SYSTEMS AND METHODS FOR A TRANSACTION PROCESSING SYSTEM OFFERING A SERVICE TO A USER SYSTEM
A method and apparatus for a transaction processing system offering a service to a user system are described. The method may include accessing a plurality of transactions associated with the user system and processed by the transaction processing system over a period of time. The method may also include determining, based on the plurality of transactions, a processing volume of the transactions associated with the user system indicative of a total generated from the plurality of transactions over the period of time. The method may further include selecting a forecasting model from among a set of forecasting models based on the processing volume of the transactions associated with the user system. Furthermore, the method can include applying the selected forecasting model to generate a forecast for the user system, and generating an offer for a transaction processing system service based on the generated forecast.
Merchants, such as grocers, car services, online marketplaces, etc., provide their products and services to consumers. Such merchants may employ agents to deliver their products and/or provide the actual services to the merchant’s customers, provide digital goods directly to their customers, or ship physical goods to consumers. For example, a person acting on the merchant’s behalf will drive a consumer in their own car, deliver food ordered through a merchant website, pick up and/or drop off clothes dry cleaned by the merchant, etc. As another example, merchants may provide a website, online marketplace, etc., to sell digital products, such as music, documents, art, unique tokens, etc., to consumers. Consumers therefore often engage, purchase, rent, etc. services and/or products of the merchant or the merchant’s agent via a merchant interface, such as a merchant web page, application, or other interface.
These merchants, although providing systems for supplying products and/or services to consumers via their interface, often do not perform the financial processing associated with the transactions. Instead, merchants utilize commerce systems to process financial transactions for the products and/or services provided to consumers. Commerce systems may provide their transaction processing services to the merchant by way of software applications, web pages, application programming interfaces (APIs), etc. The merchant system integrates the commerce system software, APIs, web pages, etc. into the merchant interfaces to handle the processing of consumer transactions. Once integrated, the commerce system, on behalf of the merchant system, can perform processing of payments for goods or services including collecting credit card information, running credit cards, crediting a merchant account for the transaction, crediting agents responsible for the transaction, debiting a commerce system fee for processing the transaction on behalf of the merchant, interacting with authorization network systems (e.g., bank systems, credit card issuing systems, etc.), providing payouts for products/services rendered on behalf of the merchant, as well as other.
Commerce systems may further provide additional services to merchants, such as extending credit, offering loans, etc. Traditionally, such services are offered in response to an application completed by a merchant, where the merchant provides information regarding their credit-worthiness, revenue, assets, as well as other relevant information. The commerce system would then utilize the merchant-supplied information to determine a credit limit, loan amount, or other service the commerce platform is willing to provide, for example based on factors such as predicted revenue of the merchant. However, such an approach to the credit/loan application and approval process is labor intensive on behalf of the merchant, and requires the commerce platform to presume that the merchant supplied information is both accurate and complete. Furthermore, for the commerce platform, which may work with a large number of merchants, handling credit and loan applications at scale is problematic. Thus, the modern technical environment of the commerce platform creates unique technical problems with respect to the commerce system offering its customers (e.g., merchants) services, such as loans, credit, etc.
Thus, a technical solution that utilizes the modern technical environment of the commerce platform is desirable in order to minimize and/or eliminate merchant effort, handle service offerings at scale, and improves on the accuracy of the commerce platforms predictions from which service offerings are made.
The present disclosure will be understood more fully from the detailed description given below and from the accompanying drawings of various embodiments, which, however, should not be taken to limit the embodiments described and illustrated herein, but are for explanation and understanding only.
In the following description, numerous details are set forth. It will be apparent, however, to one of ordinary skill in the art having the benefit of this disclosure, that the embodiments described herein may be practiced without these specific details. In some instances, well-known structures and devices are shown in block diagram form, rather than in detail, in order to avoid obscuring the embodiments described herein.
Some portions of the detailed description that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “accessing”, “generating”, “determining”, “selecting”, “applying”, “transmitting”, “receiving”, “tuning”, or the like, refer to the actions and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer system’s registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
The embodiments discussed herein may also relate to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions.
The algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct a more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the embodiments discussed herein are not described with reference to any particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings as described herein.
