LAMP POST WITH IMPROVED COOLING
The invention relates to a lamp post comprising: a support pole; a light unit supported by the support pole; said light unit comprising a light source; a functional module comprising a housing and functional circuitry mounted therein, said housing comprising a bottom wall intended to be floating, a top wall and a peripheral wall between the bottom and top wall, said housing covering or surrounding a portion of the support pole; wherein the bottom wall is provided with one or more lower air flow holes; and wherein at least one of the peripheral wall and said portion of the support pole, is provided with one or more upper air flow holes.
The field of the invention relates to lamp posts, in particular lamp post in the form of outdoor luminaires. Some exemplary embodiments relate to the field of modular lamp posts comprising a number of functional modules and other exemplary embodiments relate to traditional lamp post.
BACKGROUNDEP 3 076 073 B1 in the name of the applicant discloses a modular lamp post which is readily assembled and installed in the field whilst providing rigidity, structural integrity and sealing. The lamp post comprises a plurality of modules mounted on a support pole. The modules are connected to one another by respective module connectors and one module thereof is connected to the support pole by a module connector. EP 3 076 073 B1 is included herein by reference.
Further it is known to include base station functionalities in separate cabinets adjacent a lamp post, wherein an antenna module is attached to the lamp post.
SUMMARYThe object of embodiments of the invention is to provide an improved lamp post allowing integrating additional circuitry such as base station circuitry in the lamp post whilst avoiding significant heating of the additional circuitry. The object of particular embodiments is to allow integrating base station functionalities in existing lamp posts in an improved manner.
According to a first aspect of the invention there is provided a lamp post comprising a support pole, a light unit and a functional module. The light unit is supported by the support pole, and comprises a light source. The functional module comprises a housing and functional circuitry mounted in said housing. The functional module is carried by the support pole. The housing comprises a bottom wall intended to be floating, a top wall and a peripheral wall between the bottom and top wall. The housing covers or surrounds a portion of the support pole. The bottom wall is provided with one or more lower air flow holes. The peripheral wall and/or said portion of the support pole, is provided with one or more upper air flow holes.
By providing the functional module to the support pole such that the functional module is carried by the support pole, it is not necessary to provide an additional foundation for the functional module contrary to prior art solutions which require an additional cabinet adjacent the support pole. Also compared to prior art solution where the base station circuitry is included in the support pole, the present invention is advantageous since it does not require large dimensions for the support pole and foundation for the support pole. Further the provision of upper and lower air flow holes creates an air flow in the housing capable of appropriately cooling the functional circuitry in the housing. Such an air flow is advantageous compared to embodiments of the prior art where the cabinet is supported on the ground and air ventilation holes are only provided in the side walls.
In typical embodiments the support pole may be fixed in the ground, and the bottom wall will be at a distance from the ground such that air can flow through the one or more lower air flow holes into the housing. In such cases the support pole is typically oriented substantially vertically. In other embodiments the support pole may be fixed in a wall and may extend at least partly horizontally or at an angle. In both embodiments the bottom wall is floating with an air path present underneath the bottom wall. It is noted that the housing may also be partly in contact with the ground as long as it allows for a sufficient airflow through the one or more lower air flow holes.
It is noted that the support pole may be one integral pole, e.g. a metal pole, or may consist of a number of modules arranged one above the other in order to form a pole like structure.
According to an exemplary embodiment, the one or more upper air flow holes are provided in an upper half of the peripheral wall and/or in an upper half of the portion of the support pole covered or surrounded by the housing. In that manner the air flow will pass over a sufficiently large portion of the height of the housing guaranteeing an adequate cooling of the functional circuitry in the housing.
According to an exemplary embodiment, the one or more upper air flow holes are provided in the peripheral wall and are formed as one or more slits, preferably elongated slits extending in a horizontal direction. Slits extending in a horizontal longitudinal direction have the advantage that less water and/or dirt will enter in the housing whilst allowing the same amount of air to flow out as compared to holes having the same surface area but being elongated in a vertical direction. The peripheral wall may be provided with one or more outwardly protruding portions above the slits in order to further reduce the possibility of water and/or dirt entering inside the housing.
