ELECTRONIC COMPRESSION AND REBOUND CONTROL
An electronic valve assembly for a vehicle suspension damper is described in which a first electronic valve is disposed along a fluid flow path extending between a compression region of a damping cylinder and a fluid reservoir chamber. The first electronic valve controls flow of fluid from the compression region into the fluid reservoir chamber. A second electronic valve is disposed along a fluid flow path extending between a rebound region of the damping cylinder and the compression region. The second electronic valve controls flow of fluid from the rebound region into the compression. The first electronic valve does not reside in the fluid flow path extending from the rebound region into the compression region, and the second electronic valve does not reside in the fluid flow path extending from the compression region into the fluid reservoir chamber.
Latest Fox Factory, Inc. Patents:
- INTERNAL STROKE SENSOR FOR AN IFP SHOCK ASSEMBLY
- Dual live valve shock having main damper and base valve actively controlled
- System for minimizing data transmission latency between a sensor and a suspension controller of a vehicle
- HOT-START SUSPENSION TUNE
- ELECTRONICALLY CONTROLLED SWAY BAR DAMPING LINK
This application claims priority to and is a continuation of the co-pending patent application having application Ser. No. 16/986,852, filed on Aug. 6, 2020, entitled “ELECTRONIC COMPRESSION AND REBOUND CONTROL” by Ivan Tong, assigned to the assignee of the present application, having Attorney Docket No. FOX-P4-5-16-US.CON, and is hereby incorporated by reference in its entirety herein.
The application with Ser. No. 16/986,852 claims priority to and is a continuation of the patent application having application Ser. No. 15/482,507, filed on Apr. 7, 2017, now U.S. Pat. No. 10,737,546, entitled “ELECTRONIC COMPRESSION AND REBOUND CONTROL” by Ivan Tong, assigned to the assignee of the present application, having Attorney Docket No. FOX-P4-5-16-US, and is hereby incorporated by reference in its entirety herein.
The application with Ser. No. 15/482,507 claims the benefit of and claims priority of U.S. provisional patent application Ser. No. 62/320,368, filed on Apr. 8, 2016, entitled “SINGLE VALVED TAILORED ELECTRONIC COMPRESSION AND REBOUND CONTROL” by Ivan Tong, assigned to the assignee of the present application, having Attorney Docket No. FOX-P4-5-16.PRO, and is hereby incorporated by reference in its entirety herein.
BACKGROUND Field of the InventionEmbodiments generally relate to a damper assembly for a vehicle. More specifically, the invention relates to an adjustable damper for use with a vehicle suspension.
Description of the Related ArtVehicle suspension systems typically include a spring component or components and a dampening component or components. Typically, mechanical springs, like helical springs are used with some type of viscous fluid-based dampening mechanism and the two are mounted functionally in parallel. In some instances, a spring may comprise pressurized gas and features of the damper or spring are user-adjustable, such as by adjusting the air pressure in a gas spring. A damper may be constructed by placing a damping piston in a fluid-filled cylinder (e.g., liquid such as oil). As the damping piston is moved in the cylinder, fluid is compressed and passes from one side of the piston to the other side. Often, the piston includes vents there through which may be covered by shim stacks to provide for different operational characteristics in compression or extension.
Conventional damping components provide a constant damping rate during compression or extension through the entire length of the stroke. Other conventional damping components provide mechanisms for varying the damping rate. Further, in the world of bicycles, damping components are most prevalently mechanical. As various types of recreational and sporting vehicles continue to become more technologically advanced, what is needed in the art are improved techniques for varying the damping rate.
Aspects of the present invention are illustrated by way of example, and not by way of limitation, in the accompanying drawings, wherein:
The drawings referred to in this description should be understood as not being drawn to scale except if specifically noted.
DESCRIPTION OF EMBODIMENTSThe detailed description set forth below in connection with the appended drawings is intended as a description of various embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. Each embodiment described in this disclosure is provided merely as an example or illustration of the present invention, and should not necessarily be construed as preferred or advantageous over other embodiments. In some instances, well known methods, procedures, objects, and circuits have not been described in detail as not to unnecessarily obscure aspects of the present disclosure.
Notation and NomenclatureUnless specifically stated otherwise as apparent from the following discussions, it is appreciated that throughout the present Description of Embodiments, discussions utilizing terms such as “sensing” or the like, often refer to the actions and processes of a computer system or similar electronic computing device (or portion thereof) such as, but not limited to, a control system. (See
As is generally known, shock absorbers, may be applied to single or multi-wheeled vehicles. These shock absorbers may include an electronic valve or a plurality of electronic valves. Sensors may be attached to the vehicle and provide information, to a control system attached to the electronic valve, on acceleration (with respect to a bicycle), and on acceleration, tilt, velocity and position (with respect to vehicles with more than two wheels). The control system accesses the sensor signals and actuates the electronic valve to provide variable damping. A detailed description of electronic valves and corresponding control of vehicle suspension dampers is found in U.S. Pat. No. 9,452,654 entitled “Method and Apparatus for An Adjustable Damper” dated Sep. 27, 2016 which is assigned to the assignee of the present application, and which is hereby incorporated by reference in its entirety herein.
