MULTI-LEVEL BUCK CONVERTER AND ASSOCIATE CONTROL CIRCUIT THEREOF

A control circuit for controlling multi-level buck converter. The multi-level buck converter has N pairs of switches, and N is an integer equal to or greater than 2. The control circuit has a comparing circuit comparing a voltage feedback signal with a reference signal to generate a comparing signal, a selecting circuit receiving the comparing signal to generate N set signals, and N COT controllers. The N set signals take turns to change from inactive state to active state at each rising edge of the comparing signal. Each of the N COT controllers receives output voltage signal, input voltage signal and one corresponding set signal of N set signals to generate a corresponding control signal to control the corresponding pair of switches to perform a complementary on and off switching.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates to electrical circuit, more particularly but not exclusively relates to multi-level buck converter.

BACKGROUND

As compared to a conventional buck (single-phase) converter, a multi-level buck converter has several advantages. For instance, the switching stresses of those switches of multi-level buck converters are lower than those of conventional buck converters. Moreover, the ripple in multi-buck converters could remarkably be reduced as compared to the ripple at the same switching speed for the conventional buck converter.

For example, as shown in FIG. 1, a three-level buck converter comprise a first fly capacitor C1, an inductor LOUT, a capacitor COUT and four switch transistors: switch transistor M1a, switch transistor M1b, switch transistor M2a and switch transistor M2b. Therefore, there are four switching states for the three-level buck converter: 00, 01, 10, and 11. Herein, “1” denotes a high side switch transistor (e.g., M1a or M2a) is on while its corresponding low side switch (e.g., M1b or M2b) transistor is off, and “0” denotes the high side transistor is off while its corresponding low side switch transistor is on. In each of the four switching states, only two of four switch transistors are on.

Therefore, switching state 00 indicates switch transistors M1a and M2a are off while switch transistors M1b and M2b are on such that an inductor current flowing through the inductor LOUT is freewheeling through switch transistors M1b and M2b. In switching state 01, switch transistors M1a and M2b are off while switch transistors M1b and M2a are on such that the first flying capacitor voltage C1 is discharged to drive a switch node voltage signal VSW at one-half of an input voltage signal VIN of the three-level buck converter. In switching state 10, switch transistors M1a and M2b are on while switch transistors M1b and M2a are off such that the first flying capacitor voltage C1 is charged by the input voltage signal VIN to drive the switch node voltage signal VSW at ½ VIN. In switching state 11, switch transistors M1a and M2a are on while switch transistors M1b and M2b are off such that the switch node voltage signal VSW is equal to the input voltage signal VIN. The switching states of the three-level buck converter are summarized in the following Table 1:

TABLE 1 States of Switch Transistors States 00 01 10 11 M1a Off Off On On M2a Off On Off On M1b On On Off Off M2b On On Off Off

Furthermore, Table 2 illustrates a potential of the switch node voltage signal VSW, a potential of the first terminal of the first flying capacitor C1+ and a potential of the second terminal of the first flying capacitor C1− for different switching states.

TABLE 2 Potentials for Different Switching States States VSW C1+ C1− 00 0 V ½ VIN 0 V 01 ½ VIN ½ VIN 0 V 10 ½ VIN VIN ½ VIN 11 VIN VIN ½ VIN

From Table 2, it could be found that the potential of the switch node voltage signal VSW is switched among a potential of a logic ground (labeled as 0V), one-half of a potential of the input voltage signal VIN (labeled as VIN), and the potential of the input voltage signal VIN (labeled as ½VIN). As compared to a conventional buck converter, the root-mean-square (RMS) of the switch node voltage signal VSW of the three-level buck converter may be reduced by 50%. This reduction of the switch node voltage signal VSW also reduces the switching voltage stresses on the switching transistors. Given the reduced voltage stress, the breakdown voltage ratings for the switching transistors may also be reduced as compared to these of the conventional buck converter. Multi-level buck converters thus offer reduced conduction losses for its switch transistors.

Although the multi-level buck converters offer advantageous properties over conventional buck converters, these advantages come at the cost of increased regulation complexity. Besides increased regulation complexity, the multi-level buck converter creates a number of control stability issues that are not appeared in conventional buck converters, especially when the multi-level buck converter transits from one operation state to another operation state. It is thus conventional to limit multi-level buck converter to work in one of the operation states, which may limit a range of duty cycle which is defined as the ratio of an output voltage signal VOUT to the input voltage signal VIN of the multi-level buck converter. Therefore, it is desired to have an improved control solution for multi-level buck converter with a wide range of duty cycle and good stability.

SUMMARY

In accomplishing the above and other objects, there has been provided, in accordance with an embodiment of the present invention, a control circuit for controlling a multi-level buck converter having N pairs of switches serially connected between an input terminal and a logic ground, and wherein N is an integer equal to or greater than 2. The control circuit comprises a comparing circuit, a selecting circuit and N COT controllers. The comparing circuit is configured to receive a reference signal and a voltage feedback signal indicative of an output voltage signal of the multi-level buck converter, and further configured to compare the voltage feedback signal with the reference signal to generate a comparing signal. The selecting circuit is configured to receive the comparing signal, and further configured to generate N set signals based on the comparing signal. For each i=1, 2, . . . , N, the ith COT controller is configured to receive the corresponding ith set signal, the output voltage signal and an input voltage signal of the multi-level buck converter, and further configured to generate an ith control signal to control the ith pair of switches to perform a complementary on and off switching based on the corresponding ith set signal, the output voltage signal and the input voltage signal.

In accordance with an embodiment of the present invention, there has been provided a multi-level buck converter comprising N pairs of switches, comparing circuit, a selecting circuit and N COT controllers. The N pairs of switches are serially connected between an input terminal and a logic ground, wherein N is an integer equal to or greater than 2. The comparing circuit is configured to receive a reference signal and a voltage feedback signal indicative of an output voltage signal of the multi-level buck converter, and further configured to compare the voltage feedback signal with the reference signal to generate a comparing signal. The selecting circuit is configured to receive the comparing signal, and further configured to generate N set signals based on the comparing signal. For each i=1, 2, . . . , N, the ith COT controller is configured to receive the corresponding ith set signal, the output voltage signal and an input voltage signal of the multi-level buck converter, and further configured to generate an ith control signal to control the ith pair of switches to perform a complementary on and off switching based on the corresponding ith set signal, the output voltage signal and the input voltage signal.

In accordance with an embodiment of the present invention, there has been provided an multi-level buck converter comprising two pairs of switches serially connected between an input terminal and a logic ground, a comparing circuit, a selecting circuit, a first COT controller and a second COT controller. The comparing circuit is configured to compare a voltage feedback signal indicative of an output voltage signal of the multi-level buck converter with a reference signal to generate a comparing signal. The selecting circuit is configured to receive the comparing signal, and further configured to generate a first set signal and a second set signal based on the comparing signal. The first COT controller is configured to receive the first set signal, the output voltage signal and an input voltage signal of the multi-level buck converter, and further configured to generate a first control signal to control the first pair of switches to perform a complementary on and off switching based on the first set signal, the output voltage signal and the input voltage signal. The second COT controller is configured to receive the second set signal, the output voltage signal and the input voltage signal, and further configured to generate a second control signal to control the second pair of switches to perform a complementary on and off switching based on the second set signal, the output voltage signal and the input voltage signal.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting and non-exhaustive embodiments are described with reference to the following drawings.

FIG. 1 illustrates switching states of a prior art three-level buck converter.

FIG. 2 schematically illustrates a four-level buck converter 100 in accordance with an embodiment of the present invention.

FIG. 3 illustrates switching states of the four-level buck converter 100 of FIG. 2 in accordance with an embodiment of the present invention.

FIG. 4 illustrates an operation waveform diagram 200 illustrating operation of the four-level buck converter 100 whose duty cycle has a range from zero to ⅓ in accordance with an embodiment of the present invention.

