METHODS AND DEVICES FOR IMPROVED SIGNAL DETECTION FROM BIOLOGICAL SAMPLES
Methods and devices are provided to provide clean signals even in the presence of spectral interference. At least some of these methods can be applied for cases when interfering signals are to be accounted for. These cases include, but are not limited to, hemolysis detection, icterus detection, and assays. They can be implemented in with data collected with spectrophotometers, instruments that can collect absorbance values at the few wavelengths of interest, and, in the case of the method based on background subtraction, simple imaging setups with only two filters (such as but not limited to narrow-band and wide-band) per absorption peak of interest.
Hemolysis, icterus, and lipemia are indicated by different features in the absorption spectra of some detection systems and may interfere with one another in a negative manner. The detection/quantification of each of these interference types alone is straightforward, but is complicated when multiple types of interference are present. For example, hemolysis is caused by the lysis of blood cells before the separation to obtain plasma/serum, and is indicated by the concentration of hemoglobin (Hb) from red blood cells. The Hb concentration can be estimated by the absorbance signals near peaks at 340-440 nm and 540-580 nm. Icterus is the interference caused by the presence of bilirubin, which absorbs light with a peak around 460 nm and does not significantly interfere with hemolysis signals in the 540-580 nm range. Lipemia is the interference by the presence of lipid particles, which scatter light and lead to the apparent absorption across a wide range of the UV-Vis spectrum (400-800+nm). Due to the close proximity of their peak signal wavelengths, the hemolysis and icterus peaks partially overlap with each other, and the lipemia absorption increase affects the whole spectra. Example commercial systems utilize absorbance values at wavelengths from 340 nm to 800 nm and complicated calibration procedures to account for this issue.
Known techniques have various drawbacks and are overly cumbersome and costly in their implementation.
INCORPORATION BY REFERENCEAll publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
COPYRIGHTThis document contains material subject to copyright protection. The copyright owner (Applicant herein) has no objection to facsimile reproduction of the patent documents and disclosures, as they appear in the US Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice shall apply: Copyright 2016-2018 Theranos, Inc.
SUMMARYThe disadvantages associated with the prior art are overcome by embodiments described herein.
In one embodiment herein, it is desirable to detect/quantify hemolysis, icterus, and lipemia (common types of interference) in plasma/serum clinical samples. Some methods utilize absorbance values of the samples at multiple wavelengths to account for the cross signals. They use calibration sample sets that span possible ranges of these interference types and instruments that can measure absorbance values across the whole UV-vis wavelength range.
In one embodiment, new methods are described herein to detect/quantify hemolysis and/or icterus (two out of the three interference types) that are based on absorbance values at narrower wavelength ranges, use fewer samples for calibration, and/or are independent of the nature of the interference.
At least some embodiments of the new methods described here aim to eliminate spectral interfering signals and obtain clean final signals. With a first non-limiting example, the final signal is the curvature at the peak of interest in the absorption spectrum. With a second non-limiting example, the final signal, termed background-subtracted signal, is the difference between the raw (original/major) absorbance and the background absorbance in the vicinity of the peak of interest.
In one embodiment, a method is provided for use with a biological sample, the method comprising using peak curvature to reduce interference in detection of hemolysis in the biological sample. Optionally, the method comprises using peak curvature to reduce interference in quantification of hemolysis in the biological sample.
In another embodiment, a method is provided for use with a biological sample, the method comprising using background subtraction in the detection of hemolysis and icterus in the biological sample. Optionally, the method comprises using background subtraction in the quantification of hemolysis and icterus in the biological sample.
In yet another embodiment, a method is provided for use with a biological sample, the method comprising reducing signal interference through calculation of background-subtracted spectra.
In yet another embodiment, a method is provided for use with a biological sample, the method comprising: acquiring background-subtracted signals using a narrow-band optical filter and a wide-band optical filter; and using background-subtracted signals for quantification of hemolysis and icterus in the biological sample. Optionally, the method comprises placing the narrow-band optical filter and the wide-band optical filter in regions of interest concurrently so that only one exposure is needed to obtain the major signal, the background signal, and the background-subtracted signal.