The commerce platform system(s) 110, merchant system(s) 120, and merchant user system(s) 130 may be coupled to a network 102 and communicate with one another using any of the standard protocols for the exchange of information, including secure communication protocols. In one embodiment, one or more of the commerce platform system(s) 110, merchant system(s) 120, and user system(s) 130 may run on one Local Area Network (LAN) and may be incorporated into the same physical or logical system, or different physical or logical systems. Alternatively, the commerce platform system(s) 110, merchant system(s) 120, and merchant system(s) 130 may reside on different LANs, wide area networks, cellular telephone networks, etc. that may be coupled together via the Internet but separated by firewalls, routers, and/or other network devices. In one embodiment, commerce platform system 110 may reside on a single server, or be distributed among different servers, coupled to other devices via a public network (e.g., the Internet) or a private network (e.g., LAN). It should be noted that various other network configurations can be used including, for example, hosted configurations, distributed configurations, centralized configurations, etc.
In one embodiment, commerce platform system 110 provides financial processing services to one or more merchants, such as to merchant system(s) 120 and/or user system(s) 130. For example, commerce platform system(s) 110 may manage merchant accounts held at the commerce platform, run financial transactions initiated at user system(s) 130 performed on behalf of a merchant system 120, clear transactions, performing payouts to merchants and/or merchants' agents, manage merchant and/or agent accounts held at the commerce platform system(s) 110, as well as other services typically associated with commerce platforms systems such as, for example, STRIPE™. For commerce platform systems that operate at scale, such as system 110, the number of transactions on the magnitude of millions or billions of transactions are processed each hour, day, month, etc. by the transaction system 112. Each of these transactions is processed by the transaction system 112 of commerce platform system(s) 110, and data associated with the transaction is stored in a data store of the commerce platform system (e.g., transaction data store 212 discussed below).
Commerce platform system(s) 110, in embodiments leverages the transaction data generated for each merchant to improve the technical ability of the commerce platform to offer additional services to merchant system(s) 120, reduce merchant effort in seeking the additional services, and improve the accuracy of the predictions that form the basis upon which such services are offered. That is, commerce platform 110 uses its unique position within the modern network based transaction processing environment, as well as its functions performed within that environment, to generate a new approach and improved solution to additional service offerings. In an embodiment, the additional services may include the extension of a loan or credit to a merchant system. For example, the credit or loan may be offered to the merchant system for use in growing, maintaining, or otherwise to benefit the ongoing operations of the business of the merchant system. However, the techniques discussed herein are not limited to loan and credit offerings, as any service that can be extended to a merchant system from the commerce platform system(s) 110 based on revenue forecasting may use and benefit from the improvements discussed herein.
As discussed herein, transaction system 112 processes user system-merchant system transactions on behalf of merchant system(s) 120. Such transactions can include product purchases, service performance, subscriptions, etc. Transaction system 112, for each transaction, may therefore collect payment information, process payments with third parties (e.g., credit systems, banking systems, etc.), generate transaction completion information, credit merchant accounts, perform payouts (e.g., to agents of a merchant), as well as other processes associated with transaction and payment processing. Furthermore, transaction system 112 stores merchant data associated with each of these operations for each transaction within a data store of the commerce platform system(s) 110 so that a complete picture of a merchant’s activities using the commerce platform system(s) 110 is available.
In embodiments, forecast manager 116 accesses the transaction data generated by the transaction system 112 when determining whether to offer additional services to a merchant system. As will be discussed in greater detail herein, forecast manager 116 leverages the transaction data generated by the transaction system 112 to forecast a predicted revenue for one or more merchants upon which additional service offers may be based. That is, the modern network based transaction environment of the commerce platform system(s) 110 generates transaction data which may be used by forecast manager 116 to forecast future revenue of a merchant system. This revenue forecast may then be used by the commerce platform system(s) 110 to determine whether and under what conditions an additional service may be offered to a merchant system. As discussed herein, for example, the additional services may be a loan or credit services, but such services are not limited to these. For credit and/or loan services, an amount of the offer extended to a merchant system is critical. That is, an offer that is too low will not provide a merchant the full offer they are entitled to, which may hinder the merchant’s ongoing business, growth of their business, etc. An offer that is too high exposes the commerce platform system to increased and/or unacceptable levels of risk. Additional service offering factors, such as repayment time, fees, interest rates, etc. also impact the suitability of an offered service. Thus, the improved forecasting discussed herein ensures that the forecasted revenue of a merchant system does not result in an offer that is not too low, ensures that the commerce platform system(s) 110 risk is not unduly high by not generating forecasts that would lead to offers that are too high, and ensures additional offer factors accurately reflect a merchant’s position with the commerce platform.
