart from each other; and the at least one transmitting regions comprises one transmitting region; the one transmitting region surrounds each of the plurality of reflecting regions.
5. The backlight module of claim 4, wherein sizes of the plurality of reflecting regions gradually decrease along a direction from a center towards an edge of the second reflecting unit.
6. The backlight module of claim 1, wherein the second reflecting unit comprises a main portion and a border portion surrounding the main portion; the main portion comprises a plurality of transmitting regions spaced apart from each other and a reflecting region; a region of the main portion excluding the plurality of transmitting regions is the reflecting region; the border portion comprises a plurality of reflecting regions spaced apart from each other and a transmitting region; a region of the border portion excluding the plurality of reflecting regions is the transmitting region.
7. The backlight module of claim 6, wherein sizes of the plurality of transmitting regions of the main portion gradually increase along a direction from a center towards an edge of the second reflecting unit.
8. The backlight module of claim 6, wherein sizes of the plurality of reflecting regions of the border portion gradually decrease along a direction from a center towards an edge of the second reflecting unit.
9. The backlight module of claim 1, wherein the second reflecting units of the plurality of backlight units are arranged in a matrix comprising a plurality of rows along a first direction and a plurality of columns along a second direction; wherein the first direction is perpendicular to the second direction; the second reflecting units in each of the plurality of rows are serially coupled together, and the second reflecting units in each of the plurality of columns are serially coupled together.
10. The backlight module of claim 1, wherein the second reflecting units of the plurality of backlight units are arranged in a plurality of rows along a first direction; the second reflecting units in each of the plurality of rows are serially coupled together; the plurality of rows of the second reflecting units are serially coupled together along a second direction; wherein the first direction is perpendicular to the second direction; odd-numbered rows of the second reflecting units are aligned with each other in the first direction, and even-numbered rows of the second reflecting units are aligned with each other in the first direction; each of the odd-numbered rows of the second reflecting units is staggered in relation to the even-numbered rows of the second reflecting units in the first direction.
11. The backlight module of claim 10, wherein each of the odd-numbered rows of the second reflecting units offsets a distance from each of the even-numbered rows of the second reflecting units in the first direction; the distance is equal to a half of a length or width of the second reflecting unit.
12. The backlight module of claim 1, wherein each transmitting region of the second reflecting unit is a through hole extending through the second reflecting unit, and the reflecting regions of the second reflecting unit are made of reflective material.
13. The backlight module of claim 1, wherein the second reflecting unit comprises a transparent substrate and a reflective material layer formed on a surface of the transparent substrate adjacent to the LED; the reflective material layer partially covers the surface of the transparent substrate; the reflective material layer forms each reflecting region; portions of the transparent substrate which are not covered by the reflective material layer define each transmitting region.
14. A backlight module, comprising:
- a backplane;
- a first reflecting film on the backplane; and
- a plurality of light emitting diodes (LEDs) on the backplane unit, being spaced apart from each other, and each extending through the first reflecting film;
- wherein the backlight module further comprises a second reflecting film on a side of the first reflecting film away from the backplane;
- the second reflecting film is spaced apart from the first reflecting film; and
- the second reflecting film comprises a plurality of reflecting regions and a plurality of transmitting regions; each of the plurality of reflecting regions is configured to reflect light; each of the plurality of transmitting regions is configured to transmit light.
Type: Application
Filed: Dec 19, 2018
Publication Date: Jun 20, 2019
Inventors: WEI-CHIH CHANG (New Taipei), CHUNG-WEN LAI (New Taipei), CHIH-HAO CHANG (New Taipei), KUO-SHENG LEE (New Taipei)
Application Number: 16/225,342