COMPOSITIONS FOR BIOLOGICAL SYSTEMS AND METHODS FOR PREPARING AND USING THE SAME
A composition for influencing biological growth including live cells, a fluid comprising dextrose, a protectant, and a first cytokine having a first concentration within the composition as described within the present disclosure.
This application is a continuation of U.S. patent application Ser. No. 15/988,752, filed on May 24, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 15/619,467, filed on Jun. 10, 2017, which claims the benefit of priority to U.S. Provisional App. No. 62/349,633, filed on Jun. 13, 2016, all of which are incorporated by reference in their entirety herein for all purposes. Priority is claimed pursuant to 35 U.S.C. § 120 and 35 U.S.C. § 119.
BACKGROUND OF THE INVENTIONThe field of the invention generally relates to cellular allograft for tissue redevelopment, including bone redevelopment. The sources of cellular allograft compositions have historically involved adult bone marrow, though recently, placental fluid has been an experimental source.
SUMMARY OF THE INVENTIONIn one embodiment of the present disclosure, a composition for influencing biological growth includes live cells, a fluid comprising dextrose, a protectant, and a first cytokine having a first concentration within the composition, selected from the group consisting of: BDNF at between 492 picograms per ml and 915 picograms per ml, bNGF at between 14 picograms per ml and 26 picograms per ml, EGF at between 715 picograms per ml and 1329 picograms per ml, Eotaxin at between 37 picograms per ml and 69 picograms per ml, FGF-2 at between 28 picograms per ml and 53 picograms per ml, GM-CSF at between 7 picograms per ml and 15 picograms per ml, Gro-α at between 2974 picograms per ml and 5524 picograms per ml, HGF at between 352 picograms per ml and 656 picograms per ml, IFN-α at between 253 picograms per ml and 472 picograms per ml, IFN-γ at between 33 picograms per ml and 63 picograms per ml, IL-10 at between 67 picograms per ml and 126 picograms per ml, IL-12p70 at between 9 picograms per ml and 19 picograms per ml, IL-13 at between 11 picograms per ml and 22 picograms per ml, IL-15 at between 30 picograms per ml and 57 picograms per ml, IL-17A at between 19 picograms per ml and 37 picograms per ml, IL-18 at between 78 picograms per ml and 146 picograms per ml, IL-1α at between 712 picograms per ml and 1324 picograms per ml, IL-1β at between 14 picograms per ml and 28 picograms per ml, IL-1RA at between 2215 picograms per ml and 4114 picograms per ml, IL-2 at between 16 picograms per ml and 31 picograms per ml, IL-21 at between 370 picograms per ml and 689 picograms per ml, IL-22 at between 16 picograms per ml and 32 picograms per ml, IL-23 at between 201 picograms per ml and 376 picograms per ml, IL-27 at between 21 picograms per ml and 40 picograms per ml, IL-31 at between 11 picograms per ml and 22 picograms per ml, IL-4 at between 17 picograms per ml and 33 picograms per ml, IL-5 at between 15 picograms per ml and 28 picograms per ml, IL-6 at between 50 picograms per ml and 95 picograms per ml, IL-7 at between 26 picograms per ml and 50 picograms per ml, IL-8 at between 4504 picograms per ml and 8366 picograms per ml, IL-9 at between 131 picograms per ml and 245 picograms per ml, IP-10 at between 469 picograms per ml and 873 picograms per ml, LIF at between 41 picograms per ml and 77 picograms per ml, MCP-1 at between 14,480 picograms per ml and 26,893 picograms per ml, MIP-1α at between 303 picograms per ml and 565 picograms per ml, MIP-1β at between 375 picograms per ml and 698 picograms per ml, PDGF-BB at between 807 picograms per ml and 1500 picograms per ml, PIGF-1 at between 743 picograms per ml and 1381 picograms per ml, RANTES at between 3277 picograms per ml and 6087 picograms per ml, SCF at between 23 picograms per ml and 45 picograms per ml, SDF-1α at between 1114 picograms per ml and 2071 picograms per ml, TNF-α at between 42 picograms per ml and 80 picograms per ml, TNF-β at between 12 picograms per ml and 25 picograms per ml, VEGF-A at between 481 picograms per ml and 895 picograms per ml, and VEGF-D at between 46 picograms per ml and 88 picograms per ml.
In another embodiment of the present disclosure, a composition for influencing biological growth includes live cells, a fluid comprising dextrose, a protectant, VEGF-A, at a concentration within the composition of between 481 picograms per ml and 895 picograms per ml, PDGF-BB, at a concentration within the composition of between 807 picograms per ml and 1500 picograms per ml, EGF, at a concentration within the composition of between 715 picograms per ml and 1329 picograms per ml, SCF, at a concentration within the composition of between 23 picograms per ml and 45 picograms per ml, and IL-1RA, at a concentration within the composition of between 2215 picograms per ml and 4114 picograms per ml.
In still another embodiment of the present disclosure, a composition for influencing biological growth includes live cells, a fluid comprising dextrose, a protectant, and wherein the composition includes the following cytokines with their concentration within the composition: BDNF at between 492 picograms per ml and 915 picograms per ml, bNGF at between 14 picograms per ml and 26 picograms per ml, EGF at between 715 picograms per ml and 1329 picograms per ml, Eotaxin at between 37 picograms per ml and 69 picograms per ml, FGF-2 at between 28 picograms per ml and 53 picograms per ml, GM-CSF at between 7 picograms per ml and 15 picograms per ml, Gro-α at between 2974 picograms per ml and 5524 picograms per ml, HGF at between 352 picograms per ml and 656 picograms per ml, IFN-α at between 253 picograms per ml and 472 picograms per ml, IFN-γ at between 33 picograms per ml and 63 picograms per ml, IL-10 at between 67 picograms per ml and 126 picograms per ml, IL-12p70 at between 9 picograms per ml and 19 picograms per ml, IL-13 at between 11 picograms per ml and 22 picograms per ml, IL-15 at between 30 picograms per ml and 57 picograms per ml, IL-17A at between 19 picograms per ml and 37 picograms per ml, IL-18 at between 78 picograms per ml and 146 picograms per ml, IL-1α at between 712 picograms per ml and 1324 picograms per ml, IL-1β at between 14 picograms per ml and 28 picograms per ml, IL-1RA at between 2215 picograms per ml and 4114 picograms per ml, IL-2 at between 16 picograms per ml and 31 picograms per ml, IL-21 at between 370 picograms per ml and 689 picograms per ml, IL-22 at between 16 picograms per ml and 32 picograms per ml, IL-23 at between 201 picograms per ml and 376 picograms per ml, IL-27 at between 21 picograms per ml and 40 picograms per ml, IL-31 at between 11 picograms per ml and 22 picograms per ml, IL-4 at between 17 picograms per ml and 33 picograms per ml, IL-5 at between 15 picograms per ml and 28 picograms per ml, IL-6 at between 50 picograms per ml and 95 picograms per ml, IL-7 at between 26 picograms per ml and 50 picograms per ml, IL-8 at between 4504 picograms per ml and 8366 picograms per ml, IL-9 at between 131 picograms per ml and 245 picograms per ml, IP-10 at between 469 picograms per ml and 873 picograms per ml, LIF at between 41 picograms per ml and 77 picograms per ml, MCP-1 at between 14,480 picograms per ml and 26,893 picograms per ml, MIP-1α at between 303 picograms per ml and 565 picograms per ml, MIP-1β at between 375 picograms per ml and 698 picograms per ml, PDGF-BB at between 807 picograms per ml and 1500 picograms per ml, PIGF-1 at between 743 picograms per ml and 1381 picograms per ml, RANTES at between 3277 picograms per ml and 6087 picograms per ml, SCF at between 23 picograms per ml and 45 picograms per ml, SDF-1α at between 1114 picograms per ml and 2071 picograms per ml, TNF-α at between 42 picograms per ml and 80 picograms per ml, TNF-β at between 12 picograms per ml and 25 picograms per ml, VEGF-A at between 481 picograms per ml and 895 picograms per ml, and VEGF-D at between 46 picograms per ml and 88 picograms per ml.
The present invention relates to a composition of cellular allograft that is derived at least partially from umbilical cord blood (UCB), as well as its manufacture and use. Compositions for accelerating or optimizing biological processes or initiating new biological processes may be produced in accordance with the teachings described herein. Cells and growth factors may advantageously be obtained or derived from umbilical cord blood, and may inherently benefit from the advantage that umbilical cord blood includes native cell populations that can support a universal donor application. An inherently increased cellular health may also sustain the benefit of the cellular allograft. A number of cytokines are produced and/or maintained at controlled concentrations or profiles within embodiments of the compositions, in order to provide specific individual and/or collaborative therapeutic functions, at particular levels or rates.
