DEVICES AND METHODS FOR FLUID TRANSFER THROUGH A PLACED PERIPHERAL INTRAVENOUS CATHETER
An apparatus includes a catheter, an introducer, and an actuator. A distal end portion of the introducer is configured to couple to an indwelling peripheral intravenous line. The actuator is movably coupled to the introducer and is configured to move the catheter between a first position, in which the catheter is disposed within the introducer, and a second position, in which a distal end portion of the catheter is distal to the introducer. A first portion of the actuator is disposed outside of the introducer and in contact with an outer surface of the introducer such that (1) a longitudinal axis defined by a second portion of the actuator is nonparallel to a longitudinal axis defined by the introducer and (2) the second portion of the actuator exerts a force on a proximal end portion of the catheter operable to increase an internal stress within a portion of the catheter.
Latest Velano Vascular, Inc. Patents:
- Devices and methods for fluid transfer through a placed peripheral intravenous catheter
- Devices and methods for fluid transfer through a placed peripheral intravenous catheter
- Stabilizing connector devices for vascular access and methods of using the same
- Devices and methods for fluid transfer through a placed peripheral intravenous catheter
- Stabilization devices for vascular access and methods of using the same
This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 62/474,202 entitled, “Devices and Methods for Fluid Transfer Through a Placed Peripheral Intravenous Catheter,” filed Mar. 21, 2017, the disclosure of which is incorporated herein by reference in its entirety.
BACKGROUNDThe embodiments described herein relate generally to fluid transfer medical devices. More particularly, the embodiments described herein relate to devices and methods for transferring fluid to or from a patient through a placed peripheral intravenous catheter.
The typical hospitalized patient encounters a needle every time a doctor orders a lab test. The standard procedure for blood extraction involves using a metal needle (“butterfly needle”) to “stick” patients' veins in their arms or hands. Blood drawing is a manual, labor-intensive process, with the average patient requiring hours of direct skilled labor during a typical hospital stay. This needle stick is not only painful and a major source of patient dissatisfaction, but the nurses or specialized blood drawing personnel (phlebotomists) often have difficulty finding the vein in approximately 10-15% of patients, resulting in multiple, painful “stick” attempts. This results in significantly higher material and labor costs (needles and tubing must be disposed of after every attempt) and increased patient pain and bruising.
The current process for drawing blood is inefficient, taking on average 7-10 minutes, and more than 21 minutes for 10% of patients. These 10% of patients are referred to as Difficult Intra-Venous Access or more commonly as “tough stick” patients. If superficial veins are not readily apparent, blood can be forced into the vein by massaging the arm from wrist to elbow, tapping the site with the index and middle finger, applying a warm, damp washcloth to the site for 5 minutes, or by lowering the extremity over the bedside to allow the veins to fill. Each of these methods is time consuming and therefore costly.
Peripheral IV catheters (PIVs) are inserted into most patients while they are hospitalized and used for infusing fluids and medications. However, they are not designed for blood extractions. The failure rates for aspiration reach 20-50% when PIVs have been left inserted for more than a day. Blood extracted from PIVs is often hemolyzed, defined as the rupture of red blood cells and the release of their contents into surrounding fluid, resulting in a discarded sample and need to repeat the blood collection.
Several barriers can contribute to the shortcomings of extracting blood through a PIV. First, most catheters are formed from a soft bio-reactive polymer, which can lead to a potential narrowing or collapse of the catheter as the negative pressure is applied for aspiration. Another barrier is that longer indwelling times can increase debris (e.g., fibrin/platelet clots) that builds up on the tip of the catheter and within the lumen of the catheter and/or PIV. Similarly, such debris can at least partially occlude the lumen of the vein in which the PIV is placed. In some instances, this debris (e.g., fibrin/platelet clots) around the PIV can lead to reduced blood flow within portions of the vein surrounding the inserted PIV (e.g., both upstream and downstream), which in turn, results in improper and/or inefficient aspiration. Another barrier is attributed to a “suction cup” effect, wherein the negative pressure created by aspiration through the catheter and the possible curved path of a vein results in the tip of the catheter adhering to the wall of the vein. As the negative pressure increases the vein can rupture resulting in “blowing the vein,” which is a concern for phlebotomists during aspiration through a PIV.
Thus, a need exists for an improved system and method for phlebotomy through a peripheral intravenous catheter.
SUMMARYDevices and methods for transferring fluid to or from a patient through a placed peripheral intravenous catheter are described herein. In some embodiments, an apparatus includes a catheter, an introducer, and an actuator. The catheter has a proximal end portion and a distal end portion and defines a lumen therethrough. The introducer has a proximal end portion and a distal end portion and defines an inner volume configured to movably receive the catheter. The distal end portion of the introducer has a lock configured to couple the introducer to an indwelling peripheral intravenous line. The actuator is movably coupled to the introducer and has a first portion disposed outside of the introducer and a second portion disposed in the inner volume of the introducer and coupled to the proximal end portion of the catheter. The actuator is configured to be moved relative to the introducer to move the catheter between a first position, in which the catheter is disposed within the introducer, and a second position, in which the distal end portion of the catheter is disposed beyond the distal end portion of the introducer such that at least a first portion of the catheter is disposed within the peripheral intravenous line when the introducer is coupled to the peripheral intravenous line. The first portion of the actuator is in contact with an outer surface of the introducer such that (1) a longitudinal axis defined by the second portion of the actuator is nonparallel to a longitudinal axis defined by the introducer and (2) the second portion of the actuator exerts a force on the proximal end portion of the catheter operable to increase an internal stress within at least second a portion of the catheter.
In some embodiments, an apparatus includes a catheter, an introducer, and an actuator. The catheter has a proximal end portion and a distal end portion and defines a lumen therethrough. The introducer has a proximal end portion and a distal end portion and defines an inner volume configured to movably receive the catheter. The distal end portion of the introducer has a lock configured to couple the introducer to an indwelling peripheral intravenous line. The actuator is movably coupled to the introducer and has a first portion disposed outside of the introducer and a second portion disposed in the inner volume of the introducer and coupled to the proximal end portion of the catheter. The actuator is configured to be moved relative to the introducer to move the catheter between a first position, in which the catheter is disposed within the introducer, and a second position, in which the distal end portion of the catheter is disposed beyond the distal end portion of the introducer such that at least a first portion of the catheter is disposed within the peripheral intravenous line when the introducer is coupled to the peripheral intravenous line. The first portion of the actuator is in contact with an outer surface of the introducer such that (1) a longitudinal axis defined by the second portion of the actuator is nonparallel to a longitudinal axis defined by the introducer and (2) the second portion of the actuator exerts a force on the proximal end portion of the catheter operable to increase an internal stress within at least second a portion of the catheter.
In some embodiments, an apparatus includes a catheter, an introducer, and an actuator. The catheter has a proximal end portion and a distal end portion and defines a lumen therethrough. The introducer has a proximal end portion and a distal end portion and defines an inner volume configured to movably receive the catheter. The distal end portion of the introducer has a lock configured to couple the introducer to an indwelling peripheral intravenous line. The lock defines a lumen configured to movably receive the catheter. The actuator is coupled to the proximal end portion of the catheter and is configured to move relative to the introducer in response to a first force exerted on the actuator to move the catheter between a first position, in which the distal end portion of the catheter is disposed within the lumen of the lock, and a second position, in which the catheter extends through the lock and the peripheral intravenous line when the lock is coupled to the peripheral intravenous line such that the distal end portion of the catheter is distal to the peripheral intravenous line. The actuator is configured to exert a second force different from the first force on the proximal end portion of the catheter as the actuator moves the catheter from the first position to the second position. The second force results in a deflection of a portion of the catheter disposed between the actuator and the lock as the actuator moves the catheter from the first position to the second position.
In some embodiments, a method of using a fluid transfer device includes coupling a lock of the fluid transfer device to an indwelling peripheral intravenous line. The fluid transfer device includes an introducer having a distal end portion coupled to the lock, a catheter movably disposed in an inner volume defined by the introducer, and an actuator coupled to a proximal end portion of the catheter and configured to be moved relative to the introducer. A first force is exerted on the actuator to move the actuator relative to the introducer to advance the catheter from a first position, in which a distal end portion of the catheter is disposed within a lumen defined by the lock, toward a second position. A second force different from the first force is exerted by the actuator on the proximal end portion of the catheter as the actuator advances the catheter from the first position toward the second position. A portion of the catheter disposed between the actuator and the lock is deflected a first amount in response to the second force as the catheter is advanced from the first position to the second position. The portion of the catheter is deflected a second amount greater than the first amount in response to (1) the second force and (2) the distal end portion of the catheter impacting an obstruction as the catheter is advanced from the first position to the second position.
In some embodiments, an apparatus includes a catheter, an introducer, and an actuator. The catheter has a proximal end portion and a distal end portion. The introducer has a proximal end portion and a distal end portion and is configured to be coupled to a peripheral intravenous line. The introducer defines an inner volume configured to movably receive the catheter. The actuator includes a first portion that is in contact with an outer surface of the introducer and a second portion disposed within the inner volume and coupled to the proximal end portion of the catheter. The actuator is configured to move relative to the introducer to move the catheter between a first position, in which the catheter is disposed within the introducer, and a second position, in which the distal end portion of the catheter is disposed beyond the distal end portion of the introducer such that at least a portion of the catheter is disposed within the peripheral intravenous line when the introducer is coupled thereto. The contact between the outer surface and the first portion of the actuator is such that the catheter is biased when the catheter is in the first position.
As used herein, the terms “catheter” and “cannula” are used interchangeably to describe an element configured to define a passageway for moving a bodily fluid from a first location to a second location (e.g., a fluid passageway to move a bodily fluid out of the body). While cannulas can be configured to receive a trocar, a guide wire, or an introducer to deliver the cannula to a volume inside the body of a patient, the cannulas referred to herein need not include or receive a trocar, guide wire, or introducer.
As used in this specification, the terms “Y-adapter” and “T-adapter” are used to refer to a dual port IV extension set. In this manner, the terms “Y-adapter” and “T-adapter” generally describe an overall shape of the dual port IV extension set. For example, as used herein, a Y-adapter is substantially “Y” shaped including a single port at a first end and two ports angularly disposed at a second end. Furthermore, the terms “Y-adapter” and “T-adapter” are included by way of example only and not limitation. For example, in some embodiments, an apparatus can include a single port IV extension set (e.g., a single port adapter) or a multi-port IV extension set (e.g., an adapter with more than two ports).
As used in this specification, the words “proximal” and “distal” refer to the direction closer to and away from, respectively, a user who would place the device into contact with a patient. Thus, for example, the end of a device first touching the body of the patient would be the distal end, while the opposite end of the device (e.g., the end of the device being manipulated by the user) would be the proximal end of the device.
As used herein, the term “stiffness” relates to an object's resistance to deflection, deformation, and/or displacement by an applied force. Stiffness can be characterized in terms of the amount of force applied to the object and the resulting distance through which a first portion of the object deflects, deforms, and/or displaces with respect to a second portion of the object. When characterizing the stiffness of an object, the deflected distance may be measured as the deflection of a portion of the object different from the portion of the object to which the force is directly applied. Said another way, in some objects, the point of deflection is distinct from the point where force is applied.
Stiffness is an extensive property of the object being described, and thus is dependent upon the material from which the object is formed as well as certain physical characteristics of the object (e.g., shape and boundary conditions). For example, the stiffness of an object can be increased or decreased by selectively including in the object a material having a desired modulus of elasticity, flexural modulus, and/or hardness. The modulus of elasticity is an intensive property of (i.e., is intrinsic to) the constituent material and describes an object's tendency to elastically (i.e., non-permanently) deform in response to an applied force. A material having a high modulus of elasticity will not deflect as much as a material having a low modulus of elasticity in the presence of an equally applied stress. Thus, the stiffness of the object can be increased, for example, by introducing into the object and/or constructing the object of a material having a high modulus of elasticity.
Similarly, a material's hardness is an intensive property of the constituent material and describes the measure of how resistant the material is to various kinds of permanent shape change when a force is applied. In discussing the hardness and the subsequent effect on the stiffness of a catheter, the Shore durometer scale is generally used. There are several scales for durometers with two commonly used in describing plastics, polymers, elastomers, and/or rubbers, namely, type A and type D, where type A is generally used for softer materials and type D is generally used for harder materials. The Shore durometer of a material is denoted by a number between 0 and 100, with higher numbers indicating a harder material, followed by the type of scale. For instance, a first material can be measured as having a Shore durometer of 40 Shore A and a second material can be measured as having a Shore durometer of 20 Shore D. Therefore, according to the Shore durometer scale, the second material is harder and thus, more stiff than the first material.
