ATTENTION-BASED RENDERING AND FIDELITY
Methods and systems for attention-based rendering on an entertainment system are provided. A tracking device captures data associated with a user, which is used to determine that a user has reacted (e.g., visually or emotionally) to a particular part of the screen. The processing power is increased in this part of the screen, which increases detail and fidelity of the graphics and/or updating speed. The processing power in the areas of the screen that the user is not paying attention to is decreased and diverted from those areas, resulting in decreased detail and fidelity of the graphics and/or decreased updating speed.
This application is a continuation and claims the priority benefit of U.S. patent application Ser. No. 15/659,254 filed Jul. 25, 2017, now U.S. Pat. No. 10,310,583, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 15/180,275 filed Jun. 13, 2016, now U.S. Pat. No. 9,715,266, which is a continuation and claims the priority benefit of U.S. patent application Ser. No. 14/014,199 filed Aug. 29, 2013, now U.S. Pat. No. 9,367,117, the disclosures of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION Field of the InventionThis invention relates generally to electronic systems and more particularly to a system and method for utilizing tracking to identify reactions to content.
Description of the Related ArtIn electronic systems, particularly entertainment and gaming systems, a user typically controls the behavior or actions of at least one character in a game program. The users' perspective, as determined by the camera angle, varies depending on a variety of factors, including hardware restrictions, such as the processing power of the system. In games with two-dimensional graphics, typical user perspectives include a top-down view (or “helicopter” view), where the user views the game from a third-person perspective, and a side-scrolling view, where the user views the characters from a third-person perspective as they move across the screen from left to right. These perspectives require lower levels of detail, and thus, require lower processing power from the processing units of the system.
In games with three-dimensional graphics, typical user views include a fixed 3D view, where the objects in the foreground are updated in real time against a static background, and the perspective of the user remains fixed, a first-person view (i.e., the user views the game from the perspective of a game character), and third-person view, where the user views the game character from a distance away from the game character, such as above or behind the character. The views depend on the sophistication of the camera system of a game. Three types of camera systems are typically used: a fixed camera system, a tracking camera system that follows the game character, and an interactive camera system that allows the user to control the camera angle.
Although the three-dimensional perspectives are more realistic for the user, they require more processing power, and, thus, the level of detail in rendering can suffer as a result of the drain in processing power to create the three-dimensional view.
Therefore, there is a need for a system and method for improving the balance between providing rendering detail and conservation of processing power by tracking where the user focuses his attention during game play.
SUMMARY OF THE CLAIMED INVENTIONEmbodiments of the present invention provide methods and systems for attention-based rendering on an entertainment system are provided. A tracking device captures tracking data associated with a user. The tracking data is utilized to determine that the user reacted to at least one area displayed on a display device connected to the entertainment system. A processor communicates the determination to a graphics processing unit and instructs it to alter the processing power used for rendering graphics in the area of the display device. If the user is paying attention to the area, the processing power is increased, which in turn increases the detail and fidelity of the graphics and/or increases the speed with which objects within the area are updated. If the user is not paying attention to the area, processing power is diverted from the area, resulting in decreased detail and fidelity of the graphics and/or decreased updating speed of the objects within the area.
Various embodiments of the present invention include methods for attention-based rendering on an entertainment system. Such methods may include receiving tracking data from at least one user by a tracking device, wherein the tracking data is captured in response to a reaction of the user to at least one area displayed on a display device. The tracking data is sent by way of the tracking device to a processor. The processor executes instructions stored in memory, wherein execution of the instructions by a processor utilizes the tracking data to determine that the user reacted to the at least one area and communicates to a graphics processing unit to alter processing power used for rendering graphics. A further embodiment includes the steps of receiving a selection by the user indicating a preference for initiating a power-saving mode, storing the selection in memory, and initiating a power-saving mode when the tracking data indicates a lack of attention to the display device by the user.
Further embodiments include systems for attention-based rendering. Such systems may include a memory and a display device connected to an entertainment system. A tracking device captures tracking data associated with a user. A processor executes instructions stored in memory, wherein execution of the instructions by the processor utilizes the tracking data to determine that the user reacted to the at least one area displayed on the display device and communicates to a graphics processing unit to alter processing power used for rendering graphics.
Some embodiments of the present invention further include computer-readable storage media having embodied thereon programs executable by processors to perform methods for attention-based rendering.