In some embodiments of the compositions, albumin is added. It should be noted that the use of “in some embodiments” herein is intended to mean “in any of the embodiments or combinations of any of the embodiments in which the described element has the possibility or capability of being added.” In studies performed by the Applicants, albumin has been shown to increase the viability of cellular components of blood during freezing and thawing procedures that are common during the processing of such compositions. It is thought that albumin may enhance cellular viability post-thaw by acting as a protein stabilizer, preventing the aggregation of proteins in solution as well as decreasing the amount of incorrect protein folding. Correct folding of proteins allows the proteins to, for example, achieve their desired three-dimensional structure. However, misfolded proteins have modified or toxic functionality. Albumin has also been shown to affect the adherence of cells to flasks used during the culturing process (culture flasks). Albumin additionally can enhance the rate of differentiation of umbilical cord blood cells, for example stem cells. Albumin can serve as an excellent cryopreservative, at least in part because of its antiapoptotic properties. Albumin can prevent cell death by activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway which elicits anti-apoptotic pro-survival pathways in different cellular systems. Aberrant ROS generation facilitates mitochondrial depolarization leading to autophagy and apoptosis. Albumin prevents depolarization of the mitochondria Albumin confers an anti-apoptotic effect through regulation of the p38 MAPK, and Akt/GSK-3β/Mcl-1/caspase-3 signaling pathways. Sustaining mTORC1 by albumin also prevents autophagic cell death. Though albumin is discussed, other protectants or stabilizers may instead be used, such as dimethyl sulfoxide (DMSO) or CryoGold™. In some embodiments, a combination of protectants and stabilizers may be used.
In certain compositions a low, acidic pH, such as a pH between about 4.0 and about 5.0, or about 4.4, may be desirable, such as compositions intended for wound care that includes a cell-free extract. A low pH composition may have a microenvironment that promotes the death and rupture of cells, for example, during freezing or thawing. This death and rupture of cells, or the increase thereof, may result in an increase of soluble extracellular protein factors or bioactive agents, including, but not limited to cytokines or growth factors. The word “cytokine,” when used alone herein, can also encompass growth factors. These bioactive agents are thought to be a potentially helpful component in the kinetics of wound healing. An extracellular acidic environment can stimulate Total Nucleated Cells (TNC) in umbilical cord blood, for example, to upregulate the stress related to signaling pathways essential for wound healing. Cells exposed and preserved in an acidic microenvironment can undergo a differential transcriptional program of “regeneration” relevant genes that aid in tissue remodeling. Extracellular signal regulated kinase (ERK1/2), Mitogen activated protein kinase (MAPK), AKT/PKB are some of the stress induced signaling pathways that can be triggered by the acidic environment. Total Nucleated Cells in a media having the low pH, acidic environment will be in a stimulated state in response to the acidosis stress and will be capable of initiating a wound healing mechanism within a significantly shorter time frame.
An extracellular acidic environment can also stabilize cytokines and growth factors present in the umbilical cord blood. Low-pH-induced changes can be associated with several factors, including, but not limited to, pK(a)s, solubility limitations, eutectic crystallization, and cryoconcentration. The optimal pH of activity (the pH of maximal activity) is correlated with the optimal pH of stability (the pH of maximal stability), allowing the corresponding macromolecules to subsequently tolerate small pH fluctuations that are inevitable with cellular function. Additionally, growth factors and cytokines, such as those disclosed herein, and including Vascular endothelial growth factor (VEGF), can bind to endothelial cells, and the extracellular matrix (ECM) increases at an acidic pH. Thus, the acidic pH in the cryopreservation will maintain the tertiary structures of these particular proteins in a conformation (e.g., 3-dimensional structure) that can easily bind to the cell surface rectors and initiate the signaling cascade.
Conventional wisdom is that cells and proteins are best cryopreserved if done so at or very near physiological pH (neutral or near neutral), and that shifting the pH balance to either side of the neutral pH (e.g., 7) will significantly reduce the chances of cell survival and degrade protein activity. But these supposed degradative effects, in the low pH area, have not been contextualized in the realm of a low grade acute and chronic stress that triggers signaling pathways. The inventors have learned that, counterintuitively, cryopreserving at an acidic pH will “pulse” the Total Nucleated Cells to activate stress regulated signaling pathways that are strongly coupled to the physiological process of wound healing and tissue regeneration. Thus, Total Nucleated Cells being exposed to acidosis shock/stress (i.e., preconditioned in a low extracellular pH) are better adapted to initiate and operate in the healing process. Similarly, non-cellular components, particularly cytokines and growth factors which have an isoelectric point (pI) that is in the acidic range are more stable and have a tertiary confirmation that can easily bind to the receptors with a lower rate of dissociation (KD). The low pH cryopreservatives are able to perform the two-sided function of stimulating the Total Nucleated Cells and preserving low molecular weight proteins and growth factors, so that they can perform better during their use (e.g., allogenic use).
The kinetics or temporal aspects of wound healing may vary depending on the particular makeup of a composition that is added to tissue of a patient. For example, a composition containing cells that include up to about 70% viable cells may include a larger comparative volume or amount of soluble extracellular factors/bioactive agents than a composition containing cells that include greater than about 95% viable cells. The composition with up to about 70% viable cells may thus cause a more rapid wound healing response than the composition with greater than about 95% viable cells. The use of a relatively low-pH composition as described may thus be utilized in a patient with one or more chronic wounds.
On the other hand, in other compositions, a more alkaline pH, such as a pH between about 7.0 and about 8.0, or about 7.5, may be desirable, such as compositions intended to mediate a biological healing process using viable cells, such as stem cells. Albumin is capable of helping to control the effect of pH on cells, and can thus be incorporated into compositions such as these for this purpose.
The Applicants have also observed that umbilical cord blood cells, when cultured in the presence of albumin, differentiate into several different cell types having varied morphologies. By identifying these particular species of cells, post-differentiation, each particular group of cells may be enhanced to create specialty compositions in each case. For example, one or more particular compositions specially formulated for bone healing or bone growth, one or more particular compositions specially formulated for nerve healing or nerve growth, or other compositions for healing or growth of other types of tissue. After the identification of a cell type, the differentiation of stem cells can be directed toward that particular cell type. With each cell type, certain bioactive agents (cytokines, growth factors, etc.) associated with that cell type may be isolated. These bioactive agents may then be used in particular compositions for specialized purposes. As an example, oncostatin M is a cytokine that sticks to, or binds to extracellular matrix (ECM), and has been identified as a growth factor that affects both bones and nerves. For at least this reason, oncostatin M can be incorporated into bone and/or nerve allograft compositions. As another example, bone morphogenetic proteins (BMP) are growth factors or cytokines that can be incorporated into allograft compositions for use with bone.
A first embodiment of a composition comprises a solution having a first volume and comprising a low pH fluid base comprising dextrose. The word “base,” as used in this particular phrase, is intended to mean a foundational, basal, or holding solution, whether possessing solvent-like properties or not. In some embodiments, a composition may comprise a solution having a volume and comprising a low pH fluid base comprising dextrose and dextran, and also comprising albumin, In some embodiments, the low pH fluid base may comprise LMD (Dextran 40) or an equivalent compound. In some embodiments, the low pH fluid base consists of LMD (Dextran 40). The low pH fluid base of dextrose and dextran, and especially the dextrose component, can act as a proteinaceous protectant by preventing the aggregation of proteins, such as, for example, cytokines. As described, in some embodiments, albumin may be utilized within the solution. In some embodiments utilizing albumin, the albumin in the solution has a concentration of between about 10 mg/ml (milligram per milliliter) and about 150 mg/ml, or between about 10 mg/ml (milligram per milliliter) and about 120 mg/ml. In some embodiments, the albumin in the solution has a concentration of between about 15 mg/ml (milligram per milliliter) and about 30 mg/ml. In some embodiments, the albumin in the solution has a concentration of between about 18 mg/ml (milligram per milliliter) and about 25 mg/ml. In some embodiments, the albumin in the solution has a concentration of about 20 mg/ml. In some embodiments, the albumin in the solution has a concentration of between about 80 mg/ml and about 150 mg/ml, or between about 50 mg/ml and about 150 mg/ml. In some embodiments, the albumin in the solution has a concentration of between about 80 mg/ml and about 120 mg/ml, or between about 50 mg/ml and about 120 mg/ml, or between about 90 mg/ml and about 110 mg/ml. In some embodiments, the albumin in the solution has a concentration of between about 105 mg/ml and about 150 mg/ml, or between about 105 mg/ml and about 120 mg/ml. Together, the low pH fluid base of dextrose and dextran and the albumin act together as a storage agent or protectant (preservative, stabilizer) by maintaining the integrity of proteins obtained from their source (e.g., umbilical cord blood). Another beneficial use of the low pH fluid base of dextrose (and dextran, where used) is that it provides a relatively low pH. The low pH microenvironment provides a molecular milieu that promotes wound healing by recruiting cells that activate signaling pathways associated with wound healing and tissue regeneration. In embodiments in which albumin is added in a powdered form to the low pH fluid base of dextrose (and dextran), a cost saving is provided, in comparison to, for example, combining the low pH fluid base of dextrose and dextran and albumin in serum.