As used herein, the word “clutch” and/or “clutching” refers to a transitioning of a catheter between a first configuration (e.g., an “unclutched” configuration) and a second configuration (e.g., a “clutched” configuration) in a predetermined and/or predictable manner. Specifically, a catheter can bent, flexed, bowed, deformed, deflected, moved, compressed, and/or otherwise reconfigured when transitioned from an “unclutched” configuration to a “clutched” configuration. In some instances, a catheter can “clutch” and/or can be “clutched” in response to a distal end of the catheter impacting an obstruction, kink, bend, valve, etc. that restricts, limits, and/or substantially prevents further movement thereof. In some instances, the clutching of the catheter can be in the form of a linear, sinusoidal, elliptical, curvilinear, and/or logarithmic deflection and/or deformation, or any other form or combination of forms of deflection and/or deformation away from an original or “unclutched” configuration. In some instances, an amount and/or manner of deformation and/or deflection (“clutching”) of the catheter when transitioned to the clutched configuration can be tuned by increasing or decreasing the stiffness, hardness, and/or durometer of the constituent material forming the catheter, increasing or decreasing an inner and/or outer diameter of the catheter, increasing or decreasing a wall thickness of the catheter, increasing or decreasing a length of a substantially unsupported portion of the catheter, increasing or decreasing a range of motion and/or degree of freedom of the catheter, increasing or decreasing an amount of force transferred to the catheter, and/or any other suitable adjustment.
The transfer device 100 includes at least an introducer 110, a catheter 160 (or cannula), and an actuator 170. The introducer 110 can be any suitable configuration. For example, in some embodiments, the introducer 110 can be an elongate member having a substantially circular cross-sectional shape. In some embodiments, the shape of the introducer 110 and/or one or more features or surface finishes of at least an outer surface of the introducer 110 can be arranged to increase the ergonomics of the transfer device 100, which in some instances, can allow a user to manipulate the transfer device 100 with one hand (i.e., single-handed use).
The introducer 110 has a proximal end portion proximal end portion 111 and a distal end portion 112 and defines an inner volume 113. Although not shown in
The distal end portion 112 of the introducer 110 includes and/or is coupled to a lock configured to physically and fluidically couple the introducer 110 to the PIV 105 (see e.g.,
In some embodiments, the distal end portion 112 of the introducer 110 can include and/or can be coupled to a support member or the like that is operable in placing the introducer 110 and/or device 100 at a predetermined angle relative to a target surface. For example, in some embodiments, the arrangement of the lock can be such that placing a predetermined portion of the lock in contact with a target surface, in turn, places the introducer 110 and/or device 100 at a predetermined and/or desired angle relative to the target surface. In other embodiments, a support member and/or the like can be coupled to the distal end portion 112 of the introducer 110 and configured to place the introducer 110 and/or device 100 at the predetermined and/or desired angle relative to the target surface. In some instances, the target surface can be a cutaneous surface of a body through which the PIV 105 is inserted (e.g., an outer surface of a patient's arm or the like). In some embodiments, the predetermined angle can be, for example, between about 0° and about 30°, between about 4° and about 15°, between about 8° and about 10°, or any other suitable angle.
In some embodiments, the distal end portion 112 of the introducer 110 (and/or the lock) can include a seal or the like that can be transferred from a sealed configuration to a substantially open configuration to place at least a portion of the inner volume 113 in fluid communication with the lock. In some embodiments, the seal can include back flow prevention mechanism such as a one-way valve or the like that can allow, for example, the catheter 160 to be advanced in the distal direction therethrough while limiting and/or substantially preventing a fluid flow, outside the catheter 160, in the proximal direction through the seal.
As described above, the introducer 110 defines the inner volume 113, which extends between the proximal end portion 111 and the distal end portion 112. The inner volume 113 has and/or defines a first portion 114 configured to receive a first portion 171 of the actuator 170 and a second portion 115 configured to receive the catheter 160 and a second portion 175 of the actuator 172, as shown in
Although not shown in
The catheter 160 of the transfer device 100 includes a proximal end portion 161 and a distal end portion 162 and defines a lumen 163 that extends through the proximal end portion 161 and the distal end portion 162. The catheter 160 is movably disposed within the second portion 115 of the inner volume 113 defined by the introducer 110 and is coupled to the actuator 170. In some embodiments, the catheter 160 can be moved (e.g., via movement of the actuator 170) between a first position and a second position to transition the transfer device 100 between the first configuration and the second configuration, respectively. More specifically, at least the distal end portion 162 of the catheter 160 is disposed within the second portion 115 of the inner volume 113 when the catheter 160 is in the first position (
The catheter 160 can be any suitable shape, size, and/or configuration. For example, in some embodiments, at least a portion of the catheter 160 can have an outer diameter (e.g., between a 10-gauge and a 30-gauge) that is substantially similar to or slightly smaller than an inner diameter defined by a portion of the lock coupled to the distal end portion 112 of the introducer 110. In this manner, an inner surface of the portion of the lock can guide the catheter 160 as the catheter 160 is moved between the first position and the second position. In some embodiments, such an arrangement can limit and/or can substantially prevent bending, deforming, and/or kinking of a portion of the catheter 160 the portion is moved between the first position and the second position. In some embodiments, the catheter 160 can have a length that is sufficient to place a distal surface of the catheter 160 in a desired position relative to a distal surface of the PIV 105 when the catheter 160 is in the second position. In other words, the length of the catheter 160 can be sufficient to define a predetermined and/or desired distance between the distal surface of the catheter 160 and the distal surface of the PIV 105 when the catheter 160 is in the second position. In some instances, placing the distal surface of the catheter 160 at the predetermined and/or desired distance from the distal surface of the PIV 105 can, for example, place the distal surface of the catheter 160 in a desired position within a vein, as described in further detail herein.
The catheter 160 can be formed from any suitable material or combination of materials, which in turn, can result in the catheter 160 having any suitable stiffness or durometer. In some embodiments, at least a portion of the catheter 160 can be formed of a braided material or the like, which can change, modify, and/or alter a flexibility of the catheter 160 in response to a bending force or the like. In some embodiments, forming the catheter 160 of the braided material or the like can reduce a likelihood of kinking and/or otherwise deforming in an undesired manner. In addition, forming at least a portion of the catheter 160 of a braided material can result in a compression and/or deformation in response to a compression force exerted in a direction of a longitudinal centerline defined by the catheter 160 (e.g., an axial force or the like). In this manner, the catheter 160 can absorb a portion of force associated with, for example, impacting an obstruction or the like. As described in further detail herein, in some instances, at least a portion of the catheter 160 can deform in response to the force associated with impacting such an obstruction or the like.
The actuator 170 of the transfer device 100 can be any suitable shape, size, and/or configuration. As described above, the actuator 170 includes the first portion 171 movably disposed within the first portion 114 of the inner volume 113 and the second portion 175 movably disposed within the second portion 115 of the inner volume 113 and coupled to the catheter 160. Although not shown in
The arrangement of the actuator 170 and the introducer 110 is such that the first portion 171 extends through the slot or the like in fluid communication with the first portion 114 of the inner volume 113. As such, a first region of the first portion 171 of the actuator 170 is disposed outside of the introducer 110 and a second region of the first portion 171 of the actuator 170 is disposed in the first portion 114 of the inner volume 113. In this manner, a user can engage the first region of the first portion 171 of the actuator 170 and can move the actuator 170 relative to the introducer 110 to move the catheter 160 coupled to the second portion 175 of the actuator 170 between the first position and the second position. Although not shown in
In some embodiments, the arrangement of the first portion 171 of the actuator 170 and the outer surface of the introducer 110 is such that the actuator 170 is disposed at an angle relative to the introducer 110. That is to say, the contact between the first portion 171 of the actuator 170 and the outer surface of the introducer 110 tilts the actuator 170 relative to the introducer 110. Accordingly, in some instances, a longitudinal centerline of the actuator 170 can be nonparallel to a longitudinal centerline of the introducer 110. Furthermore, with the actuator 170 coupled to the proximal end portion 161 of the catheter 160, angling and/or tilting the actuator 170 results in a force (e.g., a pre-load force or the like) exerted on the catheter 160 that is sufficient to bend at least a portion of the catheter 160 (e.g., the catheter 160 is placed in a biased configuration), as described in further detail herein.
In some embodiments, the transfer device 100 can be disposed in the first configuration prior to use (e.g., shipped, stored, prepared, etc. in the first configuration). In use, a user can manipulate the transfer device 100 to couple the introducer 110 to the indwelling PIV 105 (e.g., via the lock coupled to and/or assembled with the introducer 110). With the transfer device 100 coupled to the PIV 105, the user can engage the first portion 171 of the actuator 170 to move the actuator 170 relative to the introducer 110, which in turn, moves the catheter 160 from the first position (e.g., disposed within the introducer 110) toward the second position. In some embodiments, the arrangement of the actuator 170 and the introducer 110 is such that advancing the actuator 170 relative to the introducer 110 produces a haptic output and/or feedback configured to provide and indicator associated with position of the distal end portion 162 of the catheter 160 relative to the introducer 110 and/or the PIV 105 to the user. For example, based on the haptic feedback or any other suitable indicator, the user can place the catheter 160 in the second position such that the distal surface of the catheter 160 extends a desired distance beyond the distal surface of the PIV 105, as described above.
With the catheter 160 in the second position (e.g., with the transfer device 100 in the second configuration shown in
In some instances, the catheter 160 can impact an obstruction or the like as the user advances the catheter 160 (via the actuator 170) from the first position to the second position. In some such instances, the catheter 160 can be configured to bend, deform, and/or otherwise reconfigure in response to a force exerted by the user. That is to say, a force (e.g., an activation or actuation force) exerted by the user on the actuator 170 that otherwise is sufficient to move the catheter 160 toward the second position results in a deflection, deformation and/or reconfiguration of at least a portion of the catheter 160 when the catheter 160 impacts an obstruction or the like. Moreover, with at least a portion of the catheter 160 being pre-loaded (e.g., bent, bowed, biased, deflected, and/or deformed in response to the angle of the actuator 170, as described above), the deflection, deformation, and/or reconfiguration of the portion of the catheter 160 can be predetermined, anticipated, and/or the like.
As described above, the deflection, deformation, and/or reconfiguration of the portion of the catheter 160 in response to impacting the obstruction can result in a “clutching” (e.g., bowing, bending, flexing, deflecting, deforming, compressing, etc.) of the catheter 160 and/or device 100 that reduces undesired forces otherwise exerted on, for example, a wall of a vein or the like. In some embodiments, the clutching of the catheter 160 can produce and/or can result in an audible, visual, and/or haptic indication that the catheter 160 has impacted an obstruction, as described in further detail herein with respect to specific embodiments. In some instances, once the catheter 160 and/or device 100 is “clutched” the user can pause as the pre-loaded and/or clutched catheter 160 and/or device 100 exerts a constant but linearly reducing force to overcome the obstruction or the like. In some instances, the clutched catheter 160 and/or device 100 can auto-unclutch (e.g., self-relieve at least a portion of the stress along a length of the catheter 160), resulting in a safe and/or controlled process for overcoming the obstruction.
As shown in
As shown in
As shown in
The ribs 236 formed by the outer surface 235 of the second member 230 can be any suitable shape, size, and/or configuration. For example, as shown in
Similarly, the second portion 238 of the ribs 236 can have any suitable configuration and/or arrangement. For example, in this embodiment, each rib in the second portion 238 is substantially uniform having substantially the same size and shape as the remaining ribs in the second portion 238. As shown in
While the set of ribs 236 transitions from the first portion 237 to the second portion 238 at a given point along the length of the second member 230 (see e.g.,
While the set of ribs 236 are shown as being formed only by the outer surface 235 of the second member 230, in other embodiments, the first member 220 can include an outer surface that forms a set of ribs. In such embodiments, the set of ribs of the first member 220 can be and/or can have any of the configurations and/or arrangements described above with reference to the set of ribs 236 of the second member 230. In some embodiments, the ribs of the first member 220 can be offset from the ribs 236 of the second member 230. For example, in some embodiments, the ribs of the first member 220 can have alternating local minima and local maxima (as described above with reference to the ribs 236) that are distributed along a length of the first member 220 such that the local minima and local maxima of the ribs of the first member 220 are aligned with the local maxima and local minima, respectively, of the ribs 236 of the second member 230 (e.g., offset along a length of the introducer 210). In other embodiments, the ribs of the first member 220 can be in varying positions relative to the ribs 236 of the second member 230. In this manner, the introducer 210 can provide a variable arrangement of ribs that can provide, for example, haptic feedback as the actuator 270 is moved relative to the introducer 210.
