Apparatus, Systems, And Methods For Improved Treatment of Obstructive Sleep Apnea
A nasal pillow system for treating sleep apnea is disclosed that may include a nasal pillow. The pillow has a cavity wall that defines a cavity, and two nasal interface structures connected to and extending away from the cavity wall. The nasal interface structures are in fluid communication with cavity. Each nasal interface structure includes a conical nasal interface, a cylindrical trunk structure connected to conical nasal interface and an annular relief pocket connected to the cylindrical truck structure and the cavity wall. The connection between the annular relief pocket and the cavity wall defines substantially a plane, and a first portion of the annular relief pocket extends away from the plane and a second portion extends towards the plane.
This application claims priority as a continuation to U.S. application Ser. No. 15/690,195 filed on Aug. 29, 2017, titled “Apparatus, System and Methods For Improved Treatment of Obstructive Sleep Apnea”, which claims priority as the non-provisional of U.S. Provisional Application No. 62/382,988 filed Sep. 2, 2016, titled “Nasal Pillow and Head Gear for Use with CPAP Treatment”, the non-provisional of U.S. Provisional Application No. 62/382,980 filed on Sep. 2, 2016, titled “Dual Rotatable Hose for Use with CPAP Treatment,” the non-provisional of U.S. Provisional Application No. 62/465,905 filed on Mar. 2, 2017, titled “Sound Mitigation/Flow Optimization in a Valved Obstructive Sleep Apnea Treatment Mask”, and the non-provisional of U.S. Provisional Application No. 62/532,240 filed Jul. 13, 2017, titled “Sleep Apnea Treatment System and Improvements Thereto”, all of which are hereby incorporated by reference in their entirety.
In addition, this application is related by common inventors and by a common assignee to U.S. patent application Ser. No. 13/860,926, filed Apr. 11, 2013, titled “Sleep Apnea Device,” U.S. Provisional Application Ser. No. 61/623,855, filed Apr. 13, 2012, titled “Sleep Apnea Device,” U.S. Provisional Application Ser. No. 61/775,430, filed Mar. 8, 2013, titled “Sleep Apnea Device,” U.S. Provisional Application No. 61/823,553, filed May 15, 2013, titled “Sleep Apnea Device,” U.S. Provisional Application No. 61/838,191, filed Jun. 21, 2013, titled “Sleep Apnea Device,” U.S. Provisional Application No. 61/962,501, filed Nov. 8, 2013, titled “Sleep Apnea Device,” U.S. Provisional Application No. 61/909,956, filed Nov. 27, 2013, titled “Sleep Apnea Device,” U.S. Provisional Application No. 61/927,355, filed Jan. 14, 2014, titled “Valve with Pressure Feedback,” U.S. Provisional Application No. 62/134,506 filed Mar. 17, 2015 titled “Valve with Pressure Feedback Draft Provisional Application,” U.S. Provisional Application No. 62/163,601, filed May 19, 2015, titled “Airflow Generator with Delayed Onset”, U.S. Provisional Application No. 62/184,787 filed Jun. 25, 2015, titled “Sleep Apnea Device,” U.S. Provisional Application No. 62/239,146 filed Oct. 8, 2015, titled “Sleep Apnea Device,” U.S. patent application Ser. No. 14/930,284, filed Nov. 2, 2015, titled “Apparatus, System and Methods for Treating Obstructive Sleep Apnea”, U.S. Provisional Application No. 62/246,339 filed Oct. 26, 2015, titled “Venting of a Valved CPAP Mask to Create a Comfortable Breathing Sensation”, U.S. Provisional Application No. 62/246,489 filed Oct. 26, 2015, titled “Managing Sleep Apnea with Pulse Oximeters and With Additional Assessment Tools”, U.S. Provisional Application No. 62/246,328 filed Oct. 26, 2015, titled “Novel Low Flow Technology Designed to Meet CPAP Efficacy”, U.S. Provisional Application No. 62/246,477 filed Oct. 26, 2015, titled “Composite Construction Air Delivery Hose for USE with CPAP Treatment”, U.S. Provisional Application No. 62/275,899 filed Jan. 7, 2016, titled “Valved Mask To Reduce and Prevent Snoring”, and U.S. Provisional Application No. 62/311,804 filed Mar. 22, 2016, titled “Improvements to Sleep Apnea Machine”, all of which are hereby incorporated by reference in their entirety.