FIG. 5 illustrates an operation waveform diagram 300 illustrating operation of the four-level buck converter 100 whose duty cycle has a range from ⅓ to ⅔ in accordance with an embodiment of the present invention.

FIG. 6 illustrates an operation waveform diagram 400 illustrating operation of the four-level buck converter 100 whose duty cycle is larger than ⅔ in accordance with an embodiment of the present invention.

FIG. 7 schematically illustrates the selecting circuit 20 of FIG. 2 in accordance with an embodiment of the present invention.

FIG. 8 schematically illustrates the first COT controller 301 of FIG. 2 in accordance with an embodiment of the present invention.

FIG. 9 schematically illustrates the ON time generator 3011 of FIG. 8 in accordance with an embodiment of the present invention.

FIG. 10 schematically illustrates the comparing circuit 10 of FIG. 2 in accordance with other embodiments of the present invention.

FIG. 11 schematically illustrates a four-level buck converter 500 in accordance with an embodiment of the present invention.

FIG. 12 schematically illustrates a four-level buck converter 600 in accordance with an embodiment of the present invention.

FIG. 13 schematically illustrates a multi-level buck converter 700 in accordance with an embodiment of the present invention.

FIG. 14 schematically illustrates a delay circuit 50 of FIG. 13 in accordance with an embodiment of the present invention.

The use of the same reference label in different drawings indicates the same or like components.

DETAILED DESCRIPTION

In the present application, numerous specific details are provided, such as examples of circuits, components, and methods, to provide a thorough understanding of embodiments of the invention. These embodiments are exemplary, not to confine the scope of the invention. Persons of ordinary skill in the art will recognize, however, that the invention can be practiced without one or more of the specific details. In other instances, well-known details are not shown or described to avoid obscuring aspects of the invention. Some phrases are used in some exemplary embodiments. However, the usage of these phrases is not confined to these embodiments.

Several embodiments of the present invention are described below with reference to battery charge and discharge circuit and associated control circuit.

FIG. 2 schematically illustrates a four-level buck converter 100 in accordance with an embodiment of the present invention. In the embodiment shown in FIG. 2, the four-level buck converter 100 may comprise three pairs of switch transistors (M1a, M1b, M2a, M2b, M3a and M3b), a first flying capacitor C1, a second capacitor C2, an output capacitor COUT and an inductor LOUT arranged in a conventional fashion. In detail, a first high side switch transistor M1a, a second high side switch transistor M2a and a third high side switch transistor M3a are successively connected in series between an input node of the four-level buck converter 100 for receiving an input voltage signal VIN and a switching node SW; a first low side switch transistor M1b, a second low side switch transistor M2b and a third low side switch transistor M3b are successively connected in series between a logic ground and the switching node SW. The first flying capacitor C1 is connected between a common connection of the first high side switch transistor M1a and the second high side switch transistor M2a and a common connection of the first low side switch transistor M1b and the second low side switch transistor M2b. The second flying capacitor C2 is connected between a common connection of the second high side switch transistor M2a and the third high side switch transistor M3a, and a common connection of the second low side switch transistor M2b and the third low side switch transistor M3b. The inductor LOUT is connected between the switching node SW and an output terminal of the four-level buck converter 100 for providing an output voltage signal VOUT. The output capacitor COUT is connected between the output terminal of the four-level buck converter 100 and the logic ground.

Note that the switch node voltage signal VSW at the switching node SW may comprise four voltage potentials: one-third of the potential of the input voltage signal VIN (labeled as ⅓VIN), two-third of the potential of the input voltage signal VIN (labeled as ½VIN), the potential of the input voltage signal VIN (labeled as VIN) and the potential of the logic ground (labeled as 0 V). Given these four possible potentials, the multi-level buck converter illustrated in FIG. 2 may be denoted as a four-level buck converter.

In the exemplary embodiment of FIG. 2, the four-level buck converter 100 may further comprise a control circuit comprising a comparing circuit 10, a selecting circuit 20, and three COT controllers (301, 302 and 303).

In the exemplary embodiment of FIG. 2, the comparing circuit 10 may have a first input terminal configured to receive a voltage feedback signal VFB indicative of the output voltage signal VOUT, a second input terminal configured to receive a reference signal VREF, and an output terminal. The comparing circuit 10 may be configured to compare the voltage feedback signal VFB with the reference signal VREF to generate a comparing signal CA at its output terminal. The comparing signal CA may be a logic signal having an active state (e.g., the logic high state) and an inactive state (e.g., the logic low state). In an embodiment, the comparing signal CA is in the active state when the voltage feedback signal VFB is smaller than the reference signal VREF, and the comparing signal CA is in the inactive state when the voltage feedback signal VFB is larger than the reference signal VREF. In an embodiment, the comparing circuit 10 may comprise a voltage comparator 101 having a non-inverting terminal, an inverting terminal and an output terminal. In an embodiment, the inverting terminal of the voltage comparator 101 is operated as the first input terminal of the comparing circuit 10, and the non-inverting terminal of the voltage comparator 101 is operated as the second input terminal of the comparing circuit 10.

In the exemplary embodiment of FIG. 2, the selecting circuit 20 may be configured to receive the comparing signal CA, and further configured to generate three set signals (CA1, CA2 and CA3) based on the comparing signal CA. The three set signals (CA1, CA2 and CA3) may be logic signals having an active state (e.g., the logic high state) and an inactive state (e.g., the logic low state). Each of the three set signals (CA1, CA2 and CA3) is configured to trigger a corresponding COT controller when its state changes from the inactive state to the active state. In an embodiment, the three set signals (CA1, CA2 and CA3) take turns to change from the inactive state to the active state at each rising edge of the comparing signal CA. For example, when the rising edge of the comparing signal CA is arrived for the first time, only the first set signal CA1 s in the active state; when the rising edge of the comparing signal CA is arrived for the second time, only the second set signal CA2 is in the active state; when the rising edge of the comparing signal CA is arrived for the third time, only the third set signal CA3 is in the active state; and when the comparing signal CA is in the active state for the fourth time, the first set signal CA1 is back to the active state again, and so forth.

The first COT controller 301 may be configured to receive the output voltage signal VOUT, the input voltage signal VIN and the first set signal CA1. When the first set signal CA1 is in the active state, the first COT controller 301 may be configured to generate a first control signal PWM1 in accordance with the output voltage signal VOUT, the input voltage signal VIN and the first set signal CA1 to control the first pair of switching transistors M1a and M1b. In an embodiment, when the first set signal CA1 is in the active state, the first control signal PWM1 is configured to turn the first high side switch transistor M1a on and turn the first low side switch transistor M1b off.

The second COT controller 302 may be configured to receive the output voltage signal VOUT, the input voltage signal VIN and the second set signal CA2. When the second set signal CA2 is in the active state, the second COT controller 302 may be configured to generate a second control signal PWM2 in accordance with the output voltage signal VOUT, the input voltage signal VIN and the second set signal CA2 to control the second pair of switching transistors M2a and M2b. In an embodiment, when the second set signal CA2 is in the active state, the second control signal PWM2 is configured to turn the second high side switch transistor M2a on and turn the second low side switch transistor M2b off.

The third COT controller 303 may be configured to receive the output voltage signal VOUT, the input voltage signal VIN and the third set signal CA3. When the third set signal CA3 is in the active state, the third COT controller 303 may be configured to generate a third control signal PWM3 in accordance with the output voltage signal VOUT, the input voltage signal VIN and the third set signal CA3 to control the third pair of switching transistors M3a and M3b. In an embodiment, when the third set signal CA3 is in the active state, the third control signal PWM3 is configured to turn the third high side switch transistor M3a on and turn the third low side switch transistor M3b off.

