Method for NR Radio Link Monitoring (RLM) and Evaluation Period Determination
Methods are proposed to define UE behavior for performing synchronization signal block (SSB) based radio link monitoring (RLM) and channel state information reference signal (CSI-RS) based RLM. In a first novel aspect, if CSI-RS based RLM-RS is not QCLed to any CORESET, then UE determines that CSI-RS RLM configuration is error and does not perform RLM accordingly. In a second novel aspect, SSB for RLM and RLM CSI-RS resources are configured with different numerologies. UE perform SSB based RLM and CSI-RS based RLM based on whether the SSB and CSI-RS resources are TDMed configured by the network. In a third novel aspect, when multiple SMTC configurations are configured to UE, UE determines an SMTC period and whether SMTC and RLM-RS are overlapped for the purpose of RLM evaluation period determination.
This application is a continuation, and claims priority under 35 U.S.C. § 120 from nonprovisional U.S. patent application Ser. No. 16/447,961, entitled “Method for NR Radio Link Monitoring (RLM) and Evaluation Period Determination”, filed on Jun. 21, 2019, the subject matter of which is incorporated herein by reference. application Ser. No. 16/447,961, in turn, claims priority under 35 U.S.C. § 119 U.S. provisional application 62/688,450 entitled “Method for NR RLM and Evaluation Determination” filed on Jun. 22, 2018, the subject matter of which is incorporated herein by reference.
TECHNICAL FIELDThe disclosed embodiments relate generally to wireless communication, and, more particularly, to method and apparatus for radio link monitoring (RLM) based on Channel State Information reference signal (CSI-RS) in new radio (NR) systems.
BACKGROUNDThe wireless communications network has grown exponentially over the years. A Long-Term Evolution (LTE) system offers high peak data rates, low latency, improved system capacity, and low operating cost resulting from simplified network architecture. LTE systems, also known as the 4G system, also provide seamless integration to older wireless network, such as GSM, CDMA and Universal Mobile Telecommunication System (UMTS). In LTE systems, an evolved universal terrestrial radio access network (E-UTRAN) includes a plurality of evolved Node-Bs (eNodeBs or eNBs) communicating with a plurality of mobile stations, referred to as user equipments (UEs). The 3rd generation partner project (3GPP) network normally includes a hybrid of 2G/3G/4G systems. The Next Generation Mobile Network (NGMN) board, has decided to focus the future NGMN activities on defining the end-to-end requirements for 5C new radio (NR) systems.
For radio link monitoring (RLM) in NR, UE can be configured to measure synchronization signal (SS) blocks (SSB) and/or channel state information (CSI) reference signals (CSI-RS) to monitor radio link quality. In NR, SMTC (SSB measurement timing configuration) is provided for SSB RLM evaluation period determination. If multiple SMTC are present, how to determine the evaluation period for the overlap between RLM-RS and SMTC is ambiguous. How to map CSI-RS based RLM-RS into to one COntrol REsource SET (CORESET) for Physical downlink control channel (PDCCH) parameters determination is undefined. How to handle RLM when SSB for RLM and RLM CSI-RS resources are configured with different numerologies is undefined. Finally, the definition of overlapping between CSI-RS resource and SMTC window duration is ambiguous so that RLM measurement behavior is also ambiguous.
A solution is sought to define UE behavior for performing NR RLM.
SUMMARYMethods are proposed to define UE behavior for performing synchronization signal block (SSB) based radio link monitoring (RLM) and channel state information reference signal (CSI-RS) based RLM. In a first novel aspect, if CSI-RS based RLM-RS is not QCLed to any CORESET, then UE determines that CSI-RS RLM configuration is error and does not perform RLM accordingly. In a second novel aspect, SSB for RLM and RLM CSI-RS resources are configured with different numerologies. UE perform SSB based RLM and CSI-RS based RLM based on whether the SSB and CSI-RS resources are TDMed configured by the network. In a third novel aspect, when multiple SMTC configurations are configured to UE, UE determines an SMTC period and whether SMTC and RLM-RS are overlapped for the purpose of RLM evaluation period determination.