A substance such as sodium bicarbonate powder may be added to the solution as needed to control the final pH of the composition. Alternatively, a calcium bicarbonate liquid may be used. For example, in some embodiments, the pH of the composition may be between 4.1 and 7.2. In some embodiments, the pH of the composition may be between 4.1 and 7.4, or in some cases even higher than 7.4. In some embodiments, the pH of the composition may be between 4.1 and 6.2. In some embodiments, the pH of the composition may be between 5.0 and 7.4. In some embodiments, the pH of the composition may be between 5.0 and 6.2. A pH within one of the ranges listed may be achieved in some cases without having to add an additional base—in this case, the word “base” is intended to mean a substance that releases or produces hydroxide ions (OH−) in aqueous solutions—such as sodium bicarbonate or calcium bicarbonate, based on the inherent characteristics of the low pH fluid base of dextrose and dextran. In other cases, the additional base may be used in order to achieve a pH within one of the range listed. In certain cases, it may be necessary to use an additional base in order to achieve a pH that is within one of the ranges listed.
In some embodiments, the albumin may be obtained or derived from commercially available human serum. In other embodiments, the albumin may be obtained or derived from donor-derived serum. In some embodiments, the albumin may be obtained or derived from human umbilical cord blood.
In some embodiments, the composition may include progenitor cells. In some embodiments, the composition may comprise stem cells. In some embodiments, the stem cells consist of non-expanded cell populations, for example, not expanded by growth in a Petri dish or growth medium/matrix. The overall makeup of umbilical cord blood cell populations and other factors may provide a broader benefit to a patient. The stem cells may comprise one or more types of stem cells, including, but not limited to, hematopoietic stem cells (HSCs) or mesenchymal stem cells (MSCs). In some embodiments, the stem cells may include viable cells and non-viable cells. In some embodiments, the percentage of viable cells among the stem cells may be greater than 70%. In some embodiments, the percentage of viable cells among the stem cells may be greater than 85%. In some embodiments, the percentage of viable cells among the stem cells may be greater than 95%.
In some embodiments, the composition may comprise live mononuclear cells, which may include, but are not limited to, stem cells or bioactive agents. In some embodiments, the composition comprises between about 2.5 million live mononuclear cells per milliliter (ml) and about 10.2 million live mononuclear cells per milliliter (ml). In some embodiments, the composition comprises between about 9.8 million live mononuclear cells per milliliter (ml) and about 10.2 million live mononuclear cells per milliliter (ml). In some embodiments, the mononuclear cells may be derived from umbilical cord blood of a single donor.
In some embodiments, the composition may comprise one or more bioactive agents, including but not limited to cytokines or growth factors. The bioactive agents may include any of the following: chemokines, including macrophage inflammatory protein alpha (MIP-1α), macrophage inflammatory protein beta (MIP-1β), and interferon gamma-induced protein 10 (IP-10), interleukins, including interleukin 1 Beta (IL-1β), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin 12 (IL-12), and interleukin 13 (IL-13), interferons, including interferon alpha (INFα), lymphokines, granulocyte macrophage colony stimulating factor (GM-CSF), stem cell factor (KL), and tumor necrosis factor alpha (TNF-α). The bioactive agents may also include any of the following: vascular endothelial growth factor (VEGF), nerve growth factor, platelet-derived growth factor (PDGF), fibroblast growth factors (FGF), including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), keratinocyte growth factor, transforming growth factor (TGF), insulin-like growth factor, des(1-3)-IGF-I (brain IGF-I), neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF).
Other bioactive agents that may be incorporated into the composition may include one or more of the following: transforming growth factor Beta 1 (TGF-β1), transforming growth factor Alpha 1 (TGF-α1), interleukin 16 (IL-16), platelet factor 4 (PF4), interferon gamma (IFNβ), hepatocyte growth factor (HGF), insulin growth factor (IGF-1), fas ligand (Fas-L), monocyte chemoattractant protein 2 (MCP-2), monocyte chemoattractant protein 3 (MCP-3), monocyte chemoattractant protein 4 (MCP-4), macrophage derived chemokine (MDC), platelet factor 4 (PF-4), thrombopoietin (TPO), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor binding protein-3 (IGFBP-3).
Other bioactive agents that may be incorporated into the composition may include one or more of the following: interleukin 15 (IL-15), interleukin 17 (IL-17), interleukin 18 (IL-18), interleukin 21 (IL-21), interleukin 22 (IL-22), interleukin 23 (IL-23), interleukin 27 (IL-27), interleukin 31 (IL-31), eotaxin, CXC ligand 1 (GROα), interleukin 1 receptor-alpha (IL-1RA), interleukin 1 alpha (IL-1α), leukemia inhibitory factor (LIF), placental growth factor (PIGF, PLGF), chemokine ligand 5 (RANTES), stem cell factor (SCF), stromal cell derived factor (SDF1α), and tumor necrosis factor (TNF β). Each Interleukin category may comprise one or more members within a category or family. For example, within the Interleukin 17 (IL-17) category, one of several species may be chosen, such as IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, or others. When IL-17 is generically denoted, it is intended to encompass any one or more of these different species.
In some embodiments, the composition may include albumin and one or more bioactive agents, wherein the albumin is derived from umbilical cord blood of a first donor, and the one or more bioactive agents are derived from at least a second donor. The one or more bioactive agents may be taken or derived from commercially available human albumin and/or commercially available human albumin serum. In some embodiments, the composition may include albumin and one or more bioactive agents, wherein the albumin and the one or more bioactive agents are derived from umbilical cord blood of a single donor.
In some embodiments, the composition may be produced such that it does not comprise dimethyl sulfoxide (DMSO) to avoid any potential harmful effects that DMSO may have, such as inducing allergic reactions in a subject. However, in some embodiments, DMSO may still be used, for example, as a cryoprotectant, as a replacement for Dextran, or in combination with Dextran. An alternative cryoprotectant or cryopreservative that may be substituted for Dextran and/or for DMSO, is CryoGold™, supplied by System Biosciences, Inc. of Palo Alto, Calif., USA. Glycerol is another alternative cryoprotectant or cryopreservative that may be substituted.
A method of producing compositions such as the embodiments described herein is described according to a first embodiment. In step 10 of
In step 18, a sufficient centrifugal force component 48 is placed on the container 30 (
In addition to controlling the amount of centrifugal force on the contents, the temperature on the contents, and/or the amount of time that the centrifuge is operated, a user may also choose to control the ramp up and ramp down (run profile) of the centrifuge; in other words, the time required to reach the chosen centrifugal force from a stopped condition, and the time required to reach a stopped condition from the nominally chosen centrifugal force. In a traditional centrifuge, this corresponds to the increase of the rotational speed (e.g., RPM) from a stopped condition until a desired constant operation rate is reached that provides the desired relative centrifugal force, and the decrease of the rotational speed (from a desired constant operation rate) to a stopped condition (braking). This may also be referred to as a run profile. The start-up acceleration portion of the profile may be described as an acceleration curve, and the deceleration portion of the profile may be described as a braking curve. In certain centrifuges, for example, the acceleration may be controllable by a continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). Additionally, deceleration (e.g., braking) may by controllable by continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). The control of one or both of these two elements can be used to further optimize the effectiveness of the centrifugation. The time to ramp up to a desired centrifugal force from substantially zero centrifugal force may be between about 30 seconds and about 15 minutes, or between about one minute and about five minutes, or between about 10 seconds and 90 seconds. The time to ramp down from a desired centrifugal force to substantially zero centrifugal force may be between about 30 seconds and about 20 minutes, or between about one minute and about 10 minutes.