As shown in
In other embodiments, a first member 220 can be monolithically formed (e.g., via injection molding and/or any other suitable manufacturing process). That is to say, the first member 220 can be formed from a single work piece or the like rather than two work pieces, namely, the first member 220 and the second member 230. Thus, when referring to features of the first member 220, such features can be formed and/or defined by the first member 220, formed and/or defined by the second member 230, collectively formed and/or defined by the first member 220 and the second member 230, or, when the introducer 210 is formed from a single work piece, formed and/or defined by a corresponding portion of the introducer 210.
The first member 220 and the second member 230 collectively form a proximal end portion 211 and a distal end portion 212 of the introducer 210 and collectively define an inner volume 213 of the introducer 210. As shown in
As shown in
The seal can be any suitable type of seal. For example, in some embodiments, the seal can be an O-ring, a one-way valve, a diaphragm, a self-healing diaphragm, a check valve, a single crack valve, and/or any other suitable seal or valve member. In some embodiments, the seal is configured to define and/or otherwise have a predetermined “cracking” pressure. That is to say, in some embodiments, the seal can be configured to transition from a closed and/or sealed configuration to a substantially open configuration in response to an increase in pressure, for example, within the introducer 210. In some embodiments, the seal can be a positive pressure seal or the like. In other embodiments, the seal can be a fluid seal such as a saline lock or the like. Although not shown in
The inner surface 223 of the first member 220 and the inner surface 233 of the second member 230 collectively define the inner volume 213 of the introducer 210. As shown in
As shown in
In this embodiment, the second portion 215 of the inner volume 213 is substantially aligned with, for example, a portion of the opening 217 and a portion of an opening defined by the coupler 216. Moreover, the second portion 215 of the inner volume 213 is configured to be substantially aligned with the lock 240 when the lock is coupled to the coupler 216 of the introducer 210. In other words, the axis defined by the second portion 215 of the inner volume 213 is substantially co-axial with an axis defined by a portion of the lock 240, as described in further detail herein. In this manner, the second portion 215 of the inner volume 213 can movably receive, for example, a portion of the actuator 270 and a portion of the catheter 260. Thus, the actuator 270 can be moved relative to the introducer 210 to move the catheter 260 between a first position, in which the catheter 260 is entirely disposed within the second portion 215 of the inner volume 213, and a second position, in which at least a portion of the catheter 260 extends outside of the second portion 215 of the inner volume 213 and distal to the introducer 210, as described in further detail herein.
The lock 240 of the transfer device 200 can be any suitable shape, size, and/or configuration. As described above, the lock 240 is configured to be physically and fluidically coupled to the introducer 210 and configured to couple the introducer 210 to the PIV and/or any suitable intermediate device or adapter coupled to the PIV. The lock 240 has a coupler 241, a proboscis 242, a first arm 243, and a second arm 250, as shown in
The proboscis 242 extends from the coupler 246 and is disposed between the first arm 243 and the second arm 250. The proboscis 242 can be any suitable shape, size, and/or configuration. In some embodiments, the configuration of the proboscis 242 can be associated with or at least partially based on a size and/or shape of the PIV, a size and/or shape of an adapter (e.g., an extension set, a Y-adapter, a T-adapter, or the like), or a collective size and/or shape of the PIV and the adapter. For example, in some embodiments, the proboscis 242 can have a length that is sufficient to extend through at least a portion of the PIV (or adapter). In embodiments including an adapter coupled to the PIV, the proboscis 242 can be sufficiently long to extend through the adapter and at least partially into or through the PIV. In some embodiments, the proboscis 242 can be sufficiently long to extend through an adapter and the PIV such that at least a portion of the proboscis 242 is distal to the PIV. Moreover, the proboscis 242 can have an outer diameter that is similar to or slightly smaller than an inner diameter of a portion of the PIV and/or adapter coupled thereto. For example, in some embodiments, an outer surface of the proboscis 242 can be in contact with an inner surface of the PIV when the proboscis 242 is disposed therein. In this manner, the proboscis 242 can provide structural support to at least a portion of the PIV within which the proboscis 242 is disposed. Similarly, the proboscis 242 can have an inner diameter (a diameter of a surface at least partially defining the lumen 255) that is similar to or slightly larger than an outer diameter of a portion of the catheter 260, as described in further detail herein.
The first arm 243 and the second arm 250 of the lock 240 can be any suitable shape, size, and/or configuration. As shown in
The pivot portion 247 of the first arm 243 extends from the coupler 241, proboscis 242, and/or second arm 250 in a lateral direction. The first end portion 244 and the second end portion 245 of the first arm 243 are proximal to the pivot portion 247 and distal to the pivot portion 247, respectively. As such, the first arm 243 can act as a lever or the like configured to pivot about an axis defined by the pivot portion 247 in response to an applied force. For example, in some instances, a user can exert a force on the first end portion 244 (e.g., toward the coupler 241) that is sufficient to pivot the first end portion 244 of the first arm 243 toward the coupler 241 (as indicated by the arrow AA in
As described above with reference to the first arm 243, the second arm 250 of the lock 240 has a first end portion 251, a second end portion 252 including a tab 253, and a pivot portion 254 disposed between the first end portion 251 and the second end portion 252. In this embodiment, the first arm 243 and the second arm 250 are substantially similar in form and function and are arranged in opposite positions and orientations relative to the coupler 241 and proboscis 242 (e.g., the lock 240 is substantially symmetrical about its longitudinal axis). As such, the discussion of the first arm 243 similarly applies to the second arm 250 and thus, the second arm 250 is not described in further detail herein.
As described above, the lock 240 is configured to be coupled to the PIV and/or an adapter coupled to the PIV. For example, a user can exert a lateral force on the first end portion 244 of the first arm 243 and the first end portion 251 of the second arm 250 to pivot the first arm 243 and the second arm 250, respectively, from a first position toward a second position. The pivoting of the first arm 243, therefore, increases a space defined between the proboscis 242 and the second end portion 245 (and the tab 246) of the first arm 243. Similarly, the pivoting of the second arm 250 increases a space defined between the proboscis 242 and the second end portion 252 (and the tab 253) of the second arm 250. In this manner, the increased space between the proboscis 242 and the arms 243 and 250 is sufficient to allow a portion of the PIV and/or an adapter coupled to the PIV to be inserted within the space. Once the portion of the PIV and/or the adapter is in a desired position relative to the lock 240, the user can remove the force and in turn, the arms 243 and 250 pivot toward their respective first positions. As a result, the second end portions 245 and 252 are moved toward the proboscis 242 until the tabs 246 and 253, respectively, are placed in contact with a portion of the PIV and/or the adapter. The tabs 246 and 253 are configured to engage the portion of the PIV and/or adapter to temporarily couple the lock 240 to the PIV and/or adapter. In some embodiments, the lock 240 can be configured to establish three points of contact with the PIV and/or the adapter, namely, the tabs 246 and 253, and an outer surface of the proboscis 242 (as described above). In some embodiments, the tabs 246 and 253 can be configured to produce an audible output such as a click, a vibratory output such as a haptic bump, and/or the like when placed in contact with the portion of the PIV and/or adapter, which can indicate to a user that the lock 240 is properly coupled to the PIV and/or adapter.
As shown in
Although the lock 240 is shown and described above as including the proboscis 242, in other embodiments, a lock need not form a proboscis. For example, in some such embodiments, a lock can include a relatively short hub or the like configured to engage a portion of the PIV and/or an adapter coupled to the PIV. In some embodiments, a fluid transfer device can include and/or can be used with a proboscis or guide member (not formed with or by the lock) configured to be disposed, for example, between a PIV and an adapter such as an IV extension set. For example, such a proboscis or guide member can have an inner surface that is funnel shaped and/or is shaped similar to the inner surface of the proboscis 242. In this manner, the inner surface of such a proboscis and/or guide member can guide a portion of the catheter 260 as the catheter 260 is moved between the first position and the second position. In some embodiments, the lock 240 (including the proboscis 242) can be used in conjunction with such an external or separate proboscis and/or guide member. In some such embodiments, a portion of the proboscis 242 of the lock 240 can be inserted into the proboscis and/or guide member when the lock 240 is coupled to the adapter (e.g., IV extension set).
As described above, at least a portion of the catheter 260 and at least a portion of the secondary catheter 265 is movably disposed within the second portion 215 of the inner volume 213 defined by the introducer 210. As shown in
The catheter 260 can be any suitable shape, size, and/or configuration. For example, in some embodiments, at least a portion of the catheter 260 can have an outer diameter that is substantially similar to or slightly smaller than an inner diameter defined by the lumen 255 of the lock 240, as described above. In some embodiments, an outer surface of the catheter 260 can be configured to contact an inner surface of the lock 240 that defines at least a portion of the lumen 255. In this manner, an inner surface of the portion of the lock 240 defining the lumen 255 can guide the catheter 260 as the catheter 260 is moved between the first position and the second position. In some embodiments, such an arrangement can limit and/or can substantially prevent bending, deforming, and/or kinking of the catheter 260 as the catheter 260 is moved between the first position and the second position. Moreover, in some embodiments, the catheter 260 can have a length that is sufficient to place a distal surface of the catheter 260 in a desired position relative to a distal surface of the PIV when the catheter 260 is in the second position. In other words, the length of the catheter 260 can be sufficient to define a predetermined and/or desired distance between the distal surface of the catheter 260 and the distal surface of the PIV when the catheter 260 is in the second position, as described in further detail herein.
The catheter 260 can be formed from any suitable material or combination of materials, which in turn, can result in the catheter 260 having any suitable stiffness or durometer. For example, in some embodiments, the catheter 260 can be formed of a relatively flexible biocompatible material with a Shore durometer of approximately 20 Shore A to 50 Shore D; approximately 20 Shore A to 95 Shore D; approximately 70 Shore D to 85 Shore D, and/or any other suitable range of Shore durometer. In some embodiments, at least a portion of the catheter 260 can be formed of a braided material or the like, which can modify, change, and/or alter a flexibility of the catheter 260 in response to a bending force or the like. In other words, forming at least a portion of the catheter 260 from the braided material can increase an amount of deformation (in response to a bending force) of the catheter 260 prior buckling, kinking, and/or otherwise obstructing the lumen 263 of the catheter 260. Similarly, forming at least a portion of the catheter 260 of a braided material can result in a compression and/or deformation in response to a compression force exerted in a direction of a longitudinal centerline defined by the catheter 260 (e.g., an axial force or the like). In this manner, the catheter 260 can absorb a portion of force associated with, for example, impacting an obstruction or the like. In some instances, such an arrangement can reduce buckling and/or kinking of the catheter 260 as well as reduce and/or substantially prevent damage to vascular structures that may otherwise result from an impact of the catheter 260. Moreover, in some embodiments, forming at least a portion of the catheter 260 from the braided material, for example, can increase an amount of vibration transmitted through the catheter 260 in response to the portion of the actuator 270 advancing along the set of ribs 236 of the introducer 210 (as described above). While the catheter 260 is described above as including at least a portion formed of a braided material, in other embodiments, at least a portion of the catheter 260 can be formed of and/or can include a support wire, a stent, a fenestrated catheter, and/or the like such as those described in the '685 Patent incorporated by reference above.
The secondary catheter 265 has a proximal end portion 266 and a distal end portion 267 and defines a lumen 268 (see e.g.,
As shown in
The actuator 270 of the transfer device 200 is coupled to the catheter 260 can be moved along a length of the introducer 210 to transition the transfer device 200 between its first configuration, in which the catheter 260 is in the first position, and its second configuration, in which the catheter 260 is in the second position. The actuator 270 can be any suitable shape, size, and/or configuration. For example, in some embodiments, the actuator 270 can have a size and shape that is associated with and/or based at least in part on a size and/or shape of the introducer 210.
As shown in
The engagement member 272 includes a tab 273 disposed at or near a proximal end portion of the engagement member 272. The tab 273 can be any suitable tab, rail, ridge, bump, protrusion, knob, roller, slider, etc. that extends from a surface of the engagement member 272. The tab 273 is configured to selectively engage the outer surface 235 of the second member 230 of the introducer 210. More specifically, the tab 273 is in contact with the ribs 236 formed by the second member 230 and moves along each successive rib as the actuator 270 is moved along a length of the introducer 210.