In one embodiment, a UE receives core resource set (CORESET) configuration in a new radio (NR) network. The CORESET configuration comprises one or more CORESETs for the UE. The UE receives radio link monitoring (RLM) configuration comprising resource information of a plurality of channel state information reference signals (CSI-RSs) for RLM. The UE determines whether a configured CSI-RS for RLM is Quasi-Co-Located (QCLed) to any CORESET according to the resource information of the CSI-RSs. The UE performs RLM measurements using the configured CSI-RS for RLM only when the configured CSI-RS for RLM is QCLed to at least one CORESET.
In another embodiment, UE receives synchronization signal block (SSB) configuration for radio link monitoring (RLM) in a new radio (NR) network. The SSB occupies a first OFDM symbol having a first numerology. The UE receives channel state information reference signal (CSI-RS) configuration for RLM. The configured CSI-RS resource is allocated over a second OFDM symbol having a second numerology. The UE determines whether the SSB and the configured CSI-RS resource are TDMed responsive to the first numerology and the second numerology being different. The UE performs SSB based RLM and CSI-RS based RLM using the SSB and CSI-RS configuration for RLM and based on whether the SSB and the configured CSI-RS resource are TDMed.
In another embodiment, UE receives synchronization signal block (SSB) measurement timing configuration (SMTC) for radio link monitoring (RLM) in a new radio (NR) network. The UE determines an RLM evaluation period according to the SMTC configuration based at least on an SMTC periodicity. The UE performs CSI-RS based RLM using the determined RLM evaluation period.
Other embodiments and advantages are described in the detailed description below. This summary does not purport to define the invention. The invention is defined by the claims.
The accompanying drawings, where like numerals indicate like components, illustrate embodiments of the invention.
Reference will now be made in detail to some embodiments of the invention, examples of which are illustrated in the accompanying drawings.
A wireless communications device UE 101 in wireless system 100 is served by base station 102 via uplink 111 and downlink 112. Other UEs 105, 106, 107, and 108 are served by different base stations. UEs 105 and 106 are served by base station 102. UE 107 is served by base station 104. UE 108 is served by base station 103. Each UE may be a smart phone, a wearable device, an Internet of Things (IoT) device, a tablet, etc. For radio link monitoring (RLM) in NR, each UE can be configured to measure synchronization signal (SS) blocks (SSB) and/or channel state information (CSI) reference signal (CSI-RS). With explicit signaling, after UE is connected to a cell, the RLM RS configuration parameters can be configured through radio resource control (RRC) signaling via RadioLinkMonitoringRS, including RS type (SSB or CSI-RS) and RS ID. For CSI-RS, the parameters include CSI-RS Index that is linked to CSI-RS resource configuration, which further includes resource location in time and frequency domain and quasi-co-location (QCL) info through beam indication or transmission configuration indication (TCI) state. For SSB, the parameters include SSB Index that is used to derive SSB location in time domain. There is no QCL info for SSB. RLM RS configuration parameters can also be configured via implicit signaling, e.g., using the RS in TCI state of a COntrol REsource SET (CORESET) when no dedicated signaling for RLM in RRC is available (i.e., RadioLinkMonitoringRS is missing).
There are certain issues for SSB based RLM and CSI-RS based RLM in NR systems. First, SMTC (SSB measurement timing configuration) is provided for SSB RLM evaluation period determination. If multiple SMTC are present, how to determine the evaluation period for the overlap between RLM-RS and SMTC is ambiguous. Second, how to map CSI-RS based RLM-RS to one COntrol REsource SET (CORESET) for PDCCH parameter determination is undefined. Third, how to handle RLM when SSB for RLM and RLM CSI-RS resources are configured with different numerologies is undefined. Fourth, the definition of overlapping between CSI-RS resource and SMTC window duration is ambiguous so that RLM behavior, e.g., how to determine the RLM evaluation period is also ambiguous.