It should be understood that embodiments in this disclosure may be adapted to have one or more of the features described below. In one nonlimiting example, the sample may be plasma. Optionally, in some embodiments, the sample may be serum. Optionally, in some embodiments, any of the foregoing may be from capillary blood. Optionally, in some embodiments, any of the foregoing may be from venous whole blood. Optionally, in some embodiments, the sample may be capillary blood. Optionally, in some embodiments, the sample may be venous whole blood.
In one embodiment, the methods based on curvature calculation and background subtraction can give clean signals even in the presence of spectral interference. At least some of these methods can be applied for cases when interfering signals are to be accounted for. These cases include, but are not limited to, hemolysis detection, icterus detection, and assays. They can be implemented in with data collected with spectrophotometers, instruments that can collect absorbance values at the few wavelengths of interest, and, in the case of the method based on background subtraction, simple imaging setups with only two filters (such as but not limited to narrow-band and wide-band) per absorption peak of interest.
By way of example and not limitation, the potential applications of the methods described here include, but are not limited to, the following:
Clinical or point-of-care use: hemolysis detection/quantification, icterus detection/quantification, and/or assays;
Research & development experiments: hemolysis detection/quantification, icterus detection/quantification, and/or assays;
At the sample collection sites: hemolysis detection/quantification, icterus detection/quantification in samples collected.
In at least one embodiment, the processed signals correlated well with concentrations of hemoglobin and bilirubin, indicators of hemolysis and icterus, respectively. Through iterations of randomly splitting the samples for calibration and testing, the two new methods performed as well as those used on conventional analyzers. By way of non-limiting example, it was demonstrated that the two of the embodiments of the methods can each lessen the application requirements of 1) prior knowledge of the absorption spectra of individual interferents, 2) calibration over a wide concentration range for each interferent, and 3) the need for full-range spectrophotometers spanning most of the ultraviolet/visible spectrum. We also proposed a hardware setup to detect and quantify hemolysis or icterus with a camera and two optical filters.
It should be understood that traditional methods utilize absorbance values at multiple wavelengths to account for potentially interfering signals from other interferents. They require calibrations that span possible concentration ranges of these interferents and instruments that can measure absorbance values across the ultraviolet/visible wavelength range. This paper describes two new methods to quantify and detect hemolysis and icterus (two of the three interferents) that have fewer requirements in development and implementation.
By way of non-limiting example, at least some embodiments of the method involve calculating either the background-subtracted signals or curvatures from spectral data. The advantages of these new methods are three-fold: 1) the elimination of the need to know beforehand how other interferents affect the detection and quantification of the interferent being investigated, 2) fewer samples required for calibration, and 3) fewer constraints on hardware design (thanks to the narrower ranges of required wavelengths).
In one embodiment, a method for sample processing which may include one or more the techniques as described herein for handling sample that may contain interferents. Optionally, a method is provided comprising at least one technical feature described herein. Optionally, a method is provided comprising at least one technical feature from any of the prior features. Optionally, the method comprises at least any two technical features from any of the prior features. Optionally, a device is provided comprising at least one technical feature from any of the prior features. Optionally, the device comprises at least any two technical features from any of the prior features. Optionally, the system is provided comprising at least one technical feature from any of the prior features. Optionally, the system comprises at least any two technical features from any of the prior features.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. It may be noted that, as used in the specification and the appended claims, the singular forms “a”, “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a material” may include mixtures of materials, reference to “a compound” may include multiple compounds, and the like. References cited herein are hereby incorporated by reference in their entirety, except to the extent that they conflict with teachings explicitly set forth in this specification.
In this specification and in the claims which follow, reference will be made to a number of terms which shall be defined to have the following meanings:
“Optional” or “optionally” means that the subsequently described circumstance may or may not occur, so that the description includes instances where the circumstance occurs and instances where it does not. For example, if a device optionally contains a feature for a sample collection unit, this means that the sample collection unit may or may not be present, and, thus, the description includes both structures wherein a device possesses the sample collection unit and structures wherein sample collection unit is not present.