As described above with reference to the set of ribs 236 of the second member 230, the tab 273 can have any suitable shape, size, and/or configuration. For example, as shown in
With the first portion 237 of the set of ribs 236 having a smaller size than the second portion 238 of the set of ribs 236, a first portion or first surface area of the tab 273 can be in contact with the first portion 237 of the set of ribs 236 and a second portion or second surface area of the tab 273 can be in contact with the second portion 238 of the set of ribs 236. In this manner, the tab 273 can move along the first portion 237 with a first set of characteristics and can move along the second portion 238 with a second set of characteristics different from the first set of characteristics. In some embodiments, for example, a force sufficient to move the tab 273 along the second portion 238 of the set of rib 236 can be greater than a force otherwise sufficient to move the tab 273 along the first portion 237 of the set of ribs 236. In some embodiments, the movement of the tab 273 along the second portion 238 of the set of ribs 236 can result in, for example, a larger amount of vibration of the actuator 270 than an amount of vibration otherwise resulting from the movement of the tab 273 along the first portion 237 of the set of ribs 236. Similarly, the shape of the tab 273 can be such that the tab 273 moves along the set of ribs 236 in the distal direction in response to an applied force that is insufficient to move the tab 273 along the set of ribs 236 in the proximal direction. For example, as shown in
While the engagement member 272 and tab 273 are particularly shown and described above, in other embodiments, an actuator can include an engagement member and/or tab having any suitable configuration. For example, while the tab 273 is shown as being disposed at or near a proximal end portion of the engagement member 272, in other embodiments, an engagement member can include a first tab disposed at or near a proximal end portion and a second tab disposed at or near a distal end portion, each of which can be selectively in contact with a set of ribs disposed on an outer surface of an introducer. In some embodiments, a space defined between a surface of the wall 277 and a surface of the engagement member 272 can be increased or decreased, which can result in an increase or decrease in an amount of travel of the actuator 270 relative to the introducer 210 in a direction other than an axial direction. That is to say, the increase or decrease in space between the surface of the wall 277 and a surface of the engagement member 272 can result in, for example, an increase or decrease of an amount the actuator 270 can “tilt” relative to the introducer 210. In other embodiments, the arrangement of the engagement member 272, the tab 273, and/or the set of ribs 236 of the introducer 210 can be modified, altered, tuned, adjusted, and/or otherwise changed such that the actuator 270 moves relative to the introducer 210 with a desired set of characteristics. For example, in some embodiments, the arrangement of the actuator 270 and/or introducer 210 can increase or decrease an amount the actuator 270 vibrates as it is moved relative to the introducer 210, increase or decrease an amount of force sufficient to move the actuator 270 relative to the introducer 210, increase or decrease an amount of movement of the actuator 270 relative to the introducer 210 in any suitable direction other than the axial direction (e.g., proximal direction or distal direction), and/or the like.
As shown, for example, in
The wall 277 of the actuator 270 couples the first portion 271 of the actuator 270 to the second portion 275 of the actuator 270. As shown in
Referring now to
The actuator 270 is disposed in a proximal position when the transfer device 200 is in the first configuration, as shown in
With the transfer device 200 in the first configuration, the user can manipulate the transfer device 200 to couple the lock 240 to an indwelling PIV and/or to an adapter coupled to the PIV (e.g., an extension set or the like). For example, in some embodiments, the user can exert a force sufficient to pivot the first arm 243 and the second arm 250 of the lock 240 such that a portion of the PIV and/or the adapter can be inserted into the space defined between the arms 243 and 250 and, for example, the proboscis 242. In some embodiments, the proboscis 242 can be inserted into the PIV and/or the adapter when the lock 240 is coupled thereto. For example, in some embodiments, a portion of the proboscis 242 can be inserted into a hub or basket of the PIV and/or adapter. As described above, in some embodiments, the proboscis 242 that is sufficiently long to dispose at least a portion of the proboscis 242 within the PIV, which in turn, supports and/or provides structural rigidity to the PIV. Once the PIV and/or adapter is disposed in the desired position relative to the lock 240, the user can remove the force on the arms 243 and 250 of the lock 240, which in turn, move toward proboscis 242 until the tab 246 of the first arm 243 and the tab 253 of the second arm 250 are placed in contact with a surface of the PIV and/or adapter. In some embodiments, the arrangement of the lock 240 is such that the tabs 246 and 253 and the proboscis 242 form three points of contact with the PIV and/or adapter that collectively coupled the lock 240 thereto.
With the transfer device 200 coupled to the PIV and/or adapter, the user can engage the engagement member 272 of the first portion 271 of the actuator 270 to move the actuator 270 relative to the introducer 210, which in turn, moves the catheter 260 from the first position (e.g., disposed within the introducer 210) toward the second position. In this manner, the catheter 260 is moved through the second portion 215 of the inner volume 213 and the lumen 255 of the lock 240 and as such, at least the distal end portion 262 of the catheter 260 is disposed outside of and distal to the lock 240, as indicated by the arrow CC in
As described above, the arrangement of the actuator 270 and the introducer 210 is such that advancing the actuator 270 relative to the introducer 210 advances the tab 273 along the outer surface 235 and more specifically, the set of ribs 236 of the second member 230 of the introducer 210. As shown, for example, in
In some instances, the user can stop moving the actuator 270 relative to the introducer 210 based on the haptic, tactile, and/or audible output indicating a desired placement of the distal end portion 262 of the catheter 260 relative to the PIV (e.g., the second position). In other words, the catheter 260 can be placed in the second position prior to the actuator 270 being advanced, for example, to a distal most position. As described in further detail herein, the catheter 260 is disposed in the second position when the distal end portion 262 of the catheter 260 is placed in a desired position relative to a distal end portion of the PIV. In some instances, for example, a distal end of the catheter 260 can be substantially flush with a distal end of the PIV when the catheter 260 is in the second position. In other instances, the distal end of the catheter 260 can extend a predetermined distance beyond the distal end of the PIV (e.g., distal to the distal end of the PIV). In still other instances, the distal end of the catheter 260 can be disposed within the PIV (e.g., proximal to the distal end of the PIV) when the catheter 260 is in the second position.
As shown in
In some instances, the indwelling PIV can substantially occlude at least a portion of the vein within which the PIV is disposed. As such, PIVs are often suited for delivering a fluid rather than aspirating blood. The venous system, however, is a capacitance system and thus, reroutes blood flow through a different vein (e.g., forms a bypass around the occlusion or substantial occlusion). Moreover, the alternate venous structure typically rejoins the vein in which the PIV is disposed at a given distance downstream of the PIV and thus, delivers at least portion of the flow of blood that would otherwise be flowing through the vein in which the PIV is disposed. Similarly, veins typically have many branch vessels coupled to thereto that similarly deliver a flow of blood to the vein within which the PIV is disposed.
As such, in some instances, the predetermined and/or desired distance between the distal surface of the catheter 260 and the distal surface of the PIV can be sufficient to place the distal surface of the catheter 260 downstream of one or more branch vessels in fluid communication with the vein within which the PIV is disposed. In other words, the distal surface of the catheter 260 can extend beyond the distal surface of the catheter 260 such that at least one branch vessel is disposed between the distal surface of the catheter 260 and the distal surface of the PIV when the catheter 260 is in the second position. Therefore, with the lumen 263 of the catheter 260 extending through the proximal end portion 261 and the distal end portion 262 of the catheter 260, placing the distal surface of the catheter 260 the predetermined and/or desired distance from the distal surface of the PIV places the lumen 263 of the catheter 260 in fluid communication with a portion of the vein receiving a substantially unobstructed or unrestricted flow of blood (e.g., unobstructed by the PIV and/or debris associated with the indwelling of the PIV).
In some instances, for example, the predetermined and/or desired distance can be between about 0.0 millimeters (e.g., the distal surfaces are flush) and about 100 millimeters (mm). In other embodiments, the predetermined and/or desired distance can be between about 10 mm and about 90 mm, between about 20 mm and about 80 mm, between about 30 mm and about 70 mm, between about 30 mm and about 60 mm, between about 40 mm and about 50 mm, or between any other suitable range or subranges therebetween. In some embodiments, for example, the transfer device 200 can be configured such that the actuator 270 can move about 95 mm along the introducer 210 (e.g., the transfer device 200 has a 95 mm stroke) to position the distal surface of the catheter 260 at about 40 mm beyond the distal surface of the PIV to which the transfer device 200 is coupled. In other embodiments, for example, the transfer device 200 can have a 47 mm stroke that positions the distal surface of the catheter 260 at about 20 mm beyond the distal surface of the PIV to which the transfer device 200 is coupled. In still other embodiments, the transfer device 200 can have any suitable stroke length to position the distal surface of the catheter 260 at the predetermined and/or desired distance from the distal surface of the PIV.
Although the predetermined and/or desired distance is described above as being a positive distance, that is, the distal surface of the catheter 260 is distal to the distal surface of the PIV, in other embodiments, the predetermined and/or desired distance can be associated with the distal surface of the catheter 260 being in a proximal position relative to the distal surface of the PIV (e.g., a negative distance). For example, in some instances, the predetermined and/or desired distance can be between about 0.0 mm (e.g., the distal surfaces are flush) to about −50 mm, between about −10 mm and about −40 mm, between about −20 mm and about −30 mm, or between any other suitable range or subranges therebetween. In some instances, the predetermined and/or desired distance can be less than −50 mm (e.g., the distal surface of the catheter 260 is more than 50 mm proximal to the distal surface of the PIV). In some instances, the catheter 260 can be placed in the second position such that the distal end portion 262 of the catheter 260 remains within the PIV in a position distal to, for example, a kink or the like. For example, in some instances, indwelling PIVs can have one or more portions that are kinked such as a portion of the PIV where the peripheral intravenous catheter couples to a hub. In such instances, the predetermined and/or desired distance can be such that the distal surface of the catheter 260 is distal to the portion of the PIV that forms the kink (e.g., where the peripheral intravenous catheter couples to the hub). In some such instances, placing the distal surface of the catheter 260 distal to the kinked portion of the PIV but remaining within the PIV can result in a fluid flow path being sufficiently unrestricted to allow blood to be aspirated through the catheter 260.
With the catheter 260 in the second position (e.g., with the transfer device 200 in the second configuration shown, for example, in
In other instances, the user can physically and fluidically coupled the transfer device 200 to a fluid source or the like and then can deliver a volume of fluid from the fluid source to a portion of the vein at a position downstream of the PIV that receives a substantially uninhibited and/or unrestricted flow of blood. In some instances, disposing the distal surface of the catheter 260 at the predetermined and/or desired distance beyond the distal surface of the PIV, for example, can reduce potential harm associated with infusion of caustic drugs. For example, by positioning the distal surface of the catheter 260 within a portion of the vein receiving a flow of blood that would otherwise be inhibited and/or restricted by the indwelling PIV, the caustic drug can be entrained in the flow of blood and delivered to the target location. As such, a volume of the caustic drug is not retained within the debris or otherwise disposed in a position within the vein receiving little blood flow.
In some instances, once a desired amount of blood has been collected and/or once a desired volume of a drug has been delivered to the patient, the user can move the actuator 270 in the proximal direction, thereby placing the transfer device 200 in a third (used) configuration. In the third configuration, the catheter 260 can be disposed within the introducer 210 (e.g., distal to the seal or the like) and isolated therein. For example, in some embodiments, the actuator 270 can be placed in it proximal most position, in which the catheter 260 is in the first position. Moreover, once the actuator 270 and catheter 260 are in the desired position, the user can, for example, manipulate the secondary catheter 265 within the opening 217 such that a surface of the introducer 210 that defines the smaller portion of the opening 217 contacts and clamps the secondary catheter 265. As such, the lumen 268 of the secondary catheter 265 can be substantially obstructed, occluded, blocked, pinched, etc. to limit and/or substantially prevent a flow of fluid therethrough. In some instances, clamping the secondary catheter 265 as described, for example, can reduce and/or substantially prevent fluid from leaking through the secondary catheter 265. In some instances, the transfer device 200 can then be decoupled from the fluid reservoir, fluid source, syringe, etc. and safely discarded.
With the lock coupled to the PIV (and/or an adapter coupled to the PIV), the actuator is moved relative to the introducer to advance the catheter from a first position, in which the catheter is disposed within at least one of an inner volume defined by the introducer or the lock, toward a second position, in which at least a portion of the catheter is disposed beyond at least a portion of the PIV, at 12. In this manner, the catheter can be advanced, for example, in the distal direction. In some embodiments, the lock can include an inner surface that defines a lumen configured to receive the catheter as the catheter is moved toward the second position. In some embodiments, the inner surface of the lock can contact, support, and/or otherwise guide the catheter as the catheter is moved in the distal direction toward the second position.
