ELECTRICALLY CONDUCTIVE - SEMITRANSPARENT SOLID STATE INFRARED EMITTER APPARATUS AND METHOD OF USE THEREOF
The invention comprises a solid state infrared source and method of use thereof comprising: (1) an electrically conductive film, comprising a semi-transparent material, the semi-transparent material comprising a transmission property of at least forty percent, wherein at least forty percent of internal infrared emissions from the electrically conductive film transmit to an outer surface of the electrically conductive film, wherein the infrared emissions comprise a peak intensity between 3.9 and 6 micrometers; (2) a first silicon nitride layer; and (3) a second silicon nitride layer, the electrically conductive film positioned between the first silicon nitride layer and the second silicon nitride layer, where applying an electric current of less than one Watt through the electrically conductive film raises a temperature of the electrically conductive film to in excess of eight hundred degrees centigrade in less than twenty milliseconds resultant in the infrared emissions.
This application is a continuation of U.S. patent application Ser. No. 15/682,416 filed Aug. 21, 2017, which is a continuation-in-part of U.S. patent application Ser. No. 15/678,038 filed Aug. 15, 2017.
BACKGROUND OF THE INVENTION Field of the InventionThe invention relates generally to a light source.
Discussion of the Prior ArtPatents related to the current invention are summarized here.
P. Nordal, et.al., “Infrared Emitter and Methods for Fabricating the Same”, U.S. Pat. No. 6,031,970 (Feb. 29, 2000) describe an infrared radiation source, comprising a thin, electrically conducting film adapted to emitted infrared radiation when heated.
I. Romanov, et.al., “High-Temperature Nanocomposite Emitting Film, Method for Fabricating the Same and its Application”, World Patent application no. WO 2014/168977 A1 (Oct. 16, 2014) describe a thin-film radiative structure comprising molybdenum, silicon, carbon, and oxygen.
ProblemThere exists in the art of light sources a need for an accurate, precise, miniaturized, and rapidly switchable infrared light source.
SUMMARY OF THE INVENTIONThe invention comprises a mid-infrared light source apparatus and method of use thereof.
A more complete understanding of the present invention is derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures.
Elements and steps in the figures are illustrated for simplicity and clarity and have not necessarily been rendered according to any particular sequence. For example, steps that are performed concurrently or in different order are illustrated in the figures to help improve understanding of embodiments of the present invention.
DETAILED DESCRIPTION OF THE INVENTIONThe invention comprises a solid state infrared source and method of use thereof comprising: (1) an electrically conductive film, comprising a semi-transparent material, the semi-transparent material comprising a transmission property of at least forty percent, wherein at least forty percent of internal infrared emissions from the electrically conductive film transmit to an outer surface of the electrically conductive film, wherein the infrared emissions comprise a peak intensity between 3.9 and 6 micrometers; (2) a first silicon nitride layer; (3) a second silicon nitride layer, the electrically conductive film positioned between the first silicon nitride layer and the second silicon nitride layer; (4) a first electrical contact on a first end of the electrically conductive film; and (5) a second electrical contact on a second end of the electrically conductive film, where applying an electric current of less than one Watt through the electrically conductive film raises a temperature of the electrically conductive film to in excess of eight hundred degrees centigrade in less than twenty milliseconds.
Light Source
Referring now to
In one embodiment, still referring to
Still referring to
-
- a mid-infrared/infrared light source;
- an infrared emitter, such as a metal oxide, a ceramic, and/or a cermet;
- a current and/or heat driven infrared emitter 110;
- a high surface area-to-volume ratio 120 of the infrared emitter 110, such as greater than 200, 500, 1000, or 2000 to 1;
- an electrically conductive emitting layer 130;
- an alternating and/or pulsed current functionality 140;
- a low mass heated element 150;
- a semi-transparent emitter 160;
- a thermally conductive driven emitting layer 170;
- an embedded reflective layer 180; and
- a nanoparticle, a metal oxide and/or a ceramic, emitter 190.
