Elongated Rod Manufacturing Tool and Method
A tool for making elongated rods made of compacted plant material. The tool includes rod mold with a rod cavity and a plunger configured to slide into the rod cavity. In one embodiment, a stop plate with a pin is placed inside the rod cavity. During use, the stop plate covers the rod cavity's exit opening and the pin extends axially the full length of the rod cavity. Particles of plant material are placed inside the rod cavity and around the pin. The lower end of the plunger includes a pin opening configured to receive the pin when the plunger is downward to compact the plant material. In another embodiment, the stop plate includes a pin opening that enables a pin attached to the closed end of the plunger to extend through. During use, both the plunger and the pin are forced downward in the rod cavity to compact the plant material and form an air conduit.
This utility patent application is a continuation in part patent application is based on and claims the filing date benefit of U.S. utility patent application (application Ser. No. 16/676,302 filed on Nov. 6, 2019 which is based on and claims the filing date benefit of U.S. provisional patent application (Application No. 62/892,108) filed on Aug. 27, 2019.
COPYRIGHT NOTICENotice is given that the following patent document contains original material subject to copyright protection. The copyright owner has no objection to the facsimile or digital download reproduction of all or part of the patent document, but otherwise reserves all copyrights.
BACKGROUND OF THE INVENTION 1. Field of the InventionThis invention relates to elongated rods made of combustible plant material for smoking, manufacturing tools used to make the elongated rods, and a method of manufacturing individual elongated rods using the manufacturing tools.
2. Description of the Related ArtIt is common for cigarette smokers to roll individual cigarettes using a cigarette rolling machine. A typical cigarette rolling machine includes two parallel rollers aligned horizontally that are mounted at their opposite ends to a rigid frame. The ends of each roller are inserted into slots formed in the rigid frame that enable the spacing between the two rollers to automatically adjust or enable the user to change the spacing between the two rollers.
Wrapped around and extending between the two rollers is a single thin panel. The panel includes an excess, slack region that forms a flexible, U-shaped filling region between the two rollers. During use, the user forces the two rollers apart and deposits small tobacco particles evenly along the entire length of the filling region. The two rollers are then forced together and simultaneously rotated in the same direction. When the two rollers are forced together, the filling region on the thin panel forms a tube that contains the tobacco particles. As the two rollers are then rotated, the tobacco particles are forced inward to create an elongated rod of tobacco. The edge of a piece of rice paper is then inserted into the slot formed between the two rollers and the two rollers are then rotated again to wrap the rice paper around the elongated rod of tobacco. The opposite free edges of the rice paper are licked and twisted to form a cigarette. The two rollers are then separated, and the cigarette is then removed from the rolling machine.
One drawback with cigarette rolling machines described above is that the two rollers and the thin panel exerts pressure on the tobacco particles laterally and not axially. The rice paper must be used to hold the cigarette in an elongated rod configuration.
Cannabis is a genus of flowering plants in the Cannabacae family which consists of three primary species: Cannabis sativa; Cannabis indica; and Cannabis ruderalis. Today, the terms ‘hemp’ or ‘industrial hemp’ refer to species of cannabis that have less than 0.3% THC, (dry weight) and the term ‘marijuana’ is refers to species of cannabis that contains 0.3% or more THC (dry weight). Today, hemp or hemp derived products that contain no more than 0.3% THC are legal under U.S. federal laws and regulations. Cannabis or cannabis derived products containing more that 0.3% THC (also called marijuana) are not currently legal under federal laws and regulations.
What is needed is an elongated rod made of tightly compacted particles of legalized cannabis or other types of plant material, such as tobacco. What is also needed is a manufacturing tool that can make the elongated rods made of compact plant material with at least one optional, longitudinally aligned air conduit formed in the elongated rod. What is also needed is a convenient method of manufacturing an elongated rod made of compacted plant material. using the manufacturing tool.
