PROBIOTIC COMPOSITIONS COMPRISING LACTOBACILLUS REUTERI STRAINS AND METHODS OF USE

The present invention relates to probiotic compositions and methods for increasing animal health. The probiotic compositions include one or more isolated strains of novel Lactobacillus reuteri strains which colonizes the gastrointestinal tract to increase the health of an animal.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a Continuation of U.S. Ser. No. 17/428,510 filed on 4 Aug. 2021, which is a National Stage Application claiming priority from co-pending PCT Application No. PCT/US2020/016668 filed on 4 Feb. 2020, which in turn claims priority to U.S. Provisional Application No. 62/801,307, filed on 5 Feb. 2019, the contents of which are hereby incorporated by reference.

SEQUENCE LISTING

This application contains a Sequence Listing, which was submitted in ASCII format via EFS-Web, and is hereby incorporated by reference in its entirety. The ASCII copy, created on 4 Feb. 2020, is named “X30027-SeqListing_ST25.txt” and is 121 KB in size.

FIELD OF THE INVENTION

The present invention relates to probiotic compositions and methods for improving animal health. The probiotic compositions include one or more isolated strains of Lactobacillus sp which colonizes the gastrointestinal tract to increase the health of an animal.

BACKGROUND OF THE INVENTION

Direct fed microbials (DFMs), often also called probiotics, are microorganisms which colonize the gastrointestinal tract of an animal and provide some beneficial effect to that animal. The microorganisms can be bacterial species, for example those from the genera Bacillus, Lactobacillus, Lactococcus, and Entercoccus. The microorganisms can also be yeast or even molds. The microorganisms can be provided to an animal orally or mucosally or, in the case of birds, provided to a fertilized egg, i.e. in ovo.

The beneficial activity provided by a DFM can be the synthesis of vitamins or other nutritional molecules needed for a healthy metabolism of the host animal. A DFM can also protect the host animal from disease, disorders, or clinical symptoms caused by other, pathogenic microorganisms. For example, the DFM may naturally produce factors having inhibitory or cytotoxic activity against certain species of pathogens, such as deleterious or disease-causing bacteria.

There is a need in the art for probiotic compositions and methods that provide improved delivery of beneficial molecules to the gastrointestinal tract of an animal and improve animal health.

SUMMARY OF THE INVENTION

The present invention provides compositions and methods for improving animal health.

In one embodiment, the invention provides a composition having at least one of an isolated first Lactobacillus reuteri strain and an isolated second Lactobacillus reuteri strain, wherein said composition increases animal health when an effective amount is administered to an animal, as compared to an animal not administered the composition.

In one embodiment, the first isolated first Lactobacillus reuteri strain includes at least one of: a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO:26, a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 1, a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 3, and a nucleic acid that encodes for an amino acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 8.

In one embodiment, the second isolated second Lactobacillus reuteri strain includes at least one of: a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO:25, a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 27, a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 28, and a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 29.

In one embodiment, the invention provides a method of increasing animal health. The method includes administering an effective amount of the above composition to an animal.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts antimicrobial effect of L. reuteri strain 3630. Pathogenic bacteria, but not nonpathogenic Lactobacillus acidophilus are killed by L. reuteri strain 3630, as evidenced by a clear “halo” surrounding strain 3630. Pathogenic bacteria shown are gram-positive pathogens Clostridium perfringes, Staphylococcus aureus, Streptococcus uberis, Streptococcus suis; gram negative pathogens are Escherichia coli, Salmonella Typhimurium, and Campylobacter jejuni.

FIG. 2 depicts antimicrobial effect of L. reuteri strain 3632. Pathogenic bacteria, but not nonpathogenic Lactobacillus acidophilus are killed by L. reuteri strain 3632, as evidenced by a clear “halo” surrounding strain 3632. Pathogenic bacteria shown are Clostridium perfringes, Staphylococcus aureus, Streptococcus uberis, Streptococcus suis, Escherichia coli, Salmonella Typhimurium, F. necrophorum, and Campylobacter jejuni.

FIG. 3 depicts colonization of L. reuteri strain 3632 in chickens, via oral administration route. Left shows the experimental timeline. Right shows colony formation and PCR & sequence confirmation.

FIG. 4 depicts experimental timeline to determine colonization of L. reuteri strain 3632 in chickens, via in ovo administration route. Chicks were harvested at day 3 and day 7, and the strain is characterized.

FIG. 5 depicts colonies from chicks sacrificed at day 3. Strain 3632 is found in the tissues of chicks at 3 days post hatching, while colonization of a control strain declines after day 3.

FIG. 6 depicts colonies from chicks sacrificed at day 7. Strain 3632 is found in the tissues of chicks at 7 days post hatching, while colonization of a control strain declines after day 7.

FIG. 7 depicts characterization of L. reuteri strain 3630 and 3632 colonization in chicks via on ovo(spray) and in ovo administration route. Left shows the experimental timeline. Right shows CFU of L. reuteri strains 3630 and 3632 of chicks sacrificed at 3 days and 7 days.

FIG. 8 depicts data from birds vaccinated with coccidiosis vaccine on day 0 and fed with L. reuteri in feed from day 0 to day 42 @ 10{circumflex over ( )}7 CFUs/Kg of feed or with BMD_55. Top Feed conversion Ratio (FCR) of chickens administered L. reuteri 3632, as compared to chickens administered BMD_55 (bacitracin methylene disalicylate).

FIG. 9 depicts quantification of in vitro kill effect of L. reuteri strain 3632 on Clostridium perfringens. In a co-culture experiment, L. reuteri appears to inhabit C. perfringens growth almost by 4 logs. CFU counts were determined 24 hours after coculture in BHI broth. L. reuteri were enumerated on MRS agar plates and C. perfringens was enumerated on OPSP plates. This data is from one representative experiment of 3 replicates. Co-culture-L. reuteri, L. reuteri recovered from co-cultured sample using L. reuteri-specific media. Co-culture-C. perfringens, C. perfringens recovered from co-culture sample using C. perfringens-specific media.

FIG. 10 depicts the effect of prebiotics on the growth of Lactobacillus reuteri strains 3630 & 3632. The prebiotics tested include fructooligosaccharides (FOS), arabinoxylan oligosaccharides (AXOS), mannan-oligosaccharides (MOS), or galacto-oligosaccharides (GOS). Increased growth is observed with GOS.

FIGS. 11A-11B depict biochemical metabolic profile of two Lactobacillus reuteri strains. The figure represents metabolic data obtained by principal component analysis (PCA) of two strains of Lactobacillus reuteri that were cultured individually and together. FIG. 11A represents the cell pellet of the culture, 1_P-30 is the pellet from strain 3630, 2_P-32 is the pellet from strain 3632, and 3_P-30-32 is the pellet from a co-culture of strain 3630 and strain 3632. FIG. 11B represents the supernatant of the culture, 1_S-30 is the supernatant from strain 3630, 2_S-32 is the supernatant from strain 3632, and 3_S-30-32 is the supernatant from a co-culture of strain 3630 and strain 3632. 4_Medial is AOF-MRS media control with no glucose but 0.5% GOS.

For FIGS. 12-19, data represents subject molecule that is secreted into the supernatant. 1) Lactobacillus reuteri strain 3630, 2) Lactobacillus reuteri strain 3632, 3) co-culture of Lactobacillus reuteri strain 3630 and Lactobacillus reuteri strain 3632, and 4) media control. Data are scaled such that the median value measured across all samples was set to 1.0.

FIG. 12 depicts levels of dimethylglycine, allo-threonine, and 1-methyl-4-imidazoleacetate secreted by Lactobacillus reuteri strains.

FIG. 13 depicts levels of 4-imidazoleacetate, lysine, and N6-methyllysine secreted by Lactobacillus reuteri strains.

FIG. 14 depicts levels of N6, N6-dimethyllysine, 5-aminovalerate, and tyrosine secreted by Lactobacillus reuteri strains.

FIG. 15 depicts levels of 4-hydroxyphenylpyruvate, indolacetate, and gamma-glutamylglutamine secreted by Lactobacillus reuteri strains.

FIG. 16 depicts levels of glucose 6-phosphate, 4-hydroxyl-2-oxoglutaric acid, and myo-inositol secreted by Lactobacillus reuteri strains.

FIG. 17 depicts levels of Uridine 5′-monophosphate (UMP), Cytidine 5′-monophosphate (5′-CMP), and 3′-5′-uridylyluridine secreted by Lactobacillus reuteri strains.

FIG. 18 depicts levels of O-sulfo-L-tyrosine, indole 3 acetamide, and indolin-2-one secreted by Lactobacillus reuteri strains.

FIG. 19 depicts levels of daidzein secreted by Lactobacillus reuteri strains.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides compositions and methods for increasing animal health.

In one embodiment, the invention provides a composition having at least one of an isolated first Lactobacillus reuteri strain and an isolated second Lactobacillus reuteri strain.

In one embodiment, the isolated first Lactobacillus reuteri strain is strain 3632. As disclosed herein, strain 3632 has a nucleic acid or amino acid sequence including at least one of SEQ ID NOs: 1-24 and 26, sequences having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with at least one of SEQ ID NOs: 1-24 and 26. Lactobacillus reuteri strain 3632 was deposited on 19 Jun. 2020 according to the Budapest Treaty in the American Type Culture Collection (ATCC), ATCC Patent Depository, 10801 University Boulevard, Manassas, Va., 20110, USA. The deposit has been assigned ATCC Patent Deposit Number PTA-126788.

In one embodiment, the isolated second Lactobacillus reuteri strain is strain 3630. As disclosed herein, strain 3630 has a nucleic acid sequence including at least one of SEQ ID NOs: 25 and 27-43, sequences having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with at least one of SEQ ID NOs: 25 and 27-43. Lactobacillus reuteri strain 3630 was deposited on 19 Jun. 2020 according to the Budapest Treaty in the American Type Culture Collection (ATCC), ATCC Patent Depository, 10801 University Boulevard, Manassas, Va., 20110, USA. The deposit has been assigned ATCC Patent Deposit Number PTA-126787.

The isolated strains of the present disclosure are not genetically modified by recombinant or genetically engineered means.

In some embodiments, the composition disclosed herein includes an isolated first Lactobacillus reuteri strain and an isolated second Lactobacillus reuteri strain at a ratio of approximately 0.75-1.5:1. In a preferred embodiment, the composition includes about equal amounts of the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain.

The compositions disclosed herein can be formulated as animal feed, feed additive, food ingredient, water additive, water-mixed additive, consumable solution, consumable spray additive, consumable solid, consumable gel, injection, or combinations thereof. In one embodiment, the composition includes water.

The compositions disclosed herein includes the isolated first Lactobacillus reuteri strain in an amount of about 10{circumflex over ( )}2-10{circumflex over ( )}8 CFU/kg of the composition, about 10{circumflex over ( )}4-10{circumflex over ( )}7 CFU/kg of the composition, about 10{circumflex over ( )}3-10{circumflex over ( )}5 CFU/kg of the composition, about 10{circumflex over ( )}2 CFU/kg of the composition, about 10{circumflex over ( )}3 CFU/kg of the composition, or about 10{circumflex over ( )}7 CFU/kg of the composition.

The compositions of the disclosure exhibit markedly different functional and/or structural characteristics/properties, as compared to their closest naturally occurring counterpart. For instance, the Lactobacillus reuteri strain of the disclosure are structurally different from a Lactobacillus reuteri strain as it naturally exists in a gastrointestinal tract. To elaborate, the Lactobacillus reuteri strain can be isolated and purified, such that it is not found in the milieu of the gastrointestinal tract, the Lactobacillus reuteri strain can be present at concentrations that do not occur in the gastrointestinal tract, the Lactobacillus reuteri strain can be associated with acceptable carriers that do not occur in the gastrointestinal tract, the Lactobacillus reuteri strain can be formulated to be shelf-stable and exist outside the gastrointestinal tract, and said microbe can be combined with other microbes at concentrations that do not exist in the gastrointestinal tract. Further, the Lactobacillus reuteri strain of the disclosure are functionally different from a Lactobacillus reuteri strain as it naturally exists in a gastrointestinal tract. To elaborate, the Lactobacillus reuteri strain when applied in an isolated and purified form can lead to modulation of the gastrointestinal microbiome, increased weight gain, increased feed utilization, decreased amounts of microbial pathogens, and decreased pathogen-associated gastro-intestinal lesions.

Method

The present disclosure also provides methods of increasing animal health, wherein the method includes administering an effective amount of the composition to an animal.

The composition disclosed herein and above increases animal health by providing positive health benefits when administered to an animal, as compared to an animal that has not been administered the composition. As used herein, “animal” includes bird, poultry, a human, or a non-human mammal. Specific examples include chickens, turkey, dogs, cats, cattle and swine. The chicken may be a broiler chicken or egg-laying or egg-producing chicken.

Positive health benefits include decreasing feed conversion ratio, increasing weight, increasing lean body mass, decreasing pathogen-associated lesion formation in the gastrointestinal tract, decreasing colonization of pathogens, reducing inflammation, and decreasing mortality rate.

In some embodiments, the compositions disclosed herein decreases feed conversion ratio by at least 1%, at least 5%, at least 25%, or at least 50%. In some embodiments, the compositions disclosed herein increases poultry weight by at least 1%, at least 5%, at least 25%, or at least 50%. In some embodiments, the compositions disclosed herein decrease pathogen-associated lesion formation in the gastrointestinal tract by at least 1%, at least 5%, at least 25%, or at least 50%. In some embodiments, the compositions disclosed herein decrease pathogen colonization by at least 1%, at least 5%, at least 25%, or at least 50%. In some embodiments, the compositions disclosed herein reduce inflammation by at least 1%, at least 5%, at least 25%, or at least 50%. In some embodiments, the compositions disclosed herein decrease mortality rate by at least 1%, at least 5%, at least 25%, or at least 50%.

In some embodiments, following values may be combined in any manner to create a minima, a maxima, or a range for decreasing feed conversion ratio, increasing poultry weight, increasing lean body mass, decreasing pathogen-associated lesion formation in the gastrointestinal tract, decreasing colonization of pathogens, and decreasing mortality rate, 1%, 5%, 25%, 50%, and 75%.

For example, the decrease in pathogen-associated lesion formation may be decreased by approximately 1% to 5%, and more preferably between approximately 5% to 50%.

As used herein, pathogen includes Salmonella, Clostridium, Campylobacter, Staphylococcus, Streptococcus, and E. coli bacterium. Further examples of pathogens include Salmonella typhimurium, Salmonella infantis, Salmonella Hadar, Salmonella enteritidis, Salmonella Newport, Salmonella Kentucky, Clostridium perfringens, Staphylococcus aureus, Streptoccus uberis, Streptococcus suis, Escherichia coli, Campylobacter jejuni, and Fusobacterium necrophorum.

The compositions may be administered orally, parentally, nasally, or mucosally.

In some aspects, administration includes feeding the poultry, or spraying onto the poultry. In other aspects, administration includes on ovo administration or in ovo administration,

In some aspects the animal is vaccinated in conjunction with administration. The animal may be vaccinated prior to administration of the compositions disclosed herein. The animal may be vaccinated with an coccidiosis vaccine. Coccidiosis vaccines are known in the art, for example, COCCIVAC.

In some embodiments, administration is by way of injection or infusion. In one embodiment, the composition is administered to a cow by way of intra-mammary infusion.

The strains disclosed herein demonstrate certain phenotypic properties. Without wishing to be bound by theory, it is believed that these phenotypic properties at least contribute to increasing animal health.