In step 20 mononuclear cells from the mononuclear cell layer 38 are removed from the container 30 and are combined with lactated Ringer's solution, to create a mononuclear cell solution. Prior to the removal of the mononuclear cells from the container 30, the layer 40 may be first removed (
In step 22, a volume V5 of either a portion of the mononuclear cell solution or substantially all of the mononuclear cell solution is used in order to estimate the number NL of live cells in the volume V5. In some embodiments, the estimating is done by performing a CD34+ count. In some embodiments, the estimating is done by performing a Total Nucleated Cell (TNC) count. In some embodiments, the estimating is done at least in part with an automated cell counter. Alternative methods may be used for performing the cell count, including: a hemtocytometer following trypan blue staining, an ATP test, Calcein AM, a clonogenic assay, an ethidium homodimer assay, Evans blue, fluorescein diacetate hydrolysis/propidium iodide staining (FDA/PI staining), flow cytometry, formazan-based-assays (MTT/XTT), green fluorescent protein, lactate dehydrogenase (LDH), methyl violet, propidium iodide DNA stain (to differentiate necrotic, apoptotic, and normal cells), resazurin, trypan blue which only crosses cell membranes of dead cells, or TUNEL assay. At the end of step 22 substantially all of the lactated Ringer's solution may be removed from the volume V5. In step 24, based at least partially upon the estimated number NL of live cells, a calculated, estimated or determined volume V6 of Low Molecular Weight Dextran in Dextrose solution is added to the volume V5 of the at least a portion of the mononuclear cell solution. In some embodiments, the calculation, estimation or determination of the volume V6 may be at least partially based on the assumption that approximately 75% of cells in the at least a portion mononuclear cell solution will be viable following freezing and thawing. In some embodiments, the calculation, estimation or determination of the volume V6 may be at least partially based on an intended live cell concentration of between about 2.5 million live cells and about 10.2 million live cells per milliliter. In some embodiments, the cells may be stored cryogenically. In some embodiments, the cryogenic storage is below about −60° C. In some embodiments, the cryogenic storage is below about −80° C. In some embodiments, the calculation, estimation or determination of the volume V6 may be at least partially based on an intended live cell concentration of between about 2.5 million live cells and about 10.2 million live cells per milliliter, and may assume that this live cell concentration will occur after adding albumin to the combined composition and cryogenically storing the combined composition. In some embodiments, the calculation, estimation or determination of the volume V6 may be at least partially based on an intended live cell concentration of between about 9.8 million live cells and about 10.2 million live cells per milliliter. In some embodiments, the Low Molecular Weight Dextran in Dextrose may comprise LMD (Dextran 40). In some embodiments, the volume V6 added corresponds to the equation
V6=K×NL,
where K is between about 7.35×10−8 ml/cell and about 3.00×10−7 ml/cell, and
where NL is the number of live cells in a 20 ml portion of the mononuclear cell solution.
In some embodiments, the volume V6 added corresponds to the equation
V6=K×NL,
where K is between about 7.35×10−8 ml/cell and about 7.50×10−8 ml/cell, and
where NL is the number of live cells in a 20 ml portion of the mononuclear cell solution.
In step 26, the pH of the combined composition of the mononuclear cell solution and Low Molecular Weight Dextran in Dextrose solution may be adjusted if needed, in order to produce a pH within a desired range. In some embodiments, the pH is adjusted by adding a sodium bicarbonate, such as sodium bicarbonate powder. In some embodiments, the pH is adjusted by adding a calcium bicarbonate, such as calcium bicarbonate liquid. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 8.5. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 6.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.4. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 6.2. In step 28, albumin is added to the combined composition. In some embodiments, between about 10 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 15 mg and about 30 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 18 mg and about 25 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, about 20 mg of albumin may be added per one milliliter of the combined composition.
In some embodiments, the mononuclear cell solution comprises stem cells. In some embodiments, the stem cells comprise hemapoietic stem cells (HSC). In some embodiments, the stem cells comprise mesenchymal stem cells (MSC).
In some embodiments, one or more bioactive agents may be added to the composition. The one or more bioactive agents may include cytokines or growth factors, and may be derived from human umbilical cord blood. In some embodiments, the one or more bioactive agents may be obtained or derived from the same sample comprising human umbilical cord blood that is described in step 10. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is not the sample comprising human umbilical cord blood that is described in step 10. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is from a different donor than the sample comprising human umbilical cord blood that is described in step 10. In some embodiments, the one or more bioactive agents are obtained or derived from commercially available human albumin or commercially available human albumin serum.
In some embodiments, the one or more bioactive agents may include but are not limited to cytokines or growth factors. The bioactive agents may include any of the following: chemokines, including macrophage inflammatory protein alpha (MIP-1α), macrophage inflammatory protein beta (MIP-1β), and interferon gamma-induced protein 10 (IP-10), interleukins, including interleukin 1 Beta (IL-1β), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin 12 (IL-12), and interleukin 13 (IL-13), interferons, including interferon alpha (INFα), lymphokines, granulocyte macrophage colony stimulating factor (GM-CSF), stem cell factor (KL), and tumor necrosis factor alpha (TNF-α). The bioactive agents may also include any of the following: vascular endothelial growth factor (VEGF), nerve growth factor, platelet-derived growth factor (PDGF), fibroblast growth factors (FGF), including fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), keratinocyte growth factor, transforming growth factor (TGF), insulin-like growth factor, des(1-3)-IGF-I (brain IGF-I), neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF).
In some embodiments, dimethyl sulfoxide (DMSO) is not added into the composition in any of the steps, thus leaving the composition substantially DMSO-free, and to avoid any potential harmful effects that DMSO may have. The combined composition may then be cryogenically stored, for example, in cryogenic vials in an ultra-low freezer. The cryogenic storage may be controlled at a temperature below −60° C., or below −80° C.
A method of producing compositions such as the embodiments described herein is described according to a second embodiment. In step 100 of
In step 106, a sufficient centrifugal force component 178 is placed on the container 168 (
In addition to controlling the amount of centrifugal force on the contents, the temperature on the contents, and/or the amount of time that the centrifuge is operated, a user may also choose to control the ramp up and ramp down (run profile) of the centrifuge; in other words, the time required to reach the chosen centrifugal force from a stopped condition, and the time required to reach a stopped condition from the nominally chosen centrifugal force. In a traditional centrifuge, this corresponds to the increase of the rotational speed (e.g., RPM) from a stopped condition until a desired constant operation rate is reached that provides the desired relative centrifugal force, and the decrease of the rotational speed (from a desired constant operation rate) to a stopped condition (braking). This may also be referred to as a run profile. The start-up acceleration portion of the profile may be described as an acceleration curve, and the deceleration portion of the profile may be described as a braking curve. In certain centrifuges, for example, the acceleration may be controllable by a continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). Additionally, deceleration (e.g., braking) may by controllable by continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). The control of one or both of these two elements can be used to further optimize the effectiveness of the centrifugation. The time to ramp up to a desired centrifugal force from substantially zero centrifugal force may be between about 30 seconds and about 15 minutes, or between about one minute and about five minutes, or between about 10 seconds and 90 seconds. The time to ramp down from a desired centrifugal force to substantially zero centrifugal force may be between about 30 seconds and about 20 minutes, or between about one minute and about 10 minutes.
In step 108, mononuclear cells from the mononuclear cell layer 188 are removed from the container 168 and are combined with lactated Ringer's solution, to create a mononuclear cell solution. Prior to the removal of the mononuclear cells from the container 168, the layer 190 may be first removed (
In step 110, a volume VM of either a portion of the mononuclear cell solution or substantially all of the mononuclear cell solution is used in order to estimate the number NL of live cells in the volume VM. In some embodiments, the estimating is done by performing a CD34+ count. In some embodiments, the estimating is done by performing a Total Nucleated Cell (TNC) count. In some embodiments, the estimating is done at least in part with an automated cell counter. Alternative methods may be used for performing the cell count, including: a hemtocytometer following trypan blue staining, an ATP test, Calcein AM, a clonogenic assay, an ethidium homodimer assay, Evans blue, fluorescein diacetate hydrolysis/propidium iodide staining (FDA/PI staining), flow cytometry, formazan-based-assays (MTT/XTT), green fluorescent protein, lactate dehydrogenase (LDH), methyl violet, propidium iodide DNA stain (to differentiate necrotic, apoptotic, and normal cells), resazurin, trypan blue which only crosses cell membranes of dead cells, or TUNEL assay. At the end of step 110 substantially all of the lactated Ringer's solution may be removed from the volume VM.
In step 112, albumin is added to the combined composition. In some embodiments, between about 10 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 10 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 50 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 50 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 80 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 80 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 105 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 105 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 15 mg and about 30 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 18 mg and about 25 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, about 20 mg of albumin may be added per one milliliter of the combined composition.
In some embodiments, Low Molecular Weight Dextran in Dextrose solution is added to the volume VM of the at least a portion of the mononuclear cell solution during or prior to the addition of albumin. In some embodiments, the amount of Low Molecular Weight Dextran in Dextrose solution is based at least partially upon the estimated number NL of live cells, a calculated, estimated or determined. In some embodiments, the calculation, estimation or determination of the volume VDD pf the Low Molecular Weight Dextran in Dextrose solution added may be at least partially based on the assumption that approximately 75% of cells in the at least a portion mononuclear cell solution will be viable following freezing and thawing. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 100,000 live cells and about 75 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 750,000 live cells and about 30 million live cells per milliliter. In some embodiments, the cells may be stored cryogenically. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 30 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 20 million live cells per milliliter. In some embodiments, the cryogenic storage is below about −60° C. In some embodiments, the cryogenic storage is below about −80° C.
In some embodiments, the pH of the combined composition may be adjusted if needed, in order to produce a pH within a desired range. In some embodiments, the pH is adjusted by adding a sodium bicarbonate, such as sodium bicarbonate powder. In some embodiments, the pH is adjusted by adding a calcium bicarbonate, such as calcium bicarbonate solution. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 8.5. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 6.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.4. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 6.2.
In some embodiments, the mononuclear cell solution comprises stem cells. In some embodiments, the stem cells comprise hemapoietic stem cells (HSC). In some embodiments, the stem cells comprise mesenchymal stem cells (MSC).