As used herein, the terms “substantial” means more than a minimal or insignificant amount; and “substantially” means more than a minimally or insignificantly. Thus, for example, the phrase “substantially different”, as used herein, denotes a sufficiently high degree of difference between two numeric values such that one of skill in the art would consider the difference between the two values to be of statistical significance within the context of the characteristic measured by said values. Thus, the difference between two values that are substantially different from each other is typically greater than about 10%, and may be greater than about 20%, preferably greater than about 30%, preferably greater than about 40%, preferably greater than about 50% as a function of the reference value or comparator value.
As used herein, a “sample” may be but is not limited to a blood sample, or a portion of a blood sample, may be of any suitable size or volume, and is preferably of small size or volume. In some embodiments of the assays and methods disclosed herein, measurements may be made using a small volume blood sample, or no more than a small volume portion of a blood sample, where a small volume comprises no more than about 5 mL; or comprises no more than about 3 mL; or comprises no more than about 2 mL; or comprises no more than about 1 mL; or comprises no more than about 500 μL; or comprises no more than about 250 μL; or comprises no more than about 100 μL; or comprises no more than about 75 μL; or comprises no more than about 50 μL; or comprises no more than about 35 μL; or comprises no more than about 25 μL; or comprises no more than about 20 μL; or comprises no more than about 15 μL; or comprises no more than about 10 μL; or comprises no more than about 8 μL; or comprises no more than about 6 μL; or comprises no more than about 5 μL; or comprises no more than about 4 μL; or comprises no more than about 3 μL; or comprises no more than about 2 μL; or comprises no more than about 1 μL; or comprises no more than about 0.8 μL; or comprises no more than about 0.5 μL; or comprises no more than about 0.3 μL; or comprises no more than about 0.2 μL; or comprises no more than about 0.1 μL; or comprises no more than about 0.05 μL; or comprises no more than about 0.01 μL.
As used herein, the term “point of service location” may include locations where a subject may receive a service (e.g. testing, monitoring, treatment, diagnosis, guidance, sample collection, ID verification, medical services, non-medical services, etc.), and may include, without limitation, a subject's home, a subject's business, the location of a healthcare provider (e.g., doctor), hospitals, emergency rooms, operating rooms, clinics, health care professionals' offices, laboratories, retailers [e.g. pharmacies (e.g., retail pharmacy, clinical pharmacy, hospital pharmacy), drugstores, supermarkets, grocers, etc.], transportation vehicles (e.g. car, boat, truck, bus, airplane, motorcycle, ambulance, mobile unit, fire engine/truck, emergency vehicle, law enforcement vehicle, police car, or other vehicle configured to transport a subject from one point to another, etc.), traveling medical care units, mobile units, schools, day-care centers, security screening locations, combat locations, health assisted living residences, government offices, office buildings, tents, bodily fluid sample acquisition sites (e.g. blood collection centers), sites at or near an entrance to a location that a subject may wish to access, sites on or near a device that a subject may wish to access (e.g., the location of a computer if the subject wishes to access the computer), a location where a sample processing device receives a sample, or any other point of service location described elsewhere herein.
Using Peak Curvature to Avoid Interference in the Detection/Quantification of HemolysisFor at least one non-limiting example, it should be understood that the shape of a specific absorption peak (e.g. the 415-nm hemoglobin peak) does not change if there is interference by a nearby peak (e.g. the 460-nm bilirubin peak) or by an increase in absorption across a wide range of wavelengths (e.g. in the case of lipemia). To demonstrate this, spectra of multiple samples at different levels hemolysis, icterus, and lipemia were acquired. With each spectrum, at the 415-nm peak, the circle center {right arrow over (M)} and the corresponding radius of curvature R were determined by fitting to 5 data points at 405, 410, 415, 420, and 425 nm ({right arrow over (X)}i) using the cost function specified in Equation 1. Other numbers of points (≥3) can be used for the fitting; and if only 3 data points (e.g. those at 410, 415, and 240 nm) are used, the center {right arrow over (M)} and the radius R can be calculated exactly. The curvature of the hemolysis peak at 415 nm, K, is the inverse of the radius of the curvature, and is insensitive to icterus and lipemia. Therefore, the curvature K is a quantity that can be independently and reliably used for the detection/quantification of hemolysis in the presence of icterus/lipemia. Other methods of calculating the curvatures can also be used.