In some embodiments, the isolated strains secrete at least one of cyclic dipeptides (cyclo(his-phe) and cyclo (phe-pro), short chain fatty acids (2-hydroxy-3-methylvalerate and alpha-hydroxyisocaproate), betaine, dimethylglycine, essential amino acids (e.g., allo-threonine, phosphothreonine, histidine, lysine, phenylalanine, tryptophan, leucine, isoleucine, and cysteine s-sulfate), nucleotides (e.g., adenosine 5′-monophosphate (AMP), uridine 5′-monophosphate (UMP), cytidine 5′-monophosphate (5′-CMP), and cytidine 2′3′-cyclicmonophosphate), myo-inositol, and indolin-2-one. Some of the aforementioned molecules provide beneficial characteristics to the host, including increased weight, pro-inflammatory effects, and antibiotic effects.

In some embodiments, the composition including the isolated first Lactobacillus reuteri strain (strain 3632) and the isolated second Lactobacillus reuteri strain (strain 3630) in combination, will secrete certain beneficial molecules in larger quantities than when individually cultured. See for example, FIGS. 12-19.

In some embodiments, the animal administered the composition exhibits a shift in the microbiome content of the gastrointestinal tract. For example, there may be an increase in the amount of bacteroidaceae bacteria in the gut of an animal that has been administered the composition described herein, as compared to an animal that was not administered the composition.

In some embodiments, the invention provides a method of treating, ameliorating the effects of, or preventing necrotic enteritis in an animal by administering a composition disclosed herein to an animal in need thereof.

In some embodiments, the invention provides a method of treating, ameliorating the effects of or preventing bovine mastitis. The method includes administering a composition disclosed herein to an animal in need thereof.

As used herein, “isolated” means that the subject isolate has been separated from at least one of the materials with which it is associated in a particular environment. Thus, an “isolate” does not exist in its naturally occurring environment; rather, it is through the various techniques described herein that the microbe has been removed from its natural setting and placed into a non-naturally occurring state of existence. Thus, the isolated strain or isolated microbe may exist as, for example, a biologically pure culture in association with an acceptable carrier.

As used herein, “individual isolates” should be taken to mean a composition, or culture, comprising a predominance of a single genera, species, or strain, of microorganism, following separation from one or more other microorganisms. The phrase should not be taken to indicate the extent to which the microorganism has been isolated or purified. However, “individual isolates” can comprise substantially only one genus, species, or strain, of microorganism.

In certain aspects of the disclosure, the isolated Lactobacillus reuteri strain exist as isolated and biologically pure cultures. It will be appreciated by one of skill in the art, that an isolated and biologically pure culture of a particular Lactobacillus reuteri strain, denotes that said culture is substantially free (within scientific reason) of other living organisms and contains only the individual Lactobacillus reuteri strain in question. The culture can contain varying concentrations of said isolated Lactobacillus reuteri strain. The present disclosure notes that isolated and biologically pure microbes often necessarily differ from less pure or impure materials.

In embodiments of the present invention, the composition includes a combination of two isolated Lactobacillus reuteri strains.

As used herein, “carrier”, “acceptable carrier”, or “pharmaceutical carrier” refers to a diluent, adjuvant, excipient, or vehicle with which the compound is administered. Such carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable, or synthetic origin; such as peanut oil, soybean oil, mineral oil, sesame oil, and the like. Water or aqueous solution saline solutions and aqueous dextrose and glycerol solutions are preferably employed as carriers, in some embodiments as injectable solutions. Alternatively, the carrier can be a solid dosage form carrier, including but not limited to one or more of a binder (for compressed pills), a glidant, an encapsulating agent, a flavorant, and a colorant. The choice of carrier can be selected with regard to the intended route of administration and standard pharmaceutical practice. See Hardee and Baggo (1998. Development and Formulation of Veterinary Dosage Forms. 2nd Ed. CRC Press. 504 pg.); and E. W. Martin (1970. Remington's Pharmaceutical Sciences. 17th Ed. Mack Pub. Co.).

As used herein, “delivery” or “administration” means the act of providing a beneficial activity to a host. The delivery may be direct or indirect. An administration could be by an oral, nasal, or mucosal route. For example without limitation, an oral route may be an administration through drinking water, a nasal route of administration may be through a spray or vapor, and a mucosal route of administration may be through direct contact with mucosal tissue. Mucosal tissue is a membrane rich in mucous glands such as those that line the inside surface of the nose, mouth, esophagus, trachea, lungs, stomach, gut, intestines, and anus. In the case of birds, administration may be in ovo, i.e. administration to a fertilized egg. In ovo administration can be via a liquid which is sprayed onto the egg shell surface, or an injected through the shell.

As used herein, the terms “treating”, “to treat”, or “treatment”, include restraining, slowing, stopping, reducing, ameliorating, or reversing the progression or severity of an existing symptom, disorder, condition, or disease. A treatment may also be applied prophylactically to prevent or reduce the incidence, occurrence, risk, or severity of a clinical symptom, disorder, condition, or disease.

Unless expressly stated to the contrary, “or” refers to an inclusive “or” and not to an exclusive “or”. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

Any examples or illustrations given herein are not to be regarded in any way as restrictions on, limits to, or express definitions of any term or terms with which they are utilized. Instead, these examples or illustrations are to be regarded as being described with respect to one particular embodiment and as being illustrative only. Those of ordinary skill in the art will appreciate that any term or terms with which these examples or illustrations are utilized will encompass other embodiments which may or may not be given therewith or elsewhere in the specification and all such embodiments are intended to be included within the scope of that term or terms. Language designating such nonlimiting examples and illustrations includes, but is not limited to: “for example,” “for instance,” “e.g.,” and “in one embodiment.” In this specification, groups of various parameters containing multiple members are described. Within a group of parameters, each member may be combined with any one or more of the other members to make additional sub-groups. For example, if the members of a group are a, b, c, d, and e, additional sub-groups specifically contemplated include any one, two, three, or four of the members, e.g., a and c; a, d, and e; b, c, d, and e; etc.

Throughout this specification, quantities are defined by ranges, and by lower and upper boundaries of ranges. Each lower boundary can be combined with each upper boundary to define a range. The lower and upper boundaries should each be taken as a separate element. Two lower boundaries or two upper boundaries may be combined to define a range.