According to an exemplary embodiment, the peripheral wall comprises at least one side door for providing access to an internal space of the housing. In that manner operators can access the functional circuitry easily. The peripheral wall may comprise at least two side doors for providing access to an internal space of the housing. Using multiple doors may facilitate the mounting of and/or access to the functional circuitry and/or may allow different operators to have access to different parts of the housing.
One or more upper ventilation holes may be provided in the at least one side door and/or in other portions of the peripheral wall.
One or each side door may be provided with a locking device, preferably a three-point locking device. In that manner the functional module can be made vandalism-proof. Further features may be added to increase the resistance against vandalism, such as the provision of an edge on the inside of the housing, said edge bridging a gap between a closed door and an opening in the peripheral wall. In that manner it can be avoided that the door is forced by inserting a thin flat tool in the gap. Preferably, the one or more side doors are fixed to the rest of the housing using hinges fixed to an internal portion of the housing, so that the hinges are not accessible from the exterior of the housing.
According to an exemplary embodiment the housing is provided with at least one separation wall dividing an internal space of the housing into at least two compartments. The at least two compartments may be accessible by at least two side doors included in the peripheral wall. The at least two compartments may comprise a first and a second compartment separated by a vertical separation wall and the at least two side doors may comprise a first door and a second door providing access to the first and second compartment, respectively. The vertical separation wall may be extending from the support pole outwardly, e.g. in a radial plane, creating a first and second compartment on opposite sides thereof. In such embodiments, the first door and the second door may form opposite wall portions of the peripheral wall. In other embodiments the vertical separation wall may extend at a distance of the support pole creating two adjacent compartments, one closer to the support pole and one further away from the support pole. The first door and the second door may then form adjacent wall portions of the peripheral wall. The second door may be located at the same side of the housing or on opposite sides of the housing. In such embodiments the vertical separation wall may be provided with one or more air flow holes to allow the passage of air from the second compartment to the first compartment. The skilled person understands that also various combinations with more than two compartments are possible, e.g. in an embodiment with one radial separation wall and a further separation wall on each side of the radial separation wall, four compartments may be present.
In addition or alternatively, the at least two compartments may comprise a first and a second compartment separated by a horizontal separation wall. In such an embodiment the at least two side doors may comprise a first door and a second door providing access to the first and second compartment, respectively, said second door being located below said first door. The second door may be located at the same side of the housing or on opposite sides of the housing. In such embodiments the horizontal separation wall may be provided with one or more air flow holes to allow the passage of air from the second compartment to the first compartment located above the second compartment. The upper air flow holes are then preferably provided in a wall portion of the peripheral wall delimiting the first compartment and/or in a portion of the support pole delimiting the first compartment.
According to an exemplary embodiment, at least one fixation plate is provided in at least one opening in the peripheral wall, wherein the functional circuitry is fixed at least partly against the fixation plate. For example two fixations plates may be provided at a distance of each other in an opening of the peripheral wall, wherein the opening is closable by a door. The or each fixation plate may be provided with a plurality of fixation holes for cooperating with fixation means. The use of one or more fixation plates not only increases the rigidity of the functional module but also makes the installation and/or maintenance of the functional circuitry easier.
According to an exemplary embodiment, a fan is arranged in the housing and/or in the support pole. The fan is preferably arranged to increase the air flow from the one or more lower air flow holes to the one or more upper air flow holes. Preferably the fan is arranged in the housing, e.g. in an upper or lower portion of the housing. If multiple compartments are present, there may be provided one fan in one of the compartments (with one or more air flow holes provided in the separation wall(s)), or there may be provided multiple fans in different compartments.
According to an exemplary embodiment, the housing comprises a frame, a fixing means for fixing the frame against an external surface of the support pole, and one or more panels or doors attached to the frame, so as to enclose the frame. Such a functional module can be easily added to existing lamp posts. The fixing means may be e.g. two or more screws or bolts. Preferably, the frame is attached to the support pole at a first and second position being at a distance of each other seen in an axial direction of the support pole. Such a positioning ensures a robust fixation to the support pole. It is noted that the frame may also be attached at additional positions between the first and the second position at a distance of each other seen in an axial direction of the support pole.