In accordance with one novel aspect, methods are proposed to define UE behavior for performing SSB based RLM and CSI-RS based RLM. In a first novel aspect, if CSI-RS based RLM-RS is not QCLed to any CORESET, then UE determines that CSI-RS RLM configuration is error and does not perform RLM accordingly. In a second novel aspect, SSB for RLM and RLM CSI-RS resources are configured with different numerologies (i.e., different SCS, CP). UE will perform SSB based RLM and CSI-RS based RLM only when the SSB and the configured CSI-RS resource are TDMed configured by the network. In a third novel aspect, when multiple SMTC configurations are configured to UE, UE determines an SMTC period for the purpose of RLM evaluation period. UE also determines whether SMTC window duration and RLM-RS resource are overlapped for the purpose of determining the RLM evaluation period.
Similarly, UE 201 has an antenna 235, which transmits and receives radio signals. A RF transceiver module 234, coupled with the antenna, receives RF signals from antenna 235, converts them to baseband signals and sends them to processor 232. RF transceiver 234 also converts received baseband signals from processor 232, converts them to RF signals, and sends out to antenna 235. Processor 232 processes the received baseband signals and invokes different functional modules to perform features in mobile station 201. Memory 231 stores program instructions and data 236 to control the operations of mobile station 201. Suitable processors include, by way of example, a special purpose processor, a digital signal processor (DSP), a plurality of micro-processors, one or more micro-processor associated with a DSP core, a controller, a microcontroller, application specific integrated circuits (ASICs), file programmable gate array (FPGA) circuits, and other type of integrated circuits (ICs), and/or state machines.
UE 201 also includes a set of control modules and circuits that carry out functional tasks. These functions can be implemented in software, firmware and hardware. A processor in associated with software may be used to implement and configure the functional features of UE 201. For example, an SSB based RLM configuration circuit 291 that configures SSB and SMTC windows for RLM; a CSI-RS based RLM configuration circuit 292 that configures CSI-RS resource for RLM; an RLM control and handling circuit 293 that determines whether and how to perform RLM based on the RLM configuration; an RLM report circuit 294 transmits RLM related reports to the network.
In general, determining whether CSI-RS for RLM is QCLed to any CORESET requires time, frequency resource location, and QCL information. However, in some situations, UE may find that the CSI-RS based RLM-RS is not QCLed to any CORESET. Under such condition, UE can determine that the CSI-RS RLM configuration is error and does not perform the corresponding RLM functionality. This is because if the CSI-RS based RLM-RS is not QCLed to any CORESET, then the UE does not know how to receive control parameters over PDCCH. The 3GPP specification defines a first frequency range (FR1) and a second frequency range (FR2). In FR1 (e.g., sub7 GHz), QCL information comprises the reference for Doppler shift, Doppler spread, average delay and delay spread of the configured CSI-RS for RLM. In FR2 (e.g., mmWave), QCL information further includes spatial RX parameters, e.g. the RX beam. Therefore, QCL information in FR2 may be called spatial QCL information, and QCLed means the same RX beam.
When UE does not support simultaneous reception over different numerologies (e.g., different SCS or different CP length), SSB for RLM and RLM CSI-RS resources should be TDMed configured to UE. UE will not perform SSB based RLM and CSI-RS based RLM simultaneously. Instead, UE performs SSB based RLM or CSI-RS based RLM one at a time. Note the definition for TDMed configuration means that the configured SSB and CSI-RS resources should be completely not overlapped in time domain, e.g., they do not have any overlapping in time domain. In other words, the configured SSB and CSI-RS resources should not have any overlapping and should not have any partial overlapping, especially when the OFDM symbol lengths for SSB and CSI-RS resources are different.
For RLM, UE needs to evaluate whether the downlink radio link quality on the configured RLM-RS resource estimated over a first evaluation period becomes worse than a first threshold within the first evaluation period TEVALUATE_out_SSB. UE also needs to evaluate whether the downlink radio link quality on the configured RLM-RS resource estimated over a second evaluation period becomes better than a second threshold within the second evaluation period TEVALUATE_in_SSB. For FR1 and FR2, the length of the evaluation period depends on N (RX beam scaling factor) and P (evaluation scaling factor), which in turn depends on how RLM-RS resources and SMTC occasions are configured for UE. SMTC is configured by the network through System Information or RRC signaling after UE is connected to the network (i.e., UE can know SMTC of other cells. The configuration parameters for SMTC include offset, duration, and periodicity. In general, SSBs inside SMTC are used for L3 measurements, and SSBs outside SMTC are used for L1 measurements (e.g., RLM).