Cost=Σi=1i=5(∥{right arrow over (M)}−{right arrow over (X)}i∥−R)2 Equation 1
Referring now to
Hemolysis, icterus, and lipemia are indicated by different features in the absorption spectra that may interfere with one another. Hemolysis is caused by the lysis of blood cells before the cell/supernatant separation to obtain plasma or serum, and hemolysis is quantified by the concentration of hemoglobin, which absorbs at 340 mm to 440 nm and 540 nm to 580 nm (
Calculation of Background-Subtracted Spectra
For at least one non-limiting example herein to avoid interfering signals, true signals near or at spectral peaks of interest can be obtained by way of background subtraction. In each measurement of this non-limiting example, the background spectrum is calculated by convoluting the raw spectrum (also known as original spectrum and major spectrum) with a kernel, and the background-subtracted spectrum is the difference between the raw spectrum and the background. The types of kernels include, but are not limited to, uniform distributions, Gaussian distributions, or other suitable distributions. Other kernels can be adapted for use with the embodiments herein.
In this embodiment, the size of a uniform kernel is defined as the width of the range of positive density, while the size of a Gaussian kernel is defined as the corresponding standard deviation divided by √{square root over ( 1/12)}, so that kernels of different types but of the same size have the same standard deviation. The convolution using a uniform kernel is equivalent to the application of a mean filter; and the convolution using a Gaussian kernel is equivalent to the application of a Gaussian filter (for example, a low-pass filter). Other filters that are used for smoothing may be used to calculate the background as well.
Background-Subtraction for Hemolysis Detection/Quantification
In another non-limiting example, background-subtracted spectra can be utilized for the quantification/detection of hemolysis. This idea is demonstrated by the analysis of samples at different levels of hemolysis ([Hb] of 0, 20, 60, 80, 180, 340, and 1000 mg/dL) at different combinations of low and high levels of icterus (0.24 or 39.53 mg/dL total bilirubin) and lipemia (58 or 928 mg/dL total glycerides). Without the background subtraction step, the raw absorption spectra contains unexpected signals from icterus and lipemia, and the peaks at 415 nm are elevated unexpectedly as seen in
As seen in
Kernel Optimization
Overall, the technique of background subtraction can be used to detect/quantify hemolysis or icterus in the presence of different levels of the other types of interference. It should be understood in some embodiments that the relevant wavelengths to obtain background-subtracted signals do not necessarily have to be at the peak of the substances of interest (e.g. 415 nm for hemoglobin or 460 nm for bilirubin), and the background-subtracted signals are not necessarily non-negative. The kernels used to demonstrate the idea (size-14 uniform kernel for hemolysis, and size-18 uniform kernel for icterus) were chosen from different options (
It should be understood that, by way of non-limiting example, at least two new methods described herein (
By way of non-limiting example, explanation of the methods of background subtraction (
By way of non-limiting example, the first method takes inspiration from background subtraction techniques used in image processing and is more general than those previously employed. The processed signal is called the background-subtracted signal. It is obtained by convoluting the raw signal with a blurring kernel to calculate the background (
The methods were evaluated with 510 samples containing permutations of levels of hemolysis, icterus, and lipemia, as specified by the concentrations of hemoglobin, bilirubin, and triglycerides, respectively (Table 1). We used this sample set to explain the two new methods described herein and demonstrate their performance in comparison to traditional methods.
Performance in Many Samples
The methods based on curvature calculation and background subtraction were applied to hundreds of samples, which include those with different combinations of hemolysis/icterus/lipemia combinations and those collected less systematically as seen in
Referring still to
For at least some embodiments described herein, they have at least some advantages in comparison to interference correction methods that are based on absorbance values at multiple wavelengths across the UV-Vis range, such as the ones used for hemolysis and icterus detection on traditional instruments.
Firstly, only a short range of wavelengths around the major wavelength of interest is used in most embodiments. This advantage enables simplifications/improvements of the detection instrument, such as but not limited to a smaller required wavelength range of the light source, a smaller required width of the array detector (in a prism/grating-based spectrophotometer), and a higher wavelength resolution (the same array detector real estate can be used for a smaller wavelength range in a prism/grating-based spectrophotometer).