Disclosed in this application are features intended to be used in conjunction with the CPAP methods and devices described in the aforementioned applications.
TECHNICAL FIELDThe present invention is related to medical systems, devices, and methods. More specifically, the invention is related to systems, devices and methods for treating obstructive sleep apnea or snoring.
BACKGROUNDObstructive sleep apnea (OSA) is a common medical disorder that can be quite serious. It has been reported that approximately one in twenty-two Americans (about 12,000,000 people) suffer from OSA, and many cases go undiagnosed. Chronic fatigue has long been recognized as the hallmark of OSA, but more recently, large clinical studies have shown strong links between OSA and strokes and between OSA and death.
Obstructive sleep apnea is a condition in which the flow of air pauses or decreases during breathing while one is asleep, because the airway has become narrowed, blocked, or floppy. A pause in breathing is called an apnea episode, while a decrease in airflow during breathing is called a hypopnea episode. Almost everyone has brief apnea or hypopnea episodes while they sleep. In OSA, however, apnea episodes occur more frequently and last longer than in the general population. OSA has become an increasingly costly medical condition in recent years, as the disorder is more prevalent in obese people, and obesity has become significantly more prevalent. Unfortunately, the currently available options for treating OSA are not ideal.
A person with OSA usually begins snoring heavily soon after falling asleep. Often, the snoring gets louder. The snoring is then interrupted by a long silent period, during which there is no breathing. This is followed by a loud snort and a gasp as the person attempts to breathe. This pattern repeats. Many people wake up unrefreshed in the morning and feel sleepy or drowsy throughout the day. This is called excessive daytime sleepiness (EDS). People with sleep apnea may act grumpy or irritable, be forgetful, fall asleep while working, reading, or watching TV, feel sleepy or even fall asleep while driving, or have hard-to-treat headaches. OSA sufferers may also experience depression that becomes worse, hyperactive behavior (especially in children), or leg swelling (if severe).
The most widely used therapy for OSA is Continuous Positive Airway Pressure (CPAP). A CPAP system typically consists of a mask fitting in or over the nose or nose and mouth, an air pressurizing console (or blower) and a hose connecting the two (typically a six-foot long hose with a 20 mm diameter bore). CPAP works by pressurizing the upper airway throughout the breathing cycle, essentially inflating the airway to keep it open and thus creating what is sometimes referred to as a “pneumatic splint.” This flow is set at a pressure that has been predetermined through medical testing to be appropriate to create a pneumatic splint in the patient's airway. This prevents airway collapse and allows the patient to breathe without obstruction.
Typically, air flow for CPAP ranges from 100-200 L/min at a corresponding pressure range of 4-20 CM-H2O. This high flow rate makes breathing feel quite uncomfortable for many patients and requires a large and cumbersome hose measuring about 22 mm (˜0.86″) in diameter. Additionally, the high required flow rates of CPAP often cause discomfort during exhalation due to increased resistance, as well as nasal dryness, dry mouth, ear pain, rhinitis, abdominal bloating and/or headaches. Typically, a patient requires a humidification machine to prevent some of the side effects of the high flow rate.
Because of these shortcomings, the overwhelming problem of CPAP is poor patient compliance, with over half of all patients who try CPAP stop using it. Patients dislike the side effects mentioned above, as well as having to wear an uncomfortable, claustrophobic mask, being tethered to a pressurizing console, the noise of the console, traveling with a bulky device, and a loss of personal space in bed.
Therefore, it would be advantageous to have improved systems, devices and methods for treating OSA and snoring. Ideally, such systems, devices and methods would be less cumbersome than currently available CPAP systems, to improve patient compliance. Also ideally, such systems, devices and methods would provide some of the advantages of an expiratory pneumatic splint. At least some of these objectives were met by the embodiments described in references listed above and incorporated herein by reference.
While these references are an important improvement over the state of the art, it would be advantageous to improve upon these systems by making the system simpler and more compact in design, simpler to use, and more robust.
SUMMARYThe following presents a simplified summary in order to provide a basic understanding of some aspects of the claimed subject matter. This summary is not an extensive overview, and is not intended to identify key/critical elements or to delineate the scope of the claimed subject matter. Its purpose is to present some concepts in a simplified form as a prelude to the more detailed description that is presented later.