Both TEVALUATE_out_SSB and TEVALUATE_in_SSB are defined for FR1 and FR2 in the 3GPP specification. For FR1, P=1/(1−TSSB/MGRP), when in the monitored cell there are measurement gaps configured for intra-frequency, inter-frequency or inter-RAT measurements, which are overlapping with some but not all occasions of the SSB; P=1, when the monitored cell there are no measurement gaps overlapping with any occasion of the SSB. For FR2, P=1/(1−TSSB/TSMTCperiod) when RLM-RS is not overlapped with measurement gap and RLM-RS is partially overlapped with SMTC occasion (TSSB<TSMTCperiod); P=3, when RLM-RS is not overlapped with measurement gap and RLM-RS is fully overlapped with SMTC period (TSSB=TSMTCperiod); P=1/(1−TSSB/MGRP−TSMTCperiod) when RLM-RS is partially overlapped with measurement gap and RLM-RS is partially overlapped with SMTC occasion (TSSB<TSMTCperiod) and SMTC occasion is not overlapped with measurement gap and (TSMTCperiod≠MGRP) or (TSMTCperiod=MGRP and TSSB<0.5*TSMTCperiod); P=1/(1−TSSB/MGRP)*3, when RLM-RS is partially overlapped with measurement gap and partially overlapped with SMTC occasion (TSSB<TSMTCperiod) and SMTC occasion is not overlapped with measurement gap and TSMTCperiod=MGRP and TSSB=0.5*TSMTCperiod; P=1/{1−TSSB/Min (TSMTCperiod, MGRP)}, when RLM-RS is partially overlapped with measurement gap and RLM-RS is partially overlapped with SMTC occasion (TSSB<TSMTCperiod) and SMTC occasion is partially or fully overlapped with measurement gap; P=1/(1−TSSB/MGRP)*3, when RLM-RS is partially overlapped with measurement gap and RLM-RS is fully overlapped with SMTC occasion (TSSB=TSMTCperiod) and SMTC occasion is partially overlapped with measurement gap (TSMTCperiod<MGRP). Similarly, the above definition also works for CSI-RS based RLM, it reuses the evaluation time by replacing TSSB→TCSI-RS.
Although the present invention has been described in connection with certain specific embodiments for instructional purposes, the present invention is not limited thereto. Accordingly, various modifications, adaptations, and combinations of various features of the described embodiments can be practiced without departing from the scope of the invention as set forth in the claims.
Claims
1. A method, comprising:
- receiving synchronization signal block (SSB) configuration for radio link monitoring (RLM) by a user equipment (UE) in a new radio (NR) network, wherein the SSB occupies a first OFDM symbol having a first numerology;
- receiving channel state information reference signal (CSI-RS) configuration for RLM by the UE, wherein the configured CSI-RS resource is allocated over a second OFDM symbol having a second numerology;
- determining whether the SSB and the configured CSI-RS resource are Time Division Multiplexed (TDMed) responsive to the first numerology and the second numerology being different; and
- performing SSB based RLM and CSI-RS based RLM using the SSB and CSI-RS configuration for RLM based on whether the SSB and the configured CSI-RS resource are TDMed.
2. The method of claim 1, wherein the first numerology and the second numerology being different includes the first numerology and the second numerology having different subcarrier spacing (SCS) values.
3. The method of claim 1, wherein the first numerology and the second numerology being different includes the first numerology and the second numerology having different cyclic-shift prefix (CP) lengths.
4. The method of claim 1, wherein the performing SSB based RLM and CSI-RS based RLM based on whether the SSB and the configured CSI-RS resource are TDMed includes performing SSB based RLM and CSI-RS based RLM only when the SSB and the configured CSI-RS resource are TDMed.
