Pouch-Shaped Battery Case Having Hidden-Type Gas Pocket, Pouch-Shaped Secondary Battery Including the Same, and Battery Module Including the Same
A pouch-shaped battery case (and a pouch-shaped secondary battery including the same) includes a hidden-type gas pocket having a folded configuration such that, when gas is generated in the pouch-shaped case, the gas pocket unfolds to form a space for collecting the gas, whereby it is possible to reduce the extent of swelling of the battery when the gas is generated. The gas pocket may be configured so as not to occupy any space in a normal operating state of the battery, such that the gas pocket is unfolded to form the gas reception space only when the gas is generated, whereby it is possible to improve the efficiency of utilization of space in the battery.
Latest LG Electronics Patents:
- Clearing part of sidelink grant for single pdu transmission and sidelink resource allocation
- Method and device for transmitting and receiving signals in wireless communication system
- Method and device for receiving PPDU having been subjected to LDPC tone mapping in broadband tone plan in wireless LAN system
- Method and apparatus for receiving system information in the wireless communication
- Method for transmitting and receiving signals in wireless communication system, and device supporting same
This application is a national phase entry under U.S.C. § 371 of International Application No. PCT/KR2019/000244 filed Jan. 8, 2019, which claims priority from Korean Patent Application No. 10-2018-0002860 filed on Jan. 9, 2018, the disclosures of which are incorporated herein by reference in their entirety.
TECHNICAL FIELDThe present invention relates to a secondary battery, and more particularly to a pouch-shaped secondary battery having an electrode assembly mounted in a pouch-shaped battery case made of a laminate sheet and a battery module including the same.
BACKGROUND ARTIn general, secondary batteries are batteries that can be charged and discharged, unlike primary batteries, which cannot be charged. Such secondary batteries have been widely used in electronic devices, such as cellular phones, laptop computers, and camcorders, or electric vehicles (EVs).
Among the secondary batteries, the use of lithium secondary batteries has been rapidly increasing, since the capacity of the lithium secondary battery is larger than the capacity of a nickel-cadmium battery or a nickel-hydride battery, which are mainly used as a power source for electronic devices, and the energy density of the lithium secondary battery per unit weight is high.
Such a lithium secondary battery mainly uses a lithium-based oxide and a carbon material as a positive electrode active material and a negative electrode active material, respectively. The lithium ion secondary battery is configured to have a structure in which a positive electrode sheet, to which the positive electrode active material is applied, and a negative electrode sheet, to which the negative electrode active material is applied, are disposed in the state in which a separator is interposed therebetween to constitute an electrode assembly and in which the electrode assembly is received in a sheathing member, i.e. a battery case, together with an electrolytic solution in a sealed state.
Depending on the shape of the battery case, the lithium secondary battery may be classified as a can-shaped secondary battery, configured such that the electrode assembly is mounted in a metal can, or a pouch-shaped secondary battery, configured such that the electrode assembly is mounted in a pouch made of an aluminum laminate sheet.
Meanwhile, the pouch-shaped secondary battery is classified as a unidirectional battery, configured such that electrode leads connected to positive electrode and negative electrode tabs of the electrode assembly are disposed at one side of the battery, or a bidirectional battery, configured such that electrode leads connected to positive electrode and negative electrode tabs of the electrode assembly are disposed at opposite sides of the battery.
In general, the pouch-shaped secondary battery includes an electrode assembly, a pouch-shaped case configured to receive the electrode assembly in a sealed state, and electrode leads extending from the electrode assembly so as to be exposed out of the pouch-shaped case.
In the pouch-shaped secondary battery described above, however, a large amount of gas is generated due to the decomposition of an electrolyte when the lifespan of the secondary battery expires, the secondary battery is overcharged, the secondary battery is exposed to high temperatures, or an internal short circuit occurs in the secondary battery, whereby the pouch-shaped case expands, i.e. a swelling phenomenon occurs. The swelling phenomenon, in which the middle portion of the pouch-shaped case swells due to gas that is generated in the pouch-shaped case, causes the deformation of the battery. As a result, a short circuit occurs in the battery. In severe cases, high pressure may be generated in the sealed case, whereby the electrolyte may be further decomposed, which may result in the explosion of the battery.
In order to solve the above problem, Korean Patent Application Publication No. 10-2016-0059776 and Korean Patent Application Publication No. 10-2011-0107448 disclose various technologies capable of dealing with the swelling phenomenon.
However, the conventional art, including the above Korean patent application publications, is configured to have a structure in which the interior space of a case is expanded in order to collect gas. As a result, the overall size of a battery is increased. In addition, since the expanded space is empty, the expanded space is weakly resistant to external force, whereby the expanded space may be easily deformed. In order to solve this problem, therefore, it is necessary to install an additional structure in the space in order to increase the rigidity of the space, which is another problem.
