MULTI-ROTOR PERSONAL AIR VEHICLE WITH A CENTRAL LIFTING FAN
A flying vehicle with a fuselage having a longitudinal axis, a cockpit extending substantially from the center of the fuselage, a left front wing extending from the fuselage, a right front wing extending from the fuselage, a left rear wing extending from the fuselage, a right rear wing extending from the fuselage. Each wing contains a rotor rotatably mounted and a direct drive brushless motor providing directional control of the vehicle. A centrally located ducted fan encompasses the cockpit and provides VTOL capabilities. The central location of the cockpit and central ducted fan aid in balance and stability. The central ducted fan is itself a brushless motor with the stator windings encapsulated in the ducted fan housing and rotor magnets within the fan. All motors and rotatable mounts are controlled by a fly-by-wire system integrated into a central computer with avionics allowing for autonomous flight.
This application is a continuation of U.S. patent application Ser. No. 15/891,293, filed on Feb. 7, 2018; which is a continuation of U.S. patent application Ser. No. 14/987,198, filed on Jan. 4, 2016; which claims the benefit of priority from U.S. Provisional Patent Application No. 62/099,212, filed on Jan. 2, 2015, which applications are incorporated herein by reference in their entireties.
FIELD OF THE INVENTIONThis invention relates generally to the field of vertical take-off and landing (VTOL) aircraft. More specifically, to compact VTOL aircraft that can be utilized as a personal air vehicle (PAV).
SUMMARY OF THE INVENTIONThe present invention comprises a personal air vehicle (PAV). The vehicle employs wing mounted tilting rotors that provide directional control as well as counter rotational torque of the vehicle and a large centralized ducted fan that encompasses the cockpit providing vertical takeoff and landing capabilities. The tilting rotors are preferably driven directly by out-runner style brushless electric motors. The centralized ducted fan assembly is itself an in-runner style brushless motor that integrates the stator windings in its ducted fan housing and magnets in a shroud fastened or molded to the rotor's fan blades. The centralized ducted fan allows for a compact vehicle that is centrally balanced with a low center of gravity. The cockpit is centered in the hub of the main fan such that changing passenger weight and payload will not affect the center gravity for the vehicle. The weight of the magnets in the integrated rotor's shroud are preferably positioned to create a heightened gyroscopic effect in the spinning rotor, adding stability to the PAV. The motors are powered by either fuel cell or electric batteries.
The present invention integrates a central computer utilizing a fly-by-wires system that controls the motors powering the rotors and servomechanisms that actuate the rotatable motor mounts. The computer, including avionics, allows for autonomous control of the vehicle whereby the driver can input commands through a steering wheel, floor pedals or other control apparatus to create a flight path.
Preferred and alternative examples of the present invention are described in detail below with reference to the following drawings:
Embodiments described herein illustrate a multi-rotor electric personal air vehicle (PAV) 120 with a central-ducted rotor according to the present invention. More specifically,
With reference to
The four peripheral rotor assemblies 166, shown further with reference to
With reference to
With further reference to
With reference to
The central cockpit 108, which may be made of lightweight composite materials, aluminum, or other suitable materials, may be mounted proximate to the central rotor assembly 164 and extends through the bottom of the central rotor 110. In a preferred embodiment, as shown with reference to
The centralized positioning of the cockpit 108 allows the PAV to maintain a constant center of gravity regardless of the weight of its user and power supply. The bottom of the cockpit 108 may serve as an attachment point for landing gear (not shown) or a safety air bag device in the case of a crash landing (not shown). Alternatively, the forward section of the fuselage 102 may serve as a mounting point for pivoting landing gear to provide a tight turning radius (not shown).
The PAV may optionally include headlights/landing lights encasement 134, including a streamlined transparent protective covering, located on the leading edge of fore wings 104R and 104L. The PAV may optionally include taillights encasement 136, including a streamlined transparent protective covering, located in the aft wings 106R and 106L. Navigation lights 138 are preferably located in the leading edge of the winglets 104RW and 104LW winglets and in the trailing edge of the winglets 106RW and 106LW.
Optionally, an emergency parachute 158 with deployment rocket launcher may be stored in a storage location compartment 156 in the rear of fuselage 102, attachment points integrated into compartment 156.
Avionics 160, including the PAV's gyroscopic equipment, etc. may be located inside compartment 162 in the forward area of the fuselage 102. Such equipment provides for guidance, navigation and control; for example, it may serve as a data bus which takes the night instrumentation, weather and additional data, along with pilot input, to control flight. A second bay may be located in the back (not shown) for redundancy. The flight computer 117 may use the avionics 160 to continuously balance and stabilize the PAV. In alternative embodiments, the PAV may further include proximity detectors working in conjunction with the avionics 160 to monitor the PAV and its surrounding to alter the flight path to avoid any collisions or landings that could damage the PAV. In yet alternative embodiments, the PAV may include an integrated flight training computer that, when activated, takes the pilot through a series of training routines and requiring a predetermined proficiency before allowing the pilot to freely pilot the PAV. Either the flight computer 117, the integrated flight training computer or other computer system may also be used as a controlled flight governor that restricts the altitude and speed of the PAV based on one or more predetermined criteria, for example, based on safety parameters or pending pilot proficiency indicators.