In an embodiment, each of the first, the second and the third control signal PWM1-PWM3 may comprise a high side control signal and a low side control signal to respectively control the corresponding pair of switching transistors. For example, the first control signal PWM1 may comprise a first high side control signal PWM1a (as illustrated in the following FIG. 8) and a first low side control signal PWM1b (as illustrated in the following FIG. 8) to respectively control the first high side switch transistor M1a and the first low side switch transistor M1b to have a complementary on and off state, i.e., the first high side switch transistor M1a is on while the first low side switch transistor M1b is off, and vice versa. Similarly, the second control signal PWM2 may be configured to control the second high side switch transistor M2a and the second low side switch transistor M2b to have a complementary on and off state; and the third control signal PWM3 may be configured to control the third high side switch transistor M3a and the third low side switch transistor M3b to have a complementary on and off state.

In the exemplary embodiment of FIG. 2, the four-level buck converter 100 has eight switching states: 000, 100, 010, 001, 110, 011, 101, 111 as shown in FIG. 3. Similarly, “1” herein denotes a high side switch transistor (e.g., M1a, M2a, or M3a) is on while its corresponding low side switch (e.g., M1b, M2b, or M3b) transistor is off, and “0” denotes the high side transistor is off while its corresponding low side switch transistor is on. In each of the eight switching states, only three of six switch transistors are on.

As shown in FIG. 3, in switching state 000, switch transistors M1a, M2a and M3a are off while switch transistors M1b, M2b and M3b are on such that an inductor current IL flowing through the inductor LOUT is freewheeling through switch transistors M1b, M2b and M3b.

In switching state 100, switch transistors M1a, M2b and M3b are on while switch transistors M1b, M2a and M3a are off such that the first flying capacitor voltage C1 is charged by the input voltage signal VIN to drive the switch node voltage signal VSW at ⅓VIN. Meanwhile, the second flying capacitor C2 is floating during switching state 100.

In switching state 010, switch transistors M1a, M2b and M3a are off while switch transistors M1b, M2a and M3b are on such that the first flying capacitor voltage C1 is discharged and the second flying capacitor C2 is charged to drive the switch node voltage signal VSW at ⅓VIN.

In switching state 001, switch transistors M1a, M2a and M3b are off while switch transistors M1b, M2b and M3a are on such that the second flying capacitor C2 is discharged to drive the switch node voltage signal VSW at ⅓VIN. Meanwhile, the first flying capacitor C1 is floating during switching state 001.

In switching state 110, switch transistors M1a, M2a and M3b are on while switch transistors M1b, M2b and M3a are off such that the second flying capacitor C2 is charged by the input voltage signal VIN to drive the switch node voltage signal VSW at ⅔VIN. Meanwhile, the first flying capacitor C1 is floating during switching state 110.

In switching state 011, switch transistors M1a, M2b and M3b are off while switch transistors M1b, M2a and M3a are on such that the first flying capacitor voltage C1 is discharged to drive the switch node voltage signal VSW at ⅔VIN. Meanwhile, the second flying capacitor C2 is floating during switching state 011.

In switching state 101, switch transistors M1a, M2b and M3a are on while M1b, M2a and M3b are off such that the first flying capacitor voltage C1 is charged and the second flying capacitor C2 is discharged to drive the switch node voltage signal VSW at ⅔VIN.

In switching state 111, switch transistors M1a, M2a and M3a are on while M1b, M2b and M3b are off such that the switch node voltage signal VSW is charged to be equal to the input voltage signal VIN.

The switching states of the four-level buck converter 100 are summarized in the following Table 3:

TABLE 3 States of Switch Transistors States 000 001 010 011 100 101 110 111 M1a Off Off Off Off On On On On M2a Off Off On On Off Off On On M3a Off On Off On Off On Off On M1b On On On On Off Off Off Off M2b On On Off Off On On Off Off M3b On Off On Off On Off On Off

Furthermore, Table 4 illustrates a potential of the switch node voltage signal VSW, a potential of the first terminal of the first flying capacitor C1+, a potential of the second terminal of the first flying capacitor C1−, a potential of the first terminal of the second flying capacitor C2+, and a potential of the second terminal of the second flying capacitor C2− for different switching states.

TABLE 4 Potentials for Different Switching States States SW C1+ C2+ C1− C2− 000 0 V ⅔ VIN ⅓ VIN 0 V 0 V 100 VIN VIN ⅔ VIN VIN VIN 010 VIN ⅔ VIN ⅔ VIN 0 V VIN 001 VIN ⅔ VIN ⅓ VIN 0 V 0 V 110 VIN VIN VIN VIN VIN 011 VIN ⅔ VIN ⅔ VIN 0 V VIN 101 VIN VIN ⅔ VIN VIN VIN 111 VIN VIN VIN VIN VIN

As compared to a conventional buck converter, the root-mean-square (RMS) of the switch node voltage signal VSW of the four-level buck converter 100 is reduced by ⅔. From Table 4, it could be found that the potential of the switch node voltage signal VSW is switched among a potential of the logic ground (labeled as 0V), one-third of the potential of the input voltage signal VIN (labeled as ⅓VIN), two-third of the potential of the input voltage signal VIN (labeled as ⅔VIN), and the potential of the input voltage signal VIN (labeled as VIN). Meanwhile, the four-level buck converter has a first, a second, and a third operation states by controlling the set of six switch transistors operating and transiting in the eight switching states. Specifically, in the first operation state, the switch node voltage signal VSW is switched between 0V and ⅓VIN if the output voltage signal VOUT is smaller than one-third of the input voltage signal VIN. In the second operation state, the potential of the switch node voltage signal VSW is switched between ⅓VIN and ⅔VIN if the output voltage signal VOUT is greater than one-third of the input voltage signal VIN and smaller than two-third of the input voltage signal VIN. In the third operation state, the potential of the switch node voltage signal VSW is switched between ⅔VIN and VIN if the output voltage signal VOUT is greater than two-third of the input voltage signal VIN and smaller than the input voltage signal VIN.

FIG. 4 illustrates an operation waveform diagram 200 of the four-level buck converter 100 whose duty cycle has a range from zero to ⅓ in accordance with an embodiment of the present invention. In an embodiment, the duty cycle of the four-level buck converter 100 is defined as the ratio of the output voltage signal VOUT to the input voltage signal VIN. A range of the duty cycle of the four-level buck converter 100 from zero to ⅓ means that the output voltage signal VOUT may be regulated in a range of

0 1 3 VIN .

As shown in FIG. 4, the diagram 200 illustrates the feedback signal VFB, the reference signal VREF, the first control signal PWM1, the second control signal PWM2, the third control signal PWM3 and the switch node voltage signal VSW from top-to-bottom. The corresponding switching states in one switching period T are in order as follows: 100, 000, 010, 000, 001, and 000. FIG. 4 also illustrates that the first control signal PWM1, the second control signal PWM2 and the third control signal PWM3 take turns to have a phase shift of 120° in one switching period T. That is to say, the first high side switch transistor M1a, the second high side switch transistor M2a and the third high side switch transistor M3a take turns to be on in one switching period T. Since the duty cycle range of the four-level buck converter 100 is from zero to ⅓, the on time D1 of each of the switch transistors (M1a, M2a, and M3a) is changed from zero to T in the light of the changes of the output voltage signal VOUT.

FIG. 5 illustrates an operation waveform diagram 300 of the four-level buck converter 100 whose duty cycle has a range from ⅓ to ⅔ in accordance with an embodiment of the present invention. A range of the duty cycle of the four-level buck converter 100 from ⅓ to ⅔ means that the output voltage signal VOUT may be regulated in a range of

1 3 ~ 2 3 VIN .

As shown in FIG. 5, the diagram 300 llustrates the feedback signal VFB, the reference signal VREF, the first control signal PWM1, the second control signal PWM2, the third control signal PWM3 and the switch node voltage signal VSW from top-to-bottom. The corresponding switching states in one switching period T are in order as follows: 101, 100, 110, 010, 011, and 001. FIG. 5 also illustrates that the first control signal PWM1, the second control signal PWM2 and the third control signal PWM3 take turns to have a phase shift of 120° in one switching period T. That is to say, the first high side switch transistor M1a, the second high side switch transistor M2a and the third high side switch transistor M3a take turns to be on in one switching period T. Since the duty cycle range of the four-level buck converter 100 is from ⅓ to ⅓, the on time D2 of each of the switch transistors (M1a, M2a, and M3a) is changed from ⅓T to ⅔T in the light of the changes of the output voltage signal VOUT.