Each of the infrared emitter 110, the high surface area-to-volume ratio 120 of the infrared emitter 110, the electrically conductive emitting layer 130, the pulsed current functionality 140, the low mass heated element 150, the semi-transparent emitter 160, the thermally conductive driven emitting layer 170, the embedded reflective layer 180, and the nanoparticle emitter 190 are further described, infra.
Herein, for clarity of presentation, a metal oxide and/or a semi-conducting metal oxide is used as an example of the infrared emitter 110; however, optionally a ceramic is used in place of the metal oxide and/or an inorganic, non-metallic, optionally crystalline oxide, nitride or carbide material is used in place of the metal oxide.
Elements of the solid state source 100, described herein, function together, but are optionally arranged in many permutations and combinations. For clarity of presentation and without loss of generality, multiple examples are provided herein to illustrate functionality of individual elements of the solid state source 100 and to illustrate useful substructures and combinations of individual elements of the solid state source 100.
EXAMPLE IReferring now to
Still referring to
The pulsed current functionality 140, provides pulsed heat, by way of electrical resistance, to the infrared emitter 110, which coupled with: (1) the low thermal mass of the heated element 150 or the infrared emitter 110, allowing for rapid heating and cooling; (2) the high surface area-to-volume ratio 120 of the infrared emitter 110, allowing for rapid cooling; and/or (3) insulating layers, described infra, sandwiching the thin infrared emitter 110, which reduces/prevents current driven thermal heating of adjacent layers, yields pulsed intensity of the solid state source 100 at the alternating and/or pulsed current frequency, as further described infra. Applied currents are optionally and preferably greater than 100, 200, 300, or 400 mW and less than 700, 800, 1000, or 1200 mW. Optional pairs of a third wire 233 and a fourth wire 234 and/or a fifth wire 235 and a sixth wire 236 are used to distribute electrons across the first contact 238 and/or the second contact 239, an thus across the infrared emitter 110. The distributed current results in distributed heating of the infrared emitter 110 and thus a more uniform profile of intensity as a function of wavelength versus x/y-position of the infrared emitter 110. Similarly, the optional curved shape of the first contact 238 and/or the second contact 239, to provide a more uniform distance to a chosen shape of the infrared emitter 110, functions to smooth the current across the infrared emitter 110, distribute resulting heat on the infrared emitter 110, and/or to yield a more uniform emission profile of the infrared emitter 110 as a function of x/y-position. For clarity of presentation, components of the electrical system 230 are generally not illustrated in subsequent examples, though the electrical system is optionally and preferably connected to the infrared emitter 110 in all illustrated embodiments.
EXAMPLE IIReferring now to
Still referring to
Still referring to
Referring still to
Referring now to
Still referring to
Referring now to
Referring still to
Referring now to
Still referring to
Still referring to
Referring now to
Manufacturing
Herein, four exemplary manufacturing process are illustrated. Steps in the first, second, third, and/or fourth manufacturing example are optionally implemented in many orders, with omission of one or more steps or layers, and/or with inclusion of one or more additional steps or layers. It should be appreciated that the three manufacturing examples are presented to facilitate a description of the solid state source 100 without loss of generality. Further, descriptions of elements and/or steps in the four exemplary manufacturing examples are optionally implemented in the above described solid state source 100 examples and vise-versa.