According to an exemplary embodiment, the housing has a first width (w1) extending in a first direction perpendicular to an axial direction of the support pole, said first width being inferior to an external diameter (D) of the support pole. In other words, the housing is relatively narrow in width, resulting in a compact module. Such an embodiment will be particularly suitable for support poles with a relatively large external diameter.
The housing of the functional module may have a second width (w2) extending in a second direction perpendicular to the first width and to an axial direction of the support pole, said second width being superior to an external diameter of the support pole, preferably at least twice the external diameter of the support pole. The second width typically is oriented in a radial direction of the support pole. In other words, the housing may be relatively narrow but may protrude over a relatively longer distance (the second width) in a direction away from the support pole, such that it still has sufficient volume to enclose functional circuitry such as the base station circuitry. However, embodiments having a second width inferior to the external diameter of the support pole also fall within the scope of the invention.
In an alternative embodiment the first width may be larger than the external diameter of the support pole. Especially for smaller diameter poles such an embodiment may be useful.
In a first possible embodiment the housing may extend on one side of the support pole, not surrounding the support pole. In a second possible embodiment the housing may surround the support pole. For example, the housing may have a cylindrical peripheral wall.
It is further noted that multiple functional modules may be provided to the support pole. If the functional module does not surround the support pole, there may be provided e.g. two functional modules on opposite sides of the support pole. In other embodiments multiple functional modules may be provided one above the other.
According to an exemplary embodiment the housing protrudes sideways from the external surface of the support pole in one direction, and does not surround the support pole. In that manner a housing with a more or less box shape can be formed, which is a suitable shape to include functional circuitry such as base station circuitry which usually consists of box shaped units.
According to an exemplary embodiment, the top wall of the housing is formed by an upper surface, preferably an inclined upper surface sloping downward away from the support pole, wherein optionally a human interface device or an advertisement device is integrated in the upper surface. The human interface device may be e.g. a display and/or a battery charger and/or a button and/or a sensor (such as a microphone, a voice recorder, an image sensor, etc.) and/or a loudspeaker. The battery charger may be e.g. a wireless mobile phone charger. The display may be an interactive screen for providing information. In such embodiments the circuitry required for the battery charger and/or the display may also be provided in the housing of the functional module. The sensor may comprise for example any one of the following: a microphone, a detector of CO2 and/or NOx and/or smoke or any other pollutant sensor, a voice recorder, etc. The sensor may be coupled to the display such that information is displayed which is based on the sensed signals. For example, a voice recorder may record a question of a person, and an answer to the question may be presented on the display. The advertising device may be e.g. an advertising screen. Also on the peripheral wall of the housing one or more advertising screens may be provided.
In an embodiment where the housing surrounds the support pole the inclined upper surface may be a conical or pyramid-shaped upper surface. In an embodiment with a box like housing, the upper surface may be a more or less rectangular flat inclined surface.
According to an exemplary embodiment, the lamp post further comprises an antenna configured for receiving and emitting cellular data, and the functional circuitry comprises base station circuitry coupled to the antenna. The antenna may be arranged in an antenna module in a position above the functional module. Generally, it is desirable to arrange the antenna module in a relatively high position. However, it may be preferred to position the antenna module at a lower position than the light module. For example, the antenna module may be arranged between the base station module and the light module, seen in an axial direction of the support pole. In an alternative embodiment the antenna module could be arranged above the light module, e.g. as the highest module of the lamp post.
The base station circuitry may be configured for communicating using 2G (GSM), 2.5G (EDGE), 3G (UMTS), 4G (LTE), 5G, or any other future standard.
According to an exemplary embodiment the antenna is a directional antenna. The antenna module may have a housing which is arranged in line with an axial direction of the support pole and which is rotatable around the axial direction of the support pole, such that said housing is orientable for orienting the directionality of the receiving and emitting of the antenna. For example, the antenna may be included in a module as disclosed in EP 3 076 073 B1 which is included herein by reference. By using module connectors as disclosed in EP 3 076 073 B1 with two connector portions which can be clamped around round end parts of the modules, the module can be rotated around the axial direction of the support pole in the desired position and then fixed by the connector portions.