Provided in various example embodiments is a hose connection system for treating sleep apnea that may include a hinged lever hose connector with a hose portion and a blower box/mask portion. The hose portion may contain an annular structure connected to a hook lever by way of a fulcrum, the hook lever has a hook. The blower box/mask portion has a grooved collar with an outer surface and a groove disposed of on this surface. The connector has two states: a engaged state where the hook is disposed of in the groove, thereby connecting the hose portion to the blower box/mask portion; and a disengaged state where the hook lever is rotated about the fulcrum, thereby moving the hook away from the groove, allowing the hose portion to be disconnected from the blower box/mask portion. In the engaged state, the hook can travel along the groove such that the annular structure can rotate relative to the blower box/mask portion.
The hose portion may include more than one hook lever. The hook and an edge of the grooved collar may be wedge-shaped. The hook lever may include a disengagement surface on the opposite side of the fulcrum from the hook, such that the connector may be placed in the disengaged state by applying force to the disengagement surface. A hose may be connected to the hose portion and to a blower box, a mask, a nasal pillow or valve cartridge connected to the blower box/mask portion. The connection of the hose to the hose portion may be co-axial with the annular structure and the grooved collar, thus enhancing the release of torque within the hose.
The fulcrum may have a counter torque that maintains the hook lever in a predetermined position, and the connector may include a magnet that attracts the hose portion to the blower box/mask portion by a force that is greater than the counter torque. In such an embodiment, bringing the hose portion and the blower box/mask portion in close proximity to each other places the hinged lever connector in the engaged state.
Also provided in various example embodiments is a nasal pillow system for treating sleep apnea that may include a nasal pillow. The pillow has a cavity wall that defines a cavity, and two nasal interface structures connected to and extending away from the cavity wall. The nasal interface structures are in fluid communication with the cavity through an internal air flow channel defined by the nasal interface structures. Each nasal interface structure includes a conical nasal interface with an opening to the airflow channel, a cylindrical trunk structure connected to the conical nasal interface and an annular relief pocket connected to the cylindrical trunk structure and to the cavity wall. The cross-sectional area of the internal channel across the connection between the cylindrical trunk structure and the conical nasal interface remains substantially constant. The connection between the annular relief pocket and the cavity wall defines substantially a plane, and a first portion of the annular relief pocket extends away from the plane while a second portion extends towards the plane. The connection between the cylindrical trunk structure and the conical nasal interface is adapted to maintain the cylindrical trunk structure substantially fixed relative to the conical nasal interface when the nasal pillow is used by a patient. The nasal pillow may be made of silicone and the cavity wall may vary in thickness.
The annular relief pocket may include an annular wall indentation extending into the cavity. The annular relief pocket is constructed so as to allow the opening to move towards and away from the plane and in a direction that is parallel to the plane. The annular relief pocket may define a cross-sectional area, and when the nasal interface structure moves, the area remains substantially constant.
The cavity wall may have a cartridge receiver opening, into which a removable valve cartridge may be disposed. A hose may be connected to the cartridge on one end and connected to a blower box on the other end, thus allowing therapeutic air pressure to be delivered to the patient. The pillow may also have a strap attachment structure, such as a hole or a tab, with which the pillow can be connected to a headgear assembly.
Also provided is a headgear assembly for use with a sleep apnea treatment mask that may include a first and a second asymmetric connector on the mask. The assembly may also include a male strap with a complementary asymmetric connector adapted to mate with either the first or the second asymmetric connector in a single orientation, a surface that is in contact with the patient's head when the head gear assembly is installed, and a side wall substantially orthogonal to the surface that has a plurality of ratchet structures. The assembly may also have a female strap with a complementary asymmetric connector adapted to mate with either the first or the second asymmetric connector in a single orientation and a plurality of complementary ratchet structures constructed to mate with the ratchet structures, wherein the complementary ratchet structures extend substantially parallel to the patient's head.
The first and second asymmetric connectors may be a tab, and the male strap complementary asymmetric connector and the female strap complementary asymmetric connector may be a slot, or vice versa. A portion of the tab may have a wider groove, and another portion of the tab may have a narrower groove, and the slot may have a corresponding tongue edge with a portion that is thicker so as to mate with the wider groove portion of the tab and a tongue edge with another portion that is thinner so as to mate with the narrower groove portion of the tab. The first and second asymmetric connectors have an “L” shape.