As described above with reference to the transfer device 200 in some embodiments, the arrangement of the actuator and the introducer is such that advancing the actuator relative to the introducer advances a portion of the actuator along the ribs formed by the outer surface of the introducer. In some embodiments, moving the actuator along the ribs can produce a vibration of the actuator, which in turn, can produce, for example, a haptic, tactile, and/or audible output. Thus, an indication associated with a position of a distal end portion of the catheter as the actuator moves the catheter from the first position toward the second position is provided to the user, at 13. For example, in some embodiments, the actuator and the set of ribs can collectively produce a “click” sound, a haptic vibration, and/or the like. In some embodiments, the introducer can include indicia or the like that can indicate to the user the relative position of the distal end portion of the catheter. In other embodiments, the amount of times the actuator has vibrated due to being moved along the ribs can be associated with and/or otherwise provide an indication of the relative position of the distal end portion of the catheter.
Based at least in part on the indication, the catheter is placed in the second position such that the distal end portion of the catheter is disposed at a predetermined and/or desired distance beyond at least a portion of the PIV (e.g., beyond a distal surface of the PIV), at 14. For example, the catheter can be placed in the second position after moving the actuator at least a portion of the length of the introducer. In some embodiments, the catheter can be disposed in the second position when the actuator is placed in a distal most position. As described above with reference to the transfer device 200, in some instances, the predetermined and/or desired distance beyond the portion of the PIV can position a distal surface of the catheter within a portion of the vein that is substantially free from debris (e.g., fibrin/blood clots) otherwise surrounding a distal end portion of the PIV. Similarly, in some instances, disposing the distal end portion of the catheter at the predetermined and/or desired distance from, for example, the distal end portion of the PIV can place the lumen of the catheter in fluid communication with a portion of the vein receiving a substantially unobstructed or unrestricted flow of blood (e.g., unobstructed by the PIV and/or debris associated with the indwelling of the PIV), as described in detail above. In this manner, a user can couple the transfer device to a fluid reservoir and/or fluid source to transfer fluid from and/or to, respectively, the patient.
As shown in
The catheter 360 is coupled to the actuator 370 and is movably disposed within the introducer 310. In addition, at least a portion of the catheter 360 can be movably disposed in a lumen defined by the lock 340. The catheter 360 can be any suitable shape, size, and/or configuration. For example, in some embodiments, the catheter 360 can be substantially similar to the catheter 260 described in detail above. Accordingly, the catheter 360 is not described in further detail herein.
The actuator 370 can be any suitable shape, size, and/or configuration. As shown in
The first portion 371 of the actuator 370 includes a tab 373 that extends from an inner surface of the first portion 371 to contact an outer surface of the introducer 310. For example, the tab 373 can be a protrusion, bump, ridge, knob, etc. configured to contact the set of ribs 336 formed along the outer surface of the introducer 310. In the embodiment shown in
As described in detail above with reference to the device 200, the actuator 370 can be moved along and/or relative to the introducer 310 to move the catheter 360 between a first position (e.g., a proximal position) and a second position (e.g., a distal position). In some instances, the arrangement of the actuator 370 and the catheter 360 can result in a “clutching” of the device 300 as the actuator 370 is advanced along the introducer 310. For example, a user can exert a force on the first portion 371 of the actuator to move the actuator 370 in a distal direction relative to the introducer 310, which in turn, moves the catheter 360 toward its second position (e.g., the distal position), as indicated by the arrow DD in
In some instances, the clutching of the catheter 360 can provide the user with an indication that the movement of the catheter 360 is obstructed and/or otherwise hindered. For example, in some embodiments, the introducer 310 can be formed of a substantially clear and/or transparent material that can allow a user to visualize a status and/or configuration of the catheter 360. In some embodiments, the clutching and/or deformation of the catheter 360 can be such that a portion of the catheter 360 impacts an inner surface of the introducer 310, which in turn, can produce an audible (e.g., a “click”) and/or haptic indication that the catheter 360 is in the clutched configuration (e.g., that the movement of the catheter 360 is hindered or blocked).
In some instances, the clutching of the catheter 360 can provide and/or can form a self-relief mechanism or the like that can facilitate the advancement of the catheter 360 beyond an obstruction. For example, in some instances, after the catheter 360 is clutched (i.e., deformed as shown in
In other instances, the catheter 360 may remain in a clutched configuration when the force exerted on the actuator 370 is reduced and/or removed. In such instances, the user can, for example, manipulate at least one of the device 300 and/or a portion of the patient to “unclutch” the catheter 360. For example, in some instances, the catheter 360 can be inserted through an indwelling PIV and into a vein of a patient's arm. In some such instances, the distal end of the catheter 360 can impact a kink or the like in the indwelling PIV catheter (e.g., often at or near the PIV catheter's insertion site), which in turn, can transition the catheter 360 to the clutched configuration, as described above. Moreover, in some instances, the catheter 360 may remain in the clutched configuration despite reducing and/or removing the force exerted on the actuator 370. As such, the user can, for example, manipulate the arm of the patient and/or can manipulate the device 300 (coupled to the PIV) relative to the arm of the patient to move and/or reconfigure the PIV relative to the vein in which the PIV and the catheter 360 are disposed. In some instances, after manipulating the arm of the patient and/or otherwise reconfiguring the device 300 and/or PIV relative to the vein, the catheter 360 can transition to the unclutched configuration.
In some embodiments, the clutching of the catheter 360 and/or device 300 can be operative in limiting a force associated with impacting an obstruction. For example, in some instances, the catheter 360 can be advanced through at least a portion of an indwelling peripheral intravenous line (PIV) toward a vein. As the catheter 360 is advanced into and/or through the PIV, it may be desirable to reduce or limit a force associated with the distal end of the catheter 360 impacting an internal structure of the PIV or the like. As such, the clutching of the catheter 360 in response to the distal end of the catheter 360 impacting the internal structure of the PIV (and/or any other structure such as an internal structure of an extension set, a vein wall or other venous structure, etc.) can act to limit force exerted thereon. That is to say, the clutching of the catheter 360 absorbs, redirects, and/or otherwise redistributes at least a portion of the force otherwise associated with the distal end of the catheter 360 impacting the structure. Thus, the clutching of the catheter 360 can reduce and/or substantially prevent damage to the catheter 360, the structure of the PIV or extension set, a vein wall, and/or the like, which may otherwise result from an impact with the distal end of the catheter 360.
In some embodiments, the catheter 360 disposed within the introducer 310 can be configured to clutch, bend, flex, bow, and/or otherwise reconfigure in a predetermined and/or predictable manner, which can allow for a “tuning” or control of one or more parameters, characteristics, dynamics, etc. of the device 300. For example, in some embodiments, the catheter 360 can be biased when in a first configuration (e.g., a proximal or unclutched configuration). In this configuration, the amount of bias can be increased or decreased by increasing or decreasing, respectively, an angle of the actuator 370 relative to the introducer 310 (as described above). The increase or decrease in the amount of bias can result in an increase or decrease, respectively, in an amount of preloaded stress and/or force along a portion of the catheter 360, which in turn, can increase or decrease, respectively, a likelihood or ease for the catheter 360 to transition from the unclutched configuration to the clutched configuration.
In some instances, the manner in which the catheter 360 is clutched can be controlled and/or “tuned.” For example, as described above, the catheter 360 can be in a biased or bowed configuration when unclutched. In response to impacting an obstruction, the catheter 360 can transition from the unclutched configuration to the clutched configuration such that the catheter 360 deflects in a sinusoidal manner (e.g., curvilinear, substantially S-shaped, etc.), as shown in
As described above with reference to the device 200, advancing the actuator 370 relative to the introducer 310 results in the tab 373 of the first portion 371 of the actuator 370 being moved along the set of ribs 336. In some instances, the movement of the tab 373 along the set of ribs 336 can provide a user with haptic feedback or the like associated with moving the catheter 360 between the first and second position. In addition, in some instances, vibration of the actuator 370 resulting from the tab 373 being moved along the set of ribs 336 can likewise result in a vibration of the catheter 360. In some instances, the vibration of the catheter 360 while at least partially disposed in a vein can result in a vasodilation or vasorelaxation of the vein, which in turn, can increase a diameter of the vein. The increase in the diameter of the vein and/or a reduction in an amount of constriction of the vein can, for example, allow for increased access to portions of the vein and/or increased blood flow through the vein, which in turn, can result in better fluid (e.g., blood) transfer from the vein via the catheter 360 at least partially disposed therein.
As shown in
The lock 440 includes a proboscis 442, a first arm 443, and a second arm 450. As shown in
As shown in
In some embodiments, the predetermined and/or desired angle θ can be between about 0° and about 30°. For example, in some embodiments, the predetermined and/or desired angle θ can be about 15°. In such embodiments, disposing the device 400 at the predetermined and/or desired angle θ can, for example, facilitate the advancement of the catheter from its first position to its second position such that at least a distal end portion of the catheter extends through the PIV 405 to be disposed within the vein. In some instances, the predetermined and/or desired angle θ of the device 400 can be approximately equal to and/or otherwise associated with an angle of insertion of the PIV 405. Thus, disposing the device 400 at the predetermined and/or desired angle θ can limit and/or reduce a likelihood of kinks along the catheter, which in turn, can facilitate a transfer of bodily fluid (e.g., blood) therethrough). In addition, in some instances, disposing the device 400 at the predetermined and/or desired angle θ can result in less movement of the device 400 and/or PIV, less likelihood of disconnection and/or dislodgment, a reduced risk of hematomas, thrombosis, clots, infections, etc., and/or can increase patient comfort.
While second arm 450 of the lock 440 is described above as being placed in contact with the target surface S to dispose and/or maintain the transfer device 400 at the predetermined and/or desired angle θ relative to the target surface S, in other embodiments, a fluid transfer device can include and/or can be coupled to any suitable device configured to dispose the transfer device at a predetermined and/or desired angle. For example,
The fluid transfer device 500 (also referred to herein as “transfer device” or “device”) includes an introducer 510 having a proximal end portion 511 and a distal end portion 512. The distal end portion 512 of the introducer 510 is coupled to a lock 540, which in turn, is configured to physically and fluidically couple the device 500 to an indwelling PIV (not shown in
While the support member 580 is particularly shown in
The fluid transfer device 600 (also referred to herein as “transfer device” or “device”) includes an introducer 610 having a proximal end portion 611 and a distal end portion 612. The distal end portion 612 of the introducer 610 is coupled to a lock 640, which in turn, is configured to physically and fluidically couple the device 600 to an indwelling PIV (not shown in
While the support members 580 and 680 are described above as being included in and/or coupled to the introducers 510 and 610, respectively, in other embodiments, a support member can be included in and/or coupled to any suitable portion of a fluid transfer device. For example,
The fluid transfer device 700 (also referred to herein as “transfer device” or “device”) includes an introducer 710 having a distal end portion that is coupled to a lock 740 (as described above). The lock 740 includes a proboscis 742, a first arm 743, and a second arm 750. In the embodiment shown in
As shown in
While the support member 780 is described above as including a single member (i.e., the second portion 784) extending from the first portion 783, in other embodiments, a support member can include any number of extensions (e.g., second portions). For example,
The fluid transfer device 800 (also referred to herein as “transfer device” or “device”) includes an introducer 810 having a distal end portion that is coupled to a lock 840 (as described above). The lock 840 includes a proboscis 842, a first arm 843, and a second arm 850. In the embodiment shown in
The support member 880 can differ from the support member 780, however, in the arrangement of the second portion(s) 884. For example, as shown in
Although not shown in the transfer devices 100, 200, 300, 400, 500, 600, 700, and/or 800, any of the fluid transfer device described herein can include an internal support member configured to guide, shield, protect, and/or otherwise support, for example, the catheter disposed within the introducer. For example,
The fluid transfer device 900 (also referred to herein as “transfer device” or “device”) includes an introducer 910, a catheter 960, an actuator 970, and an internal support member 986. As described in detail above with reference, to the transfer device 200, the introducer 910 has a distal end portion that is coupled to a lock 940, which in turn, is configured to couple the transfer device 900 to, for example, an indwelling PIV and/or an extension set (e.g., a Y-adapter, T-adapter, or the like). The introducer 910 defines an inner volume 913 configured to receive and/or house at least a portion of the catheter 960, the actuator 970, and the internal support member 986. As described above, the actuator 970 is movably coupled to the introducer 910 and includes a first portion 971, a second portion 975, and a wall 977 coupling the first portion 971 to the second portion 975. The first portion 971 of the actuator 970 is disposed outside of the introducer 910. The second portion 975 of the actuator 970 is disposed within the inner volume 913 of the introducer 910 and is fixedly coupled to a distal end portion of the catheter 960. In this manner, a user can exert a force on the first portion 971 of the actuator 970 to move the catheter 960 between a first position (e.g., a proximal position), in which the catheter 960 is disposed within the introducer 910 and/or the lock 940, and a second position (e.g., a distal position), in which at least a portion of the catheter 960 extends distally beyond the lock 940, as described in detail above with reference to the transfer device 200.
