TEXTURED TEST PADS FOR PRINTED CIRCUIT BOARD TESTING
A printed circuit board includes a substrate and at least one electrical circuit provided at least partially on a surface layer of the printed circuit board. The electrical circuit includes an electrical trace that is in electrical connection with a test pad provided for accessibility on the surface layer, the test pad being sized and shaped for probing to test an aspect of the circuit, the test pad having a conductive probe surface that is structured to provide at least one vertical surface that extends from the probe surface toward the surface layer and thus providing an edge between the vertical surface and the probe surface, the probe surface having a coating of a material to protect the conductive probe surface from corrosion.
This disclosure is directed to printed circuit board and testing technology where one or more circuits of a circuit board substrate are provided with test pads. The test pads can include conductive, copper test pad components that are in electrical connection with circuit traces. These test pads are sometimes referred to as satellite test pads in that they are spaced by a circuit trace to be accessible during test probing. By temporarily connecting the test pads with one or more external probes, the circuits can be tested for expected functionality (in-circuit test or ICT). Typically, a test probe is positioned to contact the test pad by pressure without being otherwise held to or attached to the test pad during testing. Good electrical contact is beneficial to avoid a test failure or a false reading. Multiple test probes and test pads can be used at the same time in a single testing pass.
Test pads are sometimes coated during manufacture to reduce corrosion of copper traces and pads during storage, shipment, or other delays. Some coatings are metallic and electrically conductive (e.g., a nickel-gold, silver, or other metallic coating) but others are not typically electrically conductive, and may be at least partially dielectric. In cases where dielectric coating is utilized, good probe contact is often negatively affected by the coatings on the test pads. In such cases, the probe can displace, pierces, or penetrate the coating with a probe tip. Example corrosion-resistant but non-conductive coatings include an organic solderability preservative (OSP) layer. OSP coating layers can have a lower cost, require fewer manufacturing/coating steps, and other beneficial aspects when compared to a nickel-gold or other metallic (e.g., conductive but corrosion resistant) coating. OSP coatings are generally easier to apply with an immersion process. OSP coatings, however, can sometimes interfere with or otherwise reduce electrical contact between probe and test pad.
Therefore, there is a desire for corrosion-resistant OSP coated pads to reduce costs compared to metallic coatings, but also there is also a need for consistent electrical contact and connection between a probe and a coated test pad. In order to enhance good electrical contact even with a test pad coated with OSP, embodiments of the invention provide a test pad with a textured probe contact surface. The textured surface preferably has edges and vertically extending surfaces that have been shown to enhance electrical contact in that first pass yields (FPY) can be dramatically increased. This means that fewer circuits and boards are subject to multiple test procedures and/or additional processing steps. Circuit testing yield is therefore increased in a given time period without requiring multiple test retries and/or additional testing fixtures to be run in parallel to accommodate retesting to achieve a sufficient percentage testing yield.
Preferred pad texturing comprises the creation of multiple structures or dimples extending within the test pad's thickness. The most preferred structure comprises an arrangement of the plural dimples arranged as a pattern with controlled dimple extension into the thickness of the test pad and a controlled spacing between adjacent dimples.
According to a first aspect of the present disclosure, a printed circuit board is disclosed. According to the first aspect, the printed circuit board includes a substrate and at least one electrical circuit provided at least partially on a surface layer of the printed circuit board. The electrical circuit includes an electrical trace that is in electrical connection with a test pad provided for accessibility on the surface layer, the test pad being sized and shaped for probing to test an aspect of the circuit, the test pad having a conductive probe surface that is structured to provide at least one vertical surface that extends from the probe surface toward the surface layer and thus providing an edge between the vertical surface and the probe surface, the probe surface having a coating of a material to protect the conductive probe surface from corrosion.
According to a second aspect of the present disclosure, a method of making a printed circuit board is disclosed. According to the second aspect, the method includes forming an electrical circuit with a least a portion of the circuit provided along a portion of a surface layer, the electrical circuit including at least an electrical trace that is also electrically connected with a test pad to allow the electrical circuit to be probe tested. The method also includes structuring a probe surface of the test pad to include at least one vertical surface that extends from the probe surface toward the substrate by partially removing test pad material from within a thickness of the test pad and thus creating an edge between the vertical surface and the probe surface. The method also includes coating the probe surface with a protective material to protect the probe surface from corrosion.