The mask may include a nasal pillow.
The male strap may have a terminal end with a frictionless region, and the plurality of ratchet structures is proximally adjacent to the frictionless region. The female strap may have a terminal end and its plurality of complementary ratchet structures near the terminal end, and an opening proximally adjacent to the plurality of complementary ratchet structures. The opening is constructed to allow sufficient access to the frictionless region such that the patient can pull the male strap to mate the complementary ratchet structures with the ratchet structures.
Additional aspects, alternatives and variations as would be apparent to persons of skill in the art are also disclosed herein and are specifically contemplated as included as part of the invention. The invention is set forth only in the claims as allowed by the patent office in this or related applications, and the following summary descriptions of certain examples are not in any way to limit, define or otherwise establish the scope of legal protection.
Various embodiments are depicted in the accompanying drawings for illustrative purposes, and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure. It will be understood that certain components and details may not appear in the figures to assist in more clearly describing the invention.
Reference is made herein to some specific examples of the present invention, including any best modes contemplated by the inventor for carrying out the invention. Examples of these specific embodiments are illustrated in the accompanying figures. While the invention is described in conjunction with these specific embodiments, it will be understood that it is not intended to limit the invention to the described or illustrated embodiments. To the contrary, it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. Particular example embodiments of the present invention may be implemented without some or all of these specific details. In other instances, process operations well known to persons of skill in the art have not been described in detail in order not to obscure unnecessarily the present invention. Various techniques and mechanisms of the present invention will sometimes be described in singular form for clarity. However, it should be noted that some embodiments include multiple iterations of a technique or multiple mechanisms unless noted otherwise. Similarly, various steps of the methods shown and described herein are not necessarily performed in the order indicated, or performed at all in certain embodiments. Accordingly, some implementations of the methods discussed herein may include more or fewer steps than those shown or described. Further, the techniques and mechanisms of the present invention will sometimes describe a connection, relationship or communication between two or more entities. It should be noted that a connection or relationship between entities does not necessarily mean a direct, unimpeded connection, as a variety of other entities or processes may reside or occur between any two entities. Consequently, an indicated connection does not necessarily mean a direct, unimpeded connection unless otherwise noted.
The following list of example features corresponds with
Hose System (Prior Art) 10
Mask (Prior Art) 20
Rotational Hose Fitting (Prior Art) 22
Blower Box (Prior Art) 23
Mask Hose Fitting (Prior Art)24
Elbow (Prior Art) 25
Elbow Sweep (Prior Art) 26
Elbow Outlet (Prior Art) 27
Elbow Outlet Rotation (Prior Art) 28
Hose Torque Rotation (Prior Art) 29
Hose System 30
Hose 31
Mask 32
Blower Box 34
Rotatable Mask Connector 36
Rotatable Blower Box Connector 38
Hinged Lever Hose Connector 39
Hose Portion 40
Blower Box/Mask Portion 42
Annular Structure 43
Fulcrum 44
Hook Lever 45
Disengagement Surface 50
Hook Release Pressure Position 51
Hook Release Movement 52
Grooved Collar 55
Connection Housing 56
Hook 60
Magnet 65
Complementary Magnetic Structure 70
Rotational Freedom of Hinge Connector 75
Translations engagement/disengagement movement of connector 80
Mask Assembly 100
Nasal Pillow 105
Removable Valve Cartridge 110
Hose Port 112
Head Gear Assembly 115
Male Strap 120
Female Strap 125
Male Strap Ratchet Structure 130
Female Strap Complementary Ratchet Structure 135
Back Strap Connection Hole 140
Back Strap 141
Indentations 145
Protrusions 150
Strap Surface 151
Strap Side Wall 152
Strap Frictionless Region 155
Female Strap Housing 160
Opening 165
Asymmetric Friction Fit Locking Tab 170a, 170b
Asymmetric Friction Fit Locking Slots (170c, 170d)
Wider Tab Groove 171
Narrower Tab Groove 172
Thick Strap Tongue Edge 173
Thinner Strap Tongue Edge 174
Nasal Interface Structures 175
Internal Air Flow Channel 176
Cartridge Receiver Opening 180
Annular Relief Pocket 185
Cylindrical Trunk Structure 190
Conical Nasal Interface 195
Conical Nasal Interface Opening 197
Sealing Surface 200
Annular Relief Pocket Wall 202
Nasal Pillow Cavity 205
Cavity Wall 210
Cavity Wall Plane 215
Cross-sectional Area Defined by the Annular Relief Pocket 220
Dual Rotatable Hose and Connector for Use with CPAP Treatment Systems
The applicant intends to overcome the shortcomings of conventional CPAP by developing a low flow rate CPAP device that requires flow rates ˜10× lower (10-45 L/min) to maintain pressure between 4-20 CM-H2O in order to “splint” the airway. These devices are disclosed in the aforementioned patent applications. As a result, the hose necessary for this reduced flow rate has a diameter of less than 10 mm as compared to the 22 mm traditional hose. The new hose system is comprised of three main components: the hose, mask connector, and blower box connector.