As shown in
The internal support member 986 includes and/or defines a slit 987 that spirals and/or coils along a length of the internal support member 986, as shown in
While the internal support member 986 is shown and described above as being a substantially cylindrical tube in which the catheter 960 is disposed, in other embodiments, a fluid transfer device can include any suitable internal support member. For example,
The fluid transfer device 1000 (also referred to herein as “transfer device” or “device”) includes an introducer 1010, a catheter 1060, an actuator 1070, and an internal support member 1086. The introducer 1010 has a distal end portion that is coupled to a lock 1040, which in turn, is configured to couple the transfer device 1000 to, for example, an indwelling PIV and/or an extension set (e.g., a Y-adapter, T-adapter, or the like). The introducer 1010 defines an inner volume 1013 configured to receive and/or house at least a portion of the catheter 1060, at least a portion of the actuator 1070, and the internal support member 1086. As described above, the actuator 1070 is movably coupled to the introducer 1010 and includes a first portion 1071 disposed outside of the introducer and a second portion 1075 disposed in the inner volume 1013 and fixedly coupled to the catheter 1060. In this manner, a user can exert a force on the first portion 1071 of the actuator 1070 to move the catheter 1060 between a first position (e.g., a proximal position), in which the catheter 1060 is disposed within the introducer 1010 and/or the lock 1040, and a second position (e.g., a distal position), in which at least a portion of the catheter 1060 extends distally beyond the lock 1040, as described in detail above.
The transfer device 1000 can differ from the transfer device 900, however, in the arrangement of the internal support member 1086. For example, in the embodiment shown in
While the internal support member 1086 is shown and described above as forming a bellows or the like in which at least a portion of the catheter 1060 is disposed, in other embodiments, a fluid transfer device can include any suitable internal support member. For example,
The fluid transfer device 1100 (also referred to herein as “transfer device” or “device”) includes an introducer 1110, a catheter 1160, an actuator 1170, and an internal support member 1186. The introducer 1110 has a distal end portion that is coupled to a lock 1140, which in turn, is configured to couple the transfer device 1100 to, for example, an indwelling PIV and/or an extension set (e.g., a Y-adapter, T-adapter, or the like). The introducer 1110 defines an inner volume 1113 configured to receive and/or house at least a portion of the catheter 1160, the actuator 1170, and the internal support member 1186. As described above, the actuator 1170 is movably coupled to the introducer 1110 and includes a first portion 1171 disposed outside of the introducer and a second portion 1175 disposed in the inner volume 1113 and fixedly coupled to the catheter 1160. In this manner, a user can exert a force on the first portion 1171 of the actuator 1170 to move the catheter 1160 between a first position (e.g., a proximal position), in which the catheter 1160 is disposed within the introducer 1110 and/or the lock 1140, and a second position (e.g., a distal position), in which at least a portion of the catheter 1160 extends distally beyond the lock 1140, as described in detail above.
The transfer device 1100 can differ from the transfer device 900, however, in the arrangement of the internal support member 1186. For example, in the embodiment shown in
The catheter 1160 is disposed within and/or extends through an opening or hole defined in each wall segment (see e.g.,
In some embodiments, the internal support member 1186 can be formed of a material having sufficient flexibility to bend, deform, flex, and/or otherwise reconfigure. For example, when the actuator 1170 is moved along the introducer 1110, the second portion 1175 of the actuator 1170 can compress and/or fold the interior support member 1185 (e.g., reduce an angle defined between adjoining wall segments). In addition, at least a portion of the internal support member 1186 can be configured to bend and/or flex in response to the catheter 1160 being transitioned to the “clutched” configuration, while substantially limiting an amount of deflection of the catheter 1160 that may otherwise result in a portion of the catheter 1160 extending outside of the introducer 1110 (as described above with reference to the internal support member 986). Thus, the internal support member 1186 can support at least a portion of the catheter 1160 disposed within the introducer 1110.
While the internal support member 1186 is shown as extending along substantially the entire length of the catheter 1160, in other embodiments, an internal support member may extend along any suitable portion of a catheter (e.g., less than substantially the entire length of the catheter). While the internal support member 1186 is described above as being formed of a relatively thin and flexible material having the set of wall segments arranged in alternating angular orientations, in other embodiments, an internal support member can be any suitable shape, size, and/or configuration. For example, in some embodiments, a fluid transfer device can include a spring (e.g., a coil spring) or the like disposed within an inner volume of the introducer and about at least a portion of a catheter. In such embodiments, the spring or the like can support at least a portion of the catheter in a manner substantially similar to that described above with reference to the internal support members 986, 1086, and/or 1186.
In other embodiments, an internal support member can be integrally formed with and/or otherwise coupled to the catheter. For example, in some embodiments, one or more portions of a catheter can be formed as a support member. Such portions, for example, can have an increased wall thickness and/or can be formed of a different constituent material. In other embodiments, an internal support member can be selectively coupled to a catheter. For example, in some embodiments, a catheter can include a set of rings or beads that can be movably coupled to and/or disposed along a length of the catheter. In some embodiments, the rings and/or beads can be evenly and/or uniformly spaced or can be randomly and/or unevenly spaced. In some embodiments, the rings and/or beads can be configured to move along a length of the catheter in response to an actuation of the actuator (e.g., movement of the catheter). For example, in some embodiments, each ring and/or bead can be coupled to the catheter and can be temporarily maintained in a substantially fixed position. In some instances, as the catheter is advanced in the distal direction, the rings and/or beads can be moved such that the rings and/or beads bunch and/or slide into a position along, for example, the proximal end portion of the catheter. As such, the rings and/or beads can be configured to increase an amount of support provided to the catheter as the catheter is advanced in the distal direction (e.g., as a spacing between the rings and/or beads is reduced).
In still other embodiments, an introducer can include an internal support member formed of and/or otherwise having deformable tape and/or foam disposed along an inner surface of the catheter (e.g., an upper inner surface). In such embodiments, the tape and/or foam can be configured to compress, bend, flex, deform, and/or otherwise reconfigure as the actuator and/or catheter is relative thereto. For example, in some embodiments, foam or the like can be disposed between the actuator and the distal surface of the inner volume of the introducer and can be compressed (e.g., axially) in response to a distal movement of the actuator. In other embodiments, the introducer can include foam or the like along an upper surface of the inner volume and can be deformed, displaced, deflected, and/or compressed, for example, in a transverse direction at or near a position of the actuator. Moreover, as the actuator is advanced along a length of the introducer, a portion of the foam can be configured to return to an undeformed configuration as the actuator is moved relative to the portion. Thus, a portion of the foam that is proximal to the actuator (or a portion thereof) can be in an undeformed configuration and a portion of the foam that is distal to the actuator (or the portion thereof) can be in an undeformed configuration. That is to say, the actuator displaces a predetermined and/or defined portion of the foam as the actuator is moved along the introducer. In some embodiments, the foam can limit and/or reduce an open or unoccupied portion of the inner volume, which in turn, can result in a limited and/or reduced range of motion of the catheter (e.g., when transitioning from an unclutched configuration to a clutched configuration). In some embodiments, the deformation of the foam in response to the movement of the actuator can further limit and/or reduce the open or unoccupied portion of the inner volume, which in turn, can result in an increased amount of support provided to the catheter (e.g., a decreased range of motion).
Although some of the fluid transfer devices described herein are not shown explicitly with a peripheral intravenous line (PIV), it should be understood that any of the fluid transfer devices described herein can be coupled to any suitable peripheral intravenous line (PIV). In some instances, use of a PIV can include coupling the PIV to an IV extension set and/or an adapter (e.g., a single port adapter, a Y-adapter, a T-adapter, or the like). Thus, while some of the transfer devices are described herein as being coupled to a PIV, it should be understood that the transfer devices can be coupled to either a PIV or an adapter (e.g., extension set) coupled thereto based on the situation and/or configuration. The transfer devices can be configured to couple to any suitable commercially available PIV, adapter, and/or extension set. For example, while the first arm 243 and the second arm 250 of the lock 240 are shown (e.g., in
While the proboscis 242 is shown and described above as having a particular size and/or shape, in other embodiments, a lock can include a proboscis that has any suitable length (e.g., longer or shorter than the proboscis 242), width (e.g., wider or narrower than the proboscis 242), and/or shape (e.g., curved, tapered, flared, etc.). In some embodiments, a proboscis can have a surface finish or feature such as one or more threads, flighting (e.g., an auger flighting), ribs, grooves, and/or the like. In some embodiments, the proboscis 242 can have a diameter and/or length that is associated with and/or at least partially based on one or more internal dimensions of an extension set, PIV, and/or the like. In other words, in some embodiments, the devices described herein can be configured for use with an extension set and/or PIV having one or more desired internal dimensions such as, for example, an internal diameter of a lumen defined by the extension set, a length of the lumen, and/or the like. For example, in some embodiments, an extension set can define a lumen, at least a portion of which has an inner diameter of about 1.0 millimeter (mm) to about 1.6 mm. In other embodiments, an extension set can define a lumen (or portion thereof) having a diameter that is associated with and/or slightly larger than an outer diameter of the catheter configured to be inserted therethrough (e.g., a diameter that is slightly larger than a diameter of a 30 gauge catheter or about 0.20 mm).
In some embodiments, such an extension set having the one or more desired internal dimensions (inner diameters) can act as a guide or the like configured to guide the catheter 260 through the extension set and/or at least a portion of the PIV substantially without bending, kinking, breaking, and/or substantially without getting stuck. More specifically, in some embodiments, an extension set can couple to a PIV hub or the like such that a distal end portion of the extension set extends through a portion of the PIV hub or basket. In such embodiments, the extension set can define a lumen having an inner diameter of about 1.4 mm at a distal end portion thereof (e.g., the lumen can taper toward the distal end portion to approximately 1.4 mm in diameter or can have a substantially constant diameter of approximately 1.4 mm between its proximal end portion and its distal end portion). In such embodiments, the extension set can guide, for example, the distal end portion 262 of the catheter 260 through the extension set and the hub or basket of the PIV and into, for example, a vein of the patient substantially without impacting an obstruction or “snagging” on one or more portions of the extension set and/or PIV. In this manner, the extension set can be an adapter and/or guide that can allow the transfer device 200 to be used with any suitable PIV such as, for example, commercially available PIVs or the like.
In other embodiments, the extension set, PIV, and/or any of the devices described herein can include and/or can be coupled to an external guide member or the like that can be disposed between components. Such external guide members can be configured to direct a catheter as the catheter is advanced in a distal direction (as described in detail above). For example, in some embodiments, the guide member can have a taper and/or can be funnel shaped having a larger diameter, for example, at a proximal end portion and a smaller diameter, for example, at a distal end portion. In some embodiments, such a guide member can be disposed between an introducer of any of the devices described herein and an extension set. In other embodiments, such a guide member can be disposed between an extension set and a PIV. In still other embodiments, such a guide member can be disposed between the introducer of any of the devices described herein and a PIV. In still other embodiments, any of the devices described herein can include and/or can be coupled to one or more guide members having any suitable configuration.
The embodiments described herein can be used to transfer fluid from a patient or to the patient by accessing a vein via an indwelling PIV. As described above, the transfer devices 100 and/or 200, for example, can be manipulated to place a distal surface of a catheter at a predetermined and/or desired distance from a distal surface of the PIV. In some instances, the embodiments described herein allow for efficient blood draw while maintaining the integrity of the sample. While extracting blood, the transfer devices 100 and/or 200 can be configured to receive and/or produce a substantially laminar (e.g., non-turbulent or low turbulent) flow of blood through the transfer device 100 and/or 200, respectively, to reduce and/or substantially prevent hemolysis of the blood as the blood flows through the transfer devices 100 and/or 200, respectively.