According to a third aspect of the present disclosure, a method of probing an electrical circuit as provided at least partially on a surface layer of a printed circuit board is disclosed. According to the third aspect, the method includes locating a test pad of the circuit as such test pad is provided for accessibility on the printed circuit board. The method also includes relatively moving a probe of an in circuit test unit toward a conductive probe surface of the test pad, the probe surface structured to provide at least one surface that extends from the probe surface toward the surface layer and that creates an edge between the vertical surface and the conductive probe surface. The method also includes displacing an amount of protective material covering the conductive probe surface by action of the probe contacting the protective material so as to permit conductive contact of the probe with the conductive probe surface.
Other important objects and advantages of the present invention will be apparent from the following detailed description of the invention taken in connection with the accompanying drawings.
The present disclosure relates to aspects of circuit testing, and relates in particular to improving first pass yields during circuit testing by facilitating test probe connection with coated test pads.
Many electronic devices include one or more printed circuit boards (PCBs). PCBs are complex electronic structures that have a substrate and a myriad of very small electronic components (e.g., transistors, resistors, capacitors, etc.), wires (e.g., vias, traces, etc.), circuits (e.g., integrated circuits), connection points or pads, among many others. Unfortunately, during PCB manufacture, one or more components of the PCB may be damaged, improperly formed, non-functional to certain standards, or otherwise deficient for various reasons. In order to produce and sell only functional PCBs, it has become common practice to submit newly-made PCBs to a battery of tests at various stages of PCB manufacture. Therefore, and for these testing purposes, some PCBs are manufactured with test pads to be used in testing one or more circuits or other components of the PCB.
Satellite test pads for PCB testing have existed in various forms for years, but the present disclosure makes a significant breakthrough over the prior art. In particular, a surface PCB test pad is caused to be textured or dimpled. This texture causes an increased conductive probe surface (or test pad surface) area by creating surface features that include vertical ridges and edges. These vertical ridges and edges in addition to various horizontal components, beneficially facilitate an in-circuit test probe to not only penetrate through an OSP coating or other test pad coating finish, but also to reduce negative conductivity effects caused by copper oxidation on the conductive probe surface. The probe in displacing the OSP coating can expose an underlying clean copper surface for the test probe to make contact with the test pad. Additionally, the texture or dimpling of the conductive probe surface can improve probe-test pad electrical contact due to topography of the test pad, even in cases where an OSP coating is not a factor. This can have the beneficial result of creating consistent electrical connections and reducing contact resistance between the test pad and probe, which can reduce false readings and improve PCB testing efficiency and accuracy.
In addition, a PCB's shelf life can sometimes be limited due to OSP coating hardening over time. After initial OSP coating, the OSP remains of a softness that allows probe displacement, which process is enhanced by the present invention. However, the OSP coating hardening can result in increased probe to copper test pad electrical resistance, creating an even larger demand for improved electrical contact between the probe and the test pad. In existing coated PCBs, after a certain time has passed, it may be necessary to refinish a test pad by stripping any OSP coating and removing corrosion from the test pads, before reapplying OSP coating, etc. Some corrosion can form on copper test pads even below an OSP coating. By texturing the conductive probe surface, the OSP coating hardening can have a reduced impact, and less negatively affect testing done even months after the OSP coating is applied to the test pad.
During PCB testing, a single testing pass can be used to test PCB components. However, at times a first pass fails to fully assess whether each PCB (and/or circuit thereof) is functional at the component level. Therefore, sometimes multiple testing passes are performed on at least some PCBs. Additional testing passes leads to time consumption, incurs costs, and generally delays delivery of functional PCBs that are falsely identified as being faulty. As used herein, first pass yield (FPY) refers to a first testing run on a particular PCB or group of PCBs. In particular, embodiments of the present disclosure are directed to improving FPY of PCBs during testing.