SUMMARY OF THE INVENTIONDisclosed herein is an elongated rod made of plant material tightly packed together with a relatively high pressure to form and self-contained elongated structure. In one embodiment, the plant material is cut or crushed into small particles (the term ‘small’ is defined as 1/32- 6/32 in inches in width and length and 1/32 to ⅛ inch thick) and packed to form an elongated rod that retains its shape and does not require an outer paper. Because the plant particles are small and tightly compacted, the longitudinal and transverse axial flow of air through the elongated rod may be impeded. In another embodiment, large particles (greater than ⅛ inch thick) may be used with the application of greater pressure. Because the plant material is tightly packed at least one longitudinally aligned air conduit may be formed in the elongated rod when intended to be smoked by the user.
Several tools for manufacturing the elongated rod made of compacted plant material are disclosed. Each tool includes a rod mold with at least one rod cavity formed therein. The rod mold may be a solid block made of rigid material with a straight rod cavity formed in the therein. The rod cavity includes an upper entrance opening and a lower exit opening. The rod cavity may be round, oval, square, rectangular or triangular in cross-section.
In one embodiment of the tool, a stop plate is placed inside the rod cavity configured to cover the exit opening. The stop plate includes a perpendicularly aligned, narrow pin that extends longitudinally inside the rod cavity. The length of the pin is slightly greater than the length of the rod cavity.
Each tool also includes a plunger assembly configured to be inserted into the entrance opening of the rod cavity and applies an axially directed force to pack the plant material inside the rod cavity. The plunger when used with a stop plate with a perpendicularly aligned pin, the plunger must include a pin opening that receives the pin when the plunger is forced downward in the rod cavity.
During use, the stop plate is first placed inside the rod cavity that covers the exit opening. Small particles of plant material are then deposited inside the rod cavity and around the pin. The plunger is then aligned over the rod cavity and the bottom end of the plunger is forced downward against the top surface of the plant material. The rod mold is placed on a flat support surface that supports the stop plate inside the rod cavity. After the elongated rod is formed, the support surface is removed thereby allowing the stop plate to be pushed through the exit opening and removed from the rod cavity. Enough downward pressure is exerted on the plunger so that axially aligned force is applied to the plant material causing the individual small plant particles to be pressed together.
In another embodiment of the tool, the pin is mounted on the end of plunger and extends downward therefrom and configured to slide through a pin opening formed on a sliding stop plate. The pin is sufficiently long so that the pin extends through the pin opening formed on the slide stop plate when the plunger is pulled from the rod cavity. Small particles of plant material may be deposited inside the rod cavity and round the pin. The plunger is forced downward inside the rod cavity to pack the small plant particles. During compaction, the pin slides through the pin opening in the sliding stop plate. After compaction, the sliding stop plate is removed from the tool, thereby enabling the elongated rod to be pushed out through the exit opening on the rod cavity.
With each tool embodiment, the rod cavity may be filled completely with small particles of the same plant material. Alternatively, a plurality of small volumes of plant material are individually deposited and compacted in the rod cavity. After each small volume of plant material is deposited in the rod cavity, the plunger is forced into the rod cavity to compact the plant material. The plunger is then removed from the rod cavity and a second small volume of plant material is placed inside the rod cavity and stacked over the first layer of plant material. The plunger is then reinserted into the rod cavity to compact the second small volume of plant material. The above steps are repeated until the entire rod cavity is filled with individually compacted layers of plant material. Using this method, an elongated rod made of plurality of layers individually compress made from the same or different plant materials, or species. Also, downward force exerted on the layers can vary changing the thickness of each individual layer.
With each tool, the space surrounding the individual plant particles is reduced and air between the particles are forced out of the elongated rod after compaction. The exact pressure applied can be adjusted to control the amount of compaction desired. For example, when making an elongated rod for smoking, the elongated rod may be compressed 25 to 50%. If the elongated rod is intended to be divided into small particles for smoking in a pipe, the air passageway may be eliminated, and the elongated rod may be compressed up to 50-90%.
Both tool embodiments may include compaction percentage markings on the plunger that tell the user the amount of compaction the plant material has undergone to form the compacted elongated rod.