FIG. 6 illustrates an operation waveform diagram 400 illustrating operation of the four-level buck converter 100 whose duty cycle is larger than ⅔ in accordance with an embodiment of the present invention. A range of the duty cycle of the four-level buck converter 100 from ⅔ to 1 means that the output voltage signal VOUT may be regulated in a range of ⅔VIN˜VIN. As shown in FIG. 6, the diagram 400 illustrates the feedback signal VFB, the reference signal VREF, the first control signal PWM1, the second control signal PWM2, the third control signal PWM3 and the switch node voltage signal VSW from top-to-bottom. The corresponding switching states in one switching period T are in order as follows: 101, 100, 110, 010, 011, and 001. FIG. 6 also illustrates that the first control signal PWM1, the second control signal PWM2 and the third control signal PWM3 take turns to have a phase shift of 120° in one switching period T. That is to say, the first high side switch transistor M1a, the second high side switch transistor M2a and the third high side switch transistor M3a take turns to be on in one switching period T. Since the duty cycle range of the four-level buck converter 100 is from ⅔ to 1, the on time D3 of each switch transistor is changed from ⅔T to T in the light of the changes of the output voltage signal VOUT.

FIG. 7 schematically illustrates the selecting circuit 20 of FIG. 2 in accordance with an embodiment of the present invention. As shown in FIG. 7, the selecting circuit 20 may comprise a first AND logic gate 201, a second AND logic gate 202, a third AND logic gate 203, and an enable circuit 204. The enable circuit 204 is configured to receive the comparing signal CA, and further configured to generate a first enable signal EN1, a second enable signal EN2 and a third enable signal EN3 based on the comparing signal CA. In an embodiment, the first enable signal EN1, the second enable signal EN2 and the third enable signal EN3 may be logic signals having an active state (e.g., the logic high state) and an inactive state (e.g., the logic low state). In an embodiment, the first enable signal EN1, the second enable signal EN2 and the third enable signal EN3 take turns to change from the inactive state to the active state. For example, one of the enable signals, e.g., the first enable signal EN1, is in the active state (e.g., the logic high state) at first, after a first rising edge of the comparing signal CA is arrived for a certain period, the first enable signal EN1 is back to the inactive state and the second enable signal EN2 is changed from the inactive state (e.g., the logic low state) to the active state (e.g., the logic high state). Similarly, after a second rising edge of the comparing signal CA is arrived for the certain period, the second enable signal EN2 is back to the inactive state and the third enable signal EN3 is changed from the inactive state to the active state. In next switching period, the first enable signal EN1 is changed to the active state again after a third rising edge of the comparing signal CA is arrived for the certain period, while the third enable signal EN3 is back to the inactive state, and so forth. In an embodiment, the certain period may be smaller than ⅓T, and could be set by customers in accordance with different applications.

The first AND logic gate 201 is configured to receive the comparing signal CA and the first enable signal EN1, and further configured to conduct a logic AND operation of the comparing signal CA and the first enable signal EN1 to generate the first set signal CA1.

The second AND logic gate 202 is configured to receive the comparing signal CA and the second enable signal EN2, and further configured to conduct a logic AND operation of the comparing signal CA and the second enable signal EN2 to generate the second set signal CA2.

The first AND logic gate 201 is configured to receive the comparing signal CA and the third enable signal EN3, and further configured to conduct a logic AND operation of the comparing signal CA and the third enable signal EN3 to generate the third set signal CA3.

FIG. 8 schematically illustrates the first COT controller 301 of FIG. 2 in accordance with an embodiment of the present invention. As shown in FIG. 8, the COT controller 301 may comprise an ON time generator 3011 and a logic circuit 3012. In the exemplary embodiment of FIG. 8, the ON time generator 3011 may be configured to receive the first set signal CA1, the input voltage signal VIN and the output voltage signal VOUT to generate an on time signal TON. The on time signal TON may comprise a logic signal having an active state and an inactive state. The logic circuit 3012 may be configured to receive the first set signal CA1 and the on time signal TON, and further configured to conduct a logic operation of the first set signal CA1 and the on time signal TON to generate the first control signal PWM1. In an embodiment, the logic circuit 3012 may be illustrated as a RS flip-flop FFL. The RS flip-flop FFL may comprise a set terminal S configured to receive the first set signal CA1, a reset terminal R configured to receive the on time signal TON, a first output terminal Q1 to provide the first high side control signal PWM1a and a second output terminal Q2 to provide the first low side control signal PWM1b.

As can be appreciated, FIG. 8 only schematically illustrates the first COT controller 301 of FIG. 2, and the second COT controller 302 and the third COT controller 303 could be obtained under teaching of FIG. 8. Here will not describe for simplicity.

FIG. 9 schematically illustrates the ON time generator 3011 of FIG. 8 in accordance with an embodiment of the present invention. In the exemplary embodiment of FIG. 9, the ON time generator 3011 may comprise a controlled current generator 911, a controlled voltage generator 912, a capacitor 913, a charge comparator 914, and a reset switch 915. The controlled current generator 911 may be configured to receive input voltage signal VIN to generate a controlled current signal ICH. In an embodiment, the controlled current signal ICH is proportional to the input voltage signal VIN. The capacitor 913 may be connected between an output terminal of controlled current generator 911 and the logic ground. The controlled current signal ICH is configured to charge the capacitor 913 to generate a capacitor voltage signal VC across the capacitor 913. The controlled voltage generator 912 may be configured to receive the output voltage signal VOUT to generate a controlled voltage signal VD. In an embodiment, the controlled voltage signal VD is proportional to the output voltage signal VOUT. The charge comparator 914 may have a first input terminal configured to receive the controlled voltage signal VD, a second input terminal configured to receive the capacitor voltage signal VC, and an output terminal. The charge comparator 914 may be configured to compare the controlled voltage signal VD with the capacitor voltage signal VC to generate the on time signal TON. The reset switch 915 may have a first terminal coupled to the output terminal of controlled current generator 911, a second terminal connected to the logic ground, and a control terminal configured to receive the first set signal CA1. When the first set signal CA1 controls the reset switch 913 on, the capacitor 913 is discharged via the reset switch 915. When the first set signal CA1 controls the reset switch 915 off, the controlled current signal ICH may begin to charge the capacitor 913.

FIG. 10 schematically illustrates the comparing circuit 10 of FIG. 2 in accordance with other embodiments of the present invention. In the exemplary embodiment of FIG. 10, the comparing circuit 10 may comprise an error amplifier 102, a ramp generator 103, a ramp generator 104, a ramp generator 105, an adder 106, and a voltage comparator 107.

The error amplifier 102 may have a first input terminal configured to receive the voltage feedback signal VFB, a second input terminal configured to receive the reference signal VREF, and an output terminal. The error amplifier 102 may be configured to compare the voltage feedback signal VFB with the reference signal VREF to generate an error signal EA at its output terminal, wherein the error signal EA is indicative of the difference of the voltage feedback signal VFB and the reference signal VREF.

The ramp generator 103 may be configured to receive the first control signal PWM1, and start to generate a ramp signal Ramp1 at the moment once the first high side switch transistor M1a is turned on, e.g., the first control signal PWM1 is changed from the inactive stage to the active state, in each switching period T.

The ramp generator 104 may be configured to receive the second control signal PWM2, and start to generate a ramp signal Ramp2 at the moment once the second high side switch transistor M2a is turned on, e.g., the second control signal PWM2 is changed from the inactive stage to the active state, in each switching period T.