The tracking device 124 may be a camera, which includes eye-tracking capabilities. The camera may be integrated into or attached as a peripheral device to entertainment system 100. In typical eye-tracking devices, infrared non-collimated light is reflected from the eye and sensed by a camera or optical sensor. The information is then analyzed to extract eye rotation from changes in reflections. Camera-based trackers focus on one or both eyes and records their movement as the viewer looks at some type of stimulus. Camera-based eye trackers use the center of the pupil and light to create corneal reflections (CRs). The vector between the pupil center and the CR can be used to compute the point of regard on surface or the gaze direction. A simple calibration procedure of the viewer is usually needed before using the eye tracker.
Alternatively, more sensitive trackers use reflections from the front of the cornea and that back of the lens of the eye as features to track over time. Even more sensitive trackers image features from inside the eye, including retinal blood vessels, and follow these features as the eye rotates.
Most eye tracking devices use a sampling rate of at least 30 Hz, although 50/60 Hz is most common. Some tracking devises run as high as 1250 Hz, which is needed to capture detail of very rapid eye movement.
A range camera may instead be used with the present invention to capture gestures made by the user and is capable of facial recognition. A range camera is typically used to capture and interpret specific gestures, which allows a hands-free control of an entertainment system. This technology may use an infrared projector, a camera, a depth sensor, and a microchip to track the movement of objects and individuals in three dimension. This system employs a variant of image-based three-dimensional reconstruction.
The tracking device 124 may include a microphone integrated into or attached as a peripheral device to entertainment system 100 that captures voice data. The microphone may conduct acoustic source localization and/or ambient noise suppression.
Alternatively, tracking device 124 may be the controller of the entertainment system. The controller may use a combination of built-in accelerometers and infrared detection to sense its position in 3D space when pointed at the LEDs in a sensor nearby, attached to, or integrated into the console of the entertainment system. This design allows users to control a game with physical gestures as well as button-presses. The controller connects to the console using wireless technology that allows data exchange over short distances (e.g., 30 feet). The controller may additionally include a “rumble” feature (i.e., a shaking of the controller during certain points in the game) and/or an internal speaker.
The controller may additionally or alternatively be designed to capture biometric readings using sensors in the remote to record data including, for example, skin moisture, heart rhythm, and muscle movement.
Preferably, the entertainment system 100 is an electronic gaming console. Alternatively, the entertainment system 100 may be implemented as a general-purpose computer, a set-top box, or a hand-held gaming device. Further, similar entertainment systems may contain more or less operating components.
The CPU 104, the vector unit 106, the graphics processing unit 108, and the I/O processor 110 communicate via a system bus 136. Further, the CPU 104 communicates with the main memory 102 via a dedicated bus 138, while the vector unit 106 and the graphics processing unit 108 may communicate through a dedicated bus 140. The CPU 104 executes programs stored in the OS ROM 126 and the main memory 102. The main memory 102 may contain pre-stored programs and programs transferred through the I/O Processor 110 from a CD-ROM, DVD-ROM, or other optical disc (not shown) using the optical disc control unit 132. The I/O processor 110 primarily controls data exchanges between the various devices of the entertainment system 100 including the CPU 104, the vector unit 106, the graphics processing unit 108, and the controller interface 114.
The graphics processing unit 108 executes graphics instructions received from the CPU 104 and the vector unit 106 to produce images for display on a display device (not shown). For example, the vector unit 106 may transform objects from three-dimensional coordinates to two-dimensional coordinates, and send the two-dimensional coordinates to the graphics processing unit 108. Furthermore, the sound processing unit 130 executes instructions to produce sound signals that are outputted to an audio device such as speakers (not shown).
A user of the entertainment system 100 provides instructions via the controller interface 114 to the CPU 104. For example, the user may instruct the CPU 104 to store certain game information on the memory card 116 or instruct a character in a game to perform some specified action.
Other devices may be connected to the entertainment system 100 via the USB interface 118, the IEEE 1394 interface 120, and the AUX interface 122. Specifically, a tracking device 124, including a camera or a sensor may be connected to the entertainment system 100 via the AUX interface 122, while a controller may be connected via the USB interface 118.
In step 206, the CPU 104 executes a software module stored in main memory 102 (
In step 208, when the user reaction indicates that the user is focusing his attention on the area of the display on the display device, the CPU 104 communicates with the main memory 102 (
Alternatively, in step 210, when the user reaction indicates that the user is not focusing his attention on the area of the display, the CPU 104 communicates with the main memory 102 and instructs the graphics processing unit 108 (
Thus, greater processing power is diverted to areas of the display on the display device where the user is focusing most of his attention. For example, when a special effect is displayed on the display device, the user is likely to focus attention on the area of the screen in which the special effect is occurring. Meanwhile, areas of the display that the user is not focusing on (e.g., when these areas are only in the peripheral vision of user), less detail is needed and, therefore, less processing power is needed for rendering graphics. This allows the entertainment system to conserve processing power in areas that are not the focus of the attention of the user, and improve the graphical details of areas on which the user is currently focusing.