According to an exemplary embodiment, the portion of the support pole covered or surrounded by the housing is provided with a first hole and a second hole positioned above the first hole seen in an axial direction of the support pole. The lamp post may comprise a connection cable from the antenna through an inner part of the support pole, through the second hole to the base station circuitry, and a power connection cable passing from a lower end of the support pole through the first hole to feed the base station circuitry. In that manner the antenna connection cable, e.g. a coaxial cable, can enter the base station module at a higher position than the power connection cable, resulting in shorter cable lengths and reduced interference. In an alternative embodiment, only one hole may be provided in the support pole, and both the antenna connection cable and the power connection cable may pass through said one hole. It is further noted that the second hole may at the same time have the function of an upper air flow hole. Further, optionally a fiber cable may pass through a hole in the bottom wall of the housing.
The base station circuitry may comprise a combiner, a base transceiver unit and a wired or wireless transmission interface configured for being connected to a communication network, wherein the combiner is connected to the antenna and to the base transceiver unit, and wherein the base transceiver unit is further connected to the transmission interface. The transmission interface may be e.g. a fiber to copper interface. The combiner may be a dual band RF combiner. Further the base station circuitry may comprise power management circuitry to provide the required power to the combiner, the base transceiver unit and the wired or wireless transmission interface.
In a preferred embodiment the base transceiver unit is arranged in a lower half of the housing. The base transceiver unit is a unit which typically heats significantly in operation, and by putting it in a lower half of the housing it may be directly cooled with the cold air flowing into the housing through the one or more lower air flow holes.
The light unit may comprise a plurality of light emitting diodes, e.g. an array of light emitting diodes, which may be arranged on a PCB. The light unit may further comprise a driver for driving the plurality of light emitting diodes, optionally in combination with a dimmer.
It is noted that the term “supported” as in “the antenna module is supported by the support pole” does not imply that the antenna module needs to be directly attached to the support pole; indeed, there may be intermediate modules or elements between the support pole and the antenna module; the support pole supports the light unit, the antenna module, the functional module (such as the base station module) and any intermediate modules or elements. The light unit may be in the form of a luminaire head attached to a horizontal or vertical end portion of the support pole, or it may be a light module arranged aligned with an axis of the support pole.
According to an exemplary embodiment the support pole is hollow, and the support pole is provided with a removable door providing access to an inner part of said support pole, wherein said door may be arranged substantially at the same height as the functional module, preferably substantially opposite to the functional module. In that manner the functional circuitry in the functional module can be accessed through the door in the support pole. However, it is also possible to remove one or more panels of the housing or to provide one or more doors to the housing of the functional module, in order to access the functional circuitry as has been described above.
Examples of functional circuitry which may be included in the functional module in addition to or instead of the base station circuitry, are any one or more of the following:
-
- power management circuitry preferably configured to manage the provision of power to one or more light units of one or more lamp posts, preferably at least three lamp posts, e.g. more than ten lamp posts; examples of power management circuitry comprise e.g. one or more of: a power meter, a fuse, a line protection, a circuit breaker, an electrical connection for multiple power lines, a clock, an astroclock, a power supply module, an PLC, a computer, a communication module, display circuitry, etc.; in such embodiments power connection cables pass from the functional module through the support pole to other lamp posts, e.g. underground.
- telecommunication and/or networking circuitry for wired and/or wireless communication, which can comprise at least one of: an optical fiber connection, a fiber to copper interface, a fiber patch panel, a modem, a router, a switch, a patch panel, a network video recorder (NVR), a computer;
- audio system management circuitry which can comprise at least one of: an amplifier, a transformer, a media player (connected to network or not), electrical connections for multiple loudspeaker lines, a computer;
- WiFi circuitry, wherein an antenna for receiving WiFi signals may be integrated either in the functional module or in a separate antenna module as in the exemplary embodiment described above;
- charger circuitry, e.g. phone/computer/tablet charger circuitry or vehicle charger circuitry or UAV charger circuitry (such as drone charger circuitry);
- an environmental sensor such as a sound sensor, a voice recorder, a pollutant sensor, an image sensor, a microphone, or a detector of CO2, NOx, smoke, etc., and the associated circuitry;
- a human interface device (HID) and the associated circuitry, e.g. a camera, a loudspeaker, a button, a display, etc.