DISCLOSURE Technical ProblemThe present invention has been made in view of the above problems, and it is an object of the present invention to provide a pouch-shaped battery case having a hidden-type gas pocket, wherein the gas pocket is configured to be unfolded or expanded, when gas is generated, in order to form a gas reception space, whereby it is possible to reduce the extent of swelling of a battery when the gas is generated, and wherein the gas pocket is configured so as not to occupy any space in a normal state and to be unfolded only when the gas is generated in order to form the gas reception space, whereby it is possible to improve the efficiency of utilization of space in the battery. The present invention also provides a pouch-shaped secondary battery including the same, and a battery module including the same.
Technical SolutionIn accordance with an aspect of the present invention, the above and other objects can be accomplished by the provision of a pouch-shaped secondary battery including an electrode assembly and a pouch-shaped case configured to receive the electrode assembly, wherein the pouch-shaped case has therein a gas pocket configured such that at least a portion of the gas pocket is maintained in a folded state and such that, when gas is generated in the pouch-shaped case, the gas pocket is unfolded to form a space configured to collect the gas.
Here, the gas pocket may be formed at a portion of the pouch-shaped case that is folded in order to cover the electrode assembly at a perimeter portion of the pouch-shaped case.
The pouch-shaped case may be configured to have a quadrangular planar structure, and in the case in which a perimetric surface of this quadrangular plane includes a single surface that is folded and three surfaces that are attached by sealing, the gas pocket may be formed at the single surface that is folded.
In addition, the gas pocket may be formed at a portion of the pouch-shaped case that is attached by sealing at the perimeter portion of the pouch-shaped case.
In addition, the gas pocket may be formed at at least one of opposite side surfaces of the pouch-shaped case.
The pouch-shaped case may include a case main body, in which the electrode assembly is mounted, and the gas pocket formed at one side of the case main body, and the gas pocket may be configured to have a structure in which the gas pocket is bent from the case main body into tight contact with the case main body.
The gas pocket may be configured to have a structure in which the gas pocket is bent multiple times into tight contact with the case main body.
The gas pocket may be configured to have a structure in which the gas pocket is bent so as to have a bellows structure that is in tight contact with the case main body.
In accordance with another aspect of the present invention, there is provided a pouch-shaped battery case including a case main body, in which an electrode assembly is mounted, and a gas pocket formed at at least one side of the case main body, wherein the gas pocket is configured such that the gas pocket is maintained in a folded state and such that, when gas is generated from the electrode assembly, the gas pocket is unfolded to form a space configured to collect the gas.
It is preferable that the gas pocket may be configured to have a structure in which the gas pocket is bent from the case main body into tight contact with the case main body.
In accordance with a further aspect of the present invention, there is provided a battery module including one or more pouch-shaped secondary batteries described above.
The principal technical solutions described above will be more concretely and definitely disclosed with reference to the following description of “best mode” and the accompanying drawings. In addition to the principal technical solutions, various other technical solutions according to the present invention will be further provided and described.
Advantageous EffectsA pouch-shaped battery case having a hidden-type gas pocket according to the present invention, a pouch-shaped secondary battery including the same, and a battery module including the same have effects in that, when gas is generated from an electrode assembly, the gas pocket, which is maintained in a folded state, is unfolded or expanded to form a gas reception space, whereby it is possible to reduce the extent of swelling of the battery case when the gas is generated, and in particular, the gas pocket is configured so as to occupy little space in a normal state and to be unfolded to form the gas reception space only when the gas is generated, whereby it is possible to improve the efficiency of utilization of space in the battery.
Hereinafter, exemplary embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in
Here, the electrode assembly 10 is a power-generating element configured to have a structure including a positive electrode, a negative electrode, and a separator interposed between the two electrodes. The electrode assembly 10 may be constructed using a well-known electrode assembly 10, and therefore a detailed description thereof will be omitted.
The pouch-shaped case 20 may be made of a laminate sheet configured to cover the outside of the electrode assembly 10 in a sealed state. Preferably, the laminate sheet is made of a metal material, such as aluminum.
The structure in which the electrode assembly 10 is sealed using the pouch-shaped case 20 may be variously constructed. In this embodiment, the pouch-shaped case 20 has a quadrangular sealing structure, since the electrode assembly 10 generally has a quadrangular planar structure.