In another embodiment of the present invention, at step 212, the user may optionally select a power-saving preference in a preference module. The CPU 104 (
Referring now to
The invention has been described above with reference to specific embodiments. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The foregoing description and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims
1. A method for updating displayed content, the method comprising:
- identifying a gaze direction of a user while an eye of the user is focused on displayed content in a display based on data received by an optical sensor, the gaze direction corresponding to a first location within the display;
- tracking movement of the eye of the user to a second location within the display based on changes in the identified gaze direction of the user;
- detecting that the user has indicated an instruction while the gaze direction corresponds to the second location; and
- updating at least the displayed content at the second location according to the instruction indicated by the user.
2. The method of claim 1, wherein detecting that the user has indicated the instruction comprises receiving vocal input from the user, wherein updating the displayed content is based on the vocal input.
3. The method of claim 1, further comprising increasing processing power to render an object at the second location with greater detail or speed.
4. The method of claim 1, further comprising decreasing processing power used to render displayed content at another location within the display, wherein the displayed content at the other location is rendered with less detail than the displayed content at the second location.
5. The method of claim 1, wherein detecting that the user has indicated the instruction is based on acceleration data detected by an accelerometer of a control device; and identifying the indicated instruction includes identifying a position of the control device in three dimensional (3D) space based on the acceleration sensor data.
6. The method of claim 3, wherein detecting that the user has indicated the instruction is further based on infrared sensor data detected by an infrared sensor, wherein identifying the position of the control device in 3D space is further based on the received infrared sensor data.
7. The method of claim 1, wherein detecting that the user has indicated the instruction is based on movement data detected by a sensor.
8. The method of claim 1, wherein detecting that the user has indicated the instruction is based on facial recognition data detected by a camera.
9. The method of claim 1, wherein detecting that the user has indicated the instruction includes identifying that the user has performed a gesture.
10. An apparatus for updating displayed content, the apparatus comprising:
- a display device that displays content; and
- one or more sensors that: receive data identify a gaze direction of a user while an eye of the user is focused on the displayed content, the gaze direction corresponding to a first location within the display, track movement of the eye of the user to a second location within the display based on changes in the identified gaze direction of the user; and detect that the user has indicated an instruction while the gaze direction corresponds to the second location, wherein the display device updates at least the displayed content at the second location according to the instruction indicated by the user.
11. The system of claim 10, wherein the sensors include a microphone that detects that the user has indicated the instruction by receiving vocal input from the user, wherein the display device updates the displayed content based on the vocal input.
12. The system of claim 10, further comprising a processor that increases processing power to render an object at the second location with greater detail or speed.
13. The system of claim 10, further comprising a processor that decreases processing power used to render displayed content at another location within the display, wherein the displayed content at the other location is rendered with less detail than the displayed content at the second location.
14. The system of claim 10, wherein the sensors include an accelerometer of a control device that detects that the user has indicated the instruction by detecting acceleration data and that further identifies the indicated instruction by identifying a position of the control device in three dimensional (3D) space based on the acceleration sensor data.
15. The system of claim 3, wherein the sensors include an infrared sensor that detects that the user has indicated the instruction by detecting infrared sensor data and that further identifies the position of the control device in 3D space based on the received infrared sensor data.
16. The system of claim 10, wherein the sensors detect that the user has indicated the instruction is based on detected movement data.
17. The system of claim 10, wherein the sensors include a camera that detects that the user has indicated the instruction based on facial recognition data.
18. The system of claim 10, wherein the sensors include a camera that detects that the user has indicated the instruction by identifying that the user has performed a gesture.
19. A non-transitory computer-readable storage medium, having embodied thereon a program executable by a processor to perform a method for updating displayed content, the method comprising:
- identifying a gaze direction of a user while an eye of the user is focused on displayed content in a display based on data received by an optical sensor, the gaze direction corresponding to a first location within the display;
- tracking movement of the eye of the user to a second location within the display based on changes in the identified gaze direction of the user;
- detecting that the user has indicated an instruction while the gaze direction corresponds to the second location; and
- updating at least the displayed content at the second location according to the instruction indicated by the user.
Type: Application
Filed: May 31, 2019
Publication Date: Sep 19, 2019
Inventors: Paul Timm (San Diego, CA), Andres Ramos Cevallos (San Diego, CA), Ryan Halvorson (San Diego, CA)
Application Number: 16/428,686