EXAMPLE IReferring now to
-
- providing a silicon, Si, wafer 705;
- thermally oxidizing 710 and/or etching the silicon wafer to form a silicon dioxide, SiO2, layer;
- depositing a first silicon nitride, SiN or SiNm, 715 layer to the silicon dioxide layer, such as through use of low pressure chemical vapor deposition, to form a mechanical support layer with optional oxidation protection properties;
- depositing a zinc oxide, ZnO, 720 layer to the first silicon nitride layer, such as through a spray pyrolysis or a plasma vapor deposition process with an optional and preferred subsequent step of thermal annealing to form a zinc oxide material, ZnxOy, (ZnO→ZnxOy), where y is less than x, such as at a ratio, y:x, of less than 1:2, 1:5, 1:9, 1:10, 1:10, 1:100, and/or 1:1000;
- depositing a second silicon nitride, SiN or SiNn, layer 725 and/or a low stress nitride to the zinc oxide material, such as through use of a second low pressure chemical vapor deposition step, to form an oxidation protection surface on the zinc oxide, where m=n or preferably m≠n;
- patterning 730 the zinc oxide layer, such as via etching away: a portion of the second silicon nitride layer and a portion of the zinc oxide layer;
- adding a capping layer 735, such as another silicon nitride layer formed using low pressure chemical vapor deposition;
- adding connectors 740 to the zinc oxide, which is an infrared emitter layer, through forming a set of holes/channels to the zinc oxide and adding/depositing a metal connector material in the set of holes/channels along with a wired connection of the formed metal connectors to a power supply and/or a main controller, which controls subsequent applied current to/through the zinc oxide; and
- reducing a thermal mass 745 of the resulting solid state source 100, such as through removal of a portion of the silicon wafer and/or the silicon dioxide layer proximate the zinc oxide infrared emitter section.
Referring now to
-
- the above described step of depositing a first silicon nitride, SiN or SiNm, 715 layer to a starting layer, such as the silicon dioxide layer, through use of a deposition process, such as the low pressure chemical vapor deposition process, to form a mechanical support layer with optional oxidation protection properties;
- a step of etching a mirror cavity 810 into the first silicon nitride layer; and
- depositing a reflective material 820 into the mirror cavity.
Instances of use of the second manufacturing procedure 800 comprise: adding a back reflecting surface behind, below as illustrated in
and/or forming a light directing reflective optic.
EXAMPLE IIIReferring now to
-
- installing a heat source 910, such as a heating element 912, onto a portion of the solid state source 100, such as a nitride layer;
- depositing a layer of the nanoparticle metal oxide 920, such as nanoparticles of zinc oxide, onto the heating element 912, optionally after adding the intervening secondary lower sandwiching layer 335; and
- optionally embedding an optical coupling medium 930 into a formed or forming layer of nanoparticles of zinc oxide.
As described, supra, the source of heat/energy leading to the emission of mid-infrared photons from the zinc oxide nanoparticles is optionally conductive heat transfer from the zinc oxide layer heated with the applied current, such as through the embedded electrical connectors into/onto the zinc oxide film.
EXAMPLE IVReferring now to
-
- adding metal connectors 745, such as a first metal contact 238/first connector to the first wire 231 and/or a second metal contactor 239/second connector to the second wire 232, where the step of adding the metal connectors 745 optionally comprises the steps of drilling/etching/forming a hole/groove/channel into the solid state source 100 at least to the zinc oxide film and filling the resultant cavity, such as through deposition, with a conducting element, such as a metal, comprising a section of each of the metal contacts.
The connectors are optionally connected to the zinc oxide and/or the infrared emitter 110 through deposition of a connector, etching a surface to form an electrical connection, and/or through other processes known in the art.
Energy Delivery/Emission/Use
Referring now to
Referring still to
Referring again to
Referring again to
Herein, the solid state source 100 is optionally used in any application requiring an infrared source, such as in a mid-infrared spectrometer, a mid-infrared meter, as a portion of an electronic device, and/or as a portion of a light-emitting diode.
Herein, zinc oxide is optionally replaced with any conductor, such as silver, aluminum, platinum, and/or copper or with an oxide of any of the conductors, such as silver oxide, aluminum oxide, black platinum, and/or copper oxide. Further , zinc oxide is optionally replaced with a ceramic material. More generally, zinc oxide, which is an inorganic compound and a wide-bandgap semiconductor of the II-VI semiconductor group is optionally replaced with any wide-bandgap semiconductor of the II-VI group. Preferably, material substituted for the zinc oxide comprises the inventor noted benefits of zinc oxide: a semi-transparent material as defined supra, high electron mobility, a wide band gap, and a strong luminescence at room temperature.