This pouch-shaped case 20 is configured to have a structure in which an approximately middle portion thereof is folded, the electrode assembly 10 is located therebetween, and the other open three perimetric surfaces thereof are sealed except for the folded portion. Consequently, the pouch-shaped case 20 covers the upper surface and the lower surface of the electrode assembly 10 in the state in which the electrode assembly 10 is located therein, and the four perimetric surfaces of the pouch-shaped case, which constitute a quadrangular plane, include a single surface 22 that is folded (hereinafter, also referred to as a ‘folded surface’) and three surfaces 24 and 25 that are attached by sealing (hereinafter, also referred to as ‘sealed surfaces’).
Here, the sealed surfaces 24 and 25 may be portions that are sealed by adhering the overlapping portions of the laminate sheet constituting the pouch-shaped case 20 closely to each other by thermal welding.
In particular, a gas pocket 30 configured to collect gas generated from the electrode assembly 10 due to various causes is provided at the folded surface 22 of the pouch-shaped case 20. The gas pocket 30 will be described hereinafter in detail with reference to
Meanwhile,
Now, the gas pocket 30 will be described below in detail with reference to
In this embodiment, the gas pocket 30 is provided at the folded surface 22 of the pouch-shaped case 20. The gas pocket 30 is configured such that the gas pocket 30 is maintained in a folded state at the side surface of the pouch-shaped case 20 and such that, when gas is generated in the pouch-shaped case 20, the gas pocket 30 is unfolded to form a space configured to collect the gas.
Referring to
Referring to the figures showing the present embodiment, the gas pocket 30 is configured to have a structure in which the gas pocket 30 is bent two or three times from the middle portion of the side surface of the case main body 21 and is then in tight contact with the side surface of the case main body 21.
For reference, in all the figures showing the embodiment of the present invention, the folded structure of the gas pocket 30 is somewhat widened. However, the gas pocket 30 is shown as described above in order to clearly show the folded structure thereof. Consequently, it is desirable to understand that the folded portions of the gas pocket 20 are assembled in the state of being in tight contact with each other or with the case main body 21.
The gas pocket 30 may be configured such that the pouch-shaped case 20 is bent in the state of being simply in tight contact in a double-folded structure and is then in tight contact with the side surface of the case main body 21. As needed, however, the overlapping portions, among the portions constituting the gas pocket 30, may be sealed at low strength, and may then be brought into tight contact with the side surface of the case main body 21. At this time, the sealing strength of the gas pocket 30 may be lower than the sealing strength of the other three sealed surfaces 24 and 25 by a predetermined level such that, when gas is generated in the pouch-shaped case, the sealed portion of the gas pocket 30 is widened to collect the gas.
The process of collecting the gas generated in the pouch-shaped case using the gas pocket 30 will be described with reference to
When gas is generated in the battery in the state in which the gas pocket 30 is folded as described above, as shown in
Subsequently, when gas is continuously generated in the battery, the gas pocket 30 continuously swells. When the gas pocket 30 fully swells, as shown in
The maximum gas collection space S in the gas pocket 30 may be appropriately set depending on embodiment conditions. By the provision of the gas pocket 30, it is possible to minimize the deformation of the remaining portion of the battery, excluding the portion of the battery at which the gas pocket is located, when gas is generated in the battery. In particular, it is possible to sufficiently secure the gas collection space, whereby it is possible to prevent explosion of the battery.
Hereinafter, various embodiments of the gas pocket according to the present invention will be described. For reference, components of the following embodiments that are identical or similar to the components of the first embodiment are denoted by the same reference numerals, a duplicate description thereof will be omitted if possible, and a description will be given based on components of the following embodiments that are different from the components of the first embodiment.
In the first embodiment of the present invention previously described, the gas pocket 30 is provided only at the folded portion of the pouch-shaped case 20, i.e. the folded surface 22. In the second embodiment of the present invention, however, the construction in which the gas pocket 30 may also be formed at the sealed portion of the pouch-shaped case 20, i.e. the sealed surface 24, is shown.
That is, referring to
Here, it may be considered that the sealed surface 24, at which the gas pocket 32 is formed, is formed so as to have a smaller width of the sealing attachment surface than the other sealed surfaces 25 (see
In the structure in which the gas pocket 32 is also formed at the sealed surface 24 of the pouch-shaped case 20, as described above, the gas pocket 30 may not be formed at the folded surface 22 of the pouch-shaped case 20, and the gas pocket 32 may be formed at only the sealed surface 24 of the pouch-shaped case 20. In addition, in the case in which the pouch-shaped case 20 is constituted by two laminate sheets and thus all surfaces of the pouch-shaped case are attached to each other by sealing without being folded, the gas pocket 32 shown in
The gas pocket 30 (31a and 32a) may be formed at one of the opposite side surfaces of the battery.
The other components of this embodiment may be configured so as to be identical or similar to the components of the embodiments that were previously described, and therefore a duplicate description thereof will be omitted.