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. For example, instead of battery power, the central rotor assembly 164 and/or four peripheral rotor assemblies 166 may be powered by one or more external electric motors, combustion engines or other fuel sources. In an alternative embodiment, the cockpit may be encompassed by stator windings that act upon magnets contained in the inner circumference of the central rotor and function as an electric in-runner motor. If an independent electric motor is connected to the central rotor assembly, the stator windings located in the shroud may be removed. In an embodiment utilizing a combustion engine, the stator windings of the central rotor assembly may also be removed. The weight of the magnets in the rotor shroud 112 may be positioned to create a heightened gyroscopic effect in the spinning rotor, adding stability to the PAV. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
Claims
1. A flying vehicle, comprising:
- a central rotor assembly configured to provide vertical thrust for take-off and landing;
- a fuselage having a longitudinal axis mounted to the central rotor assembly;
- a plurality of wings extending from the fuselage, each wing having a peripheral rotor assembly mounted thereto providing directional control of the vehicle;
- a cockpit integrated with the fuselage and substantially surrounded by the central rotor assembly such that at least a portion of the cockpit forms a central hub of the central rotor assembly;
- a flight computer; and
- a power source for powering the powering the peripheral rotor assemblies, the central rotor assembly and the flight computer.
2. The flying vehicle of claim 1, wherein the plurality of peripheral rotor assemblies comprise:
- a rotatably mounted rotor;
- an out-runner brushless motor;
- a shaft supporting the rotatably mounted rotor;
- a shroud, wherein the shroud may be fixed or rotatable; and
- a direct drive out-runner style brushless motor for powering the peripheral rotor assembly.
3. The flying vehicle of claim 1, wherein the central rotor assembly comprises:
- a central rotor;
- a central rotor shroud;
- a ducted fan housing partially enclosing the central rotor shroud; and
- an in-runner style brushless motor for powering the central rotor assembly.
4. The flying vehicle of claim 1, wherein the central rotor assembly comprises:
- a plurality of counter rotating rotors with opposing pitch;
- a plurality of stator windings configured to rotate the counter rotating rotors in opposition directions;
- a plurality of magnetic shrouds integrated with the counter rotating rotors; and
- a ducted fan housing partially enclosing the counter rotating rotors.
5. The flying vehicle of claim 1, wherein the fuselage comprises:
- a transparent front windshield;
- a transparent read window; and
- at least one pivotally hinged door connectably integrated with the cockpit.
6. The flying vehicle of claim 1, wherein the flight computer is located in the cockpit, and the cockpit further comprises a means for vehicle steering.
7. The flying vehicle of claim 6, wherein the vehicle steering comprises wheel or yoke and yaw pedals.
8. The flying vehicle of claim 6, wherein the flight computer is controlled by a fly-by-wire system that calculates gyroscopic stability and sends information to the plurality of peripheral rotor assemblies to adjust them to the correct orientation and rotational speed for controlled level flight or smooth descent.
9. The flying vehicle of claim 6, wherein the power source is at least one of a battery, fuel cell, electric motor or combustion engine.
10. The flying vehicle of claim 1, further comprising landing gear mounted to at least one of the fuselage and wings.
11. The flying vehicle of claim 1, further comprising an emergency parachute with deployment rocket launcher.
12. The flying vehicle of claim 1, wherein the flight computer uses the avionics to continuously balance and stabilize the PAV.
13. The flying vehicle of claim 1, further comprising a plurality of proximity detectors working in conjunction with the flight computer to monitor the PAV and its surrounding to alter the flight path to avoid any collisions or landings that could damage the PAV.
14. The flying vehicle of claim 1, further comprising a flight training computer that, when activated, takes the pilot through a series of training routines and requiring a predetermined proficiency before allowing the pilot to freely pilot the PAV.
15. The flying vehicle of claim 1, wherein the flight computer restricts the altitude and speed of the PAV based on predetermined criteria.
16. A multi-purpose air and land vehicle, comprising:
- a central rotor assembly configured to provide vertical thrust for take-off and landing;
- a fuselage having a longitudinal axis mounted to the central rotor assembly;
- a plurality of wings extending from the fuselage, each wing having a peripheral rotor assembly mounted thereto providing directional control of the vehicle in either air or land travel comprising: a rotatably mounted rotor; an out-runner brushless motor; a shaft supporting the rotatably mounted rotor; a direct drive out-runner style brushless motor for powering the peripheral rotor assembly; and at least one vehicle wheel for use on traditional roadways;
- an cockpit integrated with the fuselage and substantially surrounded by the central rotor assembly such that at least a portion of the cockpit forms a central hub of the central rotor assembly;
- a flight computer; and
- a power source for powering the powering the peripheral rotor assemblies, the central rotor assembly and the flight computer.
17. The multi-purpose air and land vehicle of claim 16, wherein the central rotor assembly comprises:
- a central rotor;
- a central rotor shroud;
- a ducted fan housing partially enclosing the central rotor shroud; and
- an in-runner style brushless motor for powering the central rotor assembly.
18. The multi-purpose air and land vehicle of claim 16, wherein the central rotor assembly comprises:
- a plurality of counter rotating rotors with opposing pitch;
- a plurality of stator windings configured to rotate the counter rotating rotors in opposition directions;
- a plurality of magnetic shrouds integrated with the counter rotating rotors; and
- a ducted fan housing partially enclosing the counter rotating rotors.
19. The multi-purpose air and land vehicle of claim 16, wherein the fuselage comprises:
- a transparent front windshield;
- a transparent read window; and
- at least one pivotally hinged door connectably integrated with the cockpit.
20. The multi-purpose air and land vehicle of claim 16, wherein the flight computer is located in the cockpit, and the cockpit further comprises a means for vehicle steering.
Type: Application
Filed: May 13, 2020
Publication Date: Feb 4, 2021
Inventor: Jesse Antoine Marcel (Veradale, WA)
Application Number: 15/931,562