Herein, any particular element or particular chemical composite, such as Si, SiO2, ZnO, SiN, is optionally substantially, such as greater than 70, 80, 90, 95, or 99%, the particular element or the particular chemical deposit, where impurities and/or doped material make up a mass balance of the particular element of the particular chemical composite.
Still yet another embodiment includes any combination and/or permutation of any of the elements described herein.
The main controller, a localized communication apparatus, and/or a system for communication of information optionally comprises one or more subsystems stored on a client. The client is a computing platform configured to act as a client device or other computing device, such as a computer, personal computer, a digital media device, and/or a personal digital assistant. The client comprises a processor that is optionally coupled to one or more internal or external input device, such as a mouse, a keyboard, a display device, a voice recognition system, a motion recognition system, or the like. The processor is also communicatively coupled to an output device, such as a display screen or data link to display or send data and/or processed information, respectively. In one embodiment, the communication apparatus is the processor. In another embodiment, the communication apparatus is a set of instructions stored in memory that is carried out by the processor.
The client includes a computer-readable storage medium, such as memory. The memory includes, but is not limited to, an electronic, optical, magnetic, or another storage or transmission data storage medium capable of coupling to a processor, such as a processor in communication with a touch-sensitive input device linked to computer-readable instructions. Other examples of suitable media include, for example, a flash drive, a CD-ROM, read only memory (ROM), random access memory (RAM), an application-specific integrated circuit (ASIC), a DVD, magnetic disk, an optical disk, and/or a memory chip. The processor executes a set of computer-executable program code instructions stored in the memory. The instructions may comprise code from any computer-programming language, including, for example, C originally of Bell Laboratories, C++, C#, Visual Basic® (Microsoft, Redmond, Wash.), Matlab® (MathWorks, Natick, Mass.), Java® (Oracle Corporation, Redwood City, Calif.), and JavaScript® (Oracle Corporation, Redwood City, Calif.).
Herein, any number, such as 1, 2, 3, 4, 5, is optionally more than the number, less than the number, or within 1, 2, 5, 10, 20, or 50 percent of the number.
Herein, an element and/or object is optionally manually and/or mechanically moved, such as along a guiding element, with a motor, and/or under control of the main controller.
The particular implementations shown and described are illustrative of the invention and its best mode and are not intended to otherwise limit the scope of the present invention in any way. Indeed, for the sake of brevity, conventional manufacturing, connection, preparation, and other functional aspects of the system may not be described in detail. Furthermore, the connecting lines shown in the various figures are intended to represent exemplary functional relationships and/or physical couplings between the various elements. Many alternative or additional functional relationships or physical connections may be present in a practical system.
In the foregoing description, the invention has been described with reference to specific exemplary embodiments; however, it will be appreciated that various modifications and changes may be made without departing from the scope of the present invention as set forth herein. The description and figures are to be regarded in an illustrative manner, rather than a restrictive one and all such modifications are intended to be included within the scope of the present invention. Accordingly, the scope of the invention should be determined by the generic embodiments described herein and their legal equivalents rather than by merely the specific examples described above. For example, the steps recited in any method or process embodiment may be executed in any order and are not limited to the explicit order presented in the specific examples. Additionally, the components and/or elements recited in any apparatus embodiment may be assembled or otherwise operationally configured in a variety of permutations to produce substantially the same result as the present invention and are accordingly not limited to the specific configuration recited in the specific examples.
Benefits, other advantages and solutions to problems have been described above with regard to particular embodiments; however, any benefit, advantage, solution to problems or any element that may cause any particular benefit, advantage or solution to occur or to become more pronounced are not to be construed as critical, required or essential features or components.
As used herein, the terms “comprises”, “comprising”, or any variation thereof, are intended to reference a non-exclusive inclusion, such that a process, method, article, composition or apparatus that comprises a list of elements does not include only those elements recited, but may also include other elements not expressly listed or inherent to such process, method, article, composition or apparatus. Other combinations and/or modifications of the above-described structures, arrangements, applications, proportions, elements, materials or components used in the practice of the present invention, in addition to those not specifically recited, may be varied or otherwise particularly adapted to specific environments, manufacturing specifications, design parameters or other operating requirements without departing from the general principles of the same.