The ramp generator 105 may be configured to receive the third control signal PWM3, and start to generate a ramp signal Ramp3 at the moment once the third high side switch transistor M3a is turned on, e.g., the third control signal PWM3 is changed from the inactive stage to the active state, in each switching period T.

The adder 106 may be configured to receive the voltage feedback signal VFB, the ramp signal Ramp1, the ramp signal Ramp2, and the ramp signal Ramp3, and further configured to conduct an add operation of the voltage feedback signal VFB, the ramp signal Ramp1, the ramp signal Ramp2 and the ramp signal Ramp3 to generate a sum signal Ramp_sum.

The voltage comparator 107 may have a first input terminal configured to receive the error signal EA, a second input terminal configured to receive the sum signal Ramp_sum, and an output terminal. The voltage comparator 107 may be configured to compare the error signal EA with the sum signal Ramp_sum to generate the comparing signal CA at its output terminal. In an embodiment, the comparing circuit 10 of FIG. 10 can improve stability for the four-level buck converter 100.

FIG. 11 schematically illustrates a four-level buck converter 500 in accordance with an embodiment of the present invention. Comparing with the four-level buck converter 100 of FIG. 2, the four-level buck converter 500 may further comprise a current limiting circuit 40. The current limiting circuit 40 may comprise a first input terminal, a second input terminal, a third input terminal, and an output terminal. The first input terminal of the current limiting circuit 40 is coupled to a common node of the first low side switch transistor M1b and the logic ground to receive a current sense signal CS1 that is indicative of the current flowing through the first low side switch transistor M1b. The second input terminal of the current limiting circuit 40 is coupled to a common node of the first low side switch transistor M1b and the second terminal of the first flying capacitor C1 to receive a current sense signal CS2 that is indicative of the current flowing through the second low side switch transistor M2b. Furthermore, the third input terminal of the current limiting circuit 40 is coupled to a common node of the third low side switch transistor M3b and the second terminal of the second flying capacitor C2 to receive a current sense signal CS3 that is indicative of the current flowing through the third low side switch transistor M3b.

The current limiting circuit 40 may be configured to determine whether these current sense signals (CS1, CS2, and CS3) are larger than a current limit value ILIM, and further configured to generate an over current instruction signal OC at the output terminal of the current limiting circuit 40. The over current instruction signal OC may be a logic signal having an active state and an inactive state. In an embodiment, the over current instruction signal OC is in the active state (e.g., the logic low state) if any one of the current sense signal CS1, the current sense signal CS2 and the current sense signal CS3 is larger than the current limit value ILIM, otherwise the over current instruction signal OC is in the inactive state (e.g., the logic high state).

In the exemplary embodiment of FIG. 11, the current limiting circuit 40 may comprise three comparators (401, 402, and 403), and an AND logic gate 404. The comparator 401 may comprise a first input terminal configured to receive the current limit value ILIM, a second input terminal configured to receive the current sense signal CS1, and an output terminal. The comparator 401 may be configured to compare the current sense signal CS1 with the current limit value ILIM to generate an instruction signal OC1 at its output terminal. The comparator 402 may comprise a first input terminal configured to receive the current limit value ILIM, a second input terminal configured to receive the current sense signal CS2, and an output terminal. The comparator 402 may be configured to compare the current sense signal CS2 with the current limit value ILIM to generate an instruction signal OC2 at its output terminal. The comparator 403 may comprise a first input terminal configured to receive the current limit value ILIM, a second input terminal configured to receive the current sense signal CS3, and an output terminal. The comparator 403 may be configured to compare the current sense signal CS3 with the current limit value ILIM to generate an instruction signal OC3 at its output terminal. The AND logic gate 404 may be configured to receive the instruction signal OC1, the instruction signal OC2 and the instruction signal OC3, and further configured to conduct a AND logic operation of the instruction signal OC1, the instruction signal OC2 and the instruction signal OC3 to generate the over current instruction signal OC.

In the exemplary embodiment of FIG. 11, the over current instruction signal OC may be sent to the selecting circuit 20. More specifically, as shown in FIG. 11, the over current instruction signal OC may be respectively sent to the first AND logic gate 201, the second AND logic gate 202 and the third AND logic gate 203. In such an application, the first AND logic gate 201 may be configured to generate the first set signal CA1 based on the comparing signal CA, the first enable signal EN1 and the over current instruction signal OC. Similarly, the second AND logic gate 202 may be configured to generate the second set signal CA2 based on the comparing signal CA, the second enable signal EN2 and the over current instruction signal OC. Moreover, the third AND logic gate 203 may be also configured to generate the third set signal CA3 based on the comparing signal CA, the third enable signal EN3 and the over current instruction signal OC. If any one of the current sense signals (CS1, CS2, and CS3) is larger than the current limit value ILIM, all of the set signals (CA1, CA2, and CA3) are inactive. In such an application, the first, second and third control signals (PWM1, PWM2 and PWM3) are configured to control the switching transistors M1b, M2b and M3b on and the switching transistors M1a, M2a and M3a off until the corresponding current sense signal decreases below the current limit value ILIM.

FIG. 12 schematically illustrates a four-level buck converter 600 in accordance with an embodiment of the present invention. In some embodiments, when the output voltage signal VOUT is close to ⅓VIN or ⅔VIN which means the output voltage signal VOUT falls in

( 1 ± k % ) 1 3 VIN or ( 1 ± k % ) 2 3 VIN ,

the four-level buck converter 500 may have no ripples to sense so that the four-level buck converter 500 may have stability issues, wherein k is a proportional coefficient may be varied in different systems. That is to say, if the output voltage signal VOUT falls in a range from

( 1 - k % ) 1 3 VIN to ( 1 + k % ) 1 3 VIN ,

or in a range from

( 1 - k % ) 2 3 VIN to ( 1 + k % ) 2 3 VIN ,

the four-level buck converter 100 may have stability issues. In an embodiment, the proportional coefficient k is smaller than 10, e.g., 5. Comparing with the four-level buck converter 500 of FIG. 11, the four-level buck converter 600 may further comprise a delay circuit 50 for further improving stability.

The delay circuit 50 may be configured to receive the input voltage signal VIN, the output voltage signal VOUT, and three set signals (CA1, CA2, and CA3), and further configured to generate three delay set signals (CA1-dly, CA2-dly, and CA3-dly) based on the input voltage signal VIN, the output voltage signal VOUT and the three set signals (CA1, CA2, and CA3). In a four-level buck converter, only one of the set signals (CA1, CA2, or CA3) is delayed to generate a corresponding delay set signal when the output voltage signal VOUT is close to ⅓VIN or ⅔VIN. Meanwhile, the remaining set signals are unchanged. For instance, as shown in FIG. 12, the delay circuit 50 is illustrated to receive the input voltage signal VIN, the output voltage signal VOUT and the first set signal CA1, and delay the first set signal CA1 to generate a delay set signal CA1-dly when the output voltage signal VOUT is close to ⅓VIN or ⅔VIN. Meanwhile, the second set signal CA2 and the third set signal CA3 are unchanged, i.e., the delay set signal CA2-dly is equal to the second set signal CA2, and the delay set signal CA3-dly is equal to the third set signal CA3. As can be understood, the delay circuit 50 is also can be illustrated to delay the second set signal CA2 or the third set signal CA3 to generate a delay set signal CA2-dly or a delay set signal CA3-dly when the output voltage signal VOUT is close to ⅓VIN or ⅔VIN.

In the exemplary embodiment of FIG. 12, the delay circuit 50 may comprise a voltage divider 501, a hysteresis comparator 5021, a hysteresis comparator 5022, an OR logic gate 503, and a delay module 504.

The voltage divider 501 is configured to receive the input voltage signal VIN to generate a dividing voltage signal having a potential of ⅓VIN and a dividing voltage signal having a potential of ⅔VIN.