5. The method of claim 1, wherein the performing SSB based RLM and CSI-RS based RLM is further based on whether the UE supports simultaneous reception over different numerologies.
6. The method of claim 5, wherein the performing SSB based RLM and CSI-RS based RLM based on whether the UE supports simultaneous reception over different numerologies includes performing SSB based RLM and CSI-RS based RLM only when the UE does NOT support simultaneous reception over different numerologies.
7. The method of claim 1, further comprising:
- receiving SSB measurement timing configuration (SMTC) configuration for RLM by the UE; and
- determining an RLM evaluation period for RLM according to the SMTC configuration for RLM based at least on an SMTC periodicity.
8. The method of claim 7, wherein the SMTC configuration comprises an SMTC periodicity, an SMTC window duration, and a timing offset.
9. The method of claim 7, wherein a first smtc1 and a second smtc2 are configured by the network, and wherein the RLM evaluation period is determined based on the shortest SMTC periodicity.
10. The method of claim 7, wherein the determining the RLM evaluation period is further based on an RLM evaluation scaling factor for channel state information reference signal (CSI-RS) based RLM, and the RLM evaluation scaling factor is associated with whether CSI-RS resources and SMTC window durations are overlapped.
11. A User Equipment (UE), comprising:
- a synchronization signal block (SSB) based radio link monitoring (RLM) configuration circuit that obtains SSB configuration for RLM in a new radio (NR) network, wherein the SSB occupies a first OFDM symbol having a first numerology;
- a channel state information reference signal (CSI-RS) based RLM configuration circuit that obtains CSI-RS configuration for RLM, wherein configured CSI-RS resource is allocated over a second OFDM symbol having a second numerology;
- an RLM control circuit that determines whether the SSB and the configured CSI-RS resource are Time Division Multiplexed (TDMed) responsive to the first numerology and the second numerology being different; and
- an RLM handling circuit that performs SSB based RLM and CSI-RS based RLM using the SSB and CSI-RS configuration for RLM based on whether the SSB and the configured CSI-RS resource are TDMed.
12. The UE of claim 11, wherein the first numerology and the second numerology being different includes the first numerology and the second numerology having different subcarrier spacing (SCS) values.
13. The UE of claim 11, wherein the first numerology and the second numerology being different includes the first numerology and the second numerology having different cyclic-shift prefix (CP) lengths.
14. The UE of claim 11, wherein the performing SSB based RLM and CSI-RS based RLM based on whether the SSB and the configured CSI-RS resource are TDMed includes performing SSB based RLM and CSI-RS based RLM only when the SSB and the configured CSI-RS resource are TDMed.
15. The UE of claim 11, wherein the performing SSB based RLM and CSI-RS based RLM is further based on whether the UE supports simultaneous reception over different numerologies.
16. The UE of claim 15, wherein the performing SSB based RLM and CSI-RS based RLM based on whether the UE supports simultaneous reception over different numerologies includes performing SSB based RLM and CSI-RS based RLM only when the UE does NOT support simultaneous reception over different numerologies.
17. The UE of claim 11, further comprising:
- a receiver that receives SSB measurement timing configuration (SMTC) configuration for RLM, wherein the UE determines an RLM evaluation period for RLM according to the SMTC configuration for RLM based at least on an SMTC periodicity.
18. The UE of claim 17, wherein the SMTC configuration comprises an SMTC periodicity, an SMTC window duration, and a timing offset.
19. The UE of claim 17, wherein a first smtc1 and a second smtc2 are configured by the network, and wherein the RLM evaluation period is determined based on the shortest SMTC periodicity.
20. The UE of claim 17, wherein the determining the RLM evaluation period is further based on an RLM evaluation scaling factor for channel state information reference signal (CSI-RS) based RLM, and the RLM evaluation scaling factor is associated with whether CSI-RS resources and SMTC window durations are overlapped.
Type: Application
Filed: May 6, 2021
Publication Date: Aug 19, 2021
Inventors: Hsuan-Li Lin (Hsin-Chu), Kuhn-Chang Lin (Hsin-Chu)
Application Number: 17/313,710