Although the invention has been described herein with reference to certain preferred embodiments, one skilled in the art will readily appreciate that other applications may be substituted for those set forth herein without departing from the spirit and scope of the present invention. Accordingly, the invention should only be limited by the Claims included below.
Claims
1. An apparatus, comprising:
- a solid state source, comprising: an electrically conductive film, comprising a semi-transparent material, said semi-transparent material comprising a transmission property of at least forty percent, wherein at least forty percent of internal infrared emissions from said electrically conductive film transmit to an outer surface of said electrically conductive film, wherein the infrared emissions comprise a peak intensity between 3.9 and 6 micrometers.
2. The apparatus of claim 1, said solid state source further comprising:
- a first silicon nitride film; and
- a second silicon nitride film, said electrically conductive film both positioned between and substantially contacting said first silicon nitride film and said second silicon nitride film.
3. The apparatus of claim 2, said electrically conductive film comprising:
- a metal oxide; and
- a thickness of less than three micrometers.
4. The apparatus of claim 2, said electrically conductive film comprising:
- at least ninety-five percent zinc oxide, said semi-transparent material comprising zinc oxide.
5. The apparatus of claim 4, said solid state source further comprising:
- a layer of metal oxide crystals separated by gaps, a first mean minimum cross-section of said metal oxide crystals of less than one hundred micrometers, a second mean minimum cross-section of the gaps of less than fifty micrometers.
6. The apparatus of claim 5, said metal oxide crystals comprising:
- at least fifty percent zinc oxide.
7. The apparatus of claim 5, further comprising:
- a filler material filling a subset of said gaps proximate an emission surface of said layer of metal oxide crystals, said filler material comprising an index of refraction greater than 1.4.
8. The apparatus of claim 2, said solid state source further comprising:
- a silicon substrate;
- a silicon dioxide side of said silicon substrate; and
- a reflective layer between said silicon dioxide side of said silicon substrate and said electrically conductive film.
9. The apparatus of claim 8, further comprising:
- a third silicon nitride film comprising an indention therein, said reflective layer positioned in said indention.
10. A method, comprising the steps of:
- providing a solid state source, comprising: an electrically conductive film, comprising a semi-transparent material;
- transmitting at least forty percent of internal infrared emissions from a center of said semi-transparent material to an outer surface of said electrically conductive film,
- wherein the infrared emissions comprise a peak intensity between 3.9 and 6 micrometers.
11. The method of claim 10, further comprising the step of:
- applying a pulsed current to said electrically conductive film resulting in heating of said electrically conductive film to 700 to 1300 degrees centigrade with less than 1.5 Watts.
12. The method of claim 11, further comprising the step of:
- isolating the pulsed current into said electrically conductive film by sealing a length and width of said electrically conductive film between a first dielectric layer and a second dielectric layer.
13. The method of claim 12, further comprising the step of:
- reflecting the infrared emissions off of a reflective layer, said reflective layer positioned in said solid state source between said first dielectric layer and a support matrix of silicon.
14. The method of claim 13, further comprising the steps of:
- thermally conducting heat, resultant from application of said pulsed current, from said electrically conductive film, through said second dielectric layer to a nanoparticle layer of zinc oxide particles; and
- said zinc oxide particles emitting a second set of infrared photons.
15. The method of claim 14, further comprising the step of:
- dissipating heat from said electrically conductive film, between peak intensities of the pulsed current, through said first dielectric layer comprising a first thickness of less than five micrometers and said second dielectric layer comprising a second thickness of less than five micrometers.
Type: Application
Filed: Mar 2, 2020
Publication Date: Jun 25, 2020
Inventors: Dragan Grubisik (Phoenix, AZ), Davorin Babic (Phoenix, AZ), Alex Kropachev (Chandler, AZ), Arshey Patadia (Tempe, AZ), Viet Nguyen (Phoenix, AZ)
Application Number: 16/806,834