In some embodiments, one or more bioactive agents may be added to the composition. The one or more bioactive agents may include cytokines or growth factors, and may be derived from human umbilical cord blood. In some embodiments, the one or more bioactive agents may be obtained or derived from the same sample comprising human umbilical cord blood that is described in step 100. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is not the sample comprising human umbilical cord blood that is described in step 100. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is from a different donor than the sample comprising human umbilical cord blood that is described in step 100. In some embodiments, the one or more bioactive agents are obtained or derived from commercially available human albumin or commercially available human albumin serum.
In some embodiments, the one or more bioactive agents may include but are not limited to cytokines or growth factors. The bioactive agents may include any of the following: chemokines, including macrophage inflammatory protein alpha (MIP-1α), macrophage inflammatory protein beta (MIP-1β), interferon gamma-induced protein 10 (IP-10), interleukins, including interleukin 1 Beta (IL-1β), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 9 (IL-9), interleukin 10 (IL-10), interleukin 12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), interleukin 18 (IL-18), interleukin 21 (IL-21), interleukin 22 (IL-22), interleukin 23 (IL-23), interleukin 27 (IL-27), interleukin 31 (IL-31), interferons, including interferon alpha (INFα), a lymphokine, granulocyte macrophage colony stimulating factor (GM-CSF), stem cell factor (KL), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), nerve growth factor, platelet-derived growth factor (PDGF), fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), keratinocyte growth factor, transforming growth factor (TGF), insulin-like growth factor, des(1-3)-IGF-I (brain IGF-I), neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), eotaxin, CXC ligand 1 (GROα), interleukin 1 receptor-alpha (IL-1RA), interleukin 1 alpha (IL-1α), leukemia inhibitory factor (LIF), placental growth factor (PIGF, PLGF), chemokine ligand 5 (RANTES), stem cell factor (SCF), stromal cell derived factor (SDF1α), and tumor necrosis factor (TNF β).
In some embodiments, dimethyl sulfoxide (DMSO) is not added into the composition in any of the steps, thus leaving the composition substantially DMSO-free, and to avoid any potential harmful effects that DMSO may have. The combined composition may then be cryogenically stored, for example, in cryogenic vials in an ultra-low freezer. The cryogenic storage may be controlled at a temperature below −60° C., or below −80° C.
A method of producing compositions such as the embodiments described herein is described according to a third embodiment. In step 200 of
In addition to controlling the amount of centrifugal force on the contents, the temperature on the contents, and/or the amount of time that the centrifuge is operated, a user may also choose to control the ramp up and ramp down (run profile) of the centrifuge; in other words, the time required to reach the chosen centrifugal force from a stopped condition, and the time required to reach a stopped condition from the nominally chosen centrifugal force. In a traditional centrifuge, this corresponds to the increase of the rotational speed (e.g., RPM) from a stopped condition until a desired constant operation rate is reached that provides the desired relative centrifugal force, and the decrease of the rotational speed (from a desired constant operation rate) to a stopped condition (braking). This may also be referred to as a run profile. The start-up acceleration portion of the profile may be described as an acceleration curve, and the deceleration portion of the profile may be described as a braking curve. In certain centrifuges, for example, the acceleration may be controllable by a continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). Additionally, deceleration (e.g., braking) may by controllable by continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). The control of one or both of these two elements can be used to further optimize the effectiveness of the centrifugation. The time to ramp up to a desired centrifugal force from substantially zero centrifugal force may be between about 30 seconds and about 15 minutes, or between about one minute and about five minutes, or between about 10 seconds and 90 seconds. The time to ramp down from a desired centrifugal force to substantially zero centrifugal force may be between about 30 seconds and about 20 minutes, or between about one minute and about 10 minutes.
In step 210, mononuclear cells from the mononuclear cell layer 288 are removed from the second flexible container 268 and are combined with a reagent to create a mononuclear cell solution. In some embodiments, the reagent comprises human serum, for example, 5% human serum albumin. Prior to the removal of the mononuclear cells from the second flexible container 268, the layer 290 may be first removed, thus making it easier to remove the layer 288. Care can be taken so that the layer 288 is not disturbed when removing the layer 290, for example, by use of a sterile pipette. The layer 290 may also be carefully removed (e.g. by aspiration with a needle) through an additional access tube 281 having a port or valve 283. In some embodiments, the mononuclear cell solution substantially comprises non-expanded cell populations. In some embodiments, the mononuclear cell solution comprises non-pooled cell populations. It should be noted that the layer 290 is substantially removed prior to removing the mononuclear cells from the layer 288 to minimize any unnecessary contamination by platelets or plasma proteins. It should also be noted that the layer 272a is left substantially undisturbed when removing the layer 288, thus minimizing any unnecessary contamination by the granulocytes in layer 286.
In step 212, a volume VM of either a portion of the mononuclear cell solution or substantially all of the mononuclear cell solution is used in order to estimate the number NL of live cells in the volume VM. In some embodiments, the estimating is done by performing a CD34+ count. In some embodiments, the estimating is done by performing a Total Nucleated Cell (TNC) count. In some embodiments, the estimating is done at least in part with an automated cell counter. Alternative methods may be used for performing the cell count, including: a hemtocytometer following trypan blue staining, an ATP test, Calcein AM, a clonogenic assay, an ethidium homodimer assay, Evans blue, fluorescein diacetate hydrolysis/propidium iodide staining (FDA/PI staining), flow cytometry, formazan-based-assays (MTT/XTT), green fluorescent protein, lactate dehydrogenase (LDH), methyl violet, propidium iodide DNA stain (to differentiate necrotic, apoptotic, and normal cells), resazurin, trypan blue which only crosses cell membranes of dead cells, or TUNEL assay. At the end of step 212 substantially all of the reagent may be removed from the volume VM.
In step 214, albumin is added to the combined composition. In some embodiments, between about 10 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 10 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 50 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 50 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 80 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 80 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 105 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 105 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 15 mg and about 30 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 18 mg and about 25 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, about 20 mg of albumin may be added per one milliliter of the combined composition.
In some embodiments, Low Molecular Weight Dextran in Dextrose solution is added to the volume VM of the at least a portion of the mononuclear cell solution during or prior to the addition of albumin. In some embodiments, the amount of Low Molecular Weight Dextran in Dextrose solution is based at least partially upon the estimated number NL of live cells, a calculated, estimated or determined. In some embodiments, the calculation, estimation or determination of the volume VDD pf the Low Molecular Weight Dextran in Dextrose solution added may be at least partially based on the assumption that approximately 75% of cells in the at least a portion mononuclear cell solution will be viable following freezing and thawing. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 100,000 live cells and about 75 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 750,000 live cells and about 30 million live cells per milliliter. In some embodiments, the cells may be stored cryogenically. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 30 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 20 million live cells per milliliter. In some embodiments, the cryogenic storage is below about −60° C. In some embodiments, the cryogenic storage is below about −80° C.
In some embodiments, the pH of the combined composition may be adjusted if needed, in order to produce a pH within a desired range. In some embodiments, the pH is adjusted by adding a sodium bicarbonate, such as sodium bicarbonate powder. In some embodiments, the pH is adjusted by adding a calcium bicarbonate, such as calcium bicarbonate solution. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 8.5. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 6.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.4. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 6.2.
In some embodiments, the mononuclear cell solution comprises stem cells. In some embodiments, the stem cells comprise hemapoietic stem cells (HSC). In some embodiments, the stem cells comprise mesenchymal stem cells (MSC).
In some embodiments, one or more bioactive agents may be added to the composition. The one or more bioactive agents may include cytokines or growth factors, and may be derived from human umbilical cord blood. In some embodiments, the one or more bioactive agents may be obtained or derived from the same sample comprising human umbilical cord blood that is described in step 200. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is not the sample comprising human umbilical cord blood that is described in step 200. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is from a different donor than the sample comprising human umbilical cord blood that is described in step 200. In some embodiments, the one or more bioactive agents are obtained or derived from commercially available human albumin or commercially available human albumin serum.
In some embodiments, the one or more bioactive agents may include but are not limited to cytokines or growth factors. The bioactive agents may include any of the following: chemokines, including macrophage inflammatory protein alpha (MIP-1α), macrophage inflammatory protein beta (MIP-1β), interferon gamma-induced protein 10 (IP-10), interleukins, including interleukin 1 Beta (IL-1β), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 9 (IL-9), interleukin 10 (IL-10), interleukin 12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), interleukin 18 (IL-18), interleukin 21 (IL-21), interleukin 22 (IL-22), interleukin 23 (IL-23), interleukin 27 (IL-27), interleukin 31 (IL-31), interferons, including interferon alpha (INFα), a lymphokine, granulocyte macrophage colony stimulating factor (GM-CSF), stem cell factor (KL), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), nerve growth factor, platelet-derived growth factor (PDGF), fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), keratinocyte growth factor, transforming growth factor (TGF), insulin-like growth factor, des(1-3)-IGF-I (brain IGF-I), neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), eotaxin, CXC ligand 1 (GROα), interleukin 1 receptor-alpha (IL-1RA), interleukin 1 alpha (IL-1α), leukemia inhibitory factor (LIF), placental growth factor (PIGF, PLGF), chemokine ligand 5 (RANTES), stem cell factor (SCF), stromal cell derived factor (SDF1α), and tumor necrosis factor (TNF β).