In addition, the opposite gas pockets 32a start to be formed from opposite sides in the diagonal direction.
In this embodiment, the gas pocket 30 (33 and 34) may be formed at only one of the opposite sides of the battery.
In this embodiment, a gas pocket 35 having the same structure may be formed at the sealed surface of the battery, or the gas pocket 35 may be formed at opposite sides of the battery.
In addition, since the gas pocket 35 is formed so as to have a bellows structure, bellows parts constituting the bellows structure may be attached to each other via an adhesive member such that the gas pocket 35 is stably fixed in tight contact with the side surface of the battery before gas is generated.
Meanwhile, a battery module may be configured to include one or more pouch-shaped secondary batteries described above. The battery module is configured to include at least one pouch-shaped secondary battery cell. A plurality of pouch-shaped secondary battery cells may be combined in order to constitute the battery module. In addition, a plurality of battery modules may be combined in order to manufacture a battery pack.
The technical ideas described with reference to the above-described embodiments of the present invention may be embodied independently or in a combined state. In addition, although the present invention has been described with reference to the embodiments disclosed in the drawings and the detailed description of the invention, the embodiments are merely illustrative. Those skilled in the art to which the present invention pertains will appreciate that various modifications and other equivalent embodiments can be devised based on the embodiments described above. Therefore, the technical protection scope of the present invention is to be defined by the appended claims.
Claims
1. A pouch-shaped secondary battery comprising:
- an electrode assembly; and
- a pouch-shaped case configured to receive the electrode assembly, wherein
- the pouch-shaped case includes a gas pocket, at least a portion of which is folded, such that, when gas is generated in the pouch-shaped case, the gas pocket is configured to unfold to form a space for collecting the gas.
2. The pouch-shaped secondary battery according to claim 1, wherein the pouch-shaped case includes an upper portion and a lower portion joined together at an intermediate portion, the pouch-shaped case being folded at the intermediate portion so that the electrode assembly is received between the upper and lower portions, wherein the gas pocket is disposed at the intermediate portion.
3. The pouch-shaped secondary battery according to claim 1, wherein the pouch-shaped case has a planar, quadrangular structure defining a perimeter having a single folded surface and three surfaces that are attached by sealing, the gas pocket being located at the single folded surface.
4. The pouch-shaped secondary battery according to claim 1, wherein the pouch-shaped case includes an upper portion and a lower portion sealed along at least a perimeter portion of the pouch-shaped case, and wherein the gas pocket is located along at least a portion of the perimeter portion of the pouch-shaped case.
5. The pouch-shaped secondary battery according to claim 1, wherein the pouch-shaped case includes at least one gas pocket arranged at at least one side of the pouch-shaped case.
6. The pouch-shaped secondary battery according to claim 1, wherein
- the pouch-shaped case comprises a case main body, in which the electrode assembly is received, with the gas pocket being formed at one side of the case main body,
- the gas pocket being bent into tight contact with the case main body.
7. The pouch-shaped secondary battery according to claim 6, wherein the gas pocket is bent multiple times into tight contact with the case main body.
8. The pouch-shaped secondary battery according to claim 6, wherein the gas pocket is bent into a bellows structure that is in tight contact with the case main body.
9. A pouch-shaped battery case comprising:
- a case main body configured to receive an electrode assembly therein; and
- a gas pocket positioned at least one side of the case main body, wherein
- the gas pocket has a folded configuration such that, when gas is generated from the electrode assembly, the gas pocket is configured to unfold to form a space for collecting the gas.
10. The pouch-shaped battery case according to claim 9, wherein the gas pocket is bent into tight contact with the case main body.
11. A battery module comprising one or more pouch-shaped secondary batteries according to claim 1.
12. The pouch-shaped secondary battery according to claim 5, wherein the pouch-shaped case includes at least two gas pockets arranged at opposite sides of the pouch-shaped case from one another.
13. The pouch-shaped secondary battery according to claim 6, wherein the case main body includes opposing upper and lower surfaces joined together along side surfaces that extend along a perimeter of the upper and lower surfaces, wherein the gas pocket is bent into tight contact with at least one of the side surfaces of the case main body.
14. The pouch-shaped secondary battery according to claim 6, wherein the case main body includes opposing upper and lower surfaces joined together along side surfaces that extend along a perimeter of the upper and lower surfaces, wherein the gas pocket is bent into tight contact with at least one of the upper and lower surfaces of the case main body.
Type: Application
Filed: Jan 8, 2019
Publication Date: Jun 25, 2020
Applicant: LG Chem, Ltd. (Seoul)
Inventors: Han Ki YOON (Daejeon), Kye Yeon RYU (Daejeon)
Application Number: 16/619,687