SEQUENCE LISTING  mersacidin-E1 cDNA  SEQ ID NO: 1 1 atggacaaag aagaattaga aaaaattgta ggtaataact ttgaggaaat gagtttacaa  61 aaaatgacag aaattcaagg tatgggtgaa taccaagtgg attcaacacc agcagcttct  121 gcgatttcac gggcaacaat tcaagtatca cgtgcatctt ctggaaaatg tctaagttgg  181 ggtagtggtg cagcatttag tgcttatttt actcataaaa gatggtgcta g  mersacidin-E1 amino acid (natural)  SEQ ID NO: 2 1 MDKEELEKIV GNNFEEMSLQ KMTEIQGMGE YQVDSTPAAS AISRATIQVS RASSGKCLSW  61 GSGAAFSAYF THKRWC  mersacidin-E2 cDNA  SEQ ID NO: 3 1 atggaagaaa aagaattaga aggtgtaata gggaattcgt ttgaaagtat gactgtagag  61 gaaatgacaa aaattcaagg tatgggtgaa tatcaagtag attcgacgcc tggatatttt  121 atggaaagtg ctgccttttc agctcttaca gccaatataa caagacatgc tatgcatcat  181 cattaa  mersacidin-E2 amino acid (natural)  SEQ ID NO: 4 1  MEEKELEGVI GNSFESMTVE EMTKIQGMGE YQVDSTPGYF MESAAFSALT ANITRHAMHH  61 H  Capreomycidine synthase (natural).  SEQ ID NO: 5 1 MVEIAHFGVE AWLNKWEKSA TYDISQSTIA SLSMHDLLNL DGNNGEEFYE MLDKQQMNYG  61 WIEGSPEFKE EVAKLYHHVD PENILQTNGA TGANILALYA LINPGDHVIA EYPSYQQLYD  121 IPKSLGADVD YWHIHEEDNW YPRIDDLKAM VKPNTKMICL NNANNPTGTV LDKEFLEQVV  181 EIAKSVDAYV LVDEVYLPLD HPEKFAQIID LYDKGISTNS LSKTYSVPGV RIGWTATNAE  241 VADIFRKFRD YTMICGGVFN DQLATYVLRH RDQVLARNRK LVLGNLAIYK DWIDHEDRAS  301 VIMPQAVSTS FPKLDVPVDI HTFCENLLHD EGVLLVPGDA FDTPGHVRLG YCAPEATLKE  361 GLKRLSKYMH QYD  Colicin V production protein (natural).  SEQ ID NO: 6 1 MILTTFIILI LMGCFINGHR RGLLTMTLML GTYIVAWIVA RQGAQLIGGW LKSLLPSIGT  61 PATFSESLLA NVNSNLFFYN GIAFMIIFTI VSILCHWGIR QLNWIKRIPV VGTVDKIAGG  121 LISFLIGYLI IYVVLLIMQL FPAGWWQMQI ANSELARFMI NQTPGIAHLV IDTLVQGG  Agglutinin receptor precursor-1 (ARP-1) (natural)  SEQ ID NO: 7 1 MNEYNAEMAK LNQGANAPVI TTNSVNQALS LKPENNATVD IEALNPRITF KRVEEGTKYA  61  GYQIFDKNNA YVNNIDGEFL RVTYTNLKNS TYKGSKISKI VVTYSDSTPT GNRITQSGLN  121 AVTEGANDNF LVVFEDPVRG DMHSTTVTAT YQYYDANGNL IDFSGTNNAW LSVGSLNFDQ  181 GNDYQGGKNE GNPTSGISEG VKLISGAQIK QLAGSSISVH DDGWAYAGFN NYSGTGMNNG  241 INTDNGGSGW DMDGSPNAYY GAIVFQLTGS SVSLRQGLVS WGGADIASQY NNQFLNNAWF  301 TAGTTLPETQ IKQPIRKTSE THYHYNPSVI RL  Agglutinin receptor precursor-2 (ARP-2) (natural)  SEQ ID NO: 8 1 MAQKLMSANS TDKNFKMYKS KKSWVFAYST TLALAAVAGI TLSTTNVHAD TTNGGDNQVN  61 ATAVTQNTTS NTVDQIAANT AQTDNTSTSI NIRSLMDDLA SGDDTSSSQN GQEQSQNYAS  121   SNQNSQTQQE NGTTGQSTAS QNGTTSDQTN SDQSDKNYYV ISTRDLDKNG NVNYLTQKNY 181 TSIKGQEVAD GTVVTWPLSV SALPANRAQD LKSHVISETL DPHLEYLHYR AYLTNTDGTV  241 TDVTNHVNLN RSGQTLIFTD DNYLLSIYNN NRYRVQNLPV IKLVTKANGN GYIIPNAFKS  301 SYVFNDGSHD VSFTTTSNNV QIKTFNPGNS KDVEIGGNVQ GDPSGTINGQ VVADGSVVTW  361 PMSVGDLPAN RAQDVLSHIE TDTLYNGLNY EGYHAYLPQA DGSFQDVSSH INVQQNGQDL  421 TFIADDYLIG LYNQDKSTAF KMPIIDLITS VHGTSIIAPN KFNSQLAFKD GNGQTVINNT  481 SNQVQISTYH PTNTKDVELG GNVQGDTPNS INDKVVANGA IVTWPMASSE LPANRVQDLQ  541 SRVISETLDS HLQYQGYKAW LQNADGKYTD VTSHVKLTQD GQNLTFADDE YLLNLYNSNK  601 GTAYKLPIID LVTKVNGAGI TAPNSYTTKY VYSDGDGNTT INVTSNTVKI STFNPTTNKD  661 VELGDNIHGD TESSIAGKLV SEGTIVTWPL STSDLPANRA QDVVSHTAVD ALEPTLQYIS  721 YTAWLPDSNG QLQDVTSHVK MTRDGQKLTF TDDDYLIGLY NQNKDIALKM PIIDLVTKAT  781 GNTKLLPNSF DSQFVYNDVD GNTIINVSSN KPTVETFDPT VHKDVELGGN NVQGDTPNSI  841 DGKIVAQGTV VTWPMSTSDL PANRTQDVVS HSTSETLNQN LQYVGYHAYM PDANGKLQDV  901 TSHVQLQQNG QNLVFTDDSY LINLYNQDKS IAFKMPIIDL MTKAISDSAT IPNTFESQYV  961 FNDGNGNTTF KSTSNTVQII TYKPKTTKDV ELGDNIHGDT NASIAGQMIT DGTVVTWPMS  1021 TSDLPANRTQ DLQQHVVTDN LNDNLIFQGY TAWLPTANGL VDVTNHIELT RDGQNLTFTD  1081 DAYLLNLYNQ NKDTAYKLPI IDLVTKANGN TKLIPNNFDS MFVYNDGDQQ TTVNVTSNTV  1141 NISTYDPTAT KDVELGDDIE GDTADTINNL MVQIGTKMTY PLTVSDLPAN RADEITAHQS  1201 VDTLSDYLEY QGYKAYLPDA DGKLQDITEH VNLKREGQKL SFNDDDYLIN LYNNSKATKQ  1261 ALPVIDLVAK VTGSNDGKKV HIIPNHFDST ITTKDGKINT TSNTVVINSN DPEAVKDVEL  1321 GDNVVGDTPN SVTGTTVADG TIVTWPMSVG SLGANRAQNV IKHTETENLD SGLTYLSFKA  1381 YLPDADGKMQ DITEHINIQQ DGQKLVFTDD DYLISLYNKD KSQRFALPVI DLVTRVNGDN  1441 KIIPNTFVSQ FTFNDGKGNT ITSVTSNQVN VSTFKSNPEK HVTLGTDIEG DDAENADGTV  1501 VAQGSEVTWP LSDKSPLPAN RSQDVKSHTL VDKLDDNLQY NSYKAYLKGT DGKLQDVTDH  1561 IKLTRDGQNL TFIDDDYLLD LYNKDKSTAF NLPIIDLVTT VVGNDKLIPN KFDSNFVFSD  1621 GNKDTSMKTT SNEVSISTYT PVTNKDAELG DNVVGDTSDS IANETVPDGT IVTWPLSVSS  1681 LPANRSQDVF KHVIEDILDG NLTYNSFKAY LKDAAGNLQE VTDHVKLAQE GQHLTFTDDD  1741 YLINLYNSSK NKEQSLPIID LVTTVHGDSK LIPNEFDNVF VFKDGKGQTT VKTTSNKVTI  1801 KTASLPTPTK EETDDQGNNI NGNEVKAGEH VNYTLNWDLS NDKDVKATPE MIKKGFFFID  1861 PIDSRALSVD DLSKAKVVDQ NGNKVDGISF HLYNSLSEVP EFIQEQVKAN NLQDKITGPF  1921 VVAQADDLQA FFDKYVKTGA KLKVTIPTIV KSGFTGEFSN TAYQFGFGKA TPTNTVTNYV  1981 KPMHKPASPE TPAAIAPQVI SATAQPMTSD APVTPSEKTA KLPQTGNADE GALLGLAAVS  2041 LVGSLGLAAL GLKQNRNDD  Xylulose-5-phosphate phosphoketolase promoter (natural)  SEQ ID NO: 9 1 TTAAAGTATT AAAATAGATG TAAAATTTAT TTTTTTCAAA AGAAATTTTA ATTGTACACT  61 GTTGGTATTG AACGGGGTTA AACAAAGGTA AATTAGCATT TCTGCGGATT AAGATAAATA  121 GAAAAATGTT AAAGAACACC TTAAAAAGAT TAATTTTTTA TAATTGGACC GTATCAATTT  181 GTAAAAAGGT TGACTTTTTG AAAAAAAAGT TTATCATTAA CATTGTAAAT TTAATGATTT  241 ACGTTATGTT GTTATAGAGC ACAGGACGTA TTGATTTATA TAGAAGGAGT GTTTATTAGA  Elongation factor TU promoter (natural)  SEQ ID NO: 10 1 ATGAATGGAC AGATGTTTTA ATCGCTAGAA TAGAAGGAAA GAAAGTCGCA ACAAATACGG 61 TTTCTAGTAC GTGGCAGGAA CGACTAGGTA AGCAGATTGA CGAATTAATA GAAAAACATT  121 AGTCAAATAC ATTTACAAAT GAACAGATAG TTGATATTAT ATTTAAGAAT TCTTCTTCAG  181 AGCCTAAGAT TAAAGCTTTC AATTGGCGAA AAGAAGTTGT ACAATATGTA TAAAGGTATG  241 TCAGTCACCG AATCAGATGA TCTGGCATTA TACTTGTAAA TTATCAGGAG GTTTTCATTA Glyceraldehyde-3-phosphate dehydrogenase promoter (natural)  SEQ ID NO: 11 1 ATCTCACGTG CGATCCATTA CACTAAGGGC GCGTCAACAA ATATTATACT ATCTTAAATA  61 AGAATGAATT GCAAGCATTA TTTGAAAATT TTAATTAAAA TAACGCTTAC ATCAGAAAAA  121 TGTTGTGATT GAATAGACAA TTTTTTTGAA GATGGTATCA TAAGTATCGT AGGAGTTGTA  181 TTATTGCTTA GACCTTACCA CTGCGTCACT TACAATGGTT GAGAGTTGCG ATGCTGATGT  241 AATGTGATAA ACTAAGCAAG TACACTAATT ATGTTTTTTC CTAAAGGAGG AATTTGCAGT  Glucose-6-phosphate dehydrogenase promoter (natural)  SEQ ID NO: 12 1 TTGTTTAAGA TATCTTTCAA AGCTGCGGAA TTTTTCCCAG CTTTTTTAGT TAGTTTTGTT  61 TTCATAAGCT ATAATTTTAA CCGATTCCAA ATTTCTTTTA AAAGTTTTTT TGATCTAGAC  121 CATTAATTGA TAAACGCTTA CCAAAGACTA ATCAACAAGC CATTTAGCGG TAGTGGTCCA  181 TTTTAACTTT CTAAGACATC TTCTCAGAAA ACGTTTCCTT TGATAGTGCA GATTGTGCTT  241 TAAGAGTATA TAATTGTCAC GGTATAAGAA TTTTCTGAAA TTTCAGAAGG AGTGAACATT  L-lactate dehydrogenase promoter (natural)  SEQ ID NO: 13 1 CTCCTCTATT ATTATTCCTG ATCAATTTTA AATTAATCTC CCTAGATAGG TATATTTTAG  61 CACAGGTCAC CAACGTTCCA AAGTTTAATC TATGTTTAAA CTTTAATTTT CAAAAAAATG  121 CTATACTATG TTCACGATAC TTTAAGGAAA GGTGATTACA ATAGTGAGTC TCTTAATTGC  181 TATTCTTATC TGCTGGTTGC TATGGAAGAT TGGGGGTTTA ACGGTTAAGT TCATTGGTCT  241 AATCCTTCTT ATTCTATTAA TCGGGACATT AATTCATGTT TTACTTTGGC CAGCGATCCT  301 TTTAGCAGTT ATTATCTTAG GAGCAGGTTT ATTCACTAAC TAATTTATCT ATAAAATCTT  361 ATAGTAATTT TTCTGCGGAA TGTTATAATC ATTACTGTGA GAGAAATCTC AAATAATGTA  421 TACATAAGAT GAAAGGGAGA CTGTTTATT  tuf promoter (natural)  SEQ ID NO: 14 1 ACAAATACGG TTTCTAGTAC GTGGCAGGAA CGACTAGGTA AGCAGATTGA CGAATTAATA  61 GAAAAACATT AGTCAAATAC ATTTACAAAT GAACAGATAG TTGATATTAT ATTTAAGAAT  121 TCTTCTTCAG AGCCTAAGAT TAAAGCTTTC AATTGGCGAA AAGAAGTTGT ACAATATGTA  181 TAAAGGTATG TCAGTCACCG AATCAGATGA TCTGGCATTA TACTTGTAAA TTATCAGGAG  241 GTTTTCATTA  C protein alpha-antigen precursor (natural)  SEQ ID NO: 15 1 MVSKNNHQFY QQKHAERKQR WGIRKLSVGV ASVLLGTTFM LYGNHAVLAD TVTSPSDDVT  61 RSTTTQGGNK DKVTEGTTEG TTSTPQTSGD STDKQANGQN VNQQVPTTDT EEATNHQDTP  121 QGQDTTQNTT NVDKKDTEVT PANDATTPTT QKITAKFTTA KFTTAKFTAA KFKVLAARPV  181 MKVAGTASLP ISNQDIKLDS QPMLTEIINK PTDNWVYNNL KWYQDTSTEK IKEILQNHTA  241 NDESGRYYFA GVANYNEHYH AIYLLARSNN LNDNSLYVTI LHTGLGKNIQ EAVVAPGESK  301 KVEYSGTTHT PIFTNYDGTS ASIDLDGIEK GDNIYGMVVG FAYGHNTGIK GDPASMGNGF  361 VMTPIPTKMT TTIHYIDQAT GDEIAVPKSF EGVAYQKYTI TGEAPTIDGY TLKKSPETTG  421 YISPYKVGES YDFRLDKHVV IKQTVIDAQG LVRVTAYYDG EVLNNTTRYL GNKLNVNDRM  481 SFISHGKWYT YINQITSTND GIVYYYAKDG SEDKSEVRVH YIDVTGSKNS IFVPGDGEEV  541 ATDKISGKLG ENYNYDVNLP TDYNLATNQA NTVNGTYTID HHDEYVYVVK KTSAELDPTV  601 PAKTKVDNPT SLTADEKKTI EDKIVEANKD KFPEGTGVTV ANDGKATITY PDKSVDTIEG  661 NQLVEEKTSA EKLDPTVPAK TKVDNPTSLT ADEKKTIEDK IVEANKDKFP EGTGVTVAND  721 GKATITYPDK SVDTIEGNQL VEEKTSAEKL DPTVPAKTKV DNPTSLTADE KKTIEDKIVE  781 ANKDKFPEGT GVTVANDGKA TITYPDKSVD TIEGNQLVEE KTSAEKLDPT VPAKTKVDNP  841 TSLTADEKKT IEDKIVEANK DKFPEGTGVT VANDGKATIT YPDKSVDTIE GNQLVEEKTS  901 AEKLDPTVPA KTKVDNPTSL TADEKKTIED KIVEANKDKF PEGTGVTVAN DGKATITYPD  961 KSVDTIEGNQ LVEEKTSAEK LDPTVPAKTK VDNPTSLTAD EKKTIEDKIV EANKDKFPEG  1021 TGVTVANDGK ATITYPDKSV DTIEGNQLVE EKTSAEKLDP TVPAKTKVDN PTSLTADEKK  1081 TIEDKIVEAN KDKFPEGTGV TVANDGKATI TYPDKSVDTI EGNQLVEEKT SAEKLDPTVP  1141 AKTKVDNPTS LTADEKKTIE DKIVEANKDK FPEGTGVTVA NDGKATITYP DKSVDTIEGN  1201 QLVEEKTSAE KLDPTVPAKT KVDNPTSLTA DEKKTIEDKI VEANKDKFPE GTGVTVANDG  1261 KATITYPDKS VDTIEGNQLV EEKTSAEKLD PTVPAKTKVD NPTSLTADEK KTIEDKIVEA  1321 NKDKFPEGTG VTVANDGKAT ITYPDKSVDT IEGNQLVEEK TSAEKLDPTV PAKTKVDNPT  1381 SLTADEKKTI EDKIVEANKD KFPEGTGVTV ANDGKATITY PDKSVDTIEG NQLVEEKTSA  1441 EKLDPTVPAK TKVDNPTSLT ADEKKTIEDK IVEANKDKFP EGTGVTVAND GKATITYPDK  1501 SVDTIEGNQL VEEKTSAEKL DPTVPAKTKV DNPTSLTADE KKTIEDKIVE ANKDKFPEGT  1561 GVTVANDGKA TITYPDKSVD TIEGNQLVEE KTSAEKLDPT VPAKTKVDNP TSLTADEKKT  1621 IEDKIVEANK DKFPEGTGVT VANDGKATIT YPDKSVDTIE GNQLVEEKTS AEKLDPTVPA  1681 KTKVDNPTSL TADEKKTIED KIVEANKDKF PEGTGVTVAN DGKATITYPD KSVDTIEGNQ  1741 LVEEKTSAEK LDPTVPAKTK VDNPTSLTAD EKKTIEDKIV EANKDKFPEG TGVTVANDGK  1801 ATITYPDKSV DTIEGNQLVE EKTSAEKLDP TVPAKTKVDN PTSLTADEKK TIEDKIVEAN  1861 KDKFPEGTGV TVANDGKATI TYPDKSVDTI EGNQLVEEKT SAEKLDPTVP AKTKVDNPTS  1921 LTADEKKTIE DKIVEANKDK FPEGTGVTVA NDGKATITYP DKSVDTIEGN QLVEEKTSAE  1981 KLDPTVPAKT KVDNPTSLTA DEKKTIEDKI VEANKDKFPE GTGVTVANDG KATITYPDKS  2041 VDTIEGNQLV EEKTSAEKLD PTVPAKTKVD NPTSLTADEK KTIEDKIVEA NKDKFPEGTG  2101 VTVANDGKAT ITYPDKSVDT IEGNQLVEEK TSAEKLDPTV PAKTKVDNPT SLTADEKKTI  2161 EDKIVEANKD KFPEGTGVTV ANDGKATITY PDKSVDTIEG NQLVEEKTSA EKLDPTVPAK  2221 TKVDDPTKLT NDEKKEVEDN IRDHNTGLPE GTKIAVGDNG DTTITYPDKS VDTIEGNQLV  2281 EEKTSAEKLD PTVPAKTKVD DPTKLTNDEK KEVEDNIRDH NTGLPEGTKI AVGDNGDTTI  2341 TYPDNSVDTI PGDKVVEGKS DAAKNEPKVP GDKVKVDDPN KLTEDEKSEV VKAVEDANKD  2401 ENGKSTLPEG SKVTVGDNGD VTVTYPDGSK DTIPGDKVVE GKGTEGQTDA DKNEPKVPGD  2461 KVKVDDPNKL TEDEKSEVVK AVEDANKDEN GKSTLPEGSK VTVGDNGDVT VTYPDGSKDT  2521 IPGDKVVEGK GTEGQTDADK NEPKVPGDKV KVDDPNKLTE DEKSEVVKAV EDANKDENGK  2581 STLPEGSKVT VGDNGDVTVT YPDGSKDTIP