Example conventional and novel techniques, systems, and methods for controlling vehicle motion are described herein. Herein, a novel electronic valve assembly and its functioning is described. This novel electronic valve assembly is not only utilized to perform the conventional methods for controlling a vehicle's motion, but also novel methods for controlling a vehicle's motion by enabling even more selective damping to occur.
Detailed Description of the Present Electronic Valve Assembly and Operation ThereofReferring now to
Referring still to
Referring again to
Referring now to
Referring still to
Importantly, it should be noted that in various embodiments of the present invention, first electronic valve 300 is operated independently of second electronic valve 310. Similarly, in various embodiments of the present invention, second electronic valve 310 is operated independently of first electronic valve 300. Thus, in various embodiments, the present invention provides independent control of compression and rebound damping of vehicle suspension damper 100. A further description of various sensors and a control system used in conjunction with first electronic valve 300 to control vehicle suspension damper 100 and adjust a damping force therein is provided below.
With reference now to
With reference now to
Referring now to
Referring again to
With reference still to
Importantly, it should be noted that in various embodiments of the present invention, second electronic valve 310 is operated independently of first electronic valve 300. Similarly, in various embodiments of the present invention, first electronic valve 300 is operated independently of second electronic valve 310. Thus, in various embodiments, the present invention provides independent control of rebound and compression damping of vehicle suspension damper 100. A further description of various sensors and a control system used in conjunction with second electronic valve 310 to control vehicle suspension damper 100 and adjust a rebound damping force therein is provided below.
With reference now to
As a result of fluid passing only through piston valve 302 and not also through valve piston 312, a greater flow rate and a less pressurized flow of fluid is achieved during rebound for the fluid flow coming from reservoir chamber 104 towards compression region 114. Additionally, as shaft displaced fluid flow rates tend be low, and especially low during rebound, first electronic valve 300 can be smaller as it does not typically have to handle higher fluid flow rates. As a result, first electronic valve 300 can be smaller than a valve which must control impeded fluid flow or greater fluid flow rates. These factors allow electronic valve assembly 106 to be smaller and less expensive than a valve assembly that is required to handle impeded shaft displaced fluid flow or high fluid flow rates during rebound.
As stated above, it should be noted that in various embodiments of the present invention, first electronic valve 300 is operated independently of second electronic valve 310. Thus, in various embodiments, the present invention provides independent control of the flow for the replacement of shaft displaced fluid during rebound damping of vehicle suspension damper 100. A further description of various sensors and a control system used in conjunction with first electronic valve 300 to control the flow for the replacement of shaft displaced fluid and adjust a rebound damping force in vehicle suspension damper 100 is provided below.
With reference now to
Various components of
As will be described herein, various components of
The system 700 and method, as will be described, detects rolls, pitches, and heaves of four-wheeled vehicles. For example and with regard to detecting rolls, if a car turns a corner sharply left and begins to roll to the right, embodiments sense the velocity of the steering wheel as it is being turned, as well as the translational acceleration associated with the roll experienced by the vehicle. The translational acceleration (distance/time2) associated with the roll measures side accelerations. In response to this sensing and in order to control the roll, a control system causes the outer right front and back vehicle suspension dampers to firm up, in some embodiments. Of note, in some embodiments, the vehicle's pitch is measured by sensing the velocity of the throttle pedal as it is being pressed and/or released. In other embodiments, the vehicle's pitch may also be measured by sensing the velocity and/or the position of the throttle pedal as it is being pressed and/or released. In yet other embodiments, the vehicle's pitch is measured by sensing the acceleration of the vehicle. Of further note, the control system does not utilize throttle pedal information to measure roll.
In one embodiment, the system 700 includes electronic valve assembly 106 (that includes first electronic valve 300 and second electronic valve 310) and the control system 704. In one embodiment, the control system 704 includes the following components: a control signal accessor 756; a first comparer 706; a second comparer 710; a valve monitor 752; a control mode determiner 754; and an activation signal sender 750. The second comparer 710 compares the accessed user-induced inputs to predetermined user-induced inputs threshold values 748 found at, in one embodiment, the database 716 (in another embodiment, a database residing external to the control system 704. Further, in various embodiments, the control system 704 optionally includes any of the following: a database 716, a hold-off timer 726; a tracker 730; a hold logic delayer 732; a rebound settle timer 728; a weightings applicator 734; and a signal filter 736. The database 716, according to various embodiments, optionally includes predetermined acceleration threshold values 718 and predetermined user-induced inputs threshold values 748. In various embodiments, the predetermined user-induced inputs threshold values 748 include predetermined velocity threshold values 720. In other embodiments, the predetermined user-induced inputs threshold values include any of the following values: steering velocity threshold value; shock absorber velocity threshold value; brake velocity threshold value; steering position threshold value; throttle position threshold value; shock absorber position threshold value; and brake threshold value.