Secondly, a smaller range of samples used for the calibration of a method is required. In at least one embodiment, the processed signals (curvatures or background-subtracted absorbance values) do not depend on the levels of interference types (
Thirdly, embodiments of the methods described here are less susceptible to the presence of unknown interference types. The choice of wavelengths in traditional methods depends on absorption wavelengths of known interference types, while both curvature calculation and background subtraction are mostly agnostic of the interference types and only depend on the absorption of the substance of interest.
Data Processing and Analysis (Signal Calculation)As part of the calculation of background-subtracted signals, the convolution of the original signals with blurring kernels was performed to obtain the background signals. A specific kernel is a probability density function (PDF) (mean, μ=0; standard deviation, σ). The size of the kernel is defined as σ√12 (e.g., the range, in the case of a uniform distribution). Because the spectra were sampled at discrete wavelengths, the kernels were represented as discrete points along the continuous curves (the PDFs) in the calculation. In particular, for each Gaussian kernel, only points in the [−3σ, 3σ] (rounded) range were used.
The curvature at a specific region of a spectrum is defined as, where is the radius of the circle fitted through the data points in that region. The fitting was done by minimizing the cost function (see Eq. 1 below), where is the number of points used for fitting, is the coordinate (wavelength, absorbance) of point i, and is the coordinate of the center.
Linear RegressionIn at least one embodiment described herein, linear regression models were used to evaluate different methods of hemolysis and icterus measurements. In such a model, Y, the quantity of interest (e.g., hemoglobin or bilirubin), is a linear combination of signals from the samples (see Equation 2 below).
Y=a0+a1 Signal1++a2 Signal2+ . . . ++an Signaln
The model can be trained (calibrated) using a set of samples with known true Ys. In such a process, the coefficients (ai's) are varied to minimize the sum of the squared differences between the true Ys and the calculated Ys. The optimized coefficients can then be used to calculate the Ys of the test samples. The signals may be absorbance values at specific wavelengths, differences of absorbance values at two specific wavelengths, the background-subtracted signals, or the curvatures. Models with the newly derived signals were compared with models used in commercial analyzers as described in the literature.
Results (Example Results with Background Subtraction)
In at least one embodiment, it was first tested whether background-subtracted spectra can be utilized for the quantification of hemolysis. The accuracy of this approach was demonstrated by the analysis of samples at various levels of hemolysis (hemoglobin=0, 30, 50, 70, 180, 370, 760, and 1,190 mg/dL) while in the presence of low and high levels of icterus (bilirubin=0.18 and 39.65 mg/dL) and lipemia (triglycerides=76 and 984 mg/dL) (
By way of non-limiting example,
Similarly, background-subtracted spectra can be utilized for the quantification of icterus (
Example Results with Curvature Calculation
Referring now to
This method was also applied to icterus detection and quantification. Similar to the case of hemolysis (
By way of non-limiting example,
Optimization of Parameters
There are multiple options to consider when applying the new methods described herein. The background calculation step can be done with different kernels of different types and sizes and requires specification of the wavelength of interest to obtain the processed signal. The curvature calculation can be done with different choices for the center wavelength and a different number of points around each chosen center wavelength. In addition, there are multiple metrics to evaluate different implementations, and we considered two metrics herein.
The first metric is the R2 obtained from fitting the reference concentrations with the calculated signals. The second is the p-value of the Welch's t-test performed on two groups of samples of the lowest and second lowest levels, which is motivated by the possible need for very sensitive detection in some applications. For practicality, −log 10(p) values were used instead of pvalues. Note that the Welch's t-test was chosen over the student's t-test because the variances at different levels are not expected to be the same.