GDKVVEGRGT EGQTDADKNE PKVPGDKVKV  2641 DDPTKLTEDE KSDVEQAIKD ANKDENGKST LPEGSKVTVG DNDDVTVTYP DGSKDTIPGD  2701 KVVEGKGTEG QTDADKNEPK VPGDKVKVDD PNKLMEDEKS DVEQAIKDAN KDENGKSTLP  2761 EGSKVTVSDN GDVTITYPDG SKDTIPGDQV IEGKSDADKN TPNVPGGDKV KVDDPTKLTD  2821 NEKNAVKDKV DEANSNLPDG TKVTVGDDGT TTITYPDGST NTISGHDLVT GKTDADKYPL  2881 NPGQAVNVVD PNHLTQAEQD QVKEAIQTTN PTAPIATITV DTAGNVQVTF ADGSTTTLQA  2941 NLHKHVTEAT TGSAIKPGVG TNGGQTKGAT STNQTATKQQ AQQHLPQTGD QPATWAMLSG  3001 LGVAFLGLLG LKKKRED  Arabinogalactan endo-1, 4-beta-galactosidase (natural)  SEQ ID NO: 16 1 MEIKKHFKLY KDGKKWCCAA IATTVLGIGL AIGSPSVLAD ADTITSTSDA NNSLVKNDNT  61 SDTDSNSEST FTDTNKNSTN EKEINENKNI DSSQQINQEQ TKSNNSEEQT TPVNVKAENT  121 DIKDSIPEKS TPNSFKEING STYYYGENGD LYRNQFYNNW GRTYYFQANG ARLDNGFYNN  181 WGRTYYFGSD GARWDNRFYN NWGRTYYFQN DGSRLDNSFY NNWGRTYYFG VDGARWDNRY  241 MVKWGRAYYF GNDGALLQNQ LKSINGINYW INNEGIIPLK NQFLTANENQ LFYFDGNGSL  301 VVNKFYHNWG HTYYFGSDGA RYTDQFLNRD GKVYYFDNQG IMYQDQYYKN WGHTYYFGSD  361 GARYTDQFLN RDGKVYYFDN QGIMYQDQYY KNWGHTYYFG SDGARYTDQF LNRDGKVYYF  421 DNQGIMYQDQ YYKNWGHTYY FGSDGARYTD QFLNRDGKVY YFDNQGIMVT NQVRVIDGKG  481 YEFNDNGEAT ETSDMGQTRD TVAKEVAQAL TNQGIKGVKY DWRNTNNDYQ ELALHDIAQE  541 VAQGDTNPDK NVIEKKLQAN NLLSGKVLVV YSTDFTNDDP QKITNTFMNS YDFTNADNSV  601 LGVGADLNKN KLVIILFKPG EKAEQPQATS TISASISDIF KKAGVNVDVD NGLTKGSVVN  661 SADLGNALTN GTAELLKGDK GTIISQEVLK AIFAAFAGNT SAVEGTKNYY NGNDAYHYEF  721 WLEGQSADDK LNNFLALNKG AKYGDQLKVN YTATLVFGQE TGTNSNESKV PASERTDEQL  781 DLAYKTGTDT GLRYDSVKVE KIPGMTDDMV RGVDVSSYQA LINAGVKFYD FNGQESNLFK  841 ILKDSGVNWV RLRVWNDPYN AQGQPYAGGD NNEENLIKMA KEASDNGLKL LIDFQYSDFW  901 TDPAQQILPK AWRNLSHGEM SQEVYLYTSK ILNDLQKAGA SVKMVQIGNE ITNGAFGLYT  961 GRNGGGNWAS LWETSDGDQV AKYIQAGSSA VRRIDPTIKV AIQLETPEIN KYRGIMNVLK  1021 KNNVDYDYLG TSYYPFWSTT QGNGWYDNVD LGYGANTPVN LEAIEKMAWN EFGKRTVILE  1081 SGWLNNTNDA DGTHNSVGEN NETTNIDRYS ADPQGQVDEI EDMYNAIIAQ KGLGAFYWEP  1141 AWIPVKAGWN NWQYNKLMSN IYGSGWASQY AKGYAPDSVL YYDGKEAWGG SSWDNISLFD  1201 DHGHPLQSLN VYNGMLNGYE SPKNVKSSLS TQLVKIWNET DVIPNDGLTE GTKLSTDLFG  1261 TTQLSGNDGQ SIGNAELTKL AGRLKDGISS KVYTAANGAR YHYIYWLEGG NNKVNTFVSA  1321   NKDAKYGQPL IANYSATVVV DSEPGTQVAT SPLQIKISQV WNTVNNEEIK IDNPLKQGDL 1381 ITDKSDNAFS GILNSKDIKE ALTGEKGKDV SESTVNDVKS LLPKEVKGSK TYTTADGNQY  1441 YYDFWLASVE TSNVNYGEPI IVNYTASLKW LG  Chromosome segregation protein (natural)  SEQ ID NO: 17 1 MEKTMKKKAL VATTAVAGIT LVGEVTTVHA ADNVQQPVNE QNVNQSSQEE KQAAQNLQNA  61 QSDVNTATEA NSNAQDNLAS ANNNLSNAKK AVSDQAAKVA DATKAQSDAS TKVDNDNKVV  121 ADAQQKADQA TPANIENAKQ AIEGQNKVID QDNENIKYSN TDQDKAQNTL NNAQSNEDKA  181 NATLSNKKSS QASAQNNVKQ AEDALNGTHL VEAQNAFNQA QSNVENAQSK YDQANNQLSD  241 AQKKVTTNQN DLTAKNKALD NINNQVDTDQ NNVNSNQATA DSASSATQVA QNAVDQTKQS  301 LDKVIEELNG FSENTIKVPA GAQEAYEAFI DAVDNNADQS QLDSLAKKMY DTLHQGQGTN  361 GINHFNSSKY DQNQLVDVDH LTTDQLNELT QFAADMINSA RKAWGSDKNA GTLIPTQGVS  421 EMAQQIAKGY VSDNWHISQG HDVKRVTAAA GLIGLNDAGQ FYEDASEGYV HAWPWEKDSY  481 TMDNLKEAVY DSILGMLFAD DNSGNGHMTD LLGLHVNRKE DHQYFGLSTN MCPGSYMGQL  541 HFIIVENDPA YIKDPQTFNA KGGTTKIEYI DPKVQLNQQK DILTTTLSTQ QADLATKQDA  601 LNKANQNLAN AKKQLSEDQD LQTVAQQNRD SAQKALNDAT AKVSNLQATV NSLSQDLNSA  661 KATLDQAKKT LESYTADHKA KLDNYNNAKA ALDDANKAVA EAQSAVDTAV NETKIAQNNL  721 DQKKQAVTDA QNKLANDQEY LATLKQNLAD LQNAPQNLQK AKDQLAKDQI ALDNANKDLQ  781 NQKDSLDELN KKLEDAQVKV NEAQSAANVT KATLDQAQAK LSDAEATWKE LHNDAHRYGN  841 VVKVTPITME AGTSLPDPVI ENGFTVNTGT NQLFVSLAAI DSSNNNIPQG TKASWANRSK  901 ALTDSQNAGS YSEDILITFP DNSTVTVPVD LTVTAKKITE DQKATEGGYH IVNGSVVDKQ  961 NNLVSGWTVK NGQMVDPEGN VIKTTMSTAQ GVTIEKNNSK SGNTKTNMIQ TSLTIANNKA  1021 TTNKDNQLPQ TGNYNNNTKV LGLAGIALAS ALTMFGYKKR QHN  D-gamma-glutamyl-meso-diaminopimelic acid endopeptidase Cwls (natural)  SEQ ID NO: 18 1 MKSTTKKILA SSLGVAGAMA MGTVTAKADT TVTVNAGDSL NGIAQKYNVS ADDIATANHL  61 QNKELIFVGQ KLTIPTKDKN ETPANNAEKK DQASKNSQSL QDSVNKAMSY LGTPYVWGGN  121 KPGGFDCSGL VQYCYGIPQR TTYEQQALGP HIHDNVLNAP YGALVFYGSD DAPYHVAISL  181 GDGRIIQAPN ENETVKITDQ QYFPGNYYVV MH  N-acetylmuramoyl-L-alanine amidase sle1 precursor (natural)  SEQ ID NO: 19 1 ATGCGTAATC AATTCATCGA TGTTTCAAGT TATCAACCAG ATACTGTTGC CTTTTTCCAA  61 GCTGCTAAAG CTCAGGGTGC ATTAGGGGTC GTTGTTAAGT TAACGGAAGG GTCCGAAGAT  121 GGTTCGGCTT ATGTTAATCC ACGTGCGGCC GCTCAAATTC GTAATGCCTT AGCGGTTGGC  181 TTGCGCGTTT CCTGTTACCA CTTTGCTCGT TATACATCAG TGACTGATGC ACAAAATGAA  241 GCTCGATTCT TCGTTAAAAT CGCTAAGCAA TTTGGTATGT ATGACGATAC TTTGATGATT  301 GATGATGCGG AAGTTCATTC AACTGCAGAT TATCAATCAG TATCCTTAGC CTTTCTTCAA  361 GAAGTAGAAG CTCTTGGTTA CAAGAATACT GGGATTTACT CCATGAAGTC CTTCTTCACT  421 GGCGGTATTC TTAATTCACA TGGCTTTGAT TCCCGGAAGA TTTGGATTGC TGGCTATGGT  481 GTGACTGAAC TGGGGATTGA TAATGCAAGT GCTTGGCAAT ATTCTGATCA TAGCATCATG  541 GGAATTGATA CTAGTTATGA CTTTGACGGT GCCTTTACGA CTGGTTTAGT ATCAGGCAAT  601 GTTCCGCAAG CTGTTATTCC AGCACCACAG CCGGTTCAAC ATATTGGTCA CCCAGCTACT  661 GGAACCTACA TTGTTCAGCC GGGCGATACA TTGAGTGGAA TTGCAGAAAA ATACGGGACT  721 ACTTATCAGA ACCTAGCAGC AATCAATGGT ATTGGTAATC CAAACCAGAT CAATGTCGGC  781 CAAGTCCTCA AAGTCACCGG AAAAGTATCA AACGAAAATA CTTACTTTGT TCAATCAGGC  841 GATACGTTAT CCGGAATTGC CACCAAATTC GGCACCACTG TCTCAGACCT CGTAAGCCGT  901 AATCACATTA CTAACCCGAA TGTGATCTAC GTTGGGCAAA AACTCTACTT AGCCGGCAAC  961 GGACAATCCA ATGCTTATAC TGTCCAAGCA GGGGACACAC TAAGCGGAAT TGCGGCTAAG  1021 TTTGGCAAGA CCTGGCAAGC ATTAGCTCAA AAGAATGGCA TCGCAAATCC TAATATGATT  1081 TTCATTGGTC AAACAATTCA GATTTAA  Peptidase family M23 (natural)  SEQ ID NO: 20 1 GTGTACCGAA TTATTGGTTA TAATGAACCA ACAGATAAAG CAGGATTTAT TGTACTGGAT  61 CCCCGAGTTA ATCGTCATAT TAGTTCGGGA AAACTCACGC TTAAAGAATC TAATATTGAT  121 GATTTGACTA TTACGGTTAA TCAAGCAAGT CCATTATGGG ACAACGTAAG GCCTTATCAT  181 ACTCATGTTA ACGTTTATGA TGATAATGAA CTTATTTTTC GTGGACGAGC TATCAAACCT  241 AAAAAGTCGA TGGAAGAAAG CGGACAATTC ATTCGTGAAT ATGTTTTTGA AGATATTGAA  301 GCATATCTCA TGGATAGCAC CCAAAGATTT TATGAAGGTG TTGGTCAAAC GCCCAAAGAA  361 TTTTTACAAA CTTTAATCGA TGTTCATAAT TCACAGGTTC CTGACTATAA AAAGTTTCAA  421 GTCCGGAATG TAAATGTCAC TAATAATAAG GATGACCAAT ATCGACAAAT TGATTATCCC  481 AAAACTAGCG ATGCTATTAA TGATAAATTA GTTAAATCTC TTGGTGGTTA TATTGTGACT  541 ACTTACAACG CTAACGGAAT AAACTACATT GACTACTTAA CGGATATTGG GGTTGATCAT  601 AAAGATGATA CTCCTATTCA GTTAGCTAAA AATATGAAGT CTGCAAGTAT GCAAATTGAT  661 CCTACTAAGG TGATTACAAG ACTGATTCCA CTGGGAAAGA CACTAGAACC ATCAAAAGTT  721 GATGTAAGTG ATGATGATGG AGAGGGCGGT TCTGGATCAT TAGATAGCCC TGAAGAATTT  781 TGTAAATCAG AAATTAATGC TACTTGGGGT AGTGATATTA ATAATATGAA ACAAGATTTT  841 GCCGCTCGTT CTTCGAGAGT TCGGGCTTGG GGAGTGGACG TTAATCGTTT ATATGATGTG  901 GTGAAAAATG CTGGAGTAAG TCCTGAATGG TTCTTTGCTT ATGAACTTCA AGAACAAGGA  961 ACTTACTATG GATGGCTTAA CCATACTTAT CGACACGGTG ATGCGTATAG TGATGCGCAA  1021 TCTGTTTGTG AGTGGATTAA AAATTGTTCA AATAGTAATT CCATTAATCC AGCATGGAGC  1081 GCACCGGAAG GATCAATGGC GCCGAATCAA GCATTAGCGG ATAAATGGAA TCAAGAGTTT  1141 GGAAAAGGTA CTATTGGCCG CGTTTATTTA CAAGGGACTG CCGCTGCTGT TTGGGATTTA  1201 GCTGGTCAAA CGCCTAATCC AGCTATTGGA AAGCCAATTA GTGGATGCAT TTCTTGTATT  1261 AAACGTTGGG GTGGTCATTC TAATGCAGCT GGTGGTACAT GGGGATGGCC TTTTCCTGAT  1321 GTTGGGGAAG GTCATTTTTC TCAAGTTCAG AGTTTCGGAA ATGATGGCGG ATATCGTCAA  1381 AATAGTTATC ACGATGGTGT GGATTTTGGA TCAATAGATC ATCCTGGTAG AGAAGTGCAT  1441 TGTATTCATG GTGGAACGGT AACTATCAAA TCAGCTATGG GTGGCTTAGG TAATTTTGTG  1501 GTTATTCATA CGCCGGAAGG ATTCAATATC GTTTATCAAG AAGCTTTTAG TTCTCCCTCT  1561 AATATTATTG TTAGTGTTGG GCAAAAAGTA AAAACTGGTG ATGTAATTGG ATATCGTGAT  1621 ACAGACCATG TTCATATTGG CGTAACTAAG CAAGATTTTT ATCAAGCAGT TCGAAATTCT  1681 TTTTCTCCTG CAGGTGGTTG GCTAGATCCA GTAAAACTAA TTAAAGAAGG TGGCGATGGG  1741 TCTAAACCAC AAGAAGGAAA GAAAGATCAA ACTGTTGATA ATAGTAATGC TGCACGTCCT  1801 AAATTAACCA TTACTACTGT CAATAACGGT AGAGACTATA TTGATATTCC TGATTTACAA  1861 AAAGAATTCG GTATTATTGA GGGAACTGTT GAATTTGATA ATGTAGATGA TCCGAATGTT  1921 TTAATGCAAC AAGCTCAAAC ATGGATAAAG GCTCAAAGAA TACCTCAAAG TTGGGAAGTT  1981 ACAGCTTTAG AATTACATAT GACAAACTTC AAATCTTTTA AGGTTGCTGA TAGGTACATG  2041 TTTATTAATC CAAATGTTGC AAAACCCCAA TTATTACGAA TTACTCAAAA AGAAATTGAT  2101 TTACTAAAGC CCCATGCGTC TTCATTAACG ATTGGTGATA AGACGATGGG GCTTACTGAT  2161 TATCAGTTAG AAAATCAAGT CAATTTTCAA CAATTTAAGG AAATTCGAGT GATGGTTAAT  2221 CAGGTTGTCC AAACCCAAGA GCAATCTGCT AATAACAATA ATAAGGTTAT GCAAAATTTT  2281 GCTAGTAGTG CTGATCTTGC ACAAATGAGA CAGGATCTAA GAAATCTTCA AGATGATAAC  2341 GATCGTGCTC GCAAAGGAAT GGTTTCCTTA GAAGAATTCA ATAAACTAAA GGAACAAGTA  2401 GAAAAACTAA CAACAGGAGG CGATGATAAT GGCAAGTGA  Chromosome Partition Protein Smc (natural)  SEQ ID NO: 21 1 MNKANQKVAD DTTAVNNKQT DVNNAAEAKK NADEALKNAN DAQTSAQKNK DAKQAIADEA  61 SVALADANTA VKDAQAKVDA INDKLANFNT ITLPAGYKDD LIAYYNYFGN SNYNQDEANN  121 LAQDLLKYRD QAMSQNKFKD NLSDDRVVDI DNLNSTDRAE LSQFVASLIN QVRTQMGTNL  181 VISSPAADDY AEQVSQNYNK DNWNSADNGK HDQSALNNAT DQLNISWNGE NMGLDQSIFT  241 TDYTVLTDGT KLPTGNKQTI NDLKHLIYDD FISMMFDDAD SAWGHATNFA GIDNFAAEKQ  301 AVGFSLDKFY NTHYDLVEAN QKVEENSYTL PSINALTQKL ADAKDDLSIK QTDQASKQKA  361 NDDAQNALSS ANQVLVAAQN DVKDKTATAQ EANDNLTTAQ NDLATLQNQL SADQANQKQA  421 QTTFDSFDAD LATKQANLQK ATDSLKAEQG RLAIAQADLD NANKALSDAN NNLAQKKQVV  481 ENDNETLKVD NDKLVQLQNN LSDLQNAPKL LAAAKEQVAT AQKALADAQE AYNVANDKLT  541 SLKQTAAGTT TNVSKAQQAL AEAKNNEDAA KEVLDQAQQA LTELRQKEAL AKQVAEEQAK  601 LAAEKEAKDN GYHIENNQVV DAKGNSVNGW TVKGNQIVSP TNATVDPAVS VTTNVNVDSK  661 GQVQPQTSVT ANSVKTVAAT ESANPVATTT VQTREQYKQQ LKSNNQLPQT GNNDSAVLSL  721 AGVALAAMLS LFGIKKREY  Cwls endopeptidase promoter (natural)  SEQ ID NO: 22 1 AAATTAAAAG GCTGGATTTT TTCGGCCTTT TTTTAGTGCA AATAATTATT TTTTACGTAT  61 TTATATTATA GGGCTAATCA CTAAACTAAT AATTAGTGGT TGAAGCGCTG AAAATTTTCT  121 GCTATTTTAT TAATAGTTTG ATAATAAAAT AATGATATTT AATATAAAGA GGGATAAACG  181 AAATA  chromosome segregation protein promoter (natural)  SEQ ID NO: 23 1 GAAGTACAAA GTTACTTTAA CTATAATGAA AAACAAGACA ATATAAAGAA AACAACATAT  61 AAGGTTCAGT TCATAACTGA TTAGATTTAT AATAAATATT GTAAATCGGA CAAAAATAAA  121 TTAATTTTCA ATTAATTCAA AAAAACCATA TTTTTTTCGT TTTGGCATAT TTGGATTTGC  181 TACACTAAAG ATGATCAAGA AAGGGGAAAA GATAATCTTC AATCTTGTGT ACTTAGTTTG  241 TTAATTAATT TATAAATTTA GGGAGGAAAC CTATC  Chromosome Partition Protein Smc promoter (natural)  SEQ ID NO: 24 1 GCAATGCACA AGATGCTGAA ACAAAGGCAC AACAAAATGC AGATCAAGCT TCACCAGCTA  61   ATATTCAAAA GGCACAAGAT GCTATTGCTA ATCAAGAAAC TCAAATTAGT AAAGACACCG 121 ATGCTATTAA TGACGCTAAC AAAGCCGTTA GCGATGCACA AAGCACAGTT GATGCAGCGC  181 AAAAAAAGTT AATGATGCAA CTACTGCTCG TGACAATCAA CAAAAGAATG TTGATACTGC  241 TAGTGATGCA GTTAAGAATG CTCAAGCTAT TCTTGACAAC AGTGATCAGG CTAAAAAGGA  301 AGCCCAAGAT GCT  