In a case of a test failure or negative test result, OSP coating surfaces on a PCB can be stripped, cleaned, cleared, etched, or refinished before performing additional testing, which adds cost and time. There has been some concern with respect to copper integrity on the PCB, the test pads in particular, due to OSP recoating and/or a stripping process. Therefore, embodiments of the present invention also have an advantage of reducing a likelihood of a need for refinishing and recoating of various OSP coating surfaces on test pads of a PCB to be tested. Previous attempts to improve FPY include a double stage test probe actuation and contact with the test pad. This double state test probe actuation can be conducted during each testing cycle prior to the probe electrically connecting to the test pad. This additional probe actuation lowers PCB assembly line units per hour and could also compromise a test pad through repeated non-testing contacts.
A form of PCB testing described is referred to as in-circuit testing (ICT). ICT involves testing and assessing components of a PCB, such as circuits of PCB 200 of
Shown at diagram 100 of
The one or more dimples 112 can together cause the probe surface 114 of the test pad 116 to have a multifaceted, curved, and/or textured surface. The contact point 118 between the probe 110 and the test pad 116 can occur as the probe 110 is caused to apply a pressure to the test pad 116 in order to create an electric connection. The electric connection can be a pressure-based connection.
Not shown in
As the probe 110 contacts the test pad 116, the probe 110 can in some cases be shaped, sized, and configured such that the probe 110 is both robust for repeated use and also able to create a reliable electric connection with the test pad 116, despite the presence of an OSP coating on the test pad 116. Therefore, in some embodiments, the probe 110 can have at least one angled tip portion part that is configured to assist the probe 110 in passing through the coating. In other embodiments, the probe 110 may not fully penetrate the coating when creating an electrical connection to the test pad 116. One existing method includes using a sharp and narrow testing probe to displace the coating by cutting or piercing through the OSP coating. OSP coating displacement can detrimentally compromise the test pad to a small degree. Therefore, the probe 110 can preferably maintain a relatively thick, robust shape, but can nevertheless create an electrical contact with the textured probe surface 114 of the test pad 116. Note that the probe 110 does not substantially deform the probe surface 114, and in diagram 100 the contact point 118 and other components as exaggerated for illustrative purposes.
Turning to
During manufacture of PCB 200 including coated test pads 214, the test pads 214 can be formed as exposed, textured, copper test pads 214. The exposed test pads 214 can then be exposed to a chemical immersion process in which the entire PCB 200 is exposed, but an OSP coating forms only on the copper test pads due to a chemical reaction. Therefore, in preferred embodiments, only the test pads 214 will be coated in OSP material. In other embodiments, the test pads 214 can be coated individually or in groups on PCB 200.
Although not shown, various ICT testing units can be formed that have probes (e.g., probes 110) arranged in a pattern that mirrors the test pads 214 of one or more testing regions 216 on PCB 200. In this way, multiple or all test pads 214 can be electrically connecting to the testing unit in a simple movement, which can increase testing speed, particularly when the FPY of testing is relatively high, as in embodiments of the present disclosure. In some cases continuity, voltage, resistance, capacitance, or other electronic characteristics are measured during testing. In other embodiments, system(s)-on-a-chip can be tested on PCB 200.
In some preferred embodiments, PCB 200 test pads 214 can connect plural networks of connections or individual electrical circuits. A network or circuit can include, e.g., one or more copper traces that connect two or more test pads 214. Each network or circuit can be tested individually or in combination with other networks within PCB 200. PCB 200 can include hundreds, thousands, or more networks. One or more networks or circuits can be tested during ICT.
Embodiments of the present disclosure are particularly directed to improvements in the test pads 212 and their interaction with a test probe such as 110 of
Dimples, such as dimples 710/810 of
In some embodiments, a conductive probe surface area that is structured can be beneficial during PCB or circuit testing. Therefore, one measurement of a conductive probe surface can include a total surface area of the test pad, and in some cases the total surface area of the test pad can be expressed as a ratio to a surface area of a similar test pad that lacks a texturing and/or vertical components (e.g., a smooth, flat test pad) to a textured conductive probe surface. In other embodiments, a number, size, and angle of various facets on the dimples can be optimized or maximized.