Referring to the FIGS. there is shown a tool 20 for manufacturing elongated rods 10 made of small particles of plant material 100. The tool 20 may make one standard size rod 10 or it may be easily modified to make different sizes of elongated rods 10, 10′, and 10″ as shown in
Each elongated rod 10, 10′ and 10″ which is made of compacted particles of plant material, is configured to be smoked or broken into smaller pieces. To make the elongated rods, 10, 10′, 10″, the plant material 100 is cut or crushed into small particles ( 1/32- 6/32 inches) and then tightly compacted to form an elongated rod 10 by applying a force at one end and pressing the plant material longitudinally. The small particles of plant material 100 are so tightly compacted, that the plant particles 100 become pressed together and flow of air through the elongated rod 10, 10′ and 10″ is impeded. The finished elongated rod 10, 10′, 10″ may be a solid structure or it may include one or more longitudinally aligned air conduits 12 that allows the user to inhale smoke through the elongated rod 10, 10′, 10″ when the opposite end is ignited.
In the embodiments, shown herein, the elongated rod 10 is compressing plant material 100 by a special tool 20 designed to compress apply axial force to the small particles of plant material confined by the sides of the rod cavity 40.
The rod mold 30 shown in
Disposed inside the rod cavity 40 is a stop plate 60 configured to cover the exit opening 44 As shown in
As shown in
The stop plate 60 is placed inside the rod cavity 40 so that it covers the exit opening 44 of the rod cavity 40. Small particles of plant material 100 are manually placed inside the rod cavity 40 over the top surface of the stop plate 60 and around the pin 64. The particles of plant material 100 should be dry and irregularly shaped, 1/16 to ¼ inch in length. The plunger 74 is aligned over the rod cavity 40 so that the pin 64 slides into the pin opening 75. A force generating tool, such as a clamp or press (not shown), is then used to force the plunger 74 into the rod cavity 40 to compact the plant material 100. The force generating tool applies enough axial force on the plunger 74 to compact the plant material 100 ten to fifty percent its original length or depth. Because the rod mold 30, the support plate 50 and the head plate 62 are all made of rigid material, as the plunger 74 is forced downward into the rod cavity 40, lateral forces are also exerted on the small particles of plant material 100 to compact it laterally. By compacting the small particles of plant material 100 ten to fifty percent its original depth or length, the plant material 100 retains its compacted, elongated rod 10 shape after being removed from the rod cavity 40. It should be understood, that the amount compaction desired varies from one user to another. The elongated rod may then be wrapped with rice paper 13 as shown in
After the plunger 74 is forced into the rod cavity 40, the rod mold 30 and the support base 50 are removed. The force generating source is then used to apply a downward force on the plunger assembly 70 to force the stop plate 60 and the elongated rod 10 from the rod cavity 40. After the elongated rod 10 exits the rod cavity 40, the stop plate 60 is then removed from the elongated rod 10. A tightly compacted elongated rod 10 made of plant material 100 is formed with at least one longitudinally aligned air conduit 12.
By controlling the size of the particles of plant material used, the quantity of particles of plant material 100 placed in the rod cavity 40, and the amount of force exerted on the plunger 74, the amount of compaction and the final length of the elongated rod 10 may be controlled. In some instances, one or more conduit may be desirable. In other instances, an air conduit may not be desirable.
As shown in
As stated above, the stop plate 60 may include a fixed or selectively attachable pin 64, 64′, respectively. The stop plate 60 may also more than one pin 64 thereby enabling the user to form more than one air conduit 12 in a compacted elongated rod 10. For example,
As shown in
The pin 64 is mounted on the closed end of the plunger 74. The pin 64 has a length that exceeds the length of the rod cavity 40 so that the plunger 74 may be raised above the top edge of the rod mold 30 while the tip of the pin 64 extends into the pin opening as shown in
As shown in
In the embodiments shown herein, the rod cavities 40 are approximately ½ inches diameter and 4 inches in length. The plungers 74 is slightly smaller in diameter and length of the rod cavities 40. The stop plate 60 is approximately 1/32 inch less in diameter than the rod cavity 40 and measures approximately ¼ inch thick. The slide stop plate 65 must be larger in diameter to extend across the rod cavity 40. The pin 64 is approximately 1/16 to ⅛ inch in diameter and 3¾ to 4 inches in length.