The hysteresis comparator 5021 may be configured to receive the output voltage signal VOUT and the dividing voltage signal having the potential of ⅓VIN, and further configured to compare the output voltage signal VOUT with the dividing voltage signal having the potential of ⅓VIN to generate a first determining signal DET1. In an embodiment, the hysteresis comparator 5021 predetermines the proportional coefficient k. When the output voltage signal VOUT is larger than

( 1 - k % ) 1 3 VIN

while smaller than

( 1 + k % ) 1 3 VIN ,

the first determining signal DET1 is in an active state (e.g., the logic high state).

The hysteresis comparator 5022 may be configured to receive the output voltage signal VOUT and the dividing voltage signal having the potential of ⅔VIN, and further configured to compare the output voltage signal VOUT and the dividing voltage signal having the potential of ⅔VIN to generate a second determining signal DET2. In an embodiment, the hysteresis comparator 5022 predetermines the proportional coefficient k. When the output voltage signal VOUT is larger than

( 1 - k % ) 2 3 VIN

while smaller than

( 1 + k % ) 2 3 VIN

the second determining signal DET2 is in an active state (e.g., the logic high state).

The OR logic gate 503 is configured to receive the first determining signal DET1 and the second determining signal DET2, and configured to conduct a logic operation of the first determining signal DET1 and the second determining signal DET2 to generate a delay enable signal EN-dly. The delay enable signal EN-dly may be a logic signal having an active state and an inactive state. In an embodiment, the delay enable signal EN-dly is in the active state (e.g., the logic high state) if one of the first determining signal DET1 and the second determining signal DET2 is in the active state, otherwise the delay enable signal EN-dly is in the inactive state (e.g., the logic low state).

The delay module 504 may be configured to delay the first set signal CA1 to generate a delay set signal CA1-dly when the delay enable signal EN-dly is in the active state.

FIG. 13 schematically illustrates a multi-level buck converter 700 in accordance with an embodiment of the present invention. The multi-level buck converter 700 may comprise N pairs of switch transistors (M1a, M1b, M2a, M2b, . . . , MNa and MNb), N-1 flying capacitors (C1, . . . , C(N−1)), the output capacitor COUT and the inductor LOUT arranged in a conventional fashion, wherein N is an integer equal to or greater than 2. In detail, the high side switch transistors (M1a,M2a, . . . , MNa) are successively connected in series between the input node for receiving the input voltage signal VIN and the switching node SW; the low side switch transistors (M1b, M2b, . . . , MNb) are successively connected in series between the logic ground and the switching node SW. For each i=1, . . . , N−1, the flying capacitor Ci is connected between a common connection of the high side switch transistor Mia and the high side switch transistor M(i+1)a and a common connection of the low side switch transistor Mib and the low side switch transistor M(i+1)b.

Similarly as the four-level buck converter 600, the multi-level buck converter 700 may further comprise a control circuit which comprises the comparing circuit 10, the selecting circuit 20, the current limiting circuit 40, the delay circuit 50 and N COT controllers (301, 302, . . . , 30N).

In the exemplary embodiment of FIG. 13, the selecting circuit 20 of the multi-level buck converter 700 may be configured to receive the comparing signal CA, and further configured to generate N set signals (CA1, CA2, . . . , CAN) based on the comparing signal CA. Each of the N set signals (CA1, CA2, . . . , CAN) is configured to trigger a corresponding COT controller when its state is changed from an inactive state (e.g., the logic low state) to an active state (e.g., the logic high state). In an embodiment, the N set signals (CA1, CA2, . . . , CAN) take turns to change from the inactive state to the active state at each rising edge of the comparing signal CA.

The current limiting circuit 40 may be configured to determine whether any one of the N current sense signals (CS1, CS2, . . . , CSN) is larger than a current limit value ILIM, and further configured to generate the over current instruction signal OC based on the N current sense signals (CS1, CS2, . . . , CSN). If any one of the N current sense signals (CS1, CS2, . . . , CSN) is larger than the current limit value ILIM, the over current instruction signal OC is in the active state.

The delay circuit 50 may be configured to receive the input voltage signal VIN, the output voltage signal VOUT, and the N set signals (CA1, CA2, . . . , CAN), and further configured to generate N delay set signals

(CA1-dly, CA2-dly, . . . , CAN-dly) when the output voltage signal VOUT is close to

1 N VIN , , or N - 1 N VIN ,

i.e., the output voltage signal VOUT falls in

( 1 ± k % ) 1 N VIN , , or ( 1 ± k % ) N - 1 N VIN .

Herein, k is a proportional coefficient may be varied in different systems.

In an embodiment, when N is an odd number, there are (N−1)/2 set signals may be delayed. For each i=1, . . . , N−1)/2, the delay circuit is configured to delay the (2i−1)th set signal CA(2i−1) to generate the (2i−1)th delay set signal CA(2i−1)-dly once the output voltage signal VOUT falls in

( 1 ± k % ) 1 N VIN , , or ( 1 ± k % ) N - 1 N VIN .

Meanwhile, the delay circuit 50 may be configured to keep the remaining (N+1)/2 set signals unchanged.

In an embodiment, when N is an odd number, there are (N−1)/2 set signals may be delayed. For each i=1, . . . , (N−1)/2, the delay circuit is configured to delay the (2i+1)th set signal CA(2i+1) to generate the (2i+1)th delay set signal CA(2i+1)-dly once the output voltage signal VOUT falls in

( 1 ± k % ) 1 N VIN , , or ( 1 ± k % ) N - 1 N VIN .

Meanwhile, the delay circuit 50 may be configured to keep the remaining (N+1)/2 set signals unchanged.

In an embodiment, when N is an odd number, there are (N−1)/2 set signals may be delayed. For each i=1, . . . , (N−1)/2, the delay circuit is configured to delay the (2i)th set signal CA(2i) to generate the (2i)th delay set signal CA(2i)-dly once the output voltage signal VOUT falls in

( 1 ± k % ) 1 N VIN , , or ( 1 ± k % ) N - 1 N VIN .

Meanwhile, the delay circuit 50 may be configured to keep the remaining (N+1)/2 set signals unchanged.

In an embodiment, when N is an even number, there are N/2 set signals may be delayed. For each i=1, . . . , N/2, the delay circuit is configured to delay the (2i−1)th set signal CA(2i−1) to generate the (2i−1)th delay set signal CA(2i−1)-dly once the output voltage signal VOUT falls in

( 1 ± k % ) 1 N VIN , , or ( 1 ± k % ) N - 1 N VIN .

Meanwhile, the delay circuit 50 may be configured to keep the remaining N/2 set signals unchanged.

In an embodiment, when N is an even number, there are N/2 set signals may be delayed. For each i=1, . . . , N/2, the delay circuit is configured to delay the (2i)th set signal CA(2i) to generate the (2i)th delay set signal CA(2i)-dly once the output voltage signal VOUT falls in

( 1 ± k % ) 1 N VIN , , or ( 1 ± k % ) N - 1 N VIN .

Meanwhile, the delay circuit 50 may be configured to keep the remaining N/2 set signals unchanged.

In the exemplary embodiment of FIG. 13, for each i=1, 2, . . . , N, the COT controllers 30i may be configured to receive the output voltage signal VOUT, the input voltage signal VIN and the corresponding delay set signal CAi-dly. When the delay set signal CAi-dly is in the active state, the COT controller 30i may be configured to generate a corresponding control signal PWMi in compliance with the output voltage signal VOUT, the input voltage signal VIN and the delay set signal CAi-dly to control the corresponding pair of switching transistors Mia and Mib.

FIG. 14 schematically illustrates a delay circuit 50 of FIG. 13 in accordance with an embodiment of the present invention. In the exemplary embodiment of FIG. 14, the delay circuit 50 may comprise a voltage divider 501, N−1 hysteresis comparators (5021, . . . , 502(N−1)), an OR logic gate 503, and a plurality of delay modules, wherein the quantity of the delay modules is determined by the value of N. In an embodiment, when N is an even number, the quantity of the delay modules is N/2; when N is an odd number, the quantity of the delay modules is (N−1)/2.