According to
For testing of test pad electrical contact and anti-corrosive performance, various dimple patterns and configurations can be devised to meet various target and testing requirements. Sizing and spacing of a predetermined dimple pattern can be specified in documentation, and can be based at least in part of a precision level of etching or other dimple-forming mechanisms. Some OSP coating displacement can in some cases lead to some test pad corrosion. A dimple pattern as shown was tested by Applicant for an 8-week test in a corrosive environment before and after test pad-probe contact/use, and it was found that performance of the test pads was not substantially impaired on the 8-week testing period due to corrosion on the test pads. Using a textured or dimpled test pad configuration reduces any impact of corrosion of the test pad during a testing procedure.
Turning now to
During testing, merged dimples 610 may not cause ICT testing equipment to sense a PCB circuit rejection. However, merged dimples 610 may in some cases lead to the possibility of needed re-testing due to inadequate electric connections. In response to a finding of the merging of the dimples 610, the mechanisms used to create the dimples 610 may benefit from an adjustment of various (e.g., etching) parameters as a result of the merging in order to reduce merging for future PCBs and dimples. For example, in a closed-loop testing system, if dimples 610 are merging, various control parameters may be adjusted at earlier steps in order to minimize future dimple 610 merging. Separately, under-etched (etching too shallow) or missing (non-etched) dimples can be acceptable in some testing scenarios, and therefore also may not cause a rejection during PCB testing. Nevertheless, various dimple forming and/or etching control components may benefit from adjustments in these scenarios based on closed-loop feedback.
In contrast to
Also according to
Process 1400 can continue by proceeding to operation 1416, where a test pad can be located on a surface of the circuit as such test pad is provided for accessibility on the printed circuit board. Next, an operation 1418, a probe of an in-circuit test (ICT) unit can be moved toward the conductive probe surface of the test pad, the probe surface structured to provide at least one surface that extends from the probe surface toward the surface layer, but within a thickness of the test pad. Process 1400 can continue to operation 1420, where an amount of protective material covering the probe surface is at least partially displaced so as to permit contact of the probe with the conductive probe surface.
Example Results from Testing by Applicant:
Using test pads without a structured surface, a FPY during PCB testing can range from about 81-86% for ICT. This is generally considered to be below a desired level of PCB yield after a first pass. According to embodiments of the present disclosure, and according to Applicant's testing, when structured embodiments of the present disclosure are utilized, FPY for equivalent PCBs using equivalent procedures increases to roughly 95% or more, saving a significant amount of time and money during PCB testing.
According to one example, a main PCB for a hard-disk drive was tested using existing test pads, and were found to have a less than 85% ICT FPY. When textured test pads in accordance with the present disclosure were implemented on the same hard-disk drive type, one ICT test led to FPY of 2469/2500, or 98.76% FPY. FCT testing for the hard-disk drive PCB under the same parameters also improved to 99.20% FCT FPY. The same type of PCBs were subject to another ICT test, and the results were 2457/2500 (98.28%) FPY ICT.
According to another example, Applicant tested another type of PCB from a hard-disk drive using non-structured test pads and found a FPY of 46538/68208 PCBs (68.23% FPY). When embodiments of the present disclosure were implemented, the FPY increased to 27343/29122 (93.895% FPY). Similarly, Applicant tested yet another type of PCB. Using a non-structured test pad, FPY were 193870/249865 (77.59% FPY). When a structured test pad according to the present disclosure was used instead, the FPY of the PCB testing rose to 44632/49994 (89.27% FPY), a significant increase in each scenario. Applicant conducted testing of many different PCB types and configurations, and in each case, FPY was increased, and typically to a FPY of 93-97% or more.
Computer system 1500, as shown, is configured with an interface 1516 to enable controller 1510 to receive a request to test one of more components of a PCB, as described in particular with regard to
Processors 1512, 1514 included in controller 1510 are connected by a memory interface 1520 to memory device or module 1530. In embodiments, the memory 1530 can be a cache memory, a main memory, a flash memory, or a combination of these or other varieties of electronic devices capable of storing information and, optionally, making the information, or locations storing the information within the memory 1530, accessible to a processor. Memory 1530 can be formed of a single electronic (or, in some embodiments, other technologies such as optical) module or can be formed of a plurality of memory devices. Memory 1530, or a memory device (e.g., an electronic packaging of a portion of a memory), can be, for example, one or more silicon dies or chips, or can be a multi-chip module package. Embodiments can organize a memory as a sequence of bit, octets (bytes), words (e.g., a plurality of contiguous or consecutive bytes), or pages (e.g., a plurality of contiguous or consecutive bytes or words).
In embodiments, computer 1500 can include a plurality of memory devices. A memory interface, such as 1520, between a one or more processors and one or more memory devices can be, for example, a memory bus common to one or more processors and one or more memory devices. In some embodiments, a memory interface, such as 1520, between a processor (e.g., 1512, 1514) and a memory 1530 can be point to point connection between the processor and the memory, and each processor in the computer 1500 can have a point-to-point connection to each of one or more of the memory devices. In other embodiments, a processor (for example, 1512) can be connected to a memory (e.g., memory 1530) by means of a connection (not shown) to another processor (e.g., 1514) connected to the memory (e.g., 1523 from processor 1514 to memory 1530).
Computer 1500 can include an input/output (I/O) bridge 1550, which can be connected to a memory interface 1520, or to processors 1512, 1514. An I/O bridge 1550 can interface the processors 1512, 1514 and/or memory devices 1530 of the computer 1500 (or, other I/O devices) to I/O devices 1560 connected to the bridge 1550. For example, controller 1510 includes I/O bridge 1550 interfacing memory interface 1522 to I/O devices, such as I/O device 1560. In some embodiments, an I/O bridge 1550 can connect directly to a processor or a memory, or can be a component included in a processor or a memory. An I/O bridge 1550 can be, for example, a peripheral component interconnect express (PCI-Express) or other I/O bus bridge, or can be an I/O adapter.
An I/O bridge 1550 can connect to I/O devices 1560 by means of an I/O interface, or I/O bus, such as I/O bus 1522 of controller 1510. For example, I/O bus 1522 can be a PCI-Express or other I/O bus. I/O devices 1560 can be any of a variety of peripheral I/O devices or I/O adapters connecting to peripheral I/O devices. For example, I/O device 1560 can be a graphics card, keyboard, mouse, stylus, gesture control sensor, or other input device, a hard-disk drive (HDD), solid-state drive (SSD) or other storage device, a network interface card (NIC), etc. I/O devices 1560 can include an I/O adapter, such as a PCI-Express adapter, that connects components (e.g., processors or memory devices) of the computer 1500 to various I/O devices 1560 (e.g., disk drives, Ethernet networks, video displays, keyboards, mice, styli, sensors, touchscreens, etc.).
Computer 1500 can include instructions executable by one or more of the processors 1512, 1514 (or, processing elements, such as threads of a processor). The instructions can be a component of one or more programs. The programs, or the instructions, can be stored in, and/or utilize, one or more memory devices of computer 1500. As illustrated in the example of
Programs can be “stand-alone” programs that execute on processors and use memory within the computer 1500 directly, without requiring another program to control their execution or their use of resources of the computer 1500. For example, controller 1510 includes (optionally) stand-alone programs in patterning module 1506, probe module 1507, coating module 1509, and material removal module 1505. A stand-alone program can perform particular functions within the computer 1500, such as controlling, or interfacing (e.g., access by other programs) an I/O interface or I/O device. A stand-alone program can, for example, manage the operation, or access to, a memory (e.g., memory 1530). A basic I/O subsystem (BIOS), or a computer boot program (e.g., a program that can load and initiate execution of other programs) can be a standalone program.
Controller 1510 within computer 1500 can include one or more OS 1502, and an OS 1502 can control the execution of other programs such as, for example, to start or stop a program, or to manage resources of the computer 1500 used by a program. For example, controller 1510 includes OS 1502, which can include, or manage execution of, one or more programs, such as OS 1502 including (or, managing) testing module 1508, and test criteria module 1504. In some embodiments, an OS 1502 can function as a hypervisor.
A program can be embodied as firmware (e.g., BIOS in a desktop computer, or a hypervisor) and the firmware can execute on one or more processors and, optionally, can use memory, included in the computer 1500. Firmware can be stored in a memory (e.g., a flash memory) of the computer 1500. For example, controller 1510 includes firmware 1540 stored in memory 1530. In other embodiments, firmware can be embodied as instructions (e.g., comprising a computer program product) on a storage medium (e.g., a CD-ROM, DVD-ROM, flash memory, or disk drive), and the computer 1500 can access the instructions from the storage medium.
In embodiments of the present disclosure, computer 1500 can include instructions for PCB testing and/or manufacturing. Controller 1510 includes, for example, patterning module 1506, probe module 1507, coating module 1509, and material removal module 1505, which can operate to design, manufacture, use, or test PCBs, in particular to improve a first run yield during testing.
The example computer system 1500 and controller 1510 are not intended to limiting to embodiments. In embodiments, computer system 1500 can include a plurality of processors, interfaces, and inputs and can include other elements or components, such as networks, network routers or gateways, storage systems, server computers, virtual computers or virtual computing and/or I/O devices, cloud-computing environments, and so forth. It would be evident to one of skill in the art to include a variety of computing devices interconnected in a variety of manners in a computer system embodying aspects and features of the disclosure.
In embodiments, controller 1510 can be, for example, a computing device having a processor (e.g., 1512) capable of executing computing instructions and, optionally, a memory 1530 in communication with the processor. For example, controller 1510 can be a desktop or laptop computer; a tablet computer, mobile computing device, personal digital assistant (PDA), or cellular phone; or, a server computer, a high-performance computer (HPC), or a super computer. Controller 1510 can be, for example, a computing device incorporated into a wearable apparatus (e.g., an article of clothing, a wristwatch, or eyeglasses), an appliance (e.g., a refrigerator, or a lighting control), a mechanical device, or (for example) a motorized vehicle. It would be apparent to one skilled in the art that a computer embodying aspects and features of the disclosure can be any of a variety of computing devices having processors and, optionally, memory devices, and/or programs.
It is understood that numerous variations of circuit test pads and probe systems and methods could be made while maintaining the overall inventive design of various components thereof and remaining within the scope of the disclosure. Numerous alternate design or element features have been mentioned above.
The foregoing specific embodiments of the present invention as set forth in the specification herein are for illustrative purposes only. Various deviations and modifications may be made within the spirit and scope of the invention without departing from the main theme thereof.
As used herein, the singular forms “a,” “an,” and “the” encompass embodiments having plural referents, unless the content clearly dictates otherwise. As used in this specification and the appended claims, the term “or” is generally employed in its sense including “and/or” unless the content clearly dictates otherwise.
Unless otherwise indicated, all numbers expressing feature sizes, amounts, and physical properties are to be understood as being modified by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth are approximations that can vary depending upon the desired properties sought to be obtained by those skilled in the art utilizing the teachings disclosed herein.
Although certain features are described generally herein relative to particular embodiments of the invention, it is understood that the features are interchangeable between embodiments to arrive at an improved circuit and PCB testing scheme and method that includes features of different illustrated embodiments.
Claims
1. A printed circuit board comprising a substrate and at least one electrical circuit provided at least partially on a surface layer of the printed circuit board, the electrical circuit comprising an electrical trace that is in electrical connection with a test pad provided for accessibility on the surface layer, the test pad being sized and shaped for probing to test an aspect of the circuit, the test pad having a conductive probe surface that is structured to provide at least one vertical surface that extends from the probe surface toward the surface layer and thus providing an edge between the vertical surface and the probe surface, the probe surface having a coating of a material to cover and protect the conductive probe surface from corrosion, the coating comprising a material that is at least partially dielectric.