In at least one embodiment, an optimization step was performed to determine the optimal parameters for each method (background subtraction or curvature calculation) for each interferent (hemolysis or icterus). In particular, the center wavelength was varied from 350 nm to 650 nm (with steps of 5 nm). For background calculation, the kernel types were 1) Gaussian and 2) uniform, while the size was varied from 2 to 20 units (1 unit=5 nm). For the curvature calculation, the number of points was varied from three to 16. At a certain center wavelength, if the number of points was even, more points were chosen on the side of larger wavelengths. Metrics of R2 and −log 10(p) for all cases were calculated. Only points with good overall performance (R≥0.95 and p≤0.05⇔−log 10(p)≥1.3) were plotted (
Comparison:
By way of non-limiting example, the performance was compared of each of the optimized methods (Table 2) to those of traditional methods currently used in conventional chemical analyzers [1, 3, 20] using linear regression models. Each model (Table 3, Eq. 2) was evaluated by 10 iterations at each training fraction. In each iteration, the sample set (Table 1) was randomly split into training and testing sets, with the training fraction specifying the ratio of the number of samples in the training set versus the total number of samples. The metric calculated from each iteration was the same as the metric used to optimize the new methods (
Table 2 shows parameter search results for hemolysis and icterus detection using background subtraction and curvature calculation, in comparison to the raw signals (raw absorbance values). The selected parameters are those that provided the highest −log 10(p).
The two methods described herein have three major practical advantages versus interference correction methods that are based on absorbance values at multiple wavelengths across the ultraviolet/visible range, such as those used for hemolysis and icterus detection on many commercial analyzers. First, the methods described herein are less susceptible to the presence of unknown interferents. The choice of wavelengths in traditional methods depends on absorption wavelengths of known interferents, while both curvature calculation and background subtraction are mostly agnostic of the interferents and only depend on the absorption of the substance of interest. Even though the optimized hemolysis and icterus signals slightly deviated from the peaks (415 nm for hemolysis and 460 nm for icterus) (Table 2), the signals at the peaks would still provide good performance, with p-values distinguishing the two lowest interference levels (of hemolysis or icterus) much lower than 0.05 (i.e., −log 10(p) values much larger than 1.3).
Second, traditional methods require calibration using samples with wide ranges of interference levels, while the methods using background-subtracted signals or curvatures do not. We performed an example analysis to demonstrate this notion. Using only samples with a maximum interference level of 1 (Table 1) to calibrate regression models, it was calculated the corresponding hemoglobin and bilirubin values for all 510 samples. In the eight samples used for these calibration steps, the highest hemoglobin (30 mg/dL), bilirubin (2.76 mg/dL), and triglyceride (127 mg/dL) levels were practically low. Traditional methods gave large biases and poor correlations, while those using background-subtracted signals and curvatures gave good agreement. As expected, with −log 10(p) as the metric, the maximum level of interference used for calibration had to be increased for the performance of traditional methods to improve. In contrast, the methods using background-subtracted signals or curvatures performed very well, even when a maximum level of 1 is used for calibration. The independence of the methods involving background-subtracted signals and curvatures allows the calibration to be done even with samples of limited interference levels (e.g., those naturally collected instead of those made via a comprehensive procedure like the samples used for this work).
Background-subtracted signals require ranges spanning 65 nm for hemolysis and 80 nm for icterus, which are ranked in the middle in both cases. This advantage enables possible simplifications and improvements of the detection instrument, such as a smaller wavelength range of the light source, a smaller required width of the array detector (in a prism/grating based spectrophotometer), and a higher wavelength resolution (due to a smaller wavelength range for the same detector size). While typical commercial analyzers have full-scale spectrophotometers, point-of-care devices may benefit from this advantage.
Discussion
By way of non-limiting example, one approach of the two new methods described herein (those involving background-subtracted signals and curvatures) is to obtain clean spectral signals even with interference. Therefore, their application can be extended to other spectral measurements. For example, many clinical assays with optical readouts based on absorption spectra employ multiple-wavelength readings to subtract out interfering signals and require the knowledge of possible interferents. The two new methods described can be readily applied to those assays, with the practical advantages described above.