- a signaling device, e.g. a light ring capable of performing signaling;
- a mechanical and/or electrical plug-in device, e.g. a universal plug-in module, e.g. a mechanical device to fix a flag, a waste bin, etc.; a socket plug-in device.
In a preferred embodiment the functional module is a base station module comprising base station circuitry; wherein the base station circuitry is coupled to a first and second antenna, e.g. a first and second directional antenna, arranged in a first and second antenna module. In an exemplary embodiment the light module, the first antenna module and the second antenna module are arranged in variable order one above another, aligned with the support pole, wherein optionally further modules are inserted in line with the support pole.
According to a second aspect of the invention, there is provided a lamp post comprising a support pole, a light unit supported by the support pole and a functional module. The light unit comprises a light source. The functional module comprises a housing and functional circuitry mounted in said housing; wherein the functional module is carried by the support pole. The housing covers or surrounds a portion of the support pole. The housing is provided with at least one separation wall dividing the internal space of the housing into at least two compartments. The housing comprises at least two side doors providing access to the at least two compartments. In that manner the housing can be well supported and can provide easy access to users. For example, a first user may be given access to a first compartment, and a second user may be given access to a second compartment. For example, the functional circuitry may be first and second base station circuitry of a first and second operator which is arranged in a first and second compartment, respectively. The first and second side door will allow the respective operator to access its own circuitry whilst not being able to access the circuitry of another operator.
The at least two compartments may comprise a first and a second compartment separated by a vertical separation wall, wherein the at least two side doors comprise a first door and a second door providing access to the first and second compartment, respectively. The first door and the second door may form opposite wall portions of a peripheral wall of the housing, or the first door and the second door may form adjacent wall portions of the peripheral wall.
The at least two compartments may comprise a first and a second compartment separated by a horizontal separation wall, wherein the at least two side doors comprise a first door and a second door providing access to the first and second compartment, respectively, said second door being located below said first door. The first door and the second door may form opposite wall portions of a peripheral wall of the housing, or the first door and the second door may form adjacent wall portions of the peripheral wall.
A side door may be provided with a locking device, preferably a three-point locking device.
The at least one separation wall may comprise at least one separation wall provided with one or more air flow holes. Especially, any horizontal separation wall may be provided with one or more air flow holes. Also, the at least two doors may comprise at least one door which is provided with one or more air flow holes.
One or more side doors may be arranged for pivoting outwardly around a vertical axis. A side door may have a first vertical edge and a second vertical edge, wherein, in the closed position of the side door, the first vertical edge is closer to the support pole than the second vertical edge. One or more pivots such as one or more hinges may be provided either at the first vertical edge or at the second vertical edge of the side door. In another embodiment one or more side doors may be arranged for pivoting outwardly around a horizontal/inclined axis. A side door may have a first edge and an opposite second edge, and one or more pivots such as one or more hinges may be provided either at the first edge or at the second edge of the side door.
The accompanying drawings are used to illustrate presently preferred non-limiting exemplary embodiments of devices of the present invention. The above and other advantages of the features and objects of the invention will become more apparent and the invention will be better understood from the following detailed description when read in conjunction with the accompanying drawings, in which:
In both embodiments the bottom wall 601 is floating with an air path present underneath the bottom wall 601. It is noted that the housing 610 may also be partly in contact with the ground G as long as it allows for sufficient airflow through the one or more lower air flow holes 611, see further. Optionally the housing 610 may be provided with a coating or paint, such as an anti-graffiti coating or paint.