In embodiments, to obtain this improved revenue forecast upon which additional services may be offered to merchant system(s) 120, forecast manager 116 utilizes the transaction data generated by transaction system 112 to predict merchant revenue for a period of time (e.g., 1 month, 6 months, 1 year, etc.). That is, forecast manager 116 accesses the transaction records for each merchant system to determine historic transaction processing volume and transaction totals for each merchant system over a period of time, such as over a prior year or other tenure of a merchant system’s usage of the transaction system 112. Then, utilizing a revenue modeling approach selected from a set of forecasting models, where the selection is determined based on merchant revenue conditions, each merchant’s historic revenue data is used to forecast that merchant’s future revenue. As discussed herein, the efforts imposed on merchants with such an approach is minimized and/or reduced entirely, as the commerce platform system(s) 110 may predict revenue and generate service offers directly from the transaction data, thereby eliminating the need of a merchant to provide service application information as required by traditional approaches. Furthermore, the accuracy of the revenue forecasting is greatly improved due to the use of actual merchant revenue information (e.g., stored within the transaction records generated by transaction system 112 during actual merchant-user system transactions), as well as due to the use of a multi-model approach where different models are selected based on factors of a merchants processing tenure and processing volume with the commerce platform system 110.
Therefore, the forecast manager 116 is able to leverage the unique position of the commerce platform system(s) 110 to improve the revenue forecasting (i.e., data basis) upon which service offers may be generated and extended to merchant system(s) 120. In other words, the technical environment of the commerce platform system(s) 110, the data generated within the environment during merchant-user system transactions, and the specific approach to revenue forecast generation allow for a new technical solution to revenue forecasting and service offering that arises out of the modern distributed transaction processing environment.
In one embodiment, commerce platform 200 includes a transaction processing system 210. In embodiments, the transaction processing system 210 is responsible for receiving and processing transactions originating from merchant system(s) (not shown) and user system(s) (not shown) over a communications network (e.g., network 102). For example, the transactions may be financial transactions performed by transaction processing system 210 including, but not limited to, purchases, refunds, credit requests, loan requests, subscriptions, etc.
Transaction processing system 210 maintains a transaction data store 212 with transaction records for each merchant that uses the services of the commerce platform system 210. The data store 212 may include a transaction record for each transaction processed by transaction processing system 210. Furthermore, as discussed above, each transaction record may include various data, including amount, identifiers for parties to the transaction, whether a transaction was performed by a merchant’s agent, a payment method, a card type, a card brand, information entered for payment processing (e.g., shipping address, billing address, zip code of payment method/card, transaction total, tax information, etc.), as well as any other relevant transaction information. As a result, transaction data store 212 provides an accurate and historic record of transaction processing volume (e.g., amount totals of all transactions over a period of time, such as hourly, daily, weekly, quarterly, yearly, etc.) and transaction processing tenure (e.g., how long a particular merchant has used the services of the commerce platform system 200). Both of these factors, processing volume and merchant tenure, are used by forecast manager 220 when forecasting merchant revenue, and thus providing for service offerings.
In embodiments, revenue processor 230 of the forecast manager 220 is responsible for accessing transaction data from data store 212 via the transactions interface 224, and generating revenue totals for each merchant of the commerce platform system 200. In embodiments, transaction data store 212 stores millions or billions of transactions for a plurality of merchants over a relevant time period, such as a prior month, a prior quarter, a prior calendar year, etc. Thus, in embodiments revenue processor 230 utilizes a distributed computing approach where revenue totaling is processed in parallel by tasks, such that the tasks can be distributed to multiple physical processing resources. More specifically, revenue processor 230 spawns tasks, such as SPARK™ jobs, where each task or multiple tasks generate revenue totals for merchants. By distributing the processing using the task-based approach, the revenue totaling may be efficiently performed in parallel for multiple merchants on a periodic basis, such as hourly, daily, weekly, etc. basis using distributed processing resources.