It is worth noting that the background-subtracted signals may be negative at certain points in the parameter space (as specified by the wavelength, kernel type, and kernel size) (
In some settings, such as when hemolysis detection is required at the collection site, the use of an inexpensive and simple device to collect spectral data is desirable. The background subtraction method described herein can potentially enable such data acquisition to be done with a simple camera. The novelty is that the background subtraction method only requires two optical filters, one with a narrow band to obtain the major signal, and the other one with a wider band to obtain the background signal (
By way of non-limiting example, The new methods described in this paper, which are based on background-subtraction and curvature calculation, provide the ability to quantify and detect hemolysis and icterus with several practical advantages: 1) better robustness in terms of eliminating signals from unwanted substances, some of which may not be known beforehand, 2) smaller sets of samples used for calibration with few levels of interference, and 3) simpler instruments (spectrophotometers with smaller detectors/short wavelength ranges or cameras equipped with pairs of filters). These new methods do not have advantages over traditional methods with respect to the number of discrete wavelengths required. A camera-based implementation would require further hardware engineering, and the implementation of these new methods, in general, may involve other methods of performing background-subtraction (e.g., those with other blurring methods) or curvature calculation (e.g., those using methods other than circle fitting). Such implementation could benefit cases of sample collection in resource-limited settings. For example, in remote sites where samples are collected and sent to centralized laboratories, the ability to detect interference at the point of collection would allow for immediate re-drawing. Furthermore, if the hardware is adapted to work with small-volume samples (e.g., those collected by fingersticks), it would be possible to integrate the methods described herein with point-of-care diagnostic instruments and contribute to the effort of bringing diagnostics to developing countries or other under-served settings. Overall, these new data analysis methods can enable new practical possibilities in the development of interference screening methods.
OTHER EMBODIMENTSApplications in Other Spectral Measurements
For at least one non-limiting example, the utility of the two methods described above is to obtain clean signals in the presence of interference in spectra. Optionally, their application can be extended to other spectral measurements. For example, currently, the background subtraction step using single background wavelengths is part of some clinical chemistry assays, such as glucose, total iron, and total iron binding capacity. The curvatures and the background subtracted signals may allow the assays to be even less sensitive to spectral interference (e.g. hemolysis, icterus, and lipemia).
Applying the Background Subtraction Method in Imaging
For at least one non-limiting example, getting meaningful spectral data from simple imaging (e.g. photography with a simple color camera) is challenging because signals from the whole spectra are combined into a small number of channels (e.g. red, green, and blue in RGB images). One way to obtain spectral data is to use optical filters that allow light to pass through only at specified wavelength ranges. However, it is impractical to set up many optical filters when absorbance values at multiple wavelengths are needed, especially in resource-limited settings. An example of such case is when a hemolysis detection step is required at the collection site (where no spectrophotometer is available) and the detection method requires absorbance values at 5 wavelengths to account for icterus and lipemia.
Optionally, the background subtraction method can be used in place of methods that require absorbance values at multiple wavelengths to account for spectral interference, such as in the cases of hemolysis and icterus detection/quantification. In one non-limiting example, the novelty is that the background subtraction method only requires 2 optical filters, one with a narrow band to obtain the major signal, and the other one with a wider band to obtain the background signal (
In this non-limiting example,
Icterus Detection/Quantification with Curvatures
Referring now to
For at least one non-limiting example, the curvature of the absorption peak at 460 nm was found to be unsuitable for the quantification/detection of icterus. An optimization step revealed that curvatures at 465 nm and 470 nm (with 3, 5, or 7 points used for the calculation) can be used to quantify icterus levels (via bilirubin concentrations). Very high hemolysis levels (e.g. 1000 mg/dL of [Hb]) can lead to significant interference on the left side of the 460-nm peak (wavelength≤460 nm) but not the right side, so the shape of the absorption curve just off the peak on the right side is not affected by hemolysis (
Referring now to
Once a cartridge is in the system, individual elements of the cartridge such as but not limited to cuvettes, pipette tips, vessels, other physical items, regent(s), fluids, or the like may be moved from the cartridge.
It should also be understood that thermal control of conditions within the module 10100 can be regulated so that thermal conditioning by way of controlled temperature air flow through the system is accomplished so that temperature sensor(s) in the module detect that ambient air in the system is within a desired range. Optionally, the thermal regulation is by way of a combination of controlled air temperature and controlled support structure temperature. This can be of particular use when the support structure comprises of a thermally conductive material.
Referring now to
Referring now to
While the invention has been described and illustrated with reference to certain particular embodiments thereof, those skilled in the art will appreciate that various adaptations, changes, modifications, substitutions, deletions, or additions of procedures and protocols may be made without departing from the spirit and scope of the invention. For example, with any of the above embodiments, it should be understood that the signal processing techniques described herein are not limited to those assays mentioned in the text, but may also be applied to other assays not expressly listed or described herein. It should be understood that the detection and/or correction techniques (or associated hardware) can be integrated into stand-alone device. Optionally, the detection and/or correction techniques (or associated hardware) may be integrated into automated sample analyzers or sample processors. Optionally, they may be part of a sample preparation and/or sample pre-processing stage of the above devices. Optionally, they may be used during various steps/processes of assay processing or analysis.
Additionally, concentrations, amounts, and other numerical data may be presented herein in a range format. It is to be understood that such range format is used merely for convenience and brevity and should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. For example, a size range of about 1 nm to about 200 nm should be interpreted to include not only the explicitly recited limits of about 1 nm and about 200 nm, but also to include individual sizes such as 2 nm, 3 nm, 4 nm, and sub-ranges such as 10 nm to 50 nm, 20 nm to 100 nm, etc . . . .
The publications discussed or cited herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed. All publications mentioned herein are incorporated herein by reference to disclose and describe the structures and/or methods in connection with which the publications are cited. By way of non-limiting example, the following applications are fully incorporated herein by reference for all purposes: 62/452,949 entitled “METHODS AND DEVICES FOR IMPROVED SIGNAL DETECTION FROM BIOLOGICAL SAMPLES” filed Jan. 31, 2017, U.S. Patent Application No. 62/519,018 entitled “Spectral analysis methods based on background subtraction and curvature calculation used in the detection or quantification of hemolysis and icterus in blood-derived clinical samples” filed Jun. 13, 2017, U.S. Pat. Nos. 7,888,125, 8,007,999, 8,088,593 and U.S. Publication No., US20120309636, PCT Application No. PCT US2012/057155, U.S. patent application Ser. No. 13/244,952, and PCT Application No. PCT/US2011/53188, filed Sep. 25, 2011. PCT Application No. PCT/US2011/53188, filed Sep. 25, 2011, U.S. patent application Ser. No. 13/244,946, filed Sep. 26, 2011, PCT Application No. PCT/US11/53189, filed Sep. 25, 2011, Patent Cooperation Treaty Application No. PCT/US2011/53188; Patent Cooperation Treaty Application No. PCT/US2012/57155; U.S. patent application Ser. No. 13/244,947; U.S. patent application Ser. No. 13/244,949; U.S. patent application Ser. No. 13/244,950; U.S. patent application Ser. No. 13/244,951; U.S. patent application Ser. No. 13/244,952; U.S. patent application Ser. No. 13/244,953; U.S. patent application Ser. No. 13/244,954; U.S. patent application Ser. No. 13/244,956; and U.S. application Ser. No. 15/595,489.
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. Any feature, whether preferred or not, may be combined with any other feature, whether preferred or not. The appended claims are not to be interpreted as including means-plus-function limitations, unless such a limitation is explicitly recited in a given claim using the phrase “means for.” It should be understood that as used in the description herein and throughout the claims that follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise. For example, a reference to “an assay” may refer to a single assay or multiple assays. Also, as used in the description herein and throughout the claims that follow, the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise. Finally, as used in the description herein and throughout the claims that follow, the meaning of “or” includes both the conjunctive and disjunctive unless the context expressly dictates otherwise. Thus, the term “or” includes “and/or” unless the context expressly dictates otherwise.
Claims
1. A method for use with a biological sample, the method comprising:
- using peak curvature to reduce interference in detection of hemolysis in the biological sample.
2. (canceled)
3. A method for use with a biological sample, the method comprising:
- using background subtraction in detection of hemolysis and icterus in the biological sample.
4. (canceled)
5. A method for use with a biological sample, the method comprising:
- acquiring background-subtracted signals using a narrow-band optical filter and a wide-band optical filter;
- using background-subtracted signals for quantification of hemolysis and icterus in the biological sample.
6. The method of claim 5 further comprising:
- placing the narrow-band optical filter and the wide-band optical filter in regions of interest concurrently so that only one exposure is needed to obtain the major signal, the background signal, and the background-subtracted signal.
7. The method of claim 5 further comprising reducing signal interference through calculation of background-subtracted spectra.
8-14. (canceled)
Type: Application
Filed: Nov 23, 2021
Publication Date: Jul 21, 2022
Inventor: Toan Huynh (Mountain View, CA)
Application Number: 17/533,510