Lactobacillus reuteri 3630 F1 16S  SEQ ID NO: 25 1 GCCGCGGGTG CCTATACATG CAGTCGTACG CACTGGCCCA ACTGATTGAT GGTGCTTGCA  61 CCTGATTGAC GATGGATCAC CAGTGAGTGG CGGACGGGTG AGTAACACGT AGGTAACCTG  121 CCCCGGAGCG GGGGATAACA TTTGGAAACA GATGCTAATA CCGCATAACA ACAAAAGCCA  181 CATGGCTTTT GTTTGAAAGA TGGCTTTGGC TATCACTCTG GGATGGACCT GCGGTGCATT  241 AGCTAGTTGG TAAGGTAACG GCTTACCAAG GCGATGATGC ATAGCCGAGT TGAGAGACTG  301 ATCGGCCACA ATGGAACTGA GACACGGTCC ATACTCCTAC GGGAGGCAGC AGTAGGGAAT  361 CTTCCACAAT GGGCGCAAGC CTGATGGAGC AACACCGCGT GAGTGAAGAA GGGTTTCGGC  421 TCGTAAAGCT CTGTTGTTGG AGAAGAACGT GCGTGAGAGT AACTGTTCAC GCAGTGACGG  481 TATCCAACCA GAAAGTCACG GCTAACTACG CCCCCCACCA GCCCCAA  Lactobacillus reuteri 3632 F1 16S  SEQ ID NO: 26 1 TGCTGGGGTT TGCCTATACA TGCAGTCGTA CGCACTGGCC CAACTGATTG ATGGTGCTTG  61 CACCTGATTG ACGATGGATC ACCAGTGAGT GGCGGACGGG TGAGTAACAC GTAGGTAACC  121 TGCCCCGGAG CGGGGGATAA CATTTGGAAA CAGATGCTAA TACCGCATAA CAACAAAAGC  181 CACATGGCTT TTGTTTGAAA GATGGCTTTG GCTATCACTC TGGGATGGAC CTGCGGTGCA  241 TTAGCTAGTT GGTAAGGTAA CGGCTTACCA AGGCGATGAT GCATAGCCGA GTTGAGAGAC  301 TGATCGGCCA CAATGGAACT GAGACACGGT CCATACTCCT ACGGGAGGCA GCAGTAGGGA  361 ATCTTCCACA ATGGGCGCAA GCCTGATGGA GCAACACCGC GTGAGTGAAG AAGGGTTTCG  421 GCTCGTAAAG CTCTGTTGTT GGAGAAGAAC GTGCGTGAGA GTAACTGTTC ACGCAGTGAC  481 GGTATCCAAC CAGAAAGTCA CGACTAACTA CGCCCCACAC CCCAGCCGCA A  Lactobacillus reuteri 3630_00184  SEQ ID NO: 27 1 ATGGATATGA AAATAAAAAA AGAACCACCA CAACAAGTAA AATTAGTTGA AGTAATTCAG  61 GTTATAACCT CTCGTGGAGC TGGAACAAAG GAGGATCCGA TAAGAAAGAT TATTCAGTAT  121 TGGAGCAAAG AAGGCACATT ATTAGCAGAA AGTTTTGGAA ACTAA  Lactobacillus reuteri 3630_00491  SEQ ID NO: 28 1 ATGGCTGGTA TCAAAAGTAT CGCAAAAGCG GTAATGACCC AGAATCACTT CGTGATCGCC  61 GAGGCAAAGC TAAGCCAGAA GAGAAGTGGA CGGAAGTTGA CCGACTCAAG GCAGAAAATC  121 GCTTATTAA  Lactobacillus reuteri 3630_00497  SEQ ID NO: 29 1 ATGGCTAAAT ACACTGTTGA ATTAAGTGAA GAAGATATCC AAATGATCAA GGATTGTCAT  61 TCAAAGAATC CTTCTATCAT GAAGGCAATG AACGACGCTA AAAAAGTTGA AGATTAA  Lactobacillusreuteri 3630_00533  SEQ ID NO: 30 1 GTGGATGCGG ATTCGCTGGC ACTCGTTGAT GCACTTTCAC TTGCGCTCGT TGATGCCGAT  61 TCACTGGCAC TCGTTGATGC ACTTTCGCTA GCACTAGTAG AAGCTGACTC ACTTGCACTT  121 GTCGATGCCG ATTCGCTTGC ACTTGTCGAT GCTGATTCGC TTGCGCTCGT TGAGGCTGAT  181 TCGCTAGCAC TAGTAGAAGC TGATTCACTG GCACTCGTTG AGGCACTTTC ACTTGCGCTT  241 GTTGAAGCCG ACTCACTTGC GCTCGTTGAT GCACTTTCGC TGGCACTTGT CGATGCCGAT  301 TCACTTACGC TCGTTGAGGC CGATTCGCTG ACACTCGTTG ATGCACTTTC ACTTACGCTC  361 GTTGAGGCCG ATTCGCTGAC ACTCGTTGAT GCACTTTCAC TTACGCTCGT TGAGGCCGAT  421 TCGCTGACAC TCGTTGATGC ACTTTCGCTG GCACTTGTCG AGGCACTTTC ACTTACGCTC  481 GTTGAGGCCG ATTCACTTAC GCTCGTTGAG GCCGATTCAC TTGCGCTTGT GGATGCGGAC  541 TCACTTGCAC TCGTTGAGGC ACTTTCACTT GCACTTGTCG ATGCAGATTC GCTGGCACTC  601 GTTGATGCAC TTTCACTTGC ACTCGTTGAT GCACTTTCAC TTGCACTTGT CGATGCGGAT  661 TCACTTGCAC TTGTTGAAGC GGATTCGCTA GCACTTGTCG ATGCGGATTC ACTTGCGCTT  721 GTTGAAGCGG ATTCGCTGGC GCTTGTTGAA GCCGACTCAC TTGCACTCGT TGAGGCTGAT  781 TCACTTGCAC TCGTTGAGGC ACTTTCGCTG GCGCTCGTTG ATGCAGATTC GCTGGCACTC  841 GTTGAGGCCG ATTCGCTGGC GCTTGTTGAG GCCGATTCGC TTGCACTTGT CGATGCTGAT  901 TCACTTGCAC TGGTTGAAGC AGATTCGCTG GCACTCGTTG AGGCACTTTC GCTGGCACTC  961 GTTGAGGCCG ATTCACTTGC GCTTGTTGAA GCTGATTCAC TTGCACTTGT CGATGCTGAT  1021 TCACTTGCGC TAGTAGATGC CGATTCGCTG GCACTCGTTG AAGCAGATTC ACTTGCGCTT  1081 GTTGAAGCCG ATTCACTTGC GCTTGTTGAA GCCGACTCAC TTGCACTCGT TGAGGCACTT  1141 TCGCTGGCGC TCGTTGAAGC AGATTCGCTG GCACTCGTTG AAGCAGATTC GCTGGCGCTT  1201 GTTGAGGCCG ATTCGCTTGC ACTTGTCGAT GCTGATTCAC TTGCACTGGT TGAAGCAGAT  1261 TCGCTGGCAC TCGTTGAGGC ACTTTCGCTG GCACTCGTTG AGGCCGATTC ACTTGCGCTT  1321 GTTGAAGCTG ATTCACTTGC ACTTGTCGAT GCTGATTCAC TTGCGCTAGT AGATGCCGAT  1381 TCGCTGGCAC TAGTAGAAGC AGATTCACTT GCGCTTGTTG AAGCCGATTC ACTTGCGCTT  1441 GTTGAAGCCG ACTCACTTGC ACTCGTTGAT GCCGATTCAC TTGCACTTGT GGATGCGGAC  1501 TCACTTGCAC TCGTTGATGC ACTTTCACTT GCACTTGTGG ATGCGGATTC GCTGGCACTC  1561 GTTGATGCAC TTTCACTTGC GCTCGTTGAT GCCGATTCAC TGGCACTCGT TGATGCACTT  1621 TCGCTAGCAC TAGTAGAAGC TGACTCACTT GCACTTGTCG ATGCCGATTC GCTTGCACTT  1681 GTCGATGCTG ATTCGCTTGC GCTCGTTGAG GCTGATTCGC TAGCACTAGT AGAAGCTGAT  1741 TCACTGGCAC TCGTTGAGGC ACTTTCACTT GCGCTTGTTG AAGCCGACTC ACTTGCGCTC  1801 GTTGATGCCG ATTCACTGGC ACTCGTTGAG GCACTTTCAC TTGCGCTTGT TGAAGCCGAC  1861 TCACTTGCGC TCGTTGATGC ACTTTCGCTG GCACTTGTCG ATGCCGATTC ACTTGCGCTT  1921 GTGGATGCGG ACTCACTTGC ACTCGTTGAA GCCGATTGGC TTGCACTAGT AGAAGCTGAT  1981 TCACTGGCGC TCGTTGAGGC TGATTCGCTG GCGCTCGTTG AGGCTGATTC ACTGGCACTC  2041 GTTGAGGCCG ATTCGCTGGC GCTCGTTGAT GCAGATTCGC TGGCACTAGT AGAAGCTGAT  2101 TCACTGGCGC TCGTTGATGC CGATTCACTT GCACTTGTCG ATGCGGACTC ACTTGCACTC  2161 GTTGATGCAC TTTCGCTTGC ACTTGTGGAT GCGGATTCGC TGGCACTCGT TGATGCACTT  2221 TCGCTAGCAC TTGTCGATGC CGATTCACTT GCACTCGTTG ATGCACTTTC GCTAGCACTC  2281 GTTGATGCAC TTTCACTTGC ACTTGTGGAT GCGGATTCGC TGGCACTTGT TGATGCGGAC  2341 TCACTTGCAC TTGTTGAAGC CGATTCACTG GCGCTCGTTG ATGCCGATTC ACTTGCACTT  2401 GTCGATGCCG ATTCACTGGC GCTTGTTGAT GCGGACTCAC TTGCACTCGT TGATGCACTT  2461 TCACTTGCAC TTGTGGATGC GGATTCGCTG GCACTAGTAG AAGCTGACTC ACTTGCACTT  2521 GTCGATGCCG ATTCACTGGC ACTCGTTGAA GCACTTTCAC TTGCGCTTGT TGATGCGGAC  2581 TCACTTGCAC TCGTTGAAGC CGATTCGCTA GCACTTGTCG AAGCTGATTC ACTGGCGCTC  2641 GTTGATGCTG ATTCACTGGC GCTTGTTGAA GCCGACTCAC TTGCGCTCGT TGATGCACTT  2701 TCACTTGCGC TCGTTGATGC CGATTCACTA GCACTAGTAG AAGCTGATTC ACTGGCGCTT  2761 GTTGATGCAG ATTCGCTGGC ACTTGTCGAT GCCGATTCGC TAGCACTAGT AGAAGCTGAT  2821 TCACTGGCGC TTGTTGATGC AGATTCGCTG GCACTTGTCG ATGCCGATTC GCTAGCACTA  2881 GTAGAAGCTG ATTCACTTGC ACTTGTCGAT GCCGATTCAC TGGCGCTCGT TGATGCCGAT  2941 TCGCTGGCAC TAGTAGAAGC TGACTCACTT GCACTTGTCG ATGCCGATTC ACTGGCACTC  3001 GTTGATGCAC TTTCGCTAGC ACTTGTAGAT GCGGATTCAC TTGCACTCGT TGATGCACTT  3061 TCACTGGCAC TCGTTGATGC ACTTTCGCTA GCACTCGTTG AAGCACTTTC ACTTGCGCTT  3121 GTTGATGCGG ATTCGCTGGC ACTCGTTGAT GCACTTTCAC TTGCGCTCGT TGATGCCGAT  3181 TCACTTGCGC TTGTGGATGC GGACTCACTT GCACTCGTTG ATGCACTTTC GCTTGCACTT  3241 GTGGATGCGG ATTCGCTGGC ACTAGTAGAA GCAGATTCAC TTGCGCTCGT TGATGCCGAT  3301 TCACTTGCGC TTGTGGATGC GGACTCACTT GCACTCGTTG ATGCACTTTC ACTTGCACTT  3361 GTGGATGCGG ATTCGCTGGC ACTAGTAGAA GCTGACTCAC TTGCACTCGT TGAAGCACTT  3421 TCACTTGCGC TTGTGGATGC GGACTCACTT GCACTTGTCG ATGCTGATTC GCTAGCACTA  3481 GTAGAAGCTG ATTCACTTGC ACTCGTTGAT GCACTTTCAC TTGCGCTTGT TGAAGCCGAC  3541 TCACTTGCGC TCGTTGATGC CGATTCACTT GCACTCGTTG AGGCACTTTC ACTTGCGCTT  3601 GTTGAAGCCG ACTCACTTGC GCTCGTTGAT GCACTTTCGC TGGCACTTGT CGATGCCGAT  3661 TCGCTGGCAC TAGTAGATGC GGACTCACTT GCGCTCGTTG AAGCCGATTG GCTTGCACTA  3721 GTAGAAGCTG ATTCACTGGC GCTCGTTGAG GCTGATTCAC TGGTACTCGT TGATGCACTT  3781 TCGCTAGCAC TCGTTGAAGC ACTTTCACTT GCGCTTGTGG ATGCGGACTC ACTTGCACTA  3841 GTAGAAGCAG ATTCACTTGC GCTCGTTGAT GCCGATTCAC TTGCACTTGT CGATGCCGAT  3901 TCACTTGCGC TTGTGGATGC GGACTCACTT GCACTCGTTG ATGCACTTTC GCTTGCACTT  3961 GTGGATGCGG ATTCGCTGGC ACTAGTAGAA GCAGATTCAC TGGCGCTCGT TGATGCCGAT  4021 TCACTTGCAC TTGTCGATGC CGATTCACTT GCACTCGTTG ATGCACTTTC ACTGGCACTC  4081 GTTGATGCAC TTTCGCTAGC ACTCGTTGAA GCACTTTCAC TTGCGCTTGT TGATGCGGAC  4141 TCACTTGCAC TTGTTGAAGC CGATTCACTG GCGCTCGTTG ATGCACTTTC ACTTGTGCTT  4201 GTTGAAGCCG ACTCACTTGC GCTCGTTGAT GCACTTTCAC TTGCGCTCGT TGATGCCGAT  4261 TCACTAGCAC TAGTAGAAGC TGATTCACTG GCGCTTGTTG ATGCCGATTC GCTGGCACTT  4321 GTCGATGCCG ATTCGCTAGC ACTAGTAGAA GCTGATTCAC TGGCACTTGT CGATGCCGAT  4381 TCACTGGCGC TCGTTGATGC CGATTCGCTG GCACTAGTAG AAGCTGACTC ACTTGCACTT  4441 GTCGATGCCG ATTCACTGGC ACTCGTTGAT GCACTTTCGC TAGCACTCGT TGATGCACTT  4501 TCGCTAGCAC TCGTTGATGC ACTTTCACTT GCGCTCGTTG ATGCAGATTC GCTAGCACTA  4561 GTAGAAGCTG ACTCACTTGC ACTTGTCGAT GCCGATTCAC TGGCACTCGT TGATGCACTT  4621 TCGCTAGCAC TCGTTGATGC ACTTTCACTT GCGCTTGTTG AAGCCGACTC ACTTGCGCTC  4681 GTTGATGCAG ATTCGCTAGC ACTAGTAGAA GCAGATTCAC TTGCGCTCGT TGATGCCGAT  4741 TCACTTGCGC TTGTGGATGC GGACTCACTT GCACTCGTTG ATGCACTTTC ACTTGCACTT  4801 GTGGATGCGG ATTCGCTGGC ACTAGTAGAA GCTGACTCAC TTGCACTCGT TGAAGCACTT  4861 TCACTTGCGC TTGTGGATGC GGACTCACTT GCACTTGTCG ATGCTGATTC GCTAGCACTA  4921 GTAGAAGCTG ATTCACTTGC ACTCGTTGAT GCACTTTCAC TTGCGCTTGT TGAAGCCGAC  4981 TCACTTGCGC TCGTTGATGC CGATTCACTT GCACTCGTTG AGGCACTTTC ACTTGCGCTT  5041 GTTGAAGCCG ACTCACTTGC GCTCGTTGAT GCACTTTCGC TGGCACTTGT CGATGCCGAT  5101 TCGCTGGCAC TAGTAGATGC GGACTCACTT GCGCTCGTTG AAGCCGATTG GCTTGCACTA  5161 GTAGAAGCTG ATTCACTGGC GCTCGTTGAG GCTGATTCAC TGGTACTCGT TGATGCACTT  5221 TCGCTAGCAC TCGTTGAAGC ACTTTCACTT GCGCTTGTGG ATGCGGACTC ACTTGCACTA  5281 GTAGAAGCAG ATTCACTTGC GCTCGTTGAT GCCGATTCAC TTGCACTTGT CGATGCCGAT  5341 TCACTTGCGC TTGTGGATGC GGACTCACTT GCACTCGTTG ATGCACTTTC GCTTGCACTT  5401 GTGGATGCGG ATTCGCTGGC ACTAGTAGAA GCAGATTCAC TTGCGCTCGT TGATGCCGAT  5461 TCACTTGCAC TTGTCGATGC CGATTCACTT GCACTTGTTG AAGCAGATTC ACTTGCGCTC  5521 GTTGAGGCCG ATTCGCTGGC ACTCGTTGAT GCCGATTCGC TAGCACTAGT AGAAGCTGAT  5581 TCACTTGCGC TCGTTGATGC CGATTCACTT GCACTTGTCG ATGCCGATTC ACTGGCGCTT  5641 GTGGATGCGG ACTCACTTGC ACTCGTTGAT GCACTTTCAC TTGCACTTGT GGATGCGGAT  5701 TCGCTGGCAC TTGTCGATGC CGATTCACTG GCGCTTGTTG ATGCGGACTC ACTTGCACTC  5761 GTTGATGCAC TTTCACTTGC ACTTGTGGAT GCGGATTCGC TGGCACTAGT AGAAGCTGAC  5821 TCACTTGCAC TTGTTGAAGC CGATTCACTG GCGCTCGTTG ATGCACTTTC ACTTGTGCTT  5881 GTTGAAGCCG ACTCACTTGC GCTCGTTGAT GCACTTTCAC TTGCGCTCGT TGATGCCGAT  5941 TCACTAGCAC TAGTAGAAGC TGATTCACTG GCGCTTGTTG ATGCAGATTC GCTGGCACTT  6001 GTCGATGCCG ATTCGCTAGC ACTAGTAGAA GCTGATTCAC TTGCGCTCGT TGATGCCGAT  6061 TCGCTAGCAC TTGTCGAAGC TGATTCACTG GCACTCGTTG ATGCACTTTC ACTTGCACTC  6121 GTTGATGCCG ATTCGCTAGC ACTTGTCGAA GCTGATTCAC TTGCGCTCGT TGATGCTGAT  6181 TCACTGGCGC TTGTTGAAGC CGACTCACTT GCGCTCGTTG ATGCACTTTC ACTTGCGCTC  6241 GTTGATGCCG ATTCACTAGC ACTAGTAGAA GCTGATTCAC TGGCGCTTGT CGATGCCGAT  6301 TCGCTAGCAC TTGTCGAAGC TGATTCACTT GCACTCGTTG ATGCTGATTC ACTTGCACTT  6361  GTCGATGCTG ATTCACTTGC GCTCGTTGAT GCTGATTCGC TGGCACTTGT CGATGCCGAT  6421 TCACTTGCGC TTGTTGAAGC TGATTCACTT GCGCTTGTTG ATGCGGATTC GCTTGCACTC  6481 GTTGATGCAC TTTCACTTGC GCTCGTTGAT GCCGATTCGC TGGCGCTCGT TGATGCACTT  6541 TCACTTACGC TCGTTGATGC ACTTTCACTT ACGCTCGTTG ATGCACTTTC ACTTACGCTC  6601 GTTGATGCAC TTTCACTTAC GCTCGTTGAT GCACTTTCAC TTACGCTTTT TGATGCCGAT  6661  TCGCTGGCAC TCCTCGTTGA AGCGGATTCG CTGGCACTCC TCGTTGAAGC GGATTCACTT  6721 ACGCTCGTTG ATGCGCTAGT CGAAGTACTC GTCGAGGTGG ATTCCTGTTC ACTCTTACTC  6781 GTCAATTGA  Lactobacillus reuteri 3630_00804  SEQ ID NO: 31 1 ATGGAGATAT TGGTAACGTT ATTTGATTTG GTGTTTTTTA TTACGTTTAT AGTCGCAATT  61  GTCTATGGTA TTAGGTGGTT TAAAGGAAGA AAAGATAAAG AAAATGAATC TCTTAAGAAA  