In some embodiments, dimethyl sulfoxide (DMSO) is not added into the composition in any of the steps, thus leaving the composition substantially DMSO-free, and to avoid any potential harmful effects that DMSO may have. The combined composition may then be cryogenically stored, for example, in cryogenic vials in an ultra-low freezer. The cryogenic storage may be controlled at a temperature below −60° C., or below −80° C.
A method of producing compositions such as the embodiments described herein is described according to a fourth embodiment. In step 300 of
In step 306, a sufficient centrifugal force component 378 is placed on the container 368 (
In addition to controlling the amount of centrifugal force on the contents, the temperature on the contents, and/or the amount of time that the centrifuge is operated, a user may also choose to control the ramp up and ramp down (run profile) of the centrifuge; in other words, the time required to reach the chosen centrifugal force from a stopped condition, and the time required to reach a stopped condition from the nominally chosen centrifugal force. In a traditional centrifuge, this corresponds to the increase of the rotational speed (e.g., RPM) from a stopped condition until a desired constant operation rate is reached that provides the desired relative centrifugal force, and the decrease of the rotational speed (from a desired constant operation rate) to a stopped condition (braking). This may also be referred to as a run profile. The start-up acceleration portion of the profile may be described as an acceleration curve, and the deceleration portion of the profile may be described as a braking curve. In certain centrifuges, for example, the acceleration may be controllable by a continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). Additionally, deceleration (e.g., braking) may by controllable by continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). The control of one or both of these two elements can be used to further optimize the effectiveness of the centrifugation. The time to ramp up to a desired centrifugal force from substantially zero centrifugal force may be between about 30 seconds and about 15 minutes, or between about one minute and about five minutes, or between about 10 seconds and 90 seconds. The time to ramp down from a desired centrifugal force to substantially zero centrifugal force may be between about 30 seconds and about 20 minutes, or between about one minute and about 10 minutes.
In step 308, mononuclear cells from the mononuclear cell layer 388 are removed from the container 368 and are combined with lactated Ringer's solution, to create a mononuclear cell solution. Prior to the removal of the mononuclear cells from the container 368, the layer 390 may be first removed (
In step 310, a volume VM of either a portion of the mononuclear cell solution or substantially all of the mononuclear cell solution is used in order to estimate the number NL of live cells in the volume VM. In some embodiments, the estimating is done by performing a CD34+ count. In some embodiments, the estimating is done by performing a Total Nucleated Cell (TNC) count. In some embodiments, the estimating is done at least in part with an automated cell counter. Alternative methods may be used for performing the cell count, including: a hemtocytometer following trypan blue staining, an ATP test, Calcein AM, a clonogenic assay, an ethidium homodimer assay, Evans blue, fluorescein diacetate hydrolysis/propidium iodide staining (FDA/PI staining), flow cytometry, formazan-based-assays (MTT/XTT), green fluorescent protein, lactate dehydrogenase (LDH), methyl violet, propidium iodide DNA stain (to differentiate necrotic, apoptotic, and normal cells), resazurin, trypan blue which only crosses cell membranes of dead cells, or TUNEL assay. At the end of step 310 substantially all of the lactated Ringer's solution may be removed from the volume VM.
In step 312, albumin is added to the combined composition. In some embodiments, between about 10 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 10 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 50 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 50 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 80 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 80 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 105 mg and about 150 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 105 mg and about 120 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 15 mg and about 30 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, between about 18 mg and about 25 mg of albumin may be added per one milliliter of the combined composition. In some embodiments, about 20 mg of albumin may be added per one milliliter of the combined composition.
In some embodiments, Low Molecular Weight Dextran in Dextrose solution is added to the volume VM of the at least a portion of the mononuclear cell solution during or prior to the addition of albumin. In some embodiments, the amount of Low Molecular Weight Dextran in Dextrose solution is based at least partially upon the estimated number NL of live cells, a calculated, estimated or determined. In some embodiments, the calculation, estimation or determination of the volume VDD pf the Low Molecular Weight Dextran in Dextrose solution added may be at least partially based on the assumption that approximately 75% of cells in the at least a portion mononuclear cell solution will be viable following freezing and thawing. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 100,000 live cells and about 75 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 750,000 live cells and about 30 million live cells per milliliter. In some embodiments, the cells may be stored cryogenically. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 30 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 20 million live cells per milliliter. In some embodiments, the cryogenic storage is below about −60° C. In some embodiments, the cryogenic storage is below about −80° C.
In some embodiments, the pH of the combined composition may be adjusted if needed, in order to produce a pH within a desired range. In some embodiments, the pH is adjusted by adding a sodium bicarbonate, such as sodium bicarbonate powder. In some embodiments, the pH is adjusted by adding a calcium bicarbonate, such as calcium bicarbonate solution. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 8.5. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 6.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.4. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 6.2.
In some embodiments, the mononuclear cell solution comprises stem cells. In some embodiments, the stem cells comprise hemapoietic stem cells (HSC). In some embodiments, the stem cells comprise mesenchymal stem cells (MSC).
In some embodiments, one or more bioactive agents may be added to the composition. The one or more bioactive agents may include cytokines or growth factors, and may be derived from human umbilical cord blood. In some embodiments, the one or more bioactive agents may be obtained or derived from the same sample comprising human umbilical cord blood that is described in step 300. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is not the sample comprising human umbilical cord blood that is described in step 300. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is from a different donor than the sample comprising human umbilical cord blood that is described in step 300. In some embodiments, the one or more bioactive agents are obtained or derived from commercially available human albumin or commercially available human albumin serum.
In some embodiments, the one or more bioactive agents may include but are not limited to cytokines or growth factors. The bioactive agents may include any of the following: chemokines, including macrophage inflammatory protein alpha (MIP-1α), macrophage inflammatory protein beta (MIP-1β), interferon gamma-induced protein 10 (IP-10), interleukins, including interleukin 1 Beta (IL-1β), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 9 (IL-9), interleukin 10 (IL-10), interleukin 12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), interleukin 18 (IL-18), interleukin 21 (IL-21), interleukin 22 (IL-22), interleukin 23 (IL-23), interleukin 27 (IL-27), interleukin 31 (IL-31), interferons, including interferon alpha (INFα), a lymphokine, granulocyte macrophage colony stimulating factor (GM-CSF), stem cell factor (KL), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), nerve growth factor, platelet-derived growth factor (PDGF), fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), keratinocyte growth factor, transforming growth factor (TGF), insulin-like growth factor, des(1-3)-IGF-I (brain IGF-I), neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), eotaxin, CXC ligand 1 (GROα), interleukin 1 receptor-alpha (IL-1RA), interleukin 1 alpha (IL-1α), leukemia inhibitory factor (LIF), placental growth factor (PIGF, PLGF), chemokine ligand 5 (RANTES), stem cell factor (SCF), stromal cell derived factor (SDF1α), and tumor necrosis factor (TNF β).
In some embodiments, dimethyl sulfoxide (DMSO) is not added into the composition in any of the steps, thus leaving the composition substantially DMSO-free, and to avoid any potential harmful effects that DMSO may have. The combined composition may then be cryogenically stored, for example, in cryogenic vials in an ultra-low freezer. The cryogenic storage may be controlled at a temperature below −60° C., or below −80° C.
A method of producing compositions such as the embodiments described herein is described according to a fifth embodiment. In step 400 of
In step 406, a sufficient centrifugal force component 478 is placed on the container 468 (
In addition to controlling the amount of centrifugal force on the contents, the temperature on the contents, and/or the amount of time that the centrifuge is operated, a user may also choose to control the ramp up and ramp down (run profile) of the centrifuge; in other words, the time required to reach the chosen centrifugal force from a stopped condition, and the time required to reach a stopped condition from the nominally chosen centrifugal force. In a traditional centrifuge, this corresponds to the increase of the rotational speed (e.g., RPM) from a stopped condition until a desired constant operation rate is reached that provides the desired relative centrifugal force, and the decrease of the rotational speed (from a desired constant operation rate) to a stopped condition (braking). This may also be referred to as a run profile. The start-up acceleration portion of the profile may be described as an acceleration curve, and the deceleration portion of the profile may be described as a braking curve. In certain centrifuges, for example, the acceleration may be controllable by a continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). Additionally, deceleration (e.g., braking) may by controllable by continuous adjustment or may have particular set points (e.g., 1, 2, 3, 4, 5, etc.). The control of one or both of these two elements can be used to further optimize the effectiveness of the centrifugation. The time to ramp up to a desired centrifugal force from substantially zero centrifugal force may be between about 30 seconds and about 15 minutes, or between about one minute and about five minutes, or between about 10 seconds and 90 seconds. The time to ramp down from a desired centrifugal force to substantially zero centrifugal force may be between about 30 seconds and about 20 minutes, or between about one minute and about 10 minutes.