The voltage divider 501 is configured to receive the input voltage signal VIN to generate a plurality of dividing voltage signals.

For each i=1, . . . , N−1, the hysteresis comparator 502i may be configured to receive the output voltage signal VOUT and the corresponding dividing voltage signal having a potential of

i N VIN ,

and further configured to compare the output voltage signal VOUT with the dividing voltage signal having the potential of

i N VIN

to generate a corresponding determining signal DETi. In an embodiment, the hysteresis comparator 502i predetermines the proportional coefficient k. When the output voltage signal VOUT is larger than

( 1 - k % ) i N VIN

while smaller than

( 1 + k % ) i N VIN ,

the ith determining signal DETi is in an active state (e.g., the logic high state).

The OR logic gate 503 is configured to receive the N−1 determining signals (DET1, . . . , DET(N−1)), and configured to conduct a logic operation of the N−1 determining signals (DET1, . . . , DET(N−1)) to generate the delay enable signal EN-dly. In an embodiment, the delay enable signal EN-dly is in the active state (e.g., the logic high state) if any one of the N−1 determining signals (DET1, . . . , DET(N−1)) DETi is in the active state. Otherwise, the delay enable signal EN-dly is in the inactive state (e.g., the logic low state).

Each of the plurality of delay modules is configured to delay one corresponding set signal to generate a corresponding delay set signal when the delay enable signal EN-dly is in the active state.

In an embodiment, when N is an odd number, there are (N−1)/2 delay module. For each i=1, . . . , (N−1)/2, the delay module 504-i is configured to delay the (2i−1)th set signal CA(2i−1) to generate the (2i−1)th delay set signal CA(2i−1)-dly once the delay enable signal EN-dly is in the active state.

In an embodiment, when N is an odd number, there are (N−1)/2 delay module. For each i=1, . . . , (N−1)/2, the delay module 504-i is configured to delay the (2i+1)th set signal CA(2i+1) to generate the (2i+1)th delay set signal CA(2i+1)-dly once the delay enable signal EN-dly is in the active state.

In an embodiment, when N is an odd number, there are (N−1)/2 delay module. For each i=1, . . . , (N−1)/2, the delay module 504-i is configured to delay the (2i)th set signal CA(2i) to generate the (2i)th delay set signal CA(2i)-dly once the delay enable signal EN-dly is in the active state.

In an embodiment, when N is an even number, there are N/2 delay module. For each i=1, . . . , N/2, the delay module 504-i is configured to delay the (2i−1)th set signal CA(2i−1) to generate the (2i−1)th delay set signal CA(2i−1)-dly once the delay enable signal EN-dly is in the active state.

In an embodiment, when N is an even number, there are N/2 delay module. For each i=1, . . . , N/2, the delay module 504-i is configured to delay the (2i)th set signal CA(2i) to generate the (2i)th delay set signal CA(2i)-dly once the delay enable signal EN-dly is in the active state.

Obviously many modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described. It should be understood, of course, the foregoing invention relates only to a preferred embodiment (or embodiments) of the invention and that numerous modifications may be made therein without departing from the spirit and the scope of the invention as set forth in the appended claims. Various modifications are contemplated and they obviously will be resorted to by those skilled in the art without departing from the spirit and the scope of the invention as hereinafter defined by the appended claims as only a preferred embodiment(s) thereof has been disclosed.

Claims

1. A control circuit for controlling a multi-level buck converter having N pairs of switches serially connected between an input terminal and a logic ground, and wherein N is an integer equal to or greater than 2, the control circuit comprising:

a comparing circuit, configured to receive a reference signal and a voltage feedback signal indicative of an output voltage signal of the multi-level buck converter, and further configured to compare the voltage feedback signal with the reference signal to generate a comparing signal;
a selecting circuit, configured to receive the comparing signal, and further configured to generate N set signals based on the comparing signal; and
N COT controllers, wherein for each i=1, 2,..., N, the ith COT controller is configured to receive a corresponding ith set signal of the N set signals, the output voltage signal and an input voltage signal of the multi-level buck converter, and further configured to generate an ith control signal to control a corresponding ith pair of switches of the N pairs of switches to perform a complementary on and off switching based on the corresponding ith set signal, the output voltage signal and the input voltage signal.

2. The control circuit of claim 1, wherein the comparing circuit comprises:

an error amplifier, configured to receive the reference signal with the voltage feedback signal, and further configured to compare the reference signal with the voltage feedback signal to generate an error signal, wherein the error signal is indicative of the difference of the voltage feedback signal and the reference signal;
N ramp generators, configured to generate N ramp signals, wherein for each i=1, 2,..., N, the ith ramp generator is configured to receive the ith control signal, and further configured to generate a corresponding ith ramp signal of the N ramp signals based on the ith control signal;
an adder, configured to conduct an add operation of the voltage feedback signal and the N ramp signals to generate a sum signal; and
a voltage comparator, configured to compare the sum signal with the error signal to generate the comparing signal.

3. The control circuit of claim 1, wherein the control circuit further comprises a delay circuit; and wherein

the delay circuit is configured to receive the input voltage signal, the output voltage signal and the N set signals, and further configured to generate N delay set signals based on the input voltage signal, the output voltage signal and the N set signals; and wherein
for each i=1, 2,..., N, the ith COT controller is configured to receive a corresponding ith delay set signal of the N delay set signals, the output voltage signal and the input voltage signal, and further configured to generate the ith control signal based on the corresponding ith delay set signal, the output voltage signal and the input voltage signal.

4. The control circuit of claim 3, wherein when N is an odd number, (N−1)/2 set signals are delayed, and wherein ( 1 ± k ⁢ % ) × 1 N of the input voltage signal, ( 1 ± k ⁢ % ) × 2 N of the input voltage signal,..., or ( 1 ± k ⁢ % ) × N - 1 N of the input voltage signal, wherein k is a proportional coefficient.

for each i=1,..., (N−1)/2, the delay circuit is configured to delay a corresponding (2i−1)th set signal of the N set signals to generate a corresponding (2i−1)th delay set signal of the N delay set signals once the output voltage signal falls in

5. The control circuit of claim 3, wherein when N is an odd number, (N−1)/2 set signals are delayed, and wherein ( 1 ± k ⁢ % ) × 1 N of the input voltage signal, ( 1 ± k ⁢ % ) × 2 N of the input voltage signal,..., or ( 1 ± k ⁢ % ) × N - 1 N of the input voltage signal, wherein k is a proportional coefficient.

for each i=1,..., (N−1)/2, the delay circuit is configured to delay a corresponding (2i+1)th set signal of the N set signals to generate a corresponding (2i+1)th delay set signal of the N delay set signals once the output voltage signal falls in

6. The control circuit of claim 3, wherein when N is an odd number, (N−1)/2 set signals are delayed, and wherein ( 1 ± k ⁢ % ) × 1 N of the input voltage signal, ( 1 ± k ⁢ % ) × 2 N of the input voltage signal,..., or ( 1 ± k ⁢ % ) × N - 1 N of the input voltage signal, wherein k is a proportional coefficient.

for each i=1,..., (N−1)/2, the delay circuit is configured to delay a corresponding (2i)th set signal of the N set signals to generate a corresponding (2i)th delay set signal of the N delay set signals once the output voltage signal falls in

7. The control circuit of claim 3, wherein when N is an even number, N/2 set signals are delayed, and wherein ( 1 ± k ⁢ % ) × 1 N of the input voltage signal,..., or ( 1 ± k ⁢ % ) × N - 1 N of the input voltage signal, wherein k is a proportional coefficient.

for each i=1,..., N/2, the delay circuit is configured to delay a corresponding (2i−1)th set signal of the N set signals to generate a corresponding (2i−1)th delay set signal of the N delay set signals once the output voltage signal falls in

8. The control circuit of claim 3, wherein when N is an even number, N/2 set signals are delayed, and wherein ( 1 ± k ⁢ % ) × 1 N of the input voltage signal,..., or ( 1 ± k ⁢ % ) × N - 1 N of the input voltage signal, wherein k is a proportional coefficient.