Using the above described tool, a method for making an elongated rod made of plant material is disclosed, comprising the following steps:
selecting a rod mold that includes at least one rod cavity with an entrance opening, an exit opening, a stop plate that fits into the rod cavity and blocks the exit opening, and a sliding plunger configured to be inserted into the rod cavity;
a. inserting the stop plate into the rod cavity near the exit opening;
b. filling the rod cavity with plant material;
c. inserting the plunger into the rod cavity and forcing the plunger against the plant material;
d. applying sufficient force to the plunger to compact the plant material inside the rod cavity and form an elongated rod made of plant material; and
e. removing the elongated rod made of plant material from the rod cavity.
The above method may be modified by using a stop plate with pin perpendicularly aligned that extends longitudinally inside the rod cavity. The above method may also be modified by using a sliding stop plate with a pin opening and attaching a pin on the end of the plunger that extends through the pin opening when the plunger is forced downward in the rod cavity.
In compliance with the statute, the invention described has been described in language more or less specific as to structural features. It should be understood, however, that the invention is not limited to the specific features shown, since the means and construction shown comprises the preferred embodiments for putting the invention into effect. The invention is therefore claimed in its forms or modifications within the legitimate and valid scope of the amended claims, appropriately interpreted in accordance with under the doctrine of equivalents.
Claims
1. A tool for compressing plant material into an elongated rod, said tool, comprises:
- a. a mold with at least one rod cavity formed inside said mold, said rod cavity includes an entrance opening and an exit opening;
- b. a plunger configured to extend into said entrance opening and slide longitudinally inside said rod cavity and compact plant material placed inside said rod cavity;
- c. a stop plate located near said exit opening and configured extend across said rod cavity; and
- d. a pin located inside said rod cavity, said pin configured to form an air conduit inside said elongated rod formed inside said rod cavity when said plunger is forced downward in said rod cavity.
2. The elongated rod manufacturing tool, as recited in claim 1, wherein said pin is attached to said stop plate.
3. The elongated rod manufacturing tool, as recited in claim 2, wherein said pin is attached to said end to said plunger and said stop plate includes a pin opening enabling said pin to extend through.
4. The tool, as recited in claim 8, further including a base plate on which said mold is positioned to hold said stop plate inside said rod cavity.
5. The tool, as recited in claim 1, wherein said mold includes a first mold member and a second mold member, each said first mold member and said second mold member includes a partial mold cavity that when aligned and registered form said rod cavity.
6. The tool, as recited in claim 1, where said plunger includes compaction readings.
7. The tool, as recited in claim 1, further including an insert sleeve inside said rod cavity.
8. The tool, as recited in claim 1, further including an adapter located on said plunger.
9. The tool, as recited in claim 1, wherein said stop plate slides transversely on said mold to selectively block or unblock said rod cavity.
10. A method of manufacturing an elongated rod made of compressed particles of plant material, comprising the following steps:
- a. selecting a tool that includes a rod mold that includes at least one rod cavity and a plunger configured to be inserted into the rod cavity;
- b. depositing in the rod cavity particles of plant material to produce a compact elongated rod made of plant material;
- c. inserting the plunger into the rod cavity and forcing the plunger against the particles of plant material;
- d. removing the plunger from the rod cavity; and
- e. removing the elongated rod from the rod cavity.
11. The method as recited in claim 10, wherein said plant material is cannabis that has less than 0.3% THC, (dry weight).
12. The method as recited in claim 11, wherein 0.196 lbs./sq. inch or more of force is applied by said plunger to said Cannabis.
13. The method as recited in claim 10, further including the step located between step a and step b of inserting a stop plate with a pin into said rod cavity.
Type: Application
Filed: May 4, 2020
Publication Date: Mar 4, 2021
Inventor: Marvin Gray (Tacoma, WA)
Application Number: 16/865,977