In step 408, mononuclear cells from the mononuclear cell layer 488 are removed from the container 468 and are combined with lactated Ringer's solution, to create a mononuclear cell solution. Prior to the removal of the mononuclear cells from the container 468, the layer 490 may be first removed (
In step 410, a volume VM of either a portion of the mononuclear cell solution or substantially all of the mononuclear cell solution is used in order to estimate the number NL of live cells in the volume VM. In some embodiments, the estimating is done by performing a CD34+ count. In some embodiments, the estimating is done by performing a Total Nucleated Cell (TNC) count. In some embodiments, the estimating is done at least in part with an automated cell counter. Alternative methods may be used for performing the cell count, including: a hemtocytometer following trypan blue staining, an ATP test, Calcein AM, a clonogenic assay, an ethidium homodimer assay, Evans blue, fluorescein diacetate hydrolysis/propidium iodide staining (FDA/PI staining), flow cytometry, formazan-based-assays (MTT/XTT), green fluorescent protein, lactate dehydrogenase (LDH), methyl violet, propidium iodide DNA stain (to differentiate necrotic, apoptotic, and normal cells), resazurin, trypan blue which only crosses cell membranes of dead cells, or TUNEL assay. At the end of step 410 substantially all of the lactated Ringer's solution may be removed from the volume VM.
In some embodiments, Low Molecular Weight Dextran in Dextrose solution is added to the volume VM of the at least a portion of the mononuclear cell solution. In some embodiments, the amount of Low Molecular Weight Dextran in Dextrose solution is based at least partially upon the estimated number NL of live cells, a calculated, estimated or determined. In some embodiments, the calculation, estimation or determination of the volume VDD pf the Low Molecular Weight Dextran in Dextrose solution added may be at least partially based on the assumption that approximately 75% of cells in the at least a portion mononuclear cell solution will be viable following freezing and thawing. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 100,000 live cells and about 75 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 750,000 live cells and about 30 million live cells per milliliter. In some embodiments, the cells may be stored cryogenically. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 30 million live cells per milliliter. In some embodiments, the calculation, estimation or determination of the volume VDD may be at least partially based on an intended live cell concentration of between about 10 million live cells and about 20 million live cells per milliliter. In some embodiments, the cryogenic storage is below about −60° C. In some embodiments, the cryogenic storage is below about −80° C.
In some embodiments, the pH of the combined composition may be adjusted if needed, in order to produce a pH within a desired range. In some embodiments, the pH is adjusted by adding a sodium bicarbonate, such as sodium bicarbonate powder. In some embodiments, the pH is adjusted by adding a calcium bicarbonate, such as calcium bicarbonate solution. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 8.5. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 4.1 and 6.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.4. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 7.2. In some embodiments, the pH is adjusted to or maintained at between 5.0 and 6.2.
In some embodiments, the mononuclear cell solution comprises stem cells. In some embodiments, the stem cells comprise hemapoietic stem cells (HSC). In some embodiments, the stem cells comprise mesenchymal stem cells (MSC).
In some embodiments, one or more bioactive agents may be added to the composition. The one or more bioactive agents may include cytokines or growth factors, and may be derived from human umbilical cord blood. In some embodiments, the one or more bioactive agents may be obtained or derived from the same sample comprising human umbilical cord blood that is described in step 400. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is not the sample comprising human umbilical cord blood that is described in step 400. In some embodiments, the one or more bioactive agents may be obtained or derived from human umbilical cord blood that is from a different donor than the sample comprising human umbilical cord blood that is described in step 400. In some embodiments, the one or more bioactive agents are obtained or derived from commercially available human albumin or commercially available human albumin serum.
In some embodiments, the one or more bioactive agents may include but are not limited to cytokines or growth factors. The bioactive agents may include any of the following: chemokines, including macrophage inflammatory protein alpha (MIP-1α), macrophage inflammatory protein beta (MIP-1β), interferon gamma-induced protein 10 (IP-10), interleukins, including interleukin 1 Beta (IL-1β), interleukin 2 (IL-2), interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 6 (IL-6), interleukin 7 (IL-7), interleukin 8 (IL-8), interleukin 9 (IL-9), interleukin 10 (IL-10), interleukin 12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), interleukin 18 (IL-18), interleukin 21 (IL-21), interleukin 22 (IL-22), interleukin 23 (IL-23), interleukin 27 (IL-27), interleukin 31 (IL-31), interferons, including interferon alpha (INFα), a lymphokine, granulocyte macrophage colony stimulating factor (GM-CSF), stem cell factor (KL), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), nerve growth factor, platelet-derived growth factor (PDGF), fibroblast growth factor 2 (FGF-2), epidermal growth factor (EGF), keratinocyte growth factor, transforming growth factor (TGF), insulin-like growth factor, des(1-3)-IGF-I (brain IGF-I), neurotrophin-3 (NT-3), brain-derived neurotrophic factor (BDNF), eotaxin, CXC ligand 1 (GROα), interleukin 1 receptor-alpha (IL-1RA), interleukin 1 alpha (IL-1α), leukemia inhibitory factor (LIF), placental growth factor (PIGF, PLGF), chemokine ligand 5 (RANTES), stem cell factor (SCF), stromal cell derived factor (SDF1α), and tumor necrosis factor (TNF β).
In some embodiments, dimethyl sulfoxide (DMSO) is not added into the composition in any of the steps, thus leaving the composition substantially DMSO-free, and to avoid any potential harmful effects that DMSO may have. The combined composition may then be cryogenically stored, for example, in cryogenic vials in an ultra-low freezer. The cryogenic storage may be controlled at a temperature below −60° C., or below −80° C.
In some embodiments, the amount of Low Molecular Weight Dextrose solution having a low pH is based at least partially upon the estimated number NL of live cells, a calculated, estimated or determined, Furthermore, the sedimentation processing and centrifugation techniques described herein to optimize concentrations of one or more particular cytokines within the final composition. Centrifugation processes can be used to enrich the mononuclear cell layer, but can also be used to obtain the extracellular cytokines and growth factors associated with the mononuclear cell layer. The initial nature and concentration of the cytokines (e.g., growth factors, etc.) present in the final collected layer are typically independent of the viable cell count associated with this layer. Physiological stimuli can release a significant amount of cytokines into circulation that will eventually be present in umbilical cord blood. Physical conditions may be controlled during the production of the compositions described herein to control the concentrations of one or more particular cytokines. External factors may include ambient temperature of collection, ambient temperature of storage, ambient temperature of transport, and ambient temperature of processing. External factors may include the existence of particular anti-coagulants (EDTA, etc). The total time of each portion of the process may also act to control the amount of cytokines, including the total time duration between collection of cord blood and final processing, or the total time duration of processing. The effects from controlling centrifugation (e.g., controlling applied centrifugal force) can be used to optimize the formation of the mononuclear cell layer. The centrifuge speed can also be adjusted to adjust cytokine composition/configuration or cytokine concentration. The physio-chemical properties of any diluents used or other factors in which cells are suspended can help determine the biological half-life of the cytokines.
For example, step 406 is performed using a centrifuge which places between about 750 times the acceleration due to gravity to about 900 times the acceleration due to gravity on the container 468 and its contents for a time period of between 15 minutes and 25 minutes, while maintaining the contents of the container 468 at between 16° C. and 22° C. In another embodiment, step 406 is performed using a centrifuge which places between about 800 times the acceleration due to gravity to about 850 times the acceleration due to gravity on the container 468 and its contents for a time period of between 15 minutes and 25 minutes, while maintaining the contents of the container 468 at between 16° C. and 22° C. In another embodiment, step 406 is performed using a centrifuge which places between about 750 times the acceleration due to gravity to about 900 times the acceleration due to gravity on the container 468 and its contents for a time period of between 15 minutes and 25 minutes, while maintaining the contents of the container 468 at between 17° C. and 21° C. In another embodiment, step 406 is performed using a centrifuge which places between about 800 times the acceleration due to gravity to about 850 times the acceleration due to gravity on the container 468 and its contents for a time period of between 15 minutes and 25 minutes, while maintaining the contents of the container 468 at between 17° C. and 21° C.
The time to ramp up to a desired centrifugal force from substantially zero centrifugal force may be between about 30 seconds and about 15 minutes, or between about one minute and about five minutes, or between about 10 seconds and 90 seconds. The time to ramp down from a desired centrifugal force to substantially zero centrifugal force may be between about 30 seconds and about 20 minutes, or between about one minute and about 10 minutes.
Particular steps in aliquoting mononuclear cells can be varied slightly to vary concentrations of multiple different cytokines within the composition, such as controlling the concentration ranges of two different cytokines, three different cytokines, four different cytokines, five different cytokines, six different cytokines, seven different cytokines, eight different cytokines, nine different cytokines, ten different cytokines, and up to the 45 different cytokines, listed below. Effective concentrations within the composition of particular cytokines are listed in Table 1 below.