The new hose is a composite silicon-coated braided tube that is lightweight, has excellent flexibility, good flow rates, strong crush resistance, and high durability, and is described in U.S. patent application Ser. Nos. 15/334,243 and 62/246,477, both of which are incorporated herein by reference. The new mask connector is a piece that can detach and attach to the mask while being rotatable and allowing directionality of the hose as it exits the mask. Lastly, the new blower box connector may also use a rotatable magnet to connect to the air-pressurizing device for easy and quick connections and disconnections.
As shown in
Moreover, in conventional CPAP masks, the mask hose fitting 24 has a vent on the outer surface and is bent like an elbow. The elbow 25 can rotate in a wide sweep 26, as shown in
In the prior mask connector design, the hole size is around 15mm in diameter to order to allow for large amounts of air flow to enter the mask. Also, this mask connector attaches via a rubber press fit or snap fit, to ensure that the hose is secured to the mask and does not leak air. However, this connector is problematic because it can be difficult to connect and disconnect the hose for maintenance and storage.
The new hose system 30, shown in
Shown in
The connector 39 is made up of two portions: the hose portion 40 and the blower box/mask portion 42. The hose portion has an annular structure 43 that is connected to a hook lever 45 via a fulcrum 44. The hook lever 45 may rotate about the fulcrum 44. At the end of the hook lever 45 is a hook 60 that mates into a grooved collar 55 found on the blower box/mask portion 42, thus securing the hose portion 40 of the connector to the blower box/mask portion 42. The grooved collar 55 is connected to the connection housing 56, which is then connected to the blower box, mask, nasal pillow or valve cartridge.
By pressing the hook lever 45 at the hook release pressure position 51, the hook releases, as shown by movement arrow 52; thus, the hose portion 40 of the connector can be detached from the blower box/mask portion 42, as shown in
The hook 60 can be wedged-shaped such that as it is pressed against the grooved collar, the translational movement 80 of the hose portion relative to the blower box/mask portion causes the hook lever 45 to hinge about the fulcrum 44, as shown in
The hook 60 can travel along the grooved collar 55, thus allowing for rotational freedom as, shown by arrow 75 of the hose portion 40 relative to the blower box/mask portion 42. Indeed, the grooved collar 55 may also rotate relative to the connection housing 56 of the blower box/mask portion, further enhancing the rotational movement of the hose. Additionally, a magnet 65, along with a complementary magnetic structure 70, may be used to allow the connector 39 to self-connect, with the magnetic attraction force being sufficient to pull both portions together and to overcome the counter torque of the fulcrum.
As is clear from
Having a locking/unlocking mechanism is advantageous in that there is no need to balance disconnection force with patient ease of disconnecting. Designs with a locking/unlocking mechanism can easily be attached/detached by activating the mechanism but cannot be removed if the mechanism is not activated. This reduces the risk that the hose may accidently disconnect during sleeping.
Head Gear for Use with CPAP Treatment Systems
The headgear assembly 115 is used to stabilize the nasal pillow 105 so as to retain sealing forces upon the nose. The nasal pillow 105 and each silicone strap may be made of 20-60 shore(A) silicone, preferably using 35-45 shore(A). The nasal pillow 105 and headgear assembly straps are also textured to reduce the ‘stickiness’ or ‘tackiness’ of the silicone. This texturing could either be a small to large grit bead blast, or it could be a micro-texturing, MT-11001-11007.