121 CGCCGTTTGT AA  Lactobacillus reuteri 3630_00827  SEQ ID NO: 32 1 ATGATTAACT TAAACTTAGC AGGCTTAGAT TTTGTAATGA CGGCACTTTT TATTGTGTTG  61 TTTACAGAAC AGTTGAAAAA TGCCCGAACT CAGCGTGATG CTCTGATTGG TTTAGCATTT  121 GCAATTATTT GTTTACTATT TTGCAACAAG AATGTTTTTC TATTAGTGAC ATTAGTAACA  181 CTTGTCGCAC TGTTTTCATT AAATTACTTA ATCACGAGGA GAAAAAATGA CATTAACTGA  Lactobacillus reuteri 3630_00947  SEQ ID NO: 33 1 ATGTCAGAGA TGAAAAATCG CGTAATTAAT TTTCGGAATG ATAACTTAGC CAAACTTATA  61 GTCAATTATT ATGGAAATAG TCAATTAAGT GTGCATATTA CTAATAATAT GTTTTTTGAA  121 TGA  Lactobacillus reuteri 3630_01261  SEQ ID NO: 34 1 ATGAAACGCA AAATTGCATT AGCTCAACTT GATATTCAAT TAGGAAATCC TGCCGAAAAT  61 TATCAAAAAG CTAAACAAGC GATTGAAGAA GCTGCTAGTC ACCATGCAGA TATCGTTGTC  121 TTGCCGGAGA TGTGGAATGC TGGCTATGCC TTAGATCAAT TAGCAGAATT GGCAGATGAA  181 AACGGTCAAA AGACACAAAA ATTTCTTAGT GAGTTAGCGT TAGAAAATCA AATTAACATT  241 GTCGGTGGTT CAGTAGCGGT GAGATGTGGA CAATCTTTTT TCAATACAAC CTATGTTTAT  301 GATCAAAAGG GAAATCTAAT TAGCAGTTAC GAGAAGGTGC ATTTATTTGG ACTAATGAAT  361 GAAGACCGAT ATCTAAAAGC CGGGCAAAAA GAAAATCACT TTGAATTAGC TGGGGTTCCG  421 AGTGCAAGTT TTATTTGTTA TGATTTGCGA TTCCCTGAAT GGATTAGAAC AGTCACTCGT  481 TATGGAACTG ATATCTTATA TTTTTCGGCA GAATGGCCAA GCAAACGGAT TAAACAATGG  541 AAAATAATGC TTCAGTCACG GGCAATTGAA AATCAAGCCT TTGTAGTCGC GGTCAATCGT  601 GTTGGGACGG ATTTAGAGAA TAGCTTTAAT GGTCATTCGT TAGTAATAGA TCCGCTTGGG  661 CAGATTATCC ATGATGCAGG AGAAGTTGAA CAAGTAAGTT ATGCAGAAAT TGACTTAGCG  721 CAGTTAGCAC AGGTTCGGGG GCCGATTCCG GTGTTTAAGG ATCGCCGACC AAGTCTTTAT  781 CATTAA  Lactobacillus reuteri 3630_01695  SEQ ID NO: 35 1 ATGCAAAATA AAGATGCTTG TACATCAATT ATGGTCGGTA AAAAGGCTTC TCTCGACGGT  61 GCTAATTATA TTGCTCGTAA TGAAGATCGC GTAAAAGCAA TTGAACCCAA GCGATTTTTA  121 GTAAAACCGG CAGTAAAAGG ACGCCACGAA ACCTACGTAT CACCTTACAA TAAAGTAACT  181 GTAGCTTTGC CGGAAGAGAG AATGCGTTAT ACTTCTACGC CTACCCTTGA TCAAACAGCC  241 GGACCTAATG AAGAAGATGG AATTAATGAA GCAAATGTGG CAGCTTCCTT TACTGAGAGT  301 GTTTATGCAA ATGATCGGGT GTTAGCATAT GATCCATACG TAAAAAATGG CCTGGCAGAA  361 GACTCACTTT GTACTTTAGT ATTACCGTAT ATTCATTCTG CCCGTGAAGG AGTTGAATAT  421 ACTGGAAAAT TAATTGCTGA ATTGGGCTCT GCTGAGGGAA ATGGAATGCA ATTTGCAGAT  481 GCAGATGATA TTTGGTATAT GTAA  Lactobacillus reuteri 3630_01889  SEQ ID NO: 36 1 ATGAATTATT TTATCGGTGT TGATGTTGGA ACTACTTCTA CAAAGGCAGT TCTATATGAC  61 CAAAATGCAA CTGTGTTAGA TCAATTTAGC CAAGGTTATT CCCTTTACCG CGATGCTAGT  121 GGAATGGCTG AACAAAACCC AACTGCAATT GTCGAAGCAG TCGAAAAAGT TATTCATGAT  181 GCAGCACAAA AAGCAGATTT AACAAATGGA AAATTGTTAG CGGTATCATT TTCTAGTGCT  241 AACCAAAGTG TGATTATGCT CGACAAGAAT TTCAATCCCC TTTCACGGGT CATCACTTGG  301 GCTGATACCC GTGCACGTGA TGTCGCCAAC GAATTAAAGA ATAGTCCTGC TGGTCAGCAA  361 ATCTATGCTA AAACAGGTAC ACCTATTCAT CCAATGTCCC CATTGACCAA GATTATGTGG  421 CTCAATAAGA CACAAGCAGA TAAGGTTGCT CAAACTGCAT ATTTTGGCGA TATCAAATCC  481 TACCTCTTCC ACCAGTTTTT CAATACATTT AAGGTTGATG TTTCCATCGC TTCATGTACC  541 GGAATGATGA ATGTCAATAC GTGTGACTGG GACGATCAAG CATTGGAACT CGCTAACGTC  601 GACTGTTCCC AATTACCAGA AATCGTGAAC GGAACAACCC AAGCGATTGG CCTAACAGCA  661 GCGGCGCAAG CAAAAATGGG TATCCCCGCT GACACGCCAT TTGTCTATGG TGCCTTTGAC  721 GGTGCTTTAT CTAATTTAGG TGTGGGGGCA ATTAAGCAAA ATACTGTTGC CATTACGATT  781 GGAACTTCGG CTGGTGTTCG GGTAGTAACT GACCATCCAG TGATCGATCC TCAGCAACGA  841 CTCTTCTGTT ACGCCGTGGA TAAAGGTTTA TGGGTCATCG GCGGTCCGCT TAATAATGGT  901 GGCGATGTCT ATCAGTGGGC CGTTGAACAC TTAGTTGACG CTAGTGCAGT TAAAAATGAA  961 AATATTGATC CCTACACTCT TGCTAACCGA GTTATTGAAG GTGTTCCCGC CGGAGCTCAC  1021 GGTTTGCTCT TCCACCCATT CCTTGGCGGT GAACGGGCAC CATTATGGGA CGCTAATGCG  1081 CGCGGTAGTT TCTTTGGACT TTCCCACATT CATACTCGTG CCGATATGCT GCGCTCAGTA  1141 ATGGAAGGAA TTTGTATGAA TATTGCAACT GTTTTCCAAG CGGTTCGTGA TCTTGTTGGT  1201 AATCCTGCAA GCGTAACTGC AACTGGCGGT TTTGCGCGAG CTGAAGTTTG GCGGCAAATG  1261 TTAGCAGATG TCTTGAACTG TCCGGTCAAT ATCCCGAACT CATTTGAATC TGGTTGTCTC  1321 GGTGCAATCA CCATGGCAAT GAAGAGTTTA GGAATGATTG AAAACTATGA AATCATTAAA  1381 ACATTAGTTG GTGATATCAG TTCTTATCAG CCAAATCAAG ATGCGGTTAA TGTTTATCAA  1441 AATTACTTAC CACTTTTTAA GCAGGTCGAA GGATTATTAA CACCAGCCTA TTCGACCATC  1501 GCTAAATTAC AACAACAATC TACTACTCAT TAG  Lactobacillus reuteri 3630_01932  SEQ ID NO: 37 1 ATGACAACAT CAATGATCCA CAGTAGAAGT ATGTTGGCGA AAGTGATTGC AGAATCACCT  61 TCACCTTTTA TTATACCAAT TTTTTGTCCT AATGTAATAA AGATTATCTT TTTATCTATA  121 AATTATTTTA TGAAAAGAGT GGAAAAGGCA AGAAGAGCAA TCAAAAAGCC AATTTTAACA  181 ATTTTATTAA GTTGA  Lactobacillus reuteri 3630_02243  SEQ ID NO: 38 1 ATGAGCAAAC TATTACTTGA TGAAAGACCG TTACAAGTTC AGGCATCGTT AGCTGGAGCG  61 TTGAAAAGCT TAGACGAAGC TGTTATTCTC CAGCAGCTTC ACTATTGGCT TCAACGTTCT  121 AATACAGTAA GAGACAATCA CAAATGGGTC TATAACAGCA TGGCTGATTG GAATAAACAG  181 TTCCCTTGGC TTTCTAGAAA GGCTCTATCG AACCACTTTA AGAAATTAGA AAAACGAGGA  241 CTAATTATTA CAGGCAACTA TAATAAATTA TCTTTTGACA AAACAAAGTG GTATCGAATT  301 GACTATGACG CATTTTCCCA TTTGGAACAA CGATTGGGTA GAAACTACCC AACGAATGGG  361 AAGAATCTAC CCAATGGAGA CGGTAAAAAC TGCCCAATCG GAGAGGAAGA ATCTACCCAA  421 CCAATACCAA TAGACTACCA AGAGACTACA CAAAAGACTA CTACAAGAGA TAAAGGGCAG  481 GCACAGCCAG CCCAACCTTC CATTGCTGCA CAGCGGCGAG AAGTTGTTGA ATATCTCAAT  541 CAAAAAAACT GGCAAGCACT TCAAGCCTGA  Lactobacillus reuteri 3630_02365  SEQ ID NO: 39 1 TTGAATAATT TTCAAAAGGC AATTTTCTTG TTGCAGAATA TCGACAAGCT TAAACAGCTT  61 AATGGTAAAG CGATGACTCT TACTGAGTTC TCTAAAATAA CTGATGTTTC ACGGCCAACG  121 TTGTATAAAT ACATTCAGCA TCCAGAAACA ATGAGTAGTT CGTTTGTAAA TAAAGCGGCC  181 ATGCTCTACG ACAAGGTTGT TAAATTTCAA GATATTCTTG ATACAGTTCA GCGTGAAGAT  241 AAACAATTTA AGACTACCAG GCAGGAATTG ATTAAGCTTT TAGAGTCTAA TGTAGCTAAT  301 ATTGAAGTTA CAGATTATAC AAAAGCAATC GCGACAGTAA TTATTAGTGA CTTAAAAGAA  361 GAAAATTCAA GTCTGCTAAA AGCGTTAAGT AAGCAATTAC CATTTAAACC AAATTTAAAT  421 GATAATTTGT CAAAATAG  Lactobacillus reuteri 3630_02435  SEQ ID NO: 40 1 GTGAAGATGA ATAGTATGAC AAACAACCAA AAAGAAAGTT GGAACGTTGG CAACTATAAA  61 ATCAATGTAT TACCAGATGA TGAGTTCCAG CAATTGTTAA AGAACCAACG CCAACTTCAA  121 CAGATCATTG AAAGTATGCC ACTACCAACC GACCCCAATG TTGATCTAGT TAAAAAGATT  181 CATTCCCAAC TCCCTATTAC AAACTGGGCT TGGGAATTAA CTAAACAACG AGAACATGAG  241 GAAAAGTTAA AGAAACAAAA GCAGCGAATT GCACAGCAAT CGCTTAACTA TCCAACAAAC  301 CTCAAGAAAC CGGATAATGG CCTTTCCCTA TAA  Lactobacillus reuteri 3630_02436  SEQ ID NO: 41 1 ATGAATTCTA ATTTGAAAAA GAATTTGATT ATCGCAAATG GATTTCTACT ACTAATAATA  61 ATATTTTATG TTTTATTACA TATGGGTCCA TTAAATATGA AAGTCTTATT AGTAGGATTG  121 GTATTAATGA ATCTGACAGT AATATTTAAA TAA  Lactobacillus reuteri 3630_02437  SEQ ID NO: 42 1 ATGGATAAAT TAACATTGAA AAAACTAATT ATTATTACAT TAGGCATGCT AATGGTATTT  61 CTTTTAGGTA TGCACCTTCA TCAAAAGACA CACTTTAACA AAAACGTGAA GATTAATAAT  121 ATTCCAGTCG GAGGTCTTAC TGTTCAACAG GCATATAATA AAGTAAGTAA TACTAAAAGA  181 AAATCAAAAA TCTACATTAA CAAAAAGTTA GTTTATTCAG GTAAAAGTAC TGACTCAGGT  241 TTTAAGTTAT CTGATAAAGA AAGATTTAGT AAGGCGTTAC ATTACCAATA CACTTTTTTT  301 CCCTCACGAA AACATGAAAA TTTGCTAGTT GAGCCAGCTG ATTTAGATAA GTCAGCGTTA  361 AATAATATTG ATTCGGCAAT AGTAGCTAGG ATTCATCAGC TCAATATAGG CAGAAAGGCC  421 CCACGTGATG CATACGCCGT TTACCAGAAT AATAAAGTTT CAGTTATTCC AGCAATTGAT  481 GGGACACGAT ATAGTGAACA AGGACTTTGT AATATTGCTA ATAAGGAATT TGTTAATGGG  541 ACAATTCATT TAACTCCTAA GGTTATTACT CCTTTATCGG CAAACAGTAA AGTAGTTCAA  601 GATGAAAAGA AACACCTGAG TAAACTACAA AATCGATCGG TTGTTTATCA GGTTCAGAAA  661 ACAAAATATA ATTTTAAAGC GTCTAATGTC ATTTCTAAAG CAACTTATCA GCATGGGAAA  721 TACCATTTTG AAACTGACAA CGTTAAATCC AAGATTGCCA ATATAAATAA TAAGCAAGCA  781 ACATTAGGAA AGAGCTTTAA ATTTAGAACT GATTCTGGAA AAGTTATTTC TACATCTAAT  841 CAGGGAACAT ATGGTTGGAA AATAAGTAGC AAGCAGGCAG GACAAACACT CTCTAAAGCG  901 TTAGCTAATA ATGTTAAGAG CGTTAATGCC GAAAATGATA TTTACGGTAA AGGCTATAGT  961 CATCTTGGTA CTGGATATTC GGCTGTGAAT AATCATGGGC TTGGTAATAC TTATGTGGCT  1021 GTATCATTAG CTAAACAGCA TGCTTGGTTT TATAAAAATG GAAAATGTGT ACTGAGTACA  1081 GATATTGTTA GTGGATCAGA TGACGCTAAT AATAGGACTC CTAAAGGTGT TTGGTATATC  1141 ATGTATCAAC AAACGCCATC AGTTTTACGT GGGACTAATG ATGATGGTTC CAAGTATAGT  1201 AGTCCTGTTC AGTATTGGTC TCCGTTTACT TTATCAGGGT GTGGCTTTCA TGATGCTAGT  1261 TGGAGGCATA ATTGGTCTAA AACAGCTTAT AAACAGACTC ATGGTGGCTC ACATGGCTGT  1321 ATTAACATGC ATCCGGAAAA TGCAGGAGAC GGTTTCCATG CCCTTACTAA AGGAGAACCG  1381 GTAATAATTT ATTAG  Lactobacillus reuteri 3630_02438  SEQ ID NO: 43 1 ATGCAATTAA ACCATAAATT AGGAGTTTTC TTGGCAGCGC CATTTGCTCT ACTGGTTTTA  61 TCAGCTACAA ACGTGCATGC CGATAACATT CAAAGTAATA GTAACCAGAC AATCAGTAAT  121 ATGAGTTTGC AAACTAATGA CACAAAGACT CAACAAAATG TTGTAATGTC AAACGATGCA  181 AAAGCTCAAA TTACTGTAAA TCCTAGTTCT AATGCTAATT CTAGTTCTGT AGCAAAGATA  241 AATGAAAAGA ATAATGTAAA ATCGGATACT GACAATACTA ATGTCGAATC AAATGCTGAT  301 AATATTGGGA ACATTGCTTC TAGCGATTCC ACGGCAGTGG CTAATTCTGC TAGTTCCGAT  361 AATATTCAGT CATTTAACGT AAATACGCAG GAACAGCCTG CAATAAATGT ATCTGAACTA  421 ACAACCGAAG AGTATGTTAC GAATTACACT CAACAACAGA TCAATAATGC GACGACTATT  481 CATGATTACT TTATAAATCA AGGATGGACA CCAAATGCTA TTGCTGGAAT GCTTGGTAAC  541 TTTGTTTCAG AGTCAGGTTT AATCCCAGAC TTACATCAAT ATGGTGGTGG GCCTGGTTAT  601 GGGTTAGCTC AATGGCCATT TAATAGTGTA GTAAATTGGT GTCGTAATAA TGGATATGAT  661 TATCGTACTT TGCAAGGACA ATGTGCATAT ATTGAATATC AAATGACTCA TGGACAGCAG  721 TATTATCCAT CAGCTTACTC TAGAATGACC GCTAATGAAT ATATGCATAG TTATGCTTCA  781 GCATATACTT TAGGTATGAT TTGGCTTAAT AACTTTGAGC GACCTGCAAA TAGGAATCAG  841 CCAGCTCGTG GTCAACAGGC TCAATACTGG TATCAGTATT TCCAAAGTCA TGGTTCTACA  901 TCAGCACCGG TACAACAAAA TCCTAGTACA CCAGCAACAA CTCCTAGCTC AAGTCGAATG  961 AGTCAACACG GGACATTCAA AGTTGCTTAT GGATTAAATG TACGCCAAGC ACCAAGTACA  1021 TCGGCAGCTA TTGTAACGTA TTACAATGGT GGTCAAAGCT TTACATATGA TTCAAAGATT  1081 GAAGCTAACG GGTATCTTTG GGTATCATAC ATGAGTTATA GTGGCGTACG TCGTTATGTT  1141 GCAATTAAGA ATTTGAATAA TGGAACGACT TACGGTTATG ATTCGAATAA CTTCTCATAC  1201 AGTGCTCCTG CATCTTCAAC ACCATCTACT AATGTGCCAA GTACGCCAGC ACCAAGTACA  1261 TCTACTTCAT CAACTGAGAA GCAATATGGA ACATTCAAAG TTGCTTATGG ATTAAATGTA  1321 CGCCAAGCAC CAAGTACATC GGCAGCTATT GTAACGTATT ACAATGGTGG TCAAAGCTTT  1381 ACATATGATT CAAAGATTGA AGCTAATGGG TATCTTTGGG TATCATACAT GAGTTATAGT  1441 GGCGTACGTC GTTATGTTGC GATTAAGAAT TTGAGTAATG GAACAACTTA CGGTTACGAT  1501 TCAAATAACT TTTCATTTAA TGGGACTCCA GTAACATCAA ATAATAATCC TTCTAGTACT  1561 CCGGCAGTTC CGCAAGGTAA TAAGGGCCAA CAAGTTGTTG CTCTTGCACG TCAACAAATA  1621 GGTAAACCTT ATGTTTGGGG AGCAACCGGT CCTAATTCGT TTGATTGTTC AGGACTCGTG  1681 CAGTATGTTT ATCGTCAAGT TGGTGTTAAC TTACCACGGA CTACAACTCA ACAAGAATAT  1741 TGTGGACATG CTGTAAGCTT TAATAATCTT CAACCTGGAG ATCTAATGTT CTGGGGAAAG  1801 TATGGTAGTG CATATCACGT TGGAATCTAT ACCGGAAACG GTAATGTTTT ATTTGCACCG  1861 CAACCTGGTC AAACAGTTAA GGAACAACCA ATGCGCTATT ACATGCCTGC CTTTGCAAGA  1921 AGAGTATTGT AA 

The present disclosure may be better understood with reference to the examples, set forth below. The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how the compounds, compositions, and/or methods claimed herein are made and evaluated, and are intended to be purely exemplary and are not intended to limit the disclosure.

Example 1. L. reuteri Strain Identification

Seven Lactobacillus reuteri (L. reuteri) strains were isolated from older birds at the Research Center, Hannover from the cecal contents received from the Poultry Clinic, University of Hannover. All the seven strains are identified to be L. reuteri by 16S rRNA sequencing.

While only limited growth is observed for most strains under aerobic conditions in MRS broth and agar (de Man, J. D.; Rogosa, M.; and Sharpe, M. E. “A Medium for the Cultivation of Lactobacilli”. J Appl Bact. 23: 130-135 (1960)), all isolates show very good growth on MRS agar and MRS broth under anaerobic conditions at 39° C. Culturing the bacterial strains on blood agar under anaerobic conditions results mostly in limited growth. None of the strains is able to grow in Mueller Hinton broth under anaerobic conditions. For all further analysis, bacterial strains are grown in MRS medium under anaerobic conditions at 39° C.

Antimicrobial susceptibility of bacterial isolates were tested using the AVIPRO® PLATE. All strains are resistant against colistin, doxycycline, enrofloxacin, erythromycin, neomycin, oxacillin, penicillin G, trimethroprim-sulfamethoxazole, tetracycline, tilmicosin and tylosin. All strains are resistant to streptomycin except strain 3632, and to tiamulin except strain 2098. In addition, resistance to cefpodaxime-proxetil is observed with strains 2091, 2095, 2097 and 3630; resistance to cefotaxime is observed with strains 2091, 2095 and 2097; and resistance to lincomycin is observed with strains 3630 and 3632. No strain was found to be resistant against amoxicillin, ceftiofur, erythromycin D, lincomycin-spectinomycin, and rifampicin under tested concentrations.

Example 2. L. reuteri Strain Selection and Anti-Infective Activity

To select the best strain for further use as a priobiotic, the L. reuteri isolates were tested for various desirable probiotic anti-infective properties, such as growth kinetics, ability to produce hydrogen peroxide, autoaggregation, enzyme profile, survival in the presence of ox bile and pancreatic enzymes, and sensitivity to heat shock and pH changes. The L. reuteri strains are also tested for safety using a haemolytic assay.

In general, all strains behave very similar in terms of probiotic properties, including growth kinetics and ability to produce hydrogen peroxide, except for strain 3632, which shows some unique properties, including the ability to autoaggregate in liquid media (comparable to that of the well-characterized human probiotic strain L. reuteri ATCC 23272). In addition to autoaggregation, L. reuteri 3632 also appears to produce an orange pigment, which resembles beta carotene in color. None of the other strains, including the human L. reuteri strain ATCC 23272 and L. acidophilus, produced orange colored pigment. None of the strains is found to be hemolytic on blood agar plates, suggesting that these isolates are less likely to be pathogenic to humans.

Whole-genome sequencing was performed for L. reuteri strains 2091, 3632, 3630, and an independently isolated L. reuteri strain 170331 of European origin, using PACBIO® sequencing (Amplicon Express). Sequencing, assembly and annotation statistics are summarized in TABLE 1. Genomic structures and organization differs among the tested strains.

TABLE 1 Strain 170331 2091 3632 3630 Genome size 2,090,596 bp 2,231,245 bp 2,482,713 bp 2,399,045 bp Contigs 9 11 7 5 Coding 2,154 2,280 2,595 2,467 Sequences (ORFs) Ribosomal 2,231 2.354 2,680 2,467 Binding Sites Transcription 1,123 1,123 1,375 1,339 Terminators Operons 452 472 541 475 tRNA 75 61 77 73 rRNA 18 19 13 18 Other RNAs 39 99 89 N/A CRISPR 1 0 0 0 Prophages 7 1 8 5 Islands 30 22 24 9 Bacteriocins 0 1 4 3

Example 2.5. Colonization of L. reuteri 3632 in 16-Day Old Embryos

The goal of this study was to test if L. reuteri 3632 colonizes the intestine of 16-day old embryos. To this end, 16 day-old embryos were obtained from Charles River and inoculated with 10{circumflex over ( )}8 CFU/embryo of L. reuteri 3632 by air cell, yolk sac and allantoic routes. Embryos were sacrificed on 18 days and the intestines were harvested and plated on MRS agar plates. An uninoculated group was included as a control. L. reuteri was recovered from the intestines of the majority of the embryos, suggesting that L. reuteri 3632 colonizes the intestine of 16-day old embryos. L. reuteri 3632 was not recovered from any of the control (uninoculated) embryos, even after 2-days of enrichment in liquid culture.

Example 3. Co-Culture of L. reuteri and C. perfringens in Brain Heart Infusion (BHI) Broth

L. reuteri and C. perfringens were cultured in BHI broth. CFU counts were determined 24 hours after coculture in BHI broth. L. reuteri were enumerated on MRS agar plates and C. perfringens was enumerated on OPSP plates. This data is from one representative experiment of 3 replicates. Co-culture-L. reuteri, L. reuteri recovered from co-cultured sample using L. reuteri-specific media. Co-culture-C. perfringens, C. perfringens recovered from co-culture sample using C. perfringens-specific media. See FIG. 9.

Example 4. In Vivo Effects of L. reuteri

Birds were vaccinated with CocciVac on day 0 and fed with L. reuteri in feed from day 0 to day 42 @ 10{circumflex over ( )}7 CFUs/Kg of feed. A separate group of birds were fed with feed supplemented with bacitracin methylene disalicylate (BMD_55).

Feed conversion ratio and European Broiler index were calculated. Birds that were fed L. reuteri demonstrated a reduction in feed conversion ratio and European Broiler index as compared to those fed BMD_55. See FIG. 8.

Example 4. The Effect of Prebiotics on the Growth of Lactobacillus reuteri

L. reuteri strains 3630 & 3632 were grown individually and in combination, in the presence of several different prebiotics, including fructooligosaccharides (FOS), arabinoxylan oligosaccharides (AXOS), mannan-oligosaccharides (MOS), or galacto-oligosaccharides (GOS).

As shown in FIG. 10, strains grown in the presence of GOS demonstrated increased growth as compared to strains grown in the presence of FOS, AXOS, or MOS.

Example 5. In Vivo Effects of L. reuteri

An identified strain can effectively function as a direct feed microbial only if the strain is able colonize the host gastrointestinal tract. The ability of L. reuteri strains to colonize chickens is assessed following different routes of administration.

L. reuteri is administered orally to 10-day old chicks. At various times post inoculation, chicks are sacrificed and the presence of L. reuteri is measured in the crop, small intestine, and cecum. Strain 3632 is able to colonize all three tissues and remain detectable for at least 18 days.

L. reuteri is administered by in ovo inoculation (i.e. injection into the egg) 3 days before hatching. Strain 3632 is found in the tissues of chicks at 3 and 7 days post hatching, while colonization of a control strain declines after day 3.

L. reuteri is administered in ovo by spraying a liquid containing bacteria onto the egg surface. Again, Strains 3630 and 3632 are able to colonize and remain present in chicks 3 and 7 days post hatching. Inoculation by spray is just as efficient as in ovo injection but requires less manipulation of the incubating egg.

Table 2 shows quantifies the effect of L. reuteri 3632 treatment on survival. The difference score between strain 3632 and the control is 3.3 and the difference between BMD and control is 2.5. Strain 3632 provides increased survival over BMD treated chics.

TABLE 2 Treatment conditions Difference Score Lr_3632 Ctrl 3.333333 BMD_55 Ctrl 2.5   

Example 6. Necrotic Enteritis Model

L. Reuteri administered in ovo and in drinking water daily @ 10{circumflex over ( )}8 CFU/bird. The birds were orally gavaged with E. maxima on day 14. The birds were orally gavaged with C. perfringes on day 18, 19, and 20 with 10{circumflex over ( )}8 CFUs/bird.

TABLE 3 Summary of intestinal lesion score, total mortality percent (d15-d28), and necrotic enteritis mortality percent. Lesion Total NE No. Score Mortality Mortality Treatment Cages Mean (SE) Percent (SE) Percent (SE) T1. Unchallenged, 4 0.25a (0.25)  0.0a (3.4)  0.0a (2.5) untreated T2. E. maxima alone 4 0.50a (0.25)  4.2a (3.4)  0.0a (2.5) T3. E. maxima + C. 4 0.50a (0.25)  20.8b (3.4) 20.8b (2.5) perfringens T4. Lactobacillus 5 0.20a (0.22)  0.0a (3.0)  0.0a (2.3) reuteri alone (in ovo + oral) T5. E. maxima + L. 5 0.20a (0.22)  3.3a (3.4)  0.0a (2.3) reuteri (in ovo + oral) T6. E. maxima + C. 5 0.20a (0.22)  6.7a,b (3.0)  6.7a (2.3) perfringens + L. reuteri (in ovo + oral) T7. E. maxima + C. 1  0.0a (0.50) 16.7a,b (6.8) 16.7a,b (5.1)  perfringens + L. reuteri (spray + oral) P-value 0.881 0.003 <0.001 Lesion scores and cage-level mortality percentages tested by one-way ANOVA. Within columns, means and percentages with a superscript in common do not differ with a level of significance of 5% over all comparisons.

Example 7. Global Metabolomics Analysis

A global metabolomics analysis of L. reuteri strains 3632 and 3630 were conducted. The strains were grown individually and in combination, and various molecules were analyzed in the cell pellet and the supernatant of the cultures. The strains were grown in AOF-MRS media control with no glucose but 0.5% GOS. The molecules in the supernatant represent molecules that are secreted by the cell.

Samples were subject to global untargeted metabolic profiling. Welch t-test and Principal Component Analysis (PCA) were used to analyze the data. Principal component analysis (PCA) is a mathematical procedure that reduces the dimensionality of the data while retaining most of the variation in a dataset. This approach allows visual assessment of the similarities and differences between samples. Populations that differ are expected to group separately and vice versa.

The data is shown in FIGS. 12-19.

EMBODIMENTS OF THE INVENTION

  • 1. A composition comprising at least one of: an isolated first Lactobacillus reuteri strain and an isolated second Lactobacillus reuteri strain;
    • wherein said composition increases animal health when an effective amount is administered to an animal, as compared to an animal not administered the composition.
  • 2. The composition according to embodiment 1, wherein the first Lactobacillus reuteri strain comprises at least one of:
    • a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO:26,
    • a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 1,
    • a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 3, and
    • a nucleic acid that encodes for an amino acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 8;
    • wherein the isolated second Lactobacillus reuteri strain comprises at least one of:
    • a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO:25,
    • a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 27,
    • a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 28, and
    • a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 29.
  • 3. The composition according to any one of embodiments 1-2, wherein the isolated first Lactobacillus reuteri strain comprises a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 26.
  • 4. The composition according to any one of embodiments 1-3, wherein the isolated second Lactobacillus reuteri strain comprises a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 25.
  • 5. The composition according to any one of embodiments 1-4, wherein the composition comprises an isolated first Lactobacillus reuteri strain comprising a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 25; and a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO: 1,
  • 6. The composition according to any one of embodiments 1-5, wherein the isolated first Lactobacillus reuteri strain comprises a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO:26; and
    • wherein the isolated second Lactobacillus reuteri strain comprises a nucleic acid sequence having at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence identity with SEQ ID NO:25.
  • 7. The composition according to any one of embodiments 1-6, wherein at least one of the first lactobacillus strain and a second lactobacillus strain secrete at least one of cyclic dipeptides, short chain fatty acids, betaine, dimethylglycine, essential amino acids, nucleotides, myo-inositol, and indolin-2-one.
  • 8. The composition according to any one of embodiments 1-7, wherein the composition comprises a ratio of isolated first Lactobacillus reuteri strain to isolated second Lactobacillus reuteri strain of 0.75-1.5:1.
  • 9. The composition according to any one of embodiments 1-8, wherein the composition comprises about equal amounts of the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain.
  • 10. The composition according to any one of embodiments 1-9, wherein the composition is formulated as animal feed, feed additive, food ingredient, water additive, water-mixed additive, consumable solution, consumable spray additive, consumable solid, consumable gel, injection, or combinations thereof.
  • 11. The composition according to any one of embodiments 1-10, wherein the composition comprises animal feed.
  • 12. The composition according to embodiment 11, wherein the composition comprises the isolated first Lactobacillus reuteri strain in an amount of about 10{circumflex over ( )}2-10{circumflex over ( )}8 CFU/kg of the composition, about 10{circumflex over ( )}4-10{circumflex over ( )}7 CFU/kg of the composition, or about 10{circumflex over ( )}3-10{circumflex over ( )}5 CFU/kg of the composition.
  • 13. The composition according to any one of embodiments 10-12, wherein the composition comprises isolated second Lactobacillus reuteri strain in an amount of about 10{circumflex over ( )}2-10{circumflex over ( )}8 CFU/kg of the composition, about 10{circumflex over ( )}4-10{circumflex over ( )}7 CFU/kg of the composition, or about 10{circumflex over ( )}3-10{circumflex over ( )}5 CFU/kg of the composition.
  • 14. The composition according to any one of embodiments 10-13, wherein the composition comprises the isolated first Lactobacillus reuteri strain in an amount of about 10{circumflex over ( )}7 CFU/kg of the composition.
  • 15. The composition according to any one of embodiments 10-14, wherein the composition comprises isolated second Lactobacillus reuteri strain in an amount of about 10{circumflex over ( )}7 CFU/kg of the composition.
  • 16. The composition according to any one of embodiments 1-15, wherein the composition comprises water.
  • 17. The composition according to any one of embodiments 1-16, wherein the animal is bird, poultry, a human, or a non-human mammal.
  • 18. The composition according to any one of embodiments 1-17, wherein the animal is poultry and increases poultry health comprises at least one of: decreasing feed conversion ratio, increasing weight, increasing lean body mass, decreasing pathogen-associated lesion formation in the gastrointestinal tract, decreasing colonization of pathogens, and decreasing mortality rate.
  • 19. The composition according to embodiment 18, wherein increases poultry health comprises decreasing feed conversion ratio by at least 1%, at least 5%, at least 25%, or at least 50%.
  • 20. The composition according to any one of embodiments 17-19, wherein increases poultry health comprises increasing poultry weight by at least 1%, at least 5%, at least 25%, or at least 50%.
  • 21. The composition according to any one of embodiments 17-20, wherein increases poultry health comprises decreasing pathogen-associated lesion formation in the gastrointestinal tract by at least 1%, at least 5%, at least 25%, or at least 50%.
  • 22. The composition according to any one of embodiments 17-21, wherein increases poultry health comprises decreasing mortality rate by at least 1%, at least 5%, at least 25%, or at least 50%.
  • 23. The composition according to any one of embodiments 18-22, wherein the pathogen comprises at least one of Salmonella, Clostridium, Campylobacter, Staphylococcus, Streptococcus, and E. coli bacterium.
  • 24. The composition according to any one of embodiments 18-23, wherein the pathogen comprises at least one of Salmonella typhimurium, Salmonella infantis, Salmonella Hadar, Salmonella enteritidis, Salmonella Newport, Salmonella Kentucky, Clostridium perfringens, Staphylococcus aureus, Streptoccus uberis, Streptococcus suis, Escherichia coli, Campylobacter jejuni, and Fusobacterium necrophorum.
  • 25. The composition according to any one of embodiments 17-24, wherein administered comprises in ovo administration.
  • 26. The composition according to any one of embodiments 17-25, wherein administered comprises spray administration.
  • 27. The composition according to any one of embodiments 17-26, wherein the poultry is a chicken.
  • 28. The composition according to any one of embodiments 17-27, wherein the poultry is a broiler chicken.
  • 29. The composition according to any one of embodiments 17-27, wherein the poultry is an egg-producing chicken.
  • 30. The method according to any one of embodiments 1-29, wherein the animal administered the composition, further exhibits at least one improved gut characteristic, as compared to an animal not administered the composition; wherein improved gut characteristics includes:
    • increased cyclic dipeptides, increased short chain fatty acids, increased betaine, increased dimethylglycine, increased essential amino acids, increased nucleotides, and increased myo-inositol.
  • 31. The composition according to any one of embodiments 1-30, wherein the animal administered the composition exhibits a shift in the microbiome content of gastrointestinal tract.
  • 32. The method according to embodiment 31, wherein the shift comprises an increase in the amount of Bacteroidaceae bacteria.
  • 33. The composition according to any one of embodiments 1-32, wherein administered comprises administration of a vaccine.
  • 34. The composition according to any one of embodiments 1-33, wherein the animal is poultry and the poultry is administered a vaccine prior to the administration of the composition.
  • 35. The composition according to any one of embodiments 1-34, wherein the animal is poultry and the poultry is administered a vaccine concurrently with the administration.
  • 36. The composition according to any one of embodiments 33-35, wherein the animal is poultry and the poultry is administered a vaccine, wherein said vaccine comprises a vaccine that aids in the prevention of coccidiosis.
  • 37. The composition according to any one of embodiments 1-36, wherein administered comprises administration of galacto-oligosaccharides (GOS).
  • 38. A composition according to any one of embodiments 1-37 for use in therapy.
  • 39. A composition according to any one of embodiments 1-38 for use in improving animal health.
  • 40. A composition according to any one of embodiments 1-39 for use in reducing colonization of an animal by a pathogenic bacterium.
  • 41. A composition according to any one of embodiments 1-40 for use in the manufacture of a medicament for reducing colonization of an animal by a pathogenic bacterium.
  • 42. A method for increasing animal health, the method comprising:
    • administering to an animal an effective amount of a composition according to any one of embodiments 1-41.
  • 43. The method according to embodiments 42, wherein the animal is poultry.
  • 44. The method according to any one of embodiments 42-43, wherein increasing animal health includes decreasing pathogen-associated lesion formation in the gastrointestinal tract, decreasing colonization of pathogens, and decreasing mortality rate.
  • 45. A method of treating, ameliorating the effects of, or preventing necrotic enteritis in poultry by administering a composition according to any one of embodiments 1-29 to a poultry in need thereof.

Claims

1.-45. (canceled)

46. A probiotic composition for increasing animal health comprising an isolated first Lactobacillus reuteri strain 3632 (ATCC PTA-126788) and an isolated second Lactobacillus reuteri strain 3630 (ATCC PTA-126787).

47. The composition of claim 46, wherein the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain are present at a ratio of 0.75-1.5:1.

48. The composition of claim 46, wherein the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain are included in an amount of 102-108 CFU/kg of the composition.

49. The composition of claim 47, wherein the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain are included in an amount of 104-107 CFU/kg of the composition.

50. The composition of claim 46, formulated as animal feed, feed additive, food ingredient, water additive, water-mixed additive, consumable solution, consumable spray additive, consumable solid, consumable gel or injection.

51. The composition of claim 50, formulated as animal feed.

52. The animal feed composition of claim 51, wherein the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain are present in an amount of 102-108 CFU/kg of animal feed.

53. The animal feed composition of claim 52, wherein the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain are present in an amount of 107 CFU/kg of animal feed.

54. The composition of claim 46, formulated for oral administration, nasal administration, or in ovo administration.

55. The composition of claim 46, wherein each isolated individual strain is free of other living organisms and the composition contains only the individual strains Lactobacillus reuteri strain 3632 (ATCC PTA-126788) and strain 3630 (ATCC PTA-126787).

56. The composition of claim 46, wherein the isolated first Lactobacillus reuteri strain and the isolated second Lactobacillus reuteri strain are formulated to be shelf-stable and exist outside the gastrointestinal tract.

57. The composition of claim 46, further comprising a prebiotic, wherein the prebiotic is galacto-oligosaccharides (GOS).

58. The composition of claim 46, wherein the animal is a bird, a human, or a non-human mammal.

59. The composition of claim 58, wherein the bird is poultry.

60. The composition of claim 58, wherein the animal is selected from chickens, turkey, dogs, cats, cattle and swine.

61. The composition of claim 58, wherein the animal is a human.

62. A probiotic composition for increasing animal health comprising an isolated first Lactobacillus reuteri strain 3632 (ATCC PTA-126788) and an isolated second Lactobacillus reuteri strain 3630 (ATCC PTA-126787), wherein the isolated first strain and the isolated second strain are present at a ratio of 0.75-1.5:1.

63. The composition of claim 62, formulated as animal feed, feed additive, food ingredient, water additive, water-mixed additive, consumable solution, consumable spray additive, consumable solid, consumable gel or injection.

64. The composition of claim 62, wherein each isolated individual strain is free of other living organisms and the composition contains only the individual strains Lactobacillus reuteri strain 3632 (ATCC PTA-126788) and strain 3630 (ATCC PTA-126787).

65. A probiotic composition for increasing animal health comprising an isolated first Lactobacillus reuteri strain 3632 (ATCC PTA-126788) and an isolated second Lactobacillus reuteri strain 3630 (ATCC PTA-126787), wherein the isolated first strain and the isolated second strain are present at a ratio of 0.75-1.5:1 and are included in an amount of 102-108 CFU/kg of the composition.

Patent History
Publication number: 20220088094
Type: Application
Filed: Oct 15, 2021
Publication Date: Mar 24, 2022
Inventors: Arvind KUMAR (Greenfield, IN), Dharanesh Mahimapura GANGAIAH (Greenfield, IN)
Application Number: 17/502,716
Classifications
International Classification: A61K 35/747 (20150101); A23K 50/75 (20160101); A23K 20/163 (20160101); A23K 10/18 (20160101); A23L 33/135 (20160101); A61P 1/00 (20060101); A61P 31/04 (20060101);