In addition to optimization of concentrations of one or more particular cytokines within the final composition, one or more inspection process may also be used to reject compositions produced wherein one or more cytokines within the composition is at an undesirable concentration, such as too high or too low. In some embodiments, one part of the composition is diluted with four parts of mesenchymal stem cell growth media. The dilution is then incubated for at least 24 hours, or in other embodiments, for at least 48 hours, in a humidified chamber. The humidified chamber in some embodiments includes an environment of between about 5% carbon di-oxide and is maintained at a temperature of about 37° C. The dilution (also known as conditioned media) is used in a assay to determine the concentrations of the various cytokines. In some embodiments, a Luminex® MAGPIC® system may be used for performing the assay. The normalized concentrations determined in the assay are than multiplied by a factor of 5, to determine the concentrations of the cytokines in the undilute composition. The concentrations may be expressed in units of picograms per milliliter (picograms/ml). An alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 2 below.
Most or all of these cytokines as quantified in the above ranges act as important signaling molecules that regulate biological functions associated with tissue regeneration, such as cell proliferation, cell migration, chemotaxis, angiogenesis, and remodeling. Many of the cytokines listed have at least some overlapping functions. For example, both PDGF and VEGF can support angiogenesis. Some cytokines can perform more than one function. For example, PDGF can be important in both proliferation and angiogenesis. An alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 3 below.
An alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 4 below.
An alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 5 below.
An alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 6 below.
Cytokines of particular interest include EGF (Epidermal growth factor), PDGF-BB (Platelet-derived growth factor subunit B-heterodimer), VEGF-A (Vascular endothelial growth factor-A), SCF (SCF Complex), IL-1RA (Interleukin-1 receptor-alpha), GM-CSF (Granulocyte-macrophage colony stimulating factor), IL-4 (Interleukin-4), IL-8 (Interleukin-8), SDF-1alpha (Stromal cell-derived factor-1-alpha), and RANTES (CCL5, Chemokine (C-C motif) ligand 5). The inventors have found that by controlling the concentrations of some or all of these ten cytokines with tighter control than that used in the other cytokines in the tables above can be effective in producing compositions with improved wound healing qualities. For example, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 7 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 8 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 9 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 10 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 11 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 12 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 13 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 14 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 15 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 16 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 17 below.
In other embodiments, an alternative composition may be produced by varying particular steps in aliquoting mononuclear cells and/or by use of the inspection and acceptance or rejection process, to produce effective concentrations within the composition of particular cytokines, as listed in Table 18 below.
In some cases, an effective amount of the biological composition 62 to promote, aid, or accelerate fusion of the first vertebra 54 to the second vertebra 56 may comprise between about 1% and 50% of a volume to be filled, or about 3% to 25%, or about 5% to 20%, or about 10%. The remainder of the volume to be filled may be filled with bone graft, or other materials, or left at least partially unfilled. For example, in a disc space of about 10 ml, about 0.5 ml to 2.0 ml of the biological composition 62 may be inserted, or in a disc space of about 5 ml, about 0.25 ml to about 1.0 ml of the biological composition 62 may be inserted. The biological composition 62 may be applied substantially to a particular location within the volume to be filled, or alternatively may be applied in diffuse locations within the volume to be filled. In some embodiments, other materials may be added to the biological composition 62, including synthetic bone substitutes such as beta tricalcium phosphate, or actual pieces of bone, including ground bone.
In some cases, an effective amount of the biological composition 78 to promote, aid, or accelerate fusion of the first bone portion 74 to the second bone portion 76 may comprise between about 1% and 50% of a volume to be filled, or about 3% to 25%, or about 5% to 20%, or about 10%. The remainder of the volume to be filled may be filled with bone graft, or other materials, or left at least partially unfilled. The biological composition 78 may be applied substantially to a particular location within the volume to be filled, or alternatively may be applied in diffuse locations within the volume to be filled. In some embodiments, other materials may be added to the biological composition 78, including synthetic bone substitutes such as beta tricalcium phosphate, or actual pieces of bone, including ground bone.
Other sources besides umbilical cord blood are possible for the compositions described herein, including, but not limited to amniotic fluid, peripheral blood, umbilical cord tissue, bone marrow, adipose tissue, and central nervous system (CNS) fluid.
In addition to previously mentioned procedures, other procedures may be performed incorporating the compositions and methods of manufacture of the embodiments described herein, including, but not limited to procedures for the treatment of diabetes mellitus and/or its related symptoms, procedures for the treatment of diabetic neuropathy, procedures for the treatment of diabetic ulcers, procedures for the treatment of epidermal, dermal, or sub-dermal diabetic ulcers, procedures for pain management for joints, including joints having chronic pain, procedures for the treatment of tendonitis, procedures for the treatment of torn cartilage, procedures for the treatment of tendon laxity, such as tendon laxity in joints, including but not limited to, shoulder joints, ankle joints, knee joints, hip joints, and elbow joints, procedures for the treatment of leukemia, procedures for the treatment of lymphoma, procedures for the treatment of myeloma, procedures for the treatment of other cancers, procedures for other epidermal, dermal, or sub-dermal disorders or illnesses, or procedures related to damage to neurons, including Parkinson's disease and brain tumors. Procedures may be performed incorporating the compositions and methods of manufacture of the embodiments described herein to reduce tumor size. The compositions may in some embodiments, be added in other manners, including epidural application, transthecal application, intravenous (IV) application, or direct site application.
While embodiments have been shown and described, various modifications may be made without departing from the scope of the inventive concepts disclosed herein.
The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between,” and the like includes the number recited. Numbers preceded by a term such as “approximately”, “about”, and “substantially” as used herein include the recited numbers (e.g., about 10%=10%), and also represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount.
Claims
1. A composition for influencing biological growth comprising:
- a low pH fluid comprising at least one of dextran or dextrose;
- mononuclear cells obtained from human umbilical cord blood;
- VEGF-A, at a concentration within the composition of between 481 picograms per ml and 895 picograms per ml; and
- GM-CSF, at a concentration within the composition of between 7 picograms per ml and 15 picograms per ml,
- wherein the composition is configured for implantation within a human subject.
2. The composition of claim 1, wherein the low pH fluid comprises dextran.
3. The composition of claim 2, wherein the low pH fluid comprises dextrose.
4. The composition of claim 3, wherein the low pH fluid comprises LMD (Dextran 40).
5. The composition of claim 1, wherein the low pH fluid comprises dextrose.
6. The composition of claim 1, further comprising albumin.
7. The composition of claim 1, further comprising a cryopreservative.
8. The composition of claim 1, wherein the composition does not contain dimethyl sulfoxide (DMSO).
9. The composition of claim 1, further comprising PDGF-BB, EGF, SCF, and IL-1RA.
10. The composition of claim 9, further comprising IL-4, IL-8, SDF-1α, and RANTES.
11. The composition of claim 10, further comprising BDNF, bNGF, Eotaxin, FGF-2, Gro-α, HGF, IFN-α, IFN-γ, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-18, IL-1α, IL-1β, IL-2, IL-21, IL-22, IL-23, IL-27, IL-31, IL-5, IL-6, IL-7, IL-9, IP-10, LIF, MCP-1, MIP-1α, MIP-1β, PIGF-1, TNF-α, TNF-β, and VEGF-D.
12. A composition for influencing biological growth comprising:
- a low pH fluid comprising at least one of dextran or dextrose;
- mononuclear cells obtained from human umbilical cord blood;
- a protectant;
- VEGF-A, at a concentration within the composition of between 481 picograms per ml and 895 picograms per ml; and
- GM-CSF, at a concentration within the composition of between 7 picograms per ml and 15 picograms per ml,
- wherein the composition is configured for implantation within a human subject.
13. The composition of claim 12, wherein the low pH fluid comprises dextran.
14. The composition of claim 13, wherein the low pH fluid comprises dextrose.
15. The composition of claim 14, wherein the low pH fluid comprises LMD (Dextran 40).
16. The composition of claim 12, wherein the low pH fluid comprises dextrose.
17. The composition of claim 12, wherein the protectant comprises a cryopreservative.
18. The composition of claim 12, further comprising PDGF-BB, EGF, SCF, and IL-1RA.
19. The composition of claim 18, further comprising IL-4, IL-8, SDF-1α, and RANTES.
20. The composition of claim 19, further comprising BDNF, bNGF, Eotaxin, FGF-2, Gro-α, HGF, IFN-α, IFN-γ, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-18, IL-1α, IL-1β, IL-2, IL-21, IL-22, IL-23, IL-27, IL-31, IL-5, IL-6, IL-7, IL-9, IP-10, LIF, MCP-1, MIP-1α, MIP-1β, PIGF-1, TNF-α, TNF-β, and VEGF-D.
Type: Application
Filed: Aug 19, 2019
Publication Date: Dec 5, 2019
Patent Grant number: 11369640
Inventors: Christopher D. Jones (Eagle, ID), Soumyajit Banerjee Mustafi (Meridian, ID)
Application Number: 16/544,610