In the embodiment of
In the embodiment of
Preferably, the one or more upper air flow holes 613a, 613b, 613, 613′ are provided in an upper half of at least one of the peripheral wall and the portion of the support pole. Preferably, the one or more upper air flow holes 613a, 613b, 613 in the peripheral wall 603 are formed as one or more slits, preferably elongated slits extending in a horizontal direction. Slits extending in a horizontal longitudinal direction have the advantage that less water and/or dirt will enter in the housing compared to holes having the same surface area but being elongated in a vertical direction. In addition the peripheral 603 wall may be provided with one or more outwardly protruding portions 623 (see
Optionally, one or each side door 603a, 603b may provided with a locking device 650, preferably a three-point locking device as illustrated schematically in dotted lines in
As illustrated in the top view of
In other embodiments, illustrated in
In
In
The skilled person understands that also various combinations with more than two compartments are possible. For example in
-
- power management circuitry comprising e.g. one or more of: a power meter, a fuse, a line protection, a circuit breaker, an electrical connection for multiple power lines, a clock, an astroclock, a power supply module, an PLC, a computer, a communication module, display circuitry, etc.; preferably the power management circuitry is configured to manage the provision of power to one or more lamp posts, preferably at least three lamp post, e.g. more than ten lamp posts. In such embodiments power connection cables pass from the functional module through the support pole to other lamp posts, e.g. underground.
- telecommunication and/or network circuitry for wired and/or wireless communication, which can comprise at least one of: an optical fiber connection, a fiber to copper interface, a fiber patch panel, a modem, a router, a switch, a patch panel, a network video recorder (NVR), a computer;
- audio system management circuitry which can comprise at least one of: an amplifier, a transformer, a media player (connected to network or not), electrical connections for multiple loudspeaker lines, a computer;
- WiFi circuitry;
- charger circuitry, e.g. phone/computer/tablet charger circuitry or vehicle charger circuitry or UAV charger circuitry (such as drone charger circuitry);
- an environmental sensor such as a sound sensor, a voice recorder, a pollutant sensor, an image sensor, a microphone, or a detector of CO2, NOx, smoke, etc., and the associated circuitry;
- any human interface device (HID) and the associated circuitry;
- a signaling device, e.g. a light ring capable of performing signaling;
- a mechanical and/or electrical plug-in device, e.g. a universal plug-in module, e.g. a mechanical device to fix a flag, a waste bin, etc.; a socket plug-in device.
The modules 200, 300, 400 may be arranged in any order one above the other, and may be connected to the support pole 100 and to each other in any suitable way, e.g. using connectors 510, 520,530 as described in EP 3 076 073 B1 in the name of the applicant.
The plurality of modules further comprises a functional module 600, e.g. a base station module 600 comprising a housing 610 and functional circuitry 621, 622, 623, 624 (in this example base station circuitry) mounted in said housing 610, see also
The housing 610 of the base station module 600 comprises a structurally rigid frame 630, e.g. a ribbed frame, attached to the support pole 100; a fixing means 691, 692, e.g. at least two screws or bolts, for fixing the frame 630 against the external surface 110 of the support pole 100; and one or more panels or doors attached to the frame, so as to enclose the frame; see
The housing 610 is provided with one or more ventilation openings, e.g. a plurality of slits or holes. In the illustrated embodiment a plurality of slits 613a, 613b is arranged in the two opposite side doors 603a, 603b of the peripheral wall 603 of the housing 610, and a plurality of lower air flow holes 611 is provided in the bottom wall 601, such that an upward air flow through the housing 610 is created. Optionally a seal (not shown) may be arranged between the edges of adjacent panels/doors. In that manner the risk that water and/or dirt enters in the housing 610 between the edges of the panels/doors, is limited. The skilled person understands that the enclosure of the housing 610 may be formed by other ways, e.g. one integrated enclosure which can be placed around and fixed to the frame.
The support pole 100 may be hollow, and may be provided with a removable door 120 providing access to an inner part of said support pole 100, see
As illustrated in
The housing 610 of the base station module 600 covers a surface area of the support pole 100; and the support pole 100 is provided in said surface area with a first hole 131 and a second hole 132 positioned above the first hole 131 seen in an axial direction of the support pole 100, see
The housing 610 of the base station module 600 has a first width w1 extending in a first direction perpendicular to an axial direction A of the support pole 100. The first width w1 may be inferior to an external diameter D of the support pole 100. The housing of the base station module 600 has a second width w2 extending in a second direction perpendicular to the first width and to the axial direction A of the support pole 100, said second width w2 being superior to an external diameter of the support pole 100, preferably at least twice the external diameter of the support pole 100. In that manner a relatively long and narrow compact casing 600 is obtained with a suitable shape for holding base station circuitry.