The straps of the headgear assembly 115 are made up a male strap 120 and a female strap 125, as shown in
Along the length of both the male and female straps lies an oblong back strap connection hole 140 (see
Turning back to
When the headgear assembly 115 is installed on a patient, the straps 120 and 125 have a flat surface 151 that lays on the surface of the patient's head. Substantially orthogonal to this surface is the side wall 152 of the strap, and it is on this wall that the indentations 145 are disposed on the male strap 120 (see
The friction caused by the interlocking of the straps is great enough to ensure that the straps remain interlocked through normal use but can be easily pulled through the housing to adjust the total size of the headgear assembly during fitting. The linear force required to open the headgear should be between 0.5-2 lbs. The male strap 120 is configured with a frictionless region 155 near the end of the strap that is terminal from the connection to the mask. This terminal end therefore has the frictionless region 155, and the ratchet structure 145 is proximally adjacent to this region, meaning that the ratchet structure is closer (more proximate) to the mask connection end of the strap. This frictionless region 155 can be inserted into the female strap housing 160 freely and without friction, as seen in
A common problem with headgear assemblies is that they are often complicated and can be easily assembled in an incorrect way. This problem is coupled with inherent situation that headgear assemblies may need to be assembled in a low-light environment or even in the dark. The nasal pillow 105 and headgear assembly 115 presented herein are designed to be extremely easy to assemble, or, more accurately, very difficult to assemble incorrectly. The new design is free from a left-right orientation and forces the patient to assemble the headgear in a correct up-down orientation.
This vertical symmetry allows for the interchanging of the male or female strap (120, 125) to be used on the left or right side of the nasal pillow 105. A patient could attach the male strap 120 to the left side of the pillow 105 or the right and either way the assembly would be functional. Regardless of how the male and female straps are connected to the mask, they can mate and lock with each other, as shown in
Additionally, the design addresses the other cause of incorrect assembly of the pillow to the headgear, the failure to correctly position the orientations of the straps. To address this problem, the design features a pair of asymmetric friction fit locking tabs 170a and 170b, as shown in
The asymmetric friction fit locking tabs (170a, 170b) functionally lock each strap to the nasal pillow 105 with sufficient strength to remain locked through normal use, but they can be easily be assembled or disassembled. Whereas the asymmetric friction fit locking tabs (170a, 170b) are shown in
While prior strap designs use asymmetric features or keys to ensure a specific left/right, and up/down orientations, this embodiment uses simple design features to ensure there is no left/right orientation and that is has to be forcefully assembled incorrectly and with visual ques to show the incorrect mating of parts with regard to the up/down and left/right orientations.
Nasal Pillow for Use with CPAP Treatment Systems
As shown in
The nasal interfaces 175 are integrally connected to the main pillow body via an annular relief pocket 185. The nasal interfaces 175 have an internal air flow channel 176 in fluid communication with the cavity 205 on one end and the opening 197 on the other end. Each nasal interface 175 is generally an oblong cylindrical trunk structure 190 integrally connected to an oblong conical nasal interface 195 to match the general nasal geometry. Conical interface may have a slight concavity and is in configured to be partially inserted into the nasal pathway in order to create a sealing surface 200 on underside of the patient's nose. The oblong conical nasal interface 195 is connected to the oblong cylindrical trunk structure 190 without a flare out structure such that the air flow path is not disturbed as it travels from the nasal pillow cavity 205 to the opening 197. This smooth airflow path enhances patient comfort and reduces noise.
Some prior art designs have nares insertion structure that flares out before connecting to the tube extending from the cavity, resulting in a mushroom shape. This construction, however, allows for significant movement of the nares insertion structure relative to the tube extending from the cavity, and as these two structures move relative to each other, the air flow path becomes more tortured and noisy, and less comfortable for the patient.
The present design has a continuous connection between the oblong conical nasal interface 195 and the oblong cylindrical trunk structure 190 (without a flare out structure), providing more support to the conical nasal interface 195 and reducing the movement of the conical nasal interface 195 relative to the cylindrical trunk structure 190; thus, the system maintains a more constant and comfortable air flow path. In other words, the cross-sectional area of the internal air flow 176 channel remains substantially constant across this connection and does not increase. Also, the connection between the cylindrical trunk structure 190 and the conical nasal interface 195 maintains the cylindrical trunk structure 190 substantially fixed relative to the conical nasal interface 195 when the nasal pillow is used by a patient.