In one embodiment, the control system 704 may be part of a vehicle suspension damper 100 (that is, for example, on a side-by-side), or it may be wire/wirelessly connected to the control system 704. As will be discussed below, the control system 704 of
Embodiments of the present invention provide for a control system 704 that accesses a set of control signals 742 (control signal 742A, control signal 742B and control signal 742C; it should be appreciated that there may be any number of control signals, depending on the number of sensors coupled with vehicle components) that includes both acceleration values and a set of values associated with user-induced inputs (such as velocity values [of a steering wheel being turned and/or a throttle pedal being pressed upon and/or released] measured by a set of gyrometers). It should be appreciated that the set of sensors 740A, 740B and 740C (hereinafter, set of sensors 740, unless specifically noted otherwise) attached to the vehicle component 738A, 738B and 738C (hereinafter, vehicle component 738, unless specifically noted otherwise), respectively, may include one or more sensors, such as, but not limited to, accelerometers and gyrometers. In some embodiments, the acceleration values with respect to the four-wheeled vehicles are lateral (side-to-side motion) and longitudinal g's (forward and backwards motion). In other embodiments, the acceleration values with respect to four-wheeled vehicles are lateral g's, longitudinal g's and vertical g's (up and down motion). User-induced inputs, according to embodiments, are those inputs by a user that cause a movement to a vehicle component of the vehicle. For example, user-induced inputs may include, but are not limited to any of the following: turning a steering wheel; pressing a brake pedal (the ON/OFF resultant position of the brake pedal being pressed is measured); and pressing a throttle pedal (a velocity and/or position of the throttle pedal is measured). Thus, a set of values associated with the user-induced inputs may be, but are not limited to being, any of the following user-induced inputs: a measured velocity value of the turning of a steering wheel; a brake's on/off status; velocities associated with pressing down on the brake and/or the throttle pedal; and the difference in the positions of the throttle pedal before and after being pressed (or the absolute throttle position). Of note, the user-induced inputs that are measured are inputs received before acceleration is measured, yet relevant in quickly determining corrective damping forces required to control the roll, pitch and heave once experienced. Thus, the user-induced inputs are precursors to the sensed accelerations of various vehicle components (e.g., vehicle wheels).
Once these values (measured acceleration value and the set of values associated with the user-induced inputs) are accessed by the control signal accessor 756, the first comparer 706 and the second comparer 710 compare these values to threshold values, such as those found in the database 716 (a store of information). Further, according to embodiments, the activation signal sender 750 sends an activation signal to the power source 758 to deliver a current to one or more of first electronic valve 300 and second electronic valve 310 of electronic valve assembly 106, based upon the following: 1) the comparison made between the measured acceleration value and the predetermined acceleration threshold value 718 discussed herein; 2) the comparison made between the measured velocity of the steering wheel as it is being turned (the set of values associated with user-induced inputs) and the predetermined velocity threshold value 720 of the predetermined user-induced inputs threshold values 748; and 3) the monitoring of the state of electronic valve assembly 106.
It should be appreciated that embodiments may include, but are not limited to, other configurations having a control system in wire/wireless communication with the vehicle suspension damper to which it is controlling, such as: 1) a vehicle with only one control system that is wire and/or wirelessly connected to all vehicle suspension dampers attached thereto; 2) a vehicle with one control system attached to one vehicle suspension damper, wherein the one control system controls the other control systems attached to other vehicle suspension dampers (that are attached to different wheels) of the vehicle; and 3) a vehicle with one control system that is not attached to a vehicle suspension damper, wherein the one control system controls other control systems that are attached to vehicle suspension dampers on the vehicle.
It should be noted that any of the features disclosed herein may be useful alone or in any suitable combination. While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be implemented without departing from the scope of the invention, and the scope thereof is determined by the claims that follow.
Claims
1. An electronic valve assembly for a vehicle suspension damper, said electronic valve assembly comprising:
- a first electronic valve disposed along a fluid flow path extending between a compression region of a damping cylinder and a fluid reservoir chamber, said first electronic valve configured to control flow of fluid from said compression region of said damping cylinder into said fluid reservoir chamber;
- a second electronic valve disposed along a fluid flow path extending between a rebound region of said damping cylinder and said compression region of said damping cylinder, said second electronic valve configured to control flow of fluid from said rebound region of said damping cylinder into said compression region of said damping cylinder; and
- wherein a first distance between said first electronic valve and said damping cylinder is greater than a second distance between said second electronic valve and said damping cylinder.
Type: Application
Filed: Oct 12, 2022
Publication Date: Feb 2, 2023
Applicant: Fox Factory, Inc. (Duluth, GA)
Inventor: Ivan Tong (San Diego, CA)
Application Number: 17/964,782