In an alternative embodiment (see e.g. the embodiment of
The antenna module 300 is arranged in a position above the base station module 600. The antenna module 300 is arranged between the base station module 600 and the light module 200, seen in an axial direction of the support pole 100. In an alternative embodiment the antenna module 300 could be arranged above the light module 200. The antenna 350 may be a directional antenna with a limited angular range, e.g. a range covering between 90° and 180°. The antenna module 300 has a housing 310, 320 which is arranged in line with the support pole 100. Preferably, the antenna module 300 is rotatable around an axis A of the support pole 100, such that said antenna module 300 is orientable for orienting the directionality of the receiving and emitting of the antenna 350. For example, the antenna may be included in a module as disclosed in EP 3 076 073 B 1 which is included herein by reference. Such an example is illustrated in
As shown in
As illustrated in
In the exemplary embodiments described above module 600 is a base station module. However, this module 600 may also be used to house different circuitry in addition to or instead of base station circuitry. Examples of other functional circuitry which may be included in the functional module 600 in addition to or instead of the base station circuitry, are any one or more of the following:
-
- power management circuitry comprising e.g. one or more of: a power meter, a fuse, a line protection, a circuit breaker, an electrical connection for multiple power lines, a clock, an astroclock, a power supply module, an PLC, a computer, a communication module, display circuitry, etc.; preferably the power management circuitry is configured to manage the provision of power to one or more lamp posts, preferably at least three lamp post, e.g. more than ten lamp posts. In such embodiments power connection cables pass from the functional module through the support pole to other lamp posts, e.g. underground.
- telecommunication and/or networking circuitry for wired and/or wireless communication, which can comprise at least one of: an optical fiber connection, a fiber to copper interface, a fiber patch panel, a modem, a router, a switch, a patch panel, a network video recorder (NVR), a computer;
- audio system management circuitry which can comprise at least one of: an amplifier, a transformer, a media player (connected to network or not), electrical connections for multiple loudspeaker lines, a computer;
- WiFi circuitry, wherein an antenna for receiving WiFi signals may be integrated either in the functional module or in a separate antenna module as in the exemplary embodiment of the lamp post with a base station module;
- charger circuitry, e.g. phone/computer/tablet charger circuitry or vehicle charger circuitry or UAV charger circuitry (such as drone charger circuitry);
- an environmental sensor such as a sound sensor, a voice recorder, a pollutant sensor, an image sensor, a microphone, or a detector of CO2, NOx, smoke, etc., and the associated circuitry;
- a human interface device (HID) and the associated circuitry, e.g. a camera, a loudspeaker, a button, a display, etc.;
- a signaling device, e.g. a light ring capable of performing signaling;
- a mechanical and/or electrical plug-in device, e.g. a universal plug-in module, e.g. a mechanical device to fix a flag, a waste bin, etc.; a socket plug-in device.
Instead of one antenna module, two or more antenna modules may be provided. A first and a second antenna module may be arranged one above the other seen in an axial direction of the support pole and are supported by the support pole. Each antenna module may be implemented e.g. as described above referring to
It is further noted that in embodiments of the invention base station functionalities and/or other functionalities may be either included in a module like base station module 600 fixed to the support pole, or in one or more modules 400 supported by the support pole 100 and aligned with the axial direction of the support pole 100. To that end the module 400 may have a larger diameter than the diameter of the support pole 100.
Whilst the principles of the invention have been set out above in connection with specific embodiments, it is to be understood that this description is merely made by way of example and not as a limitation of the scope of protection which is determined by the appended claims.
Claims
1. A lamp post comprising:
- a support pole;
- a light unit supported by the support pole, said light unit comprising a light source; and
- a functional module comprising a housing and functional circuitry mounted in said housing, wherein the functional module is carried by the support pole, wherein said housing comprises a bottom wall configured to be floating, a top wall, and a peripheral wall between the bottom and top wall, said housing covering or surrounding a portion of the support pole, wherein the bottom wall is provided with one or more lower air flow holes, and wherein at least one of the peripheral wall or said portion of the support pole is provided with one or more upper air flow holes.