In some instances, when a transfer device such as those described herein is used to collect a sample volume of blood (e.g., a blood culture) it may be desirable to occlude and/or otherwise block the lumen of the catheter as the catheter is inserted through an indwelling PIV and into the vein. For example, in some embodiments, the transfer device 200 can be used to collect a volume of blood. In such embodiments, the lock 240 of the transfer device 200 can be coupled to an indwelling PIV and a fluid source can be coupled to the coupler 269 of the secondary catheter 265. In some embodiments, for example, the fluid source can be a squeezable ball or bulb and/or suitable form of fluid reservoir and pump (e.g., a syringe and/or the like). The fluid source can contain, for example, saline or the like. Thus, with the fluid source coupled to the coupler 269, the fluid source is placed in fluid communication with the lumen 268 defined by the secondary catheter 265, which in turn, places the fluid source in fluid communication with the lumen 263 defined by the catheter 260.
In some embodiments, the fluid source can be actuated or the like to release a flow of fluid (e.g., saline) through the catheters 260 and 265, thereby flushing the lumens 263 and 268, respectively. Once flushed, the catheter 260 can be, for example, placed in a fluidic or hydraulic locked configuration and can be advanced to its second position (as described in detail above). In other embodiments, the fluid source can be actuated or the like (e.g., a squeeze bulb can be squeezed) to release a flow of fluid such that a substantially continuous flow of the fluid elutes from the catheter 260. With the fluid eluting from the catheter 260, the transfer device 200 can be actuated to advance the catheter 260 to its second position (as described above). In this manner, flushing the lumens 263 and 268 of the transfer device 200 prior to and/or during the advancement of the catheter 260 can limit and/or can substantially prevent contaminants from entering the fluid flow path defined by the lumens 263 and 268 (e.g., can be fluidically and/or hydraulically locked).
In some instances, once the catheter 260 is advanced to its second position, the fluid source can be, for example, reversed or the like such that a reservoir of the fluid source receives a flow of fluid. For example, in some instances, a squeeze ball or bulb can be actuated (squeezed), which in turn, reduces a volume of the squeeze ball or bulb as a flow of the fluid contained therein is released. In some instances, after the catheter 260 is placed in its second position, the force can be removed from the squeeze ball or bulb, which in turn, increases the volume of the squeeze ball or bulb. The increase of volume produces and/or results in a suction force, which in some instances, can be operable to draw any remaining saline and a volume of blood into the volume defined by the squeeze ball or bulb. As such, “reversing” the fluid source or the like can remove any remaining saline and can prime the transfer device 200. After priming the transfer device 200, any suitable fluid reservoir can be coupled to the coupler 269 such that a flow of clean blood is transferred from the vein and into the fluid reservoir.
While the squeeze ball or bulb is described above, it should be understood that any suitable fluid reservoir and/or pump can be used to flush and/or prime any of the transfer devices described herein. While the embodiments are described above as using a fluid such as saline to flush and/or prime the catheter and/or transfer device, in other embodiments, a catheter and/or transfer device can be flushed and/or primed via any suitable compressible fluid, incompressible fluid, and/or the like. In other embodiments, a gas such as air or any suitable inert gas can be used to form a pneumatic lock, flush, and/or prime. In still other embodiments, a guide wire and/or any other suitable occluding device can be disposed in the lumen of the catheter to limit and/or substantially prevent fluid from entering the lumen as the catheter is advanced to a desired position within the vein of a patient. In some such embodiments, an occluding device can include, for example, one or more portions configured to dissolve over a predetermined period, in response to a given temperature, and/or in response to fluid contact. In other embodiments, an occluding device and/or the like can include a deformable member, a shape memory or changing component (e.g., nickel-titanium alloy (nitinol)), a reversible valve (e.g., a mechanical valve configured to transition in response to a force or pressure or an electrical valve configured to transition in response to a flow of electric current), and/or any other suitable member.
Although not shown, any of the transfer devices described herein can include and/or can be coupled to a flash chamber or the like configured to receive, for example, a first volume of blood (e.g., a pre-sample of blood). In some embodiments, a flash chamber can be coupled to the coupler 269 of the secondary catheter 295 of the transfer device 200 to receive the first volume of blood. In other embodiments, any suitable portion of the transfer device 200 can form a flash chamber or the like configured to at least temporarily store the first volume of blood. In such embodiments, the first volume of blood can flow through, for example, a one-way seal such as a sponge seal or the like and into the flash chamber. The arrangement of the seal can be such that once the seal is wetted (e.g., with blood), the flow of the first volume of blood stops. Once a desired amount of blood is transferred into the flash chamber (e.g., the first volume), the transfer device 200 can be manipulated to transfer a second volume (e.g., a sample volume) of blood to a fluid reservoir (e.g., a sample reservoir).
While the embodiments described herein can be used in a variety of settings (ER, in-patient, etc.), the following scenario of withdrawing a sample volume of blood from a patient is provided by way of example. In some instances, for example, a peripheral intravenous line and/or catheter (PIV) is inserted into a vein of a patient following standard guidelines and an extension set and/or adapter is attached. The PIV can remain within the vein for an extended period and can provide access to the vein for the transfer of fluids (e.g., saline, blood, drug compounds, etc.) to the patient. When it is time to draw blood, a user (e.g., nurse, physician, phlebotomist, and/or the like) can stop the transfer of fluid to the patient, if it is transferring fluid, for approximately 1-5 minutes to allow the fluid to disperse from the blood-drawing site. To draw the blood sample, the user attaches a transfer device (e.g., the transfer devices 100 and/or 200) to a port and/or suitable portion of the extension set and/or adapter and transitions the transfer device to from a first configuration (e.g., a storage configuration) to a second configuration, in which a portion of a catheter included in the transfer device extends through the peripheral IV and into the vein.
As described in detail above with reference to the transfer device 200, an end of the catheter can be disposed at a predetermined and/or desired distance from an end of the PIV when the transfer device is in the second configuration to place the catheter in fluid communication with a portion of the vein that receives an unobstructed and/or uninhibited flow of blood. For example, the end of the catheter can be in a distal position relative to the end portion of the PIV and at least one branch vessel, valve, and/or the like in fluid communication with the vein. Once the catheter is in the desired position, the user can attach one or more negative pressure collection containers, tubes, and/or syringes to the transfer device to extract a volume of blood. In some instances, the volume of blood can be a first volume of blood that can be discarded and/or at least temporarily stored apart from a subsequent sample volume of blood (e.g., typically a volume of about 1-3 milliliters (mL) but up to 8-10 mL of blood can be a “waste” or “pre-sample” volume). In some instance, the waste volume can include contaminants, non-dispersed residual fluids, and/or the like. After the collective of the waste volume, the user can couple one or more negative pressure containers (e.g., sample containers) to the transfer device to collect a desired blood sample volume. Once the sample volume is collected, the transfer device can be transitioned from the second configuration toward the first configuration and/or a third configuration (e.g., a “used” configuration). The transfer device can then be decoupled from the extension set and/or adapter and safely discarded. In some instances, after collecting the sample volume but prior to transitioning the transfer device from the second configuration, the waste or pre-sample volume, for example, can be reinfused into the vein.
As described above, in some instances, the transfer devices described herein can be coupled to a fluid reservoir configured to receive a volume of bodily fluid (e.g., blood). In some instances, such a fluid reservoir can be a negative pressure container such as, for example, a Vacutainer® or the like. In some instances, however, it may be desirable to limit and/or control a rapid change in pressure through a transfer device and/or in a vein, which may otherwise result in hemolysis of a blood sample or portion thereof, a collapsed or “blown” vein, and/or the like. Accordingly, in some embodiments, any of the transfer devices described herein can be configured to modulate a negative pressure exerted therethrough.
For example, as described in detail above, the transfer device 200 includes a secondary catheter 265 that is in fluid communication with the catheter 260 and that includes a coupler 269 configured to couple the transfer device 200 to a fluid reservoir (e.g., a negative pressure reservoir). In some embodiments, the secondary catheter 265 can be configured to modulate a negative pressure exerted through the transfer device 200. For example, the secondary catheter 265 can be formed of a relatively flexible polymer material and/or the like that can allow the secondary catheter 265 to bend, flex, deform, and/or otherwise reconfigure in response to an applied force. Moreover, in some embodiments, the catheter 260 can have a stiffness or durometer that is greater than a stiffness or durometer of the secondary catheter 265. In some instances, when the secondary catheter 265 is exposed to the negative pressure differential, the lumen 268 defined by the secondary catheter 265 is exposed to a rapid decrease in pressure, which in turn, exerts a suction force within the lumen 268 that draws the walls of the secondary catheter 265 inward, thereby reducing an inner diameter of the secondary catheter 265. As such, reducing the diameter of the lumen 268 of the secondary catheter 265 results in a modulated and/or reduced suction force being exerted through the lumen 268 and on or in the lumen 263 of the catheter 260. Likewise, reducing the amount and/or magnitude of the suction force being exerted through the lumen 263 of the catheter 260, in turn, modulates and/or reduces a magnitude of the suction force that is exerted on or in the vein. Thus, a negative pressure differential experienced by or in the vein that might otherwise be sufficient to collapse the vein is reduced.
Furthermore, as bodily fluid (e.g., blood) is transferred through the transfer device 200 and into the negative pressure reservoir, a negative pressure differential between the reservoir and the vein is reduced. In other words, the negative pressure or suction force exerted by the negative pressure reservoir is reduced as a volume of blood is transfer therein. Said another way, the negative pressure differential is equalized as a volume of blood is transferred into the negative pressure reservoir. In some embodiments, the reduction in the magnitude of the negative pressure and/or the suction force exerted by the negative pressure reservoir can result in the secondary catheter 265 transitioning toward its undeformed configuration (i.e., the configuration prior to being exposed to the negative pressure). That is to say, as the magnitude of the negative pressure and/or negative pressure differential is reduced, a diameter of the lumen 268 defined by the secondary catheter 265 can increase or can return to a non-reduced diameter, which in turn, can increase a fluid flow rate therethrough. Thus, selectively modulating the negative pressure transferred through the secondary catheter 265 can result in a reduction in flow rate through the secondary catheter 265 when there is a large pressure differential (e.g., due to the reduction in the diameter of the lumen) and can result in an increase in flow rate through the secondary catheter 265 as the pressure differential is equalized (e.g., due to the increase in the diameter of the lumen).
In some embodiments, the arrangement and/or configuration of the secondary catheter 265 can be “tuned” and/or controlled to modulate the negative pressure exerted through the lumen. For example, the secondary catheter 265 can be formed of a material having sufficient flexibility to allow the secondary catheter 265 to deform in a desired manner when exposed to a negative pressure. In other embodiments, the walls of the secondary catheter 265 can have a thickness that is sufficiently thin to allow the walls to deform when exposed to the negative pressure. Moreover, in some embodiments, the length and/or an inner diameter of the secondary catheter 265 can be configured, for example, to reduce a fluid flow rate therethrough. In still other embodiments, any combination of flexibility, wall thickness, length, diameter, and/or the like can be used to collectively control and/or modulate a negative pressure exerted therethrough. In yet other embodiments, a negative pressure and/or the like can be modulated in response to a change in temperature of the secondary catheter 265. For example, in some instances, a temperature of the secondary catheter 265 is increased as the warm blood begins to flow therethrough. In some instances, the increase in temperature causes a relaxation of the diameter (e.g., an increase in inner diameter) and thus accelerates a flow of the blood as the negative pressure is decreased over the same period of time. In some instances, a cooling of the secondary catheter 265 can result in a constriction and/or reduction in the inner diameter of the secondary catheter 265.
In some instances, the transfer devices described herein can be assembled during one or more manufacturing processes and packaged in a pre-assembled configuration. For example, in some instances, the transfer device 200 can be assembled by coupling the catheter 260 and the secondary catheter 265 to the actuator 270; positioning the catheter 260, secondary catheter 265, and actuator 270 relative to the first member 220 or second member 230 of the introducer 210; coupling the first member 220 and the second member 230 to form the introducer 210 with the actuator 270 and at least a portion of the catheter 260 and secondary catheter 265 disposed in the inner volume 213 of the introducer 210; and coupling the lock 240 to the introducer 210. In some instances, the assembly of the transfer device 200 can be performed in a substantially sterile environment such as, for example, an ethylene oxide environment, or the like. In other embodiments, the transfer devices described herein can be packaged in a non-assembled configuration (e.g., a user can open the package and assemble the components to form the transfer device). The components of the transfer devices can be packaged together or separately. In some embodiments, the transfer devices can be packaged with, for example, a PIV, an extension set, a Y-adapter or T-adapter, and/or any other suitable component.