The distributed jobs spawned by the revenue processor 230 are responsible for generating, in embodiments, periodic revenue totals for each merchant over a longer period of time. For example, and to illustrate the techniques discussed herein, weekly revenue totals over a prior calendar year are generated for each merchant and stored as data tables in revenue totals store 258. For merchants that have not used the commerce platform system 200 for a calendar year or longer, their weekly revenue totals are generated for the length of their tenure from a present time to a time of the merchant’s first transaction. Furthermore, in embodiments, and to realize additional processing efficiencies, the distributed jobs perform updating of the merchant revenue data tables in revenue totals store 258, rather than complete re-computation. Furthermore, from these data tables, additional information is generated by the jobs for each merchant, including total processing volume of each merchant over the last 3 months, total processing volume of each merchant over the last 12 months for each, average weekly processing volume over last 12 months (or weekly totals of processing volume starting from a first transaction for a merchant with less than a year-long transaction history), tenure length of a merchant, as well as other information.
Revenue forecasting engine 226, which may also be implemented using the distributed job-based computing technique, is responsible for accessing the revenue totals data store 258 and generating revenue forecasts for each merchant of the commerce platform system 200. In an embodiment, a set of forecasting models 230 are used by revenue forecasting engine 226, and a selection of which forecasting model to use for a particular merchant is based on the data generated by the revenue processor 230.
As illustrated in
Model selector 342 is responsible for using the processing volume totals and tenure information to select among a set for forecasting models (e.g., models 230). In an embodiment, a combination of tenure and processing volume is used to select an appropriate revenue forecasting model appropriate to the tenure/processing volume combination. In another embodiment, only processing volume is considered when selecting between different models. That is, in embodiments, different revenue forecasting models' accuracy in revenue prediction are impacted by the total amount processed (e.g., processing volume) for a given merchant and/or the amount of input data available (e.g., tenure). The set of forecasting models, in embodiments, includes an exponential smoothing model forecaster 330-1, a heuristic model forecaster 330-2, and machine learning trend and seasonality model forecaster 330-3, and selection by model selector 342 utilizes the decision factors in either Table 1 or Table 2.
As shown in Table 1 above, the tenure length is not relevant to model selection, whereas processing volume (e.g., based on a predetermined dollar amount, such as $100 k, $250 k, etc. per year) is determinative as to whether revenue forecasting will utilize a heuristic or ML based approach to revenue forecasting. Optionally, in Table 2, an exponential smoothing based approach is introduced for short tenure merchants, such as those with less than a 52-week history with the commerce platform (e.g., when a first merchant transaction is processed less than one year from a current date). In embodiments, the selected model based on the combination of processing volume and optionally tenure length ensures that the model-based forecasting applied to a particular merchant and that merchant’s transaction history provides the most accurate forecast. In one embodiment, and with reference to Table 1, for low volume merchants, the heuristic modeling provides a more accurate prediction than the ML based modeling, whereas the ML based modeling provides more accurate weekly forecasting for high volume merchants. In another embodiment, and with reference to Table 2, the merchant’s tenure may be used to further select exponential smoothing when they are a short tenure merchant, as exponential smoothing is more accurate than either the heuristic modeling or ML modeling for merchants with less available historical data.
Based on the selection criteria of Tables 1 or 2, model selector uses the determined tenure and processing volume to select between the various forecasters (e.g., exponential smoothing (ES) forecaster 330-1, heuristic model forecaster 330-2, and machine learning (ML) trend and seasonality model forecaster 330-2).
For short tenure merchants, model selector 342 selects ES model forecaster 330-1 that forecasts weekly revenue totals using an exponential smoothing based model using the merchant’s available weekly revenue totals. The exponential smoothing model forecaster 330-1 is a time series forecasting method that smoothes time series data using an exponential window function. Exponential smoothing can be represented as:
In the above formula, FT is the forecasted periodic revenue total at time T (e.g., an hourly, daily, weekly, monthly, or other time incremental revenue total), YT-1 is the actual revenue total at time T-1, and α is a smoothing level. Furthermore, smoothing factor α typically has a value of 0 < α ≤ 1. In one embodiment, the smoothing factