INTRAVASCULAR DEVICES, SYSTEMS, AND METHODS
Intravascular devices, systems, and methods are disclosed. In some instances, the intravascular device is a guide wire with electrical conductors printed on a solid core wire. In some instances, the electrical conductors are coupled to conductive bands adjacent a proximal portion of the guide wire. Methods of making, manufacturing, and/or assembling such intravascular devices and associated systems are also provided. In certain aspects, guidewires of the invention include a body having an inner core and an outer layer with one or more embedded conductors. The conductors are exposed at one or more locations along the body and a conductive material can be layered over the exposed locations. A sensor can also be coupled to the body via the conductive material at one of the exposed locations.
The present application is a continuation of U.S. patent application Ser. No. 14/143,304, filed Dec. 30, 2013, now U.S. Pat. No. 10,791,991, which claims priority to and the benefit of U.S. Provisional Patent Application No. 61/747,578, filed Dec. 31, 2012 and U.S. Provisional Patent Application No. 61/777,516, filed Mar. 12, 2013, each of which is hereby incorporated by reference in its entirety.
TECHNICAL FIELDThe present disclosure relates to intravascular devices, systems, and methods. In some embodiments, the intravascular devices are guidewires that include one or more electronic, optical, or electro-optical components.
BACKGROUNDHeart disease is very serious and often requires emergency operations to save lives. A main cause of heart disease is the accumulation of plaque inside the blood vessels, which eventually occludes the blood vessels. Common treatment options available to open up the occluded vessel include balloon angioplasty, rotational atherectomy, and intravascular stents. Traditionally, surgeons have relied on X-ray fluoroscopic images that are planar images showing the external shape of the silhouette of the lumen of blood vessels to guide treatment. Unfortunately, with X-ray fluoroscopic images, there is a great deal of uncertainty about the exact extent and orientation of the stenosis responsible for the occlusion, making it difficult to find the exact location of the stenosis. In addition, though it is known that restenosis can occur at the same place, it is difficult to check the condition inside the vessels after surgery with X-ray.
A currently accepted technique for assessing the severity of a stenosis in a blood vessel, including ischemia causing lesions, is fractional flow reserve (FFR). FFR is a calculation of the ratio of a distal pressure measurement (taken on the distal side of the stenosis) relative to a proximal pressure measurement (taken on the proximal side of the stenosis). FFR provides an index of stenosis severity that allows determination as to whether the blockage limits blood flow within the vessel to an extent that treatment is required. The normal value of FFR in a healthy vessel is 1.00, while values less than about 0.80 are generally deemed significant and require treatment.
Often intravascular catheters and guidewires are utilized to measure the pressure within the blood vessel, visualize the inner lumen of the blood vessel, and/or otherwise obtain data related to the blood vessel. To date, guidewires containing pressure sensors, imaging elements, and/or other electronic, optical, or electro-optical components have suffered from reduced performance characteristics compared to standard guidewires that do not contain such components. For example, the handling performance of previous guidewires containing electronic components have been hampered, in some instances, by the limited space available for the core wire after accounting for the space needed for the conductors or communication lines of the electronic component(s), the stiffness of the rigid housing containing the electronic component(s), and/or other limitations associated with providing the functionality of the electronic components in the limited space available within a guidewire. Further, due to its small diameter, in many instances the proximal connector portion of the guidewire (i.e., the connector(s) that facilitate communication between the electronic component(s) of the guidewire and an associated controller or processor) is fragile and prone to kinking, which can destroy the functionality of the guidewire. For this reason, surgeons are reluctant to remove the proximal connector from the guidewire during a procedure for fear of breaking the guidewire when reattaching the proximal connector. Having the guidewire coupled to the proximal connector further limits the maneuverability and handling of the guidewire.
Further, a problem with existing pressure and flow guidewires is that they require a complex assembly of many discrete components. That complex assembly process has limitations on design performance of the guidewire. The use of separate conductive wires running down the length of the wire reduces the space available for more frontline supportive cores and can result in numerous issues during use due to poor solder joints with conductive bands, electrical shorts due to insulation issues, and breakage of the delicate conductive wires.
Accordingly, there remains a need for improved intravascular devices, systems, and methods that include one or more electronic, optical, or electro-optical components.
SUMMARYThe present disclosure is directed to intravascular devices, systems, and methods that include a guide wire having a solid core wire with electrical conductors formed or wrapped thereon.
The invention provides a more robust sensing guidewire that avoids the assembly and performance issues of prior art sensing guidewires. Guidewires of the invention have a core wire that is coated with an outer layer. Conductive wires are embedded in the outer layer and run the length of the body. The conductive wires act as the electrical pathway for sensor signals. The outer layer is removed (e.g., by ablation) at specific locations on each conductive wire where electrical connections are required. A conductive material is then applied to the exposed sections of wire. The sensor may then be coupled to the guidewire via the conductive material at one or more of the exposed sections. In this manner, guidewires of the invention eliminate the need to assemble a multitude of components to create the conductive band connections, the need for a hypotube, and the use of adhesives and solder in the guidewire. Reducing the number of components to assemble guidewires of the invention improves robustness of the assembled wire by eliminating a multitude of processes that can create failure conditions. Additionally, the ability to print the conductive bands eliminates the complexity associated with having to run and connect multiple wires.
Any type of sensor can be connected to guidewires of the invention and the type of measurement will determine the type of sensor used. In certain embodiments, only a single sensor is connected to the guidewire. In other embodiments, multiple sensors are connected to the guidewire. All of the sensors may be the same. Alternatively, the sensors may differ from each other and measure different characteristics inside a vessel. Exemplary sensors are pressure, flow, and temperature sensors. Any type of pressure sensor may be used with guidewires of the invention. In certain embodiments, the pressure sensor includes a crystalline semi-conductor material. Any type of flow sensor may be used with guidewires of the invention. In certain embodiments, the flow sensor includes an ultrasound transducer.
Preferably, the guidewire of the invention includes both a pressure sensor and a flow sensor on the distal portion. Pressure sensors are able to obtain pressure measurements and flow sensors are able to obtain blood velocity measurements within a blood vessel. The ability to measure and compare both the pressure and velocity flow significantly improves the diagnostic accuracy of ischemic testing.
Numerous different methods exist to apply the conductive material to the exposed sections on the body. In certain embodiments, printing is used and the conductive material is a conductive ink. Typically, the conductive ink includes a conductive metal, such as gold. The remainder of the outer layer in which the conductive wires are embedded is typically a polymeric material, such as polyimide.
Another aspect of the invention provides a method for measuring a characteristic inside a vessel. Methods of the invention involve providing a sensing guidewire that includes a body having an inner core and an outer layer. One or more conductive wires are embedded in the outer layer. The conductive wires are exposed at one or more locations along the body. A conductive material is layered over a plurality of the exposed locations, and a sensor is coupled to the body via the conductive material at one of the exposed locations. The guidewire is inserted into a vessel, and one or more sensors on the guidewire measure one or more characteristics inside the vessel.
In some embodiments, a guide wire having a solid core wire with electrical conductors printed thereon is provided. In some instances, the electrical conductors are formed by defining a helically wrapped pattern around the solid core wire. The pattern may be defined with wire, by printing conductive ink, by isolating a conductive skin or surface via laser ablation into multiple conductive surfaces, by the LDS-MID process, etc. The number of electrical conductors is dependent upon the functionality of the device, but in some implementations includes between two and six conductors. In some implementations, the solid core wire operates as an electrical conductor of the guide wire. In some instances, one or more conductive bands are coupled to the electrical conductors adjacent a proximal portion of the guide wire. In some instances, the conductive bands are soldered, welded, or glued (with a conductive adhesive) to the electrical conductors. In some embodiments, the conductive bands are printed over an exposed portion of a corresponding conductor—another is swaged. In some instances printed pattern is an antenna(s), heating element(s), tactile surface(s), alpha-numeric characters, etc.
In some instances, methods of assembling and/or manufacturing the guide wires disclosed herein are provided. In some embodiments, the traditional need to manually solder loose 48 AWG insulated wires to 0.35 nm cylindrical conductive bands is eliminated, which increases manufacturing yields and reduces the necessary training and skill required for operators. Further, instead of relying upon a single solder connection, the conductive bands of the present disclosure are electrically coupled to an associated conductor along a majority of the length of the conductive band. Also, in some instances the number of parts needed to manufacture at least the proximal connector portion of the device is reduced.
The present disclosure enables the proximal connector region of a guide wire that is stronger and more durable than existing designs, while also easier to manufacture. Embodiments of the present disclosure utilize precision material deposition (e.g., to coat and/or trace precision patterns) and/or wire winding(s) with a solid core member facilitating the use of a larger core that provides better handling, strength, and durability than existing designs, which reduces the likelihood of unwanted bending, kinking, and/or other damage to the proximal connector portion of the intravascular device that can be detrimental to the function of the device.
Additional aspects, features, and advantages of the present disclosure will become apparent from the following detailed description.
Illustrative embodiments of the present disclosure will be described with reference to the accompanying drawings, of which:
Collectively,
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It is nevertheless understood that no limitation to the scope of the disclosure is intended. Any alterations and further modifications to the described devices, systems, and methods, and any further application of the principles of the present disclosure are fully contemplated and included within the present disclosure as would normally occur to one skilled in the art to which the disclosure relates. In particular, it is fully contemplated that the features, components, and/or steps described with respect to one embodiment may be combined with the features, components, and/or steps described with respect to other embodiments of the present disclosure. For the sake of brevity, however, the numerous iterations of these combinations will not be described separately.
As used herein, “flexible elongate member” or “elongate flexible member” includes at least any thin, long, flexible structure that can be inserted into the vasculature of a patient. While the illustrated embodiments of the “flexible elongate members” of the present disclosure have a cylindrical profile with a circular cross-sectional profile that defines an outer diameter of the flexible elongate member, in other instances all or a portion of the flexible elongate members may have other geometric cross-sectional profiles (e.g., oval, rectangular, square, elliptical, etc.) or non-geometric cross-sectional profiles. Flexible elongate members include, for example, guidewires and catheters. In that regard, catheters may or may not include a lumen extending along its length for receiving and/or guiding other instruments. If the catheter includes a lumen, the lumen may be centered or offset with respect to the cross-sectional profile of the device.
In most embodiments, the flexible elongate members of the present disclosure include one or more electronic, optical, or electro-optical components. For example, without limitation, a flexible elongate member may include one or more of the following types of components: a pressure sensor, a temperature sensor, an imaging element, an optical fiber, an ultrasound transducer, a reflector, a mirror, a prism, an ablation element, an RF electrode, a conductor, and/or combinations thereof. Generally, these components are configured to obtain data related to a vessel or other portion of the anatomy in which the flexible elongate member is disposed. Often the components are also configured to communicate the data to an external device for processing and/or display. In some aspects, embodiments of the present disclosure include imaging devices for imaging within the lumen of a vessel, including both medical and non-medical applications. However, some embodiments of the present disclosure are particularly suited for use in the context of human vasculature. Imaging of the intravascular space, particularly the interior walls of human vasculature can be accomplished by a number of different techniques, including ultrasound (often referred to as intravascular ultrasound (“IVUS”) and intracardiac echocardiography (“ICE”)) and optical coherence tomography (“OCT”). In other instances, infrared, thermal, or other imaging modalities are utilized.
The electronic, optical, and/or electro-optical components of the present disclosure are often disposed within a distal portion of the flexible elongate member. As used herein, “distal portion” of the flexible elongate member includes any portion of the flexible elongate member from the mid-point to the distal tip. As flexible elongate members can be solid, some embodiments of the present disclosure will include a housing portion at the distal portion for receiving the electronic components. Such housing portions can be tubular structures attached to the distal portion of the elongate member. Some flexible elongate members are tubular and have one or more lumens in which the electronic components can be positioned within the distal portion.
The electronic, optical, and/or electro-optical components and the associated communication lines are sized and shaped to allow for the diameter of the flexible elongate member to be very small. For example, the outside diameter of the elongate member, such as a guidewire or catheter, containing one or more electronic, optical, and/or electro-optical components as described herein are between about 0.0007″ (0.0178 mm) and about 0.118″ (3.0 mm), with some particular embodiments having outer diameters of approximately 0.014″ (0.3556 mm) and approximately 0.018″ (0.4572 mm)). As such, the flexible elongate members incorporating the electronic, optical, and/or electro-optical component(s) of the present application are suitable for use in a wide variety of lumens within a human patient besides those that are part or immediately surround the heart, including veins and arteries of the extremities, renal arteries, blood vessels in and around the brain, and other lumens.
“Connected” and variations thereof as used herein includes direct connections, such as being glued or otherwise fastened directly to, on, within, etc. another element, as well as indirect connections where one or more elements are disposed between the connected elements.
“Secured” and variations thereof as used herein includes methods by which an element is directly secured to another element, such as being glued or otherwise fastened directly to, on, within, etc. another element, as well as indirect techniques of securing two elements together where one or more elements are disposed between the secured elements.
Referring now to
The intravascular device 100 also includes a connector 110 adjacent the proximal portion 106 of the device. In that regard, the connector 110 is spaced from the proximal end 107 of the flexible elongate member 102 by a distance 112. Generally, the distance 112 is between 0% and 50% of the total length of the flexible elongate member 102. While the total length of the flexible elongate member can be any length, in some embodiments the total length is between about 1300 mm and about 4000 mm, with some specific embodiments have a length of 1400 mm, 1900 mm, and 3000 mm. Accordingly, in some instances the connector 110 is positioned at the proximal end 107. In other instances, the connector 110 is spaced from the proximal end 107. For example, in some instances the connector 110 is spaced from the proximal end 107 between about 0 mm and about 1400 mm. In some specific embodiments, the connector 110 is spaced from the proximal end by a distance of 0 mm, 300 mm, and 1400 mm.
The connector 110 is configured to facilitate communication between the intravascular device 100 and another device. More specifically, in some embodiments the connector 110 is configured to facilitate communication of data obtained by the component 108 to another device, such as a computing device or processor. Accordingly, in some embodiments the connector 110 is an electrical connector. In such instances, the connector 110 provides an electrical connection to one or more electrical conductors that extend along the length of the flexible elongate member 102 and are electrically coupled to the component 108. Some specific embodiments of electrical connectors in accordance with the present disclosure are discussed below in the context of
As noted above, in some instances the connector 110 provides a connection between the component 108 of the intravascular device 100 and an external device. Accordingly, in some embodiments one or more electrical conductors, one or more optical pathways, and/or combinations thereof extend along the length of the flexible elongate member 102 between the connector 110 and the component 108 to facilitate communication between the connector 110 and the component 108. Generally, any number of electrical conductors, optical pathways, and/or combinations thereof can extend along the length of the flexible elongate member 102 between the connector 110 and the component 108. In some instances, between one and ten electrical conductors and/or optical pathways extend along the length of the flexible elongate member 102 between the connector 110 and the component 108. The number of communication pathways and the number of electrical conductors and optical pathways extending along the length of the flexible elongate member 102 is determined by the desired functionality of the component 108 and the corresponding elements that define component 108 to provide such functionality.
Referring now to
Referring more specifically to
Referring now to
Referring now to
In other embodiments, the conductors and/or other elements of the intravascular device are secured and/or wrapped around the core member using other techniques, including without limitation flex-foil wrapping, roll-to-roll printing, singulation, wrapping tape with conductors, utilizing conductive bands, utilizing contact pads, and/or utilizing other features. For example, in some instances a flex-foil wrap is utilized to define at least a portion of the conductors and/or circuitry. In that regard, insulated flexible foil conductors are helically wound onto the core member in some instances. The flexible foil conductors may define one or more conductors and/or circuitry such that a single foil conductor (having a multiple conductive leads/traces/circuits) and/or multiple foil conductors (each having single or multiple conductive leads/traces/circuits) may be utilized. Flexible foil conductors allow for a precise and consistent outer diameter, length, and pitch of the conductors around the core member, including facilitating automatic processing techniques. As a result, the resulting device can have improved consistency with respect to straightness and flexibility. As another example, in some instances a mill and fill approach is utilized to define the conductors around the core member.
Referring now to
Referring now to
In some embodiments, the conductive bands are swaged and/or laser welded in place. In that regard, as a general manufacturing process swaging may be broken up into two categories. The first category of swaging involves the work piece being forced through a confining die to reduce its diameter, similar to the process of drawing wire. This may also be referred to as “tube swaging.” The second category involves two or more dies used to hammer a round workpiece into a smaller diameter. This process is usually called “rotary swaging” or “radial forging.” Tubes may be tagged (reduced in diameter to enable the tube to be initially fed through the die to then be pulled from the other side) using a rotary swager, which allows them to be drawn on a draw bench. Swaging is often the method of choice for precious metals since there is no loss of material in the process. In that regard, in some instances the conductive band is swaged around the core member and a portion of the conductive band is laser-welded to the exposed conductor underneath the conductive band.
Referring now to
As shown in
Any desired pattern of conductive material may be placed onto the flexible elongate member 302. For example, the conductive bands can be solid, multiple rings, a spiral, or any other pattern that provides the optimum functionality. To that end,
Guidewires of the invention are complete by communicatively coupling the component 108 to the conductive wires 308. In some particular instances, portions of the conductive wires 308 adjacent a distal end of the flexible elongate member 302 are electrically coupled to the component 108 either directly or indirectly, using soldering welding, one or more additional conductive members, leads, and/or other known techniques. In some instances, sections of the outer layer 306 are removed to expose the distal portions of the conductive wires 308 that will be coupled to the component 108. The component 108 can be mounted within a distal section of the flexible elongate member 302 using any suitable technique, including without limitation those disclosed in one or more of U.S. Pat. Nos. 5,125,137, 5,873,835, 6,106,476, 6,551,250, U.S. patent application Ser. No. 13/931,052, filed Jun. 28, 2013, U.S. patent application Ser. No. 14/135,117, filed Dec. 19, 2013, U.S. patent application Ser. No. 14/137,364, filed Dec. 20, 2013, and U.S. patent application Ser. No. 14/139,543, filed Dec. 23, 2013, each of which is hereby incorporated by reference in its entirety.
As discussed above with respect to component 108, the sensor(s) of the intravascular device 300 provide a means to obtain intraluminal measurements within a body lumen and are connected to the one or more conductive bands on the intravascular device, which transmit and receive signals from the sensor(s). For example, the guidewire of the invention can include a pressure sensor, a flow sensor, a temperature sensor or combinations thereof. Preferably, the guidewire is a combination guidewire that includes both a pressure sensor and a flow sensor. Pressure sensors can be used to measure pressure within the lumen and flow sensors can be used to measure the velocity of blood flow. Temperature sensors can measure the temperature of a lumen. A guidewire with both a pressure sensor and a flow sensor provides a desirable environment in which to calculate fractional flow reserve (FFR) using pressure readings, and coronary flow reserve (CFR) using flow readings. Guidewires with two or more sensors can be made by increasing the number of conductive wires. For example,
The ability to measure and compare both the pressure and velocity flow and create an index of hyperemic stenosis resistance significantly improves the diagnostic accuracy of this ischemic testing. It has been shown that distal pressure and velocity measurements, particularly regarding the pressure drop-velocity relationship such as Fractional Flow reserve (FFR), Coronary flow reserve (CFR) and combined P-V curves, reveal information about the stenosis severity. For example, in use, the guidewire may be advanced to a location on the distal side of the stenosis. The pressure and flow velocity may then be measured at a first flow state. Then, the flow rate may be significantly increased, for example by the use of drugs such as adenosine, and the pressure and flow measured in this second, hyperemic, flow state. The pressure and flow relationships at these two flow states are then compared to assess the severity of the stenosis and provide improved guidance for any coronary interventions. The ability to take the pressure and flow measurements at the same location and same time with the combination tip sensor, improves the accuracy of these pressure-velocity loops and therefore improves the accuracy of the diagnostic information.
A pressure sensor allows one to obtain pressure measurements within a body lumen. A particular benefit of pressure sensors is that pressure sensors allow one to measure of fractional flow reserve (FFR) in vessel, which is a comparison of the pressure within a vessel at positions prior to the stenosis and after the stenosis. The level of FFR determines the significance of the stenosis, which allows physicians to more accurately identify hemodynamically relevant stenosis. For example, an FFR measurement above 0.80 indicates normal coronary blood flow and a non-significant stenosis. Another benefit is that a physician can measure the pressure before and after an intraluminal intervention procedure to determine the impact of the procedure.
A pressure sensor can be mounted, for example, on a distal portion of the guidewire. The pressure sensor can be formed of a crystal semiconductor material having a recess therein and forming a diaphragm bordered by a rim. A reinforcing member is bonded to the crystal and reinforces the rim of the crystal and has a cavity therein underlying the diaphragm and exposed to the diaphragm. A resistor having opposite ends is carried by the crystal and has a portion thereof overlying a portion of the diaphragm. Electrical conductor wires of the sensor are connected to a conductive band in the guidewire. Additional details of suitable pressure sensors that may be used with devices of the invention are described in U.S. Pat. No. 6,106,476. U.S. Pat. No. 6,106,476 also describes suitable methods for coupling the pressure sensor to a guidewire. Those methods are applicable to coupling the sensor to the conductive bands in guidewires of the invention.
In certain aspects, the guidewire of the invention includes a flow sensor. The flow sensor can be used to measure blood flow velocity within the vessel, which can be used to assess coronary flow reserve (CFR). The flow sensor can be, for example, an ultrasound transducer, a Doppler flow sensor or any other suitable flow sensor, disposed at or in close proximity to the distal tip of the guidewire. The ultrasound transducer may be any suitable transducer, and may be mounted in the distal end using any conventional method, including the manner described in U.S. Pat. Nos. 5,125,137, 6,551,250 and 5,873,835.
Additional features of the invention include proximal and distal tip coils or coverings.
Guidewires of the invention can be connected to an instrument, such as a computing device (e.g. a laptop, desktop, or tablet computer) or a physiology monitor, that converts the signals received by the sensors into pressure and velocity readings. The instrument can further calculate Coronary Flow Reserve (CFR) and Fractional Flow Reserve (FFR) and provide the readings and calculations to a user via a user interface.
In some embodiments, a user interacts with a visual interface to view images associated with the data obtained by the intravascular devices of the present disclosure. Input from a user (e.g., parameters or a selection) are received by a processor in an electronic device. The selection can be rendered into a visible display. An exemplary system including an electronic device is illustrated in
Processors suitable for the execution of computer program include, by way of example, both general and special purpose microprocessors, and any one or more processor of any kind of digital computer. Generally, a processor will receive instructions and data from a read-only memory or a random access memory or both. The essential elements of computer are a processor for executing instructions and one or more memory devices for storing instructions and data. Generally, a computer will also include, or be operatively coupled to receive data from or transfer data to, or both, one or more mass storage devices for storing data, e.g., magnetic, magneto-optical disks, or optical disks. Information carriers suitable for embodying computer program instructions and data include all forms of non-volatile memory, including by way of example semiconductor memory devices, (e.g., EPROM, EEPROM, solid state drive (SSD), and flash memory devices); magnetic disks, (e.g., internal hard disks or removable disks); magneto-optical disks; and optical disks (e.g., CD and DVD disks). The processor and the memory can be supplemented by, or incorporated in, special purpose logic circuitry.
To provide for interaction with a user, the subject matter described herein can be implemented on a computer having an I/O device, e.g., a CRT, LCD, LED, or projection device for displaying information to the user and an input or output device such as a keyboard and a pointing device, (e.g., a mouse or a trackball), by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well. For example, feedback provided to the user can be any form of sensory feedback, (e.g., visual feedback, auditory feedback, or tactile feedback), and input from the user can be received in any form, including acoustic, speech, or tactile input.
The subject matter described herein can be implemented in a computing system that includes a back-end component (e.g., a data server 413), a middleware component (e.g., an application server), or a front-end component (e.g., a client computer 449 having a graphical user interface 454 or a web browser through which a user can interact with an implementation of the subject matter described herein), or any combination of such back-end, middleware, and front-end components. The components of the system can be interconnected through network 409 by any form or medium of digital data communication, e.g., a communication network. Examples of communication networks include cell network (e.g., 3G or 4G), a local area network (LAN), and a wide area network (WAN), e.g., the Internet.
The subject matter described herein can be implemented as one or more computer program products, such as one or more computer programs tangibly embodied in an information carrier (e.g., in a non-transitory computer-readable medium) for execution by, or to control the operation of, data processing apparatus (e.g., a programmable processor, a computer, or multiple computers). A computer program (also known as a program, software, software application, app, macro, or code) can be written in any form of programming language, including compiled or interpreted languages (e.g., C, C++, Perl), and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, or other unit suitable for use in a computing environment. Systems and methods of the invention can include instructions written in any suitable programming language known in the art, including, without limitation, C, C++, Perl, Java, ActiveX, HTML5, Visual Basic, or JavaScript.
A computer program does not necessarily correspond to a file. A program can be stored in a portion of file 417 that holds other programs or data, in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub-programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers at one site or distributed across multiple sites and interconnected by a communication network.
A file can be a digital file, for example, stored on a hard drive, SSD, CD, or other tangible, non-transitory medium. A file can be sent from one device to another over network 409 (e.g., as packets being sent from a server to a client, for example, through a Network Interface Card, modem, wireless card, or similar).
Writing a file according to the invention involves transforming a tangible, non-transitory computer-readable medium, for example, by adding, removing, or rearranging particles (e.g., with a net charge or dipole moment into patterns of magnetization by read/write heads), the patterns then representing new collocations of information about objective physical phenomena desired by, and useful to, the user. In some embodiments, writing involves a physical transformation of material in tangible, non-transitory computer readable media (e.g., with certain optical properties so that optical read/write devices can then read the new and useful collocation of information, e.g., burning a CD-ROM). In some embodiments, writing a file includes transforming a physical flash memory apparatus such as NAND flash memory device and storing information by transforming physical elements in an array of memory cells made from floating-gate transistors. Methods of writing a file are well-known in the art and, for example, can be invoked manually or automatically by a program or by a save command from software or a write command from a programming language.
Persons skilled in the art will also recognize that the apparatus, systems, and methods described above can be modified in various ways. Accordingly, persons of ordinary skill in the art will appreciate that the embodiments encompassed by the present disclosure are not limited to the particular exemplary embodiments described above. In that regard, although illustrative embodiments have been shown and described, a wide range of modification, change, and substitution is contemplated in the foregoing disclosure. It is understood that such variations may be made to the foregoing without departing from the scope of the present disclosure. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the present disclosure.
Claims
1. An intravascular device, comprising:
- a guidewire comprising a proximal portion and a distal portion, the guidewire further comprising a metallic inner core and an outer insulating layer surrounding and directly contacting the metallic inner core, wherein the metallic inner core is configured to facilitate handling for the guidewire inside a vessel;
- a plurality of conductors embedded in the outer insulating layer, wherein the outer insulating layer comprises a plurality of openings exposing portions of the plurality of conductors;
- a connector disposed at the proximal portion of the guidewire and comprising a plurality of conductive sections positioned over the exposed portions of the plurality of conductors; and
- a sensor coupled to the distal portion of the guidewire and electrically coupled to the connector via the plurality of conductors.
2. The intravascular device of claim 1, wherein a first thickness of the metallic inner core is greater than a second thickness of the outer insulating layer.
3. The intravascular device of claim 1, wherein the plurality of conductors extends longitudinally and straight.
4. The intravascular device of claim 1, wherein the plurality of conductors extends helically around the guidewire.
5. The intravascular device of claim 1, wherein a proximal portion of each of the plurality of conductors is electrically coupled to a corresponding conductive section.
6. The intravascular device of claim 1, wherein:
- each of the plurality of openings are disposed at different longitudinal positions and spaced from one another, and
- each of the plurality of conductors is electrically coupled to a single corresponding conductive section via a corresponding opening in the outer insulating layer, wherein at least one conductive section encircles the plurality of conductors at the proximal portion of the guidewire.
7. The intravascular device of claim 1, wherein:
- the plurality of conductors comprises a first conductor and a second conductor electrically coupled to the sensor, and
- the plurality of conductive sections comprises a first conductive section at a first longitudinal position and electrically coupled to the first conductor, and a second conductive section at a different second longitudinal position and electrically coupled to the second conductor.
8. The intravascular device of claim 1, wherein each of the plurality of conductors comprises a ribbon conductor having a flat surface.
9. The intravascular device of claim 1, wherein the proximal portion of the guidewire terminates at a proximal end, wherein the connector further comprises a proximal end member at the proximal end of the guidewire, and wherein a proximal-most conductive section of the plurality of conductive sections is spaced from the proximal end of the guidewire by the proximal end member.
10. The intravascular device of claim 1, wherein the outer insulating layer comprises a single layer insulating:
- the plurality of conductors and the plurality of conductive sections from the metallic inner core;
- the plurality of conductors from one another; and
- the plurality of conductive sections from one another.
11. The intravascular device of claim 1, wherein each of the conductive sections comprises a conductive band formed of a metallic material.
12. The intravascular device of claim 1, wherein each opening of the plurality of openings extends in a circumferential direction for only a portion of a circumference of the guidewire.
13. The intravascular device of claim 1, wherein the sensor is a pressure sensor.
14. The intravascular device of claim 1, wherein the sensor is a flow sensor.
Type: Application
Filed: Oct 6, 2020
Publication Date: Feb 4, 2021
Inventors: David H. BURKETT (TEMECULA, CA), Bret C. MILLETT (FOLSOM, CA), Paul Douglas CORL (PALO ALTO, CA)
Application Number: 17/064,479