2. The printed circuit board of claim 1, wherein the vertical surface extends within the thickness of the test pad.
3. The printed circuit board of claim 1, comprising a plurality of structures each having a vertical surface extending within the thickness of the test pad creating a plurality of edges over the conductive probe surface of the test pad.
4. The printed circuit board of claim 3, wherein each structure comprises a dimple extending within the thickness of the test pad and the dimples are arranged in a predetermined pattern so that edges are positioned to be contacted during test probing of the test pads.
5. The printed circuit board of claim 4, wherein the predetermined pattern provides dimples in a regular pattern disposed over the conductive probe surface.
6. The printed circuit board of claim 5, wherein the test pad is circular and the predetermined pattern comprises a honeycomb pattern.
7. The printed circuit board of claim 1, further comprising plural electrical circuits of the printed circuit board, wherein test pads are arranged over the surface layer of the printed circuit board for test probing with each test pad being structured and coated with at least partially dielectric material to cover and protect the conductive probe surface from corrosion.
8. A method of making a printed circuit board comprising the steps of:
- forming an electrical circuit with a least a portion of the circuit provided along a portion of a surface layer, the electrical circuit including at least an electrical trace that is also electrically connected with a test pad to allow the electrical circuit to be probe tested;
- structuring a probe surface of the test pad to include at least one vertical surface that extends from the probe surface toward the substrate by partially removing test pad material from within a thickness of the test pad and thus creating an edge between the vertical surface and the probe surface; and
- coating the probe surface with a protective material to protect the probe surface from corrosion.
9. The method of claim 8, wherein the vertical surface is created by partially removing test pad material without removing test pad material entirely through the test pad thickness.
10. The method of claim 8, further comprising structuring the probe surface with a plurality of structures, each having a vertical surface created by partially removing test pad material from with the thickness of the test pad.
11. The method of claim 10, wherein the structuring step comprises creating a predetermined pattern of dimples within the thickness of the test pad thus also creating edges at each dimple and the probe surface.
12. The method of claim 11, wherein the structuring step is performed by an etching process.
13. The method of claim 11, wherein the structuring step also comprises patterning the dimples as a honeycomb pattern on a circular test pad.
14. The method of claim 8, further comprising forming plural electrical circuits of the printed circuit board, wherein test pads are arranged over the surface layer of the printed circuit board for test probing and structuring each test pad and coating each test pad with material to protect the conductive probe surface from corrosion.
15. A method of probing an electrical circuit as provided at least partially on a surface layer of a printed circuit board comprising the steps of:
- locating a test pad of the circuit as such test pad is provided for accessibility on the printed circuit board;
- relatively moving a probe of an in circuit test unit toward a conductive probe surface of the test pad, the probe surface structured to provide at least one surface that extends from the probe surface toward the surface layer and that creates an edge between the vertical surface and the conductive probe surface; and
- displacing an amount of protective material covering the conductive probe surface by action of the probe contacting the protective material so as to permit conductive contact of the probe with the conductive probe surface.
16. The printed circuit board of claim 15, wherein the displacement of an amount of protective material is controlled to occur at or adjacent to the edge of the structured probe surface.
17. The printed circuit board of claim 15, wherein the electrical circuit is tested by contacting two test pads of the electrical circuit that are each electrically connected with the electrical circuit by two probes, and the testing comprises checking the electrical circuit for continuity.
18. The printed circuit board of claim 15, wherein the method further comprises testing plural electrical circuits as are provided within the construction of the printed circuit board by contacting an arrangement of probes with a similar arrangement of test pads provided on the surface layer.
19. The method of claim 15, wherein the displacing of protective material is conducted by a movement of the probe after contact with the protective material to remove the protective material from a portion of the conductive probe surface.
20. The method of claim 19, wherein the protective material is removed at the edge of the structured surface.
Type: Application
Filed: May 28, 2019
Publication Date: Dec 3, 2020
Patent Grant number: 10893605
Inventors: Michael Richard Fabry (Apple Valley, MN), William Bradford Green (Shakopee, MN)
Application Number: 16/424,270