The edge of the conical nasal interface 195 merges into the cylindrical trunk structure 190 and extends into the annular relief pocket 185, allowing for the maximum airflow to be delivered to/from the patient without any unnecessary restrictions. The annular relief pocket 185 is an annular wall indentation extending into the main cavity 205 of the nasal pillow. This annular wall indentation creates a ‘well’ or a ‘moat’ like structure around the nasal interface structure. The wall of the annular relief pocket wall 202 curves into the nasal pillow cavity 205 and then curves away from the cavity 205, connecting to the cavity wall 210.
This is shown in greater detail in
There may be differently sized nasal pillows, each having a different nasal interface geometry to accommodate a variety of patients. Each size may be configured with an annular relief pocket to extend around the nasal interfaces. While the nasal interface structure geometry may change, the opposite side of the nasal pillow (i.e. the side that receives the valve cartridge) may remain substantially the same throughout each size embodiment. Additionally the nasal pillow may have a wall thickness that varies. For example, the nasal interface structure thickness may be thinner to allow for a more comfortable and flexible interface with the patient's nostrils, while the other portions of the nasal pillow are made thicker so as to maintain the nasal pillow rigid enough for the headgear assembly to properly connect and maintain the position on the patient.
Any of the suitable technologies and materials set forth and incorporated herein may be used to implement various example aspects of the invention as would be apparent to one of skill in the art.
Although exemplary embodiments and applications of the invention have been described herein including as described above and shown in the included example Figures, there is no intention that the invention be limited to these exemplary embodiments and applications or to the manner in which the exemplary embodiments and applications operate or are described herein. Indeed, many variations and modifications to the exemplary embodiments are possible as would be apparent to a person of ordinary skill in the art. The invention may include any device, structure, method, or functionality, as long as the resulting device, system or method falls within the scope of one of the claims that are allowed by the patent office based on this or any related patent application.
Claims
1. A nasal pillow system for treating sleep apnea, the system comprising:
- a removable valve cartridge comprising an inspiratory valve, expiratory valve, and a hose port constructed to receive a hose delivering pressurized air;
- a nasal pillow comprising: a cavity wall defining a cavity; a valve cartridge receiver opening formed into the cavity wall and constructed to receive the removable valve cartridge; two nasal interface structures connected to the cavity wall, wherein each of the nasal interface structures extends from the cavity wall and wherein each of the nasal interface structures defines an internal air flow channel with a cross-sectional area, the internal air flow channel in fluid communication with the cavity, and each of the nasal interface structures comprising: a conical nasal interface adapted to be inserted into a patient's nostril, the conical nasal interface having an opening to the airflow channel; a cylindrical trunk structure connected to the conical nasal interface wherein the cross-sectional area at the connection remains substantially constant; an annular relief pocket connected to the cylindrical truck structure and the cavity wall; wherein the connection between the annular relief pocket and the cavity wall defines a plane, and a first portion of the annular relief pocket extends away from the plane and a second portion extends toward the plane; and wherein the connection between the cylindrical trunk structure and the conical nasal interface is adapted to maintain the cylindrical trunk structure fixed relative to the conical nasal interface when the nasal pillow is used by a patient.
2. The nasal pillow system of claim 1, wherein the annular relief pocket comprises an annular wall indentation extending into the cavity.
3. The nasal pillow system of claim 1, wherein the annular relief pocket is constructed so as to allow the opening to move toward and away from the plane and in a direction that is parallel to the plane.
4. The nasal pillow system of claim 1, wherein the annular relief pocket defines a cross-sectional area, and when one of the nasal interface structures moves, the cross-sectional area remains substantially constant.
5. The nasal pillow system of claim 1, wherein the nasal pillow is made of silicone.
6. The nasal pillow system of claim 1, wherein the nasal pillow comprises a strap attachment structure.
7. The nasal pillow system of claim 6, wherein the strap attachment structure is a slot or a tab.
8. The nasal pillow system of claim 6, wherein the strap attachment structure is an asymmetrical tab.
9. The nasal pillow system of claim 6, further comprising a headgear assembly attached to the strap attachment structure.
10. The nasal pillow system of claim 6, wherein the cavity wall varies in thickness.
Type: Application
Filed: Jan 26, 2021
Publication Date: May 20, 2021
Inventors: Richard Ewers (Fulterton, CA), Kevin Chen (Palos Verdes Estates, CA), Andrew Dominguez (San Clemente, CA)
Application Number: 17/158,183