Any of the transfer devices described herein can be configured such that at least a portion of the catheter is biased and/or selectively deflected as the catheter is advanced from its first position to its second position, as described in detail above with reference to the device 300 shown in
For example,
As described above, the device can be used to transfer fluid to or from a patient. More particularly, in this example, the device can be configured to transfer a volume of bodily fluid (e.g., blood) from the vasculature of the patient to a fluid collection device such as a reservoir, syringe, evacuated container, and/or the like configured to be placed in fluid communication with the catheter. Accordingly, the method 20 includes coupling the lock of the device to an indwelling peripheral intravenous line (PIV), at 21. In other words, the lock is coupled to a PIV at least partially disposed within the vasculature of the patient.
A first force is exerted on the actuator to move the actuator relative to the introducer to advance the catheter from a first position to a second position, at 22. For example, the actuator can be movably coupled to the introducer and can include a first portion disposed outside of the introducer and a second portion disposed inside of the introducer and coupled to a proximal end portion of the catheter. As such, the user can engage the device and can exert the first force (e.g., with his or her finger or thumb) to move the actuator relative to the introducer. As described above with reference to at least the devices 200 and/or 300, the catheter is disposed within the introducer when in the first position and is advanced toward the second position to place a distal end portion of the catheter is in a distal position relative to the introducer (e.g., outside of and distal to the introducer).
A second force different from the first force is exerted on the proximal end portion of the catheter as the actuator advances the catheter from the first position toward the second position, at 23. As described above with reference to the device 300, for example, the arrangement of the actuator and the introducer can be such that the first portion of the actuator is in contact with an outer surface of the introducer. In some embodiments, the contact between the first portion of the actuator and the outer surface of the introducer can be sufficient to tilt or angle the actuator relative to the introducer such that a longitudinal axis of the actuator that would otherwise be parallel to a longitudinal axis of the introducer is instead nonparallel to the longitudinal axis of the introducer. In such embodiments, the contact between the first portion of the actuator and the outer surface of the introducer, in turn, results in the second portion of the actuator exerting the second force on the proximal end portion of the catheter. Moreover, the second force has a magnitude and a direction that are different from a magnitude and direction, respectively, of the first force.
As described above with reference to the device 300, the catheter is at least partially disposed within the introducer such that a portion of the catheter is disposed between the actuator (coupled to the proximal end portion of the catheter) and the lock (configured to movably receive the catheter). The method 20 includes deflecting the portion of the catheter disposed between the actuator and the lock a first amount in response to the second force as the catheter is advanced from the first position to the second position, at 24. For example, the lock defines a lumen that movably receives the catheter. The lumen of the lock can define a longitudinal axis that is parallel to the longitudinal axis of the introducer. More particularly, in some embodiments, the longitudinal axis of lock can be coaxial with the longitudinal axis of the introducer. As described above, the contact between the first portion of the actuator and the outer surface of the introducer tilts or angles the actuator relative to the introducer such that the longitudinal axis of the actuator is nonparallel to the longitudinal axis of the introducer. With the second portion of the actuator being coupled to the proximal end portion of the catheter, the tilt or angle of the actuator (and/or the second force) similarly angles or tilts at least the proximal end portion of the catheter relative to the introducer. Thus, with the catheter disposed within the lumen of the lock (e.g., the distal end portion of the catheter when the catheter is in the first position) and with the proximal end portion of the catheter being coupled to the second portion of the actuator, the second force exerted on the proximal end portion of the catheter results in a deflection of the portion of the catheter that is disposed between the lock and the actuator (e.g., as described in detail above with reference to
The portion of the catheter disposed between the lock and the actuator is deflected a second amount greater than the first amount in response to (1) the second force and (2) the distal end portion of the catheter impacting an obstruction as the catheter is advanced from the first position to the second position, at 25. For example, in some instances, as the catheter is advanced from the first position toward the second position, the distal end of the catheter can impact an obstruction such as, for example, a portion of the hub of the PIV, a bend or kink in the PIV catheter, a clot or debris within the PIV or the vasculature of the patient, a wall or other anatomic structure of the vasculature and/or the like. As such, the obstruction can resist and/or exert a reaction force on the distal end of the catheter that can limit and/or prevent further advancement (e.g., distal movement) of the catheter. In some devices in which the portion of the catheter is not deflected the first amount (described above at 24), the first force exerted on the actuator can be transferred through the actuator and catheter, which in turn, can result in the distal end portion of the catheter becoming damaged, kinked, bent, broken, etc. in response to the impact. In other instances, the distal end of the catheter may puncture the wall or anatomic structure of the vasculature in response to the impact therebetween. In still other instances, the distal end portion of the catheter may damage or puncture a portion of the PIV in response to an impact therebetween.
The use of the device according to the method 20, however, is such that the impact between the distal end portion of the catheter and the obstruction is operable to deflect the second portion of the catheter the second amount, as described in detail above with reference to the device 300 (see e.g.,
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments as discussed above.
While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. For example, while the transfer device 200 is shown and described above as including the catheter 260 and the secondary catheter 265, each of which being coupled to the actuator 270, in other embodiments, the transfer device 200 can include a single catheter (e.g., the catheter 260). For example, in some embodiments, at least the second portion 275 of the actuator 270 can be configured to transition between an open configuration and a closed configuration. In such embodiments, the catheter 260 can be placed in a desired position relative to the second portion 275 when the second portion 275 is in the open configuration. The second portion 275 can then be transitioned from the open configuration to the closed configuration to retain at least a portion of the catheter 260 within the opening 276 defined by the second portion 275. In such embodiments, the second portion 275 and the portion of the catheter 260 disposed in the opening 276 can form a friction fit operable to retain the catheter 260 in a fixed position relative to the actuator 270. Moreover, the friction fit defined between the second portion 275 of the actuator 270 and the catheter 260 can isolate a portion of the catheter 260 that is distal to the actuator 270 from a portion of the catheter 260 that is proximal to the actuator 270. Thus, the portion of the catheter 260 that is proximal to the actuator 270 can extend through the opening 217 and at least partially outside of the introducer 210 without contaminating the portion of the catheter 260 distal to the actuator 270.
Any of the aspects and/or features of the embodiments shown and described herein can be modified to affect the performance of the transfer device. For example, the ribs in the set of ribs 236 of the introducer 210 and the tab 273 of the actuator 270 can have any suitable shape, size, configuration, and/or arrangement to produce a desired set of characteristics associated with the movement of the actuator 270 relative to the introducer 210, as described above. By way of another example, any of the components of the transfer devices 100 and/or 200 can be formed from any suitable material that can result in a desired hardness, durometer, and/or stiffness of that component. For example, in some embodiments, at least the proboscis 242 of the lock 240 can be formed from a substantially rigid material such as a metal or hard plastic. In such embodiments, forming at least the proboscis 242 from the substantially rigid material can increase the structure support provided by the proboscis 242 to a PIV when the proboscis 242 is at least partially disposed therein. Similarly, the proboscis 242 can provide support to and/or otherwise can guide the catheter 260 when the catheter 260 is moved therethrough.
Where methods and/or schematics described above indicate certain events and/or flow patterns occurring in certain order, the ordering of certain events and/or flow patterns may be modified. Additionally certain events may be performed concurrently in parallel processes when possible, as well as performed sequentially.
Claims
1.-22. (canceled)
23. An extension set for facilitating device delivery through a peripheral intravenous access device (PIV) at least partially inserted into a vein of a patient, the extension set comprising:
- a distal end portion including a distal connector and a guide having a blunt distal end, the distal connector configured to couple to a proximal end portion of the PIV; and
- a proximal end portion including a proximal connector.
24. The extension set of claim 23, further comprising:
- a tubing disposed between the distal connector and the proximal connector.
25. The extension set of claim 23, wherein the distal connector includes a distally-extending arm that contacts an outer surface of the PIV to lock the extension set to the PIV.
26. The extension set of claim 23, further comprising:
- a support coupleable to the distal connector and configured to contact skin of the patient and stabilize the extension set against the skin of the patient.
27. The extension set of claim 23, wherein the guide is constructed of plastic or metal.
28. The extension set of claim 23, wherein the distal connector is a non-luer connector.
29. The extension set of claim 23, wherein the proximal connector includes a seal.
30. The extension set of claim 23, wherein at least one of the distal end portion or the proximal end portion includes a one-way valve.
31. The extension set of claim 23, wherein the proximal connector is configured to be coupled to a distal end portion of a fluid transfer device, the fluid transfer device having a first configuration in which a catheter of the fluid transfer device is disposed within an introducer of the fluid transfer device and proximal to the extension set, and a second configuration in which the catheter extends from the introducer such that at least a portion of the catheter extends through the extension set and into the PIV.
32. The extension set of claim 31, wherein a distal end portion of the catheter is disposed within the vein of the patient and distal to the PIV when the fluid transfer device is in the second configuration.
33. An extension set for facilitating device delivery through a peripheral intravenous access device (PIV) at least partially inserted into a vein of a patient, the extension set comprising:
- a distal end portion including a distal connector and a guide having a blunt distal end, the distal connector configured to couple to a proximal end portion of the PIV;
- a proximal end portion including a proximal connector; and
- a support configured to contact skin of the patient and stabilize the extension set against the skin of the patient.
34. The extension set of claim 33, further comprising:
- a tubing disposed between the distal connector and the proximal connector.
35. The extension set of claim 33, wherein the distal connector includes a distally-extending arm that contacts an outer surface of the PIV to lock the extension set to the PIV.
36. The extension set of claim 33, wherein the support is coupleable to the distal connector.
37. The extension set of claim 33, wherein the guide is constructed of plastic or metal.
38. The extension set of claim 33, wherein the distal connector is a non-luer connector.
39. The extension set of claim 33, wherein the proximal connector includes a seal.
40. The extension set of claim 33, wherein at least one of the distal end portion or the proximal end portion includes a one-way valve.
41. The extension set of claim 33, wherein the proximal connector is configured to be coupled to a distal end portion of a fluid transfer device, the fluid transfer device having a first configuration in which a catheter of the fluid transfer device is disposed within an introducer of the fluid transfer device and proximal to the extension set, and a second configuration in which the catheter extends from the introducer such that at least a portion of the catheter extends through the extension set and into the PIV.
42. The extension set of claim 41, wherein a distal end portion of the catheter is disposed within the vein of the patient and distal to the PIV when the fluid transfer device is in the second configuration.
43. An extension set for facilitating device delivery through a peripheral intravenous access device (PIV) at least partially inserted into a vein of a patient, the extension set comprising:
- a distal end portion including a distal connector and a guide having a blunt distal end, the distal connector configured to couple to a proximal end portion of the PIV, the guide extending into a lumen of the PIV and opening a seal disposed in the lumen when the distal connector is coupled to the proximal end portion of the PIV;
- a proximal end portion including a proximal connector; and
- a support configured to contact skin of the patient and stabilize the extension set against the skin of the patient.
44. The extension set of claim 43, further comprising:
- a tubing disposed between the distal connector and the proximal connector.
45. The extension set of claim 43, wherein the distal connector includes a distally-extending arm that contacts an outer surface of the PIV to lock the extension set to the PIV.
46. The extension set of claim 43, wherein the support is coupleable to the distal connector.
47. The extension set of claim 43, wherein the guide is constructed of plastic or metal.
48. The extension set of claim 43, wherein the distal connector is a non-luer connector.
49. The extension set of claim 43, wherein the proximal connector includes a seal.
50. The extension set of claim 43, wherein at least one of the distal end portion or the proximal end portion includes a one-way valve.
51. The extension set of claim 43, wherein the proximal connector is configured to be coupled to a distal end portion of a fluid transfer device, the fluid transfer device having a first configuration in which a catheter of the fluid transfer device is disposed within an introducer of the fluid transfer device and proximal to the extension set, and a second configuration in which the catheter extends from the introducer such that at least a portion of the catheter extends through the extension set and through the open seal of the PIV.
52. The extension set of claim 51, wherein a distal end portion of the catheter is disposed within the vein of the patient and distal to the PIV when the fluid transfer device is in the second configuration.
Type: Application
Filed: Apr 21, 2020
Publication Date: Aug 6, 2020
Applicant: Velano Vascular, Inc. (San Francisco, CA)
Inventors: Pitamber DEVGON (Philadelphia, PA), Richard T. BRIGANTI (Bala Cynwyd, PA), Brian J. FUNK (San Francisco, CA), Kevin J. EHRENREICH (San Francisco, CA)
Application Number: 16/854,430