2. The lamp post of claim 1, wherein the one or more upper air flow holes are provided in an upper half of at least one of the peripheral wall or the portion of the support pole.
3. The lamp post of claim 1, wherein the one or more upper air flow holes are provided in the peripheral wall and are formed as one or more slits.
4. The lamp post of claim 1, wherein the peripheral wall is provided with one or more outwardly protruding portions arranged above the one or more slits.
5. The lamp post of claim 1, wherein the peripheral wall comprises at least one side door for providing access to an internal space of the housing.
6. (canceled)
7. (canceled)
8. The lamp post of claim 1, wherein the housing is provided with at least one separation wall dividing the internal space of the housing into at least two compartments, and wherein the at least two compartments are accessible by at least two side doors.
9. (canceled)
10. (canceled)
11. (canceled)
12. (canceled)
13. (canceled)
14. (canceled)
15. (canceled)
16. The lamp post of claim 1, wherein a fan is arranged in the housing or in the support pole.
17. (canceled)
18. The lamp post of claim 1, wherein the housing has a first width extending in a first direction perpendicular to an axial direction of the support pole, said first width being inferior to an external diameter of the support pole.
19. The lamp post of claim 18, wherein the housing of the functional module has a second width extending in a second direction perpendicular to the first width and to an axial direction of the support pole, said second width being at least twice the external diameter of the support pole.
20. The lamp post of claim 1, wherein the housing surrounds the support pole.
21. The lamp post of claim 1, wherein the top wall of the housing is formed by an inclined upper surface sloping downward away from the support pole, and wherein a human interface device is integrated in the upper surface.
22. (canceled)
23. (canceled)
24. (canceled)
25. (canceled)
26. The lamp post of claim 1, wherein the functional circuitry comprises base station circuitry comprising a combiner, a base transceiver unit, and a wired or wireless transmission interface configured for being connected to a communication network, wherein the combiner is connected to the antenna and to the base transceiver unit, and wherein the base transceiver unit is further connected to the transmission interface.
27. The lamp post of claim 26, wherein the base transceiver unit is arranged in a lower half of the housing.
28. (canceled)
29. A lamp post comprising:
- a support pole;
- a light unit supported by the support pole said light unit comprising a light source; and
- a functional module comprising a housing and functional circuitry mounted in said housing, wherein the functional module is carried by the support pole, said housing covering or surrounding a portion of the support pole, wherein the housing is provided with at least one separation wall dividing the internal space of the housing into at least two compartments, and wherein the housing comprises at least two side doors providing access to the at least two compartments.
30. The lamp post of claim 29, wherein the at least two compartments comprise a first compartment and a second compartment separated by a vertical separation wall, and wherein the at least two side doors comprise a first door and a second door providing access to the first and second compartment, respectively.
31. The lamp post of claim 29, wherein the at least two compartments comprise a first compartment and a second compartment separated by a horizontal separation wall, and wherein the at least two side doors comprise a first door and a second door providing access to the first and second compartment, respectively, said second door being located below said first door.
32. (canceled)
33. (canceled)
34. The lamp post of claim 29, wherein each side door of the at least two side doors is provided with a three-point locking device.
35. The lamp post of claim 29, wherein the at least one separation wall comprises at least one separation wall provided with one or more air flow holes.
36. The lamp post of claim 29, wherein the at least two side doors comprise at least one door which is provided with one or more air flow holes.
37. The lamp post of claim 29, wherein the housing comprises a bottom wall configured to be floating, a top wall, and a peripheral wall between the bottom and top wall, wherein the bottom wall is provided with one or more lower air flow holes, and wherein at least one of the peripheral wall or the portion of the support pole is provided with one or more upper air flow holes.
Type: Application
Filed: Aug 29, 2018
Publication Date: Jun 11, 2020
Inventors: Stéphane Girouard (Mortier), Guy Pluimers (Awans), Hervé Damoiseau (Saive)
Application Number: 16/642,499