for each i=1,..., N/2, the delay circuit is configured to delay a corresponding (2i)th set signal of the N set signals to generate a corresponding (2i)th delay set signal of the N delay set signals once the output voltage signal falls in

9. The control circuit of claim 3, wherein the delay circuit comprises:

a voltage divider, configured to receive the input voltage signal to generate N−1 dividing voltage signals, wherein for each i=1,..., N−1, a corresponding ith dividing voltage signal of the N−1 dividing voltage signals is equal to i/N of the input voltage signal;
N−1 hysteresis comparators, configured to generate N−1 determining signals, wherein for each i=1,..., N−1, the ith hysteresis comparator is configured to receive the output voltage signal and the corresponding ith dividing voltage signal, and further configured to compare the output voltage signal with the corresponding ith dividing voltage signal to generate a corresponding ith determining signal of the N−1 determining signal;
an OR logic gate, configured to receive the N−1 determining signals, and configured to conduct a logic OR operation of the N−1 determining signals to generate a delay enable signal; and
a plurality of delay modules, wherein each of the plurality of delay modules is configured to receive the delay enable signal and one corresponding set signal of the N set signals, and further configured to generate one corresponding delay set signal based on the delay enable signal and the one corresponding set signal.

10. The control circuit of claim 9, wherein when N is an odd number, the quantity of the delay modules is equal to (N−1)/2, and wherein when N is an even number, the quantity of the delay modules is equal to N/2.

11. The control circuit of claim 1, wherein for each i=1, 2,..., N, the ith COT controller comprises:

an ON time generator, configured to receive the corresponding ith set signal, the input voltage signal and the output voltage signal, and further configured to generate an on time signal based on the corresponding ith set signal, the input voltage signal and the output voltage signal; and
a logic circuit, configured to receive the corresponding ith set signal and the on time signal, and further configured to conduct a logic operation of the corresponding ith set signal and the on time signal to generate the ith control signal.

12. The control circuit of claim 11, wherein the ON time generator comprises:

a controlled current generator, having a first terminal configured to receive the input voltage signal and a second terminal, wherein the controlled current generator is configured to generate a controlled current signal at its second terminal based on the input voltage signal;
a capacitor, connected between the second terminal of the controlled current generator and the logic ground;
a controlled voltage generator, having a first terminal configured to receive the output voltage signal and a second terminal, wherein the controlled voltage generator is configured to generate a controlled voltage signal at its second terminal based on the output voltage signal;
a charge comparator, having a first input terminal configured to receive the controlled voltage signal, a second input terminal configured to receive a voltage across the capacitor, and an output terminal, wherein the charge comparator is configured to compare the controlled voltage signal with the voltage across the capacitor to generate the on time signal at its output terminal; and
a reset switch, having a first terminal coupled to the second terminal of the controlled current generator, a second terminal connected to the logic ground, and a control terminal receive the corresponding ith set signal.

13. The control circuit of claim 1, wherein the selecting circuit comprises:

an enable circuit, configured to receive the comparing signal, and further configured to generate N enable signals based on the comparing signal, wherein the N enable signals take turns to change from an inactive state to an active state; and
N AND logic gates, for each i=1, 2,..., N, the ith AND logic gate is configured to receive a corresponding ith enable signal of the N enable signals and the comparing signal, and further configured to conduct a logic AND operation of the corresponding ith enable signal of the N enable signals and the comparing signal to generate the corresponding ith set signal.

14. The control circuit of claim 1, wherein each of the N pair of switches comprises a high side switch and a low side switch; and wherein

the control circuit further comprises a current limiting circuit configured to receive N current sense signals, and wherein for each i=1, 2,..., N, the ith current sense signal is indicative of a current flowing through the low side switch of the corresponding ith pair of switches; and wherein
the current limiting circuit is further configured to respectively compare each of the N current sense signals with a current limit value to generate an over-current instruction signal; and wherein
if any of the N current sense signals is larger than the current limit value, the over-current instruction signal is configured to turn all of the high side switches of the N pair of switches off.

15. The control circuit of claim 14, wherein the current limiting circuit comprises:

N current comparators, for each i=1, 2,..., N, the ith current comparator has a first input terminal configured to receive the current limit value, a second input terminal configured to receive the ith current sense signal, and an output terminal, and wherein the ith current comparator is configured to compare the ith current sense signal with the current limit value to generate an ith instruction signal at its output terminal; and
a current limiting AND logic gate, configured to receive N instruction signals, and further configured to conduct a logic AND operation of the N instruction signals to generate the over-current instruction signal.

16. The control circuit of claim 1, wherein the N set signals take turns to change from an inactive state to an active state at each rising edge of the comparing signal.

17. A multi-level buck converter, comprising:

N pairs of switches, serially connected between an input terminal and a logic ground, wherein N is an integer equal to or greater than 2;
a comparing circuit, configured to receive a reference signal and a voltage feedback signal indicative of an output voltage signal of the multi-level buck converter, and further configured to compare the voltage feedback signal with the reference signal to generate a comparing signal;
a selecting circuit, configured to receive the comparing signal, and further configured to generate N set signals based on the comparing signal; and
N COT controllers, wherein for each i=1, 2,..., N, the ith COT controller is configured to receive a corresponding ith set signal of the N set signals, the output voltage signal and an input voltage signal of the multi-level buck converter, and further configured to generate an ith control signal to control a corresponding ith pair of switches of the N pair of switches to perform a complementary on and off switching based on the corresponding ith set signal, the output voltage signal and the input voltage signal.

18. A multi-level buck converter, comprising:

two pairs of switches, serially connected between an input terminal and a logic ground;
a comparing circuit, configured to compare a voltage feedback signal indicative of an output voltage signal of the multi-level buck converter with a reference signal to generate a comparing signal;
a selecting circuit, configured to receive the comparing signal, and further configured to generate a first set signal and a second set signal based on the comparing signal;
a first COT controller, configured to receive the first set signal, the output voltage signal and an input voltage signal of the multi-level buck converter, and further configured to generate a first control signal to control the first pair of switches to perform a complementary on and off switching based on the first set signal, the output voltage signal and the input voltage signal; and
a second COT controller, configured to receive the second set signal, the output voltage signal and the input voltage signal, and further configured to generate a second control signal to control the second pair of switches to perform a complementary on and off switching based on the second set signal, the output voltage signal and the input voltage signal.

19. The multi-level buck converter of claim 18, wherein the comparing circuit further comprises:

an error amplifier, configured to receive the reference signal and the voltage feedback signal, and further configured to compare the reference signal with the voltage feedback signal to generate an error signal, wherein the error signal is indicative of the difference of the voltage feedback signal and the reference signal;
a first ramp generator, configured to receive the first control signal, and further configured to generate a first ramp signal based on the first control signal;
a second ramp generator, configured to receive the second control signal, and further configured to generate a second ramp signal based on the second control signal;
an adder, configured to conduct an add operation of the voltage feedback signal, the first ramp signal and the second ramp signal to generate a sum signal; and
a voltage comparator, configured to compare the error signal with the sum signal to generate the comparing signal.

20. The multi-level buck converter of claim 18, wherein the control circuit further comprises a delay circuit, and wherein the delay circuit is configured to receive the input voltage signal, the output voltage signal, the first set signal and the second set signal, and further configured to delay one of the first set signal and the second set signal to generate a delay set signal when the output voltage signal falls in 1 2 × ( 1 ± k ⁢ % ) of the input voltage signal, and wherein k is a proportional coefficient.

Patent History
Publication number: 20220393594
Type: Application
Filed: May 26, 2021
Publication Date: Dec 8, 2022
Inventors: Di Han (San Jose, CA), Jian Jiang (Los Gatos, CA)
Application Number: 17/330,584
Classifications
International Classification: H02M 3/158 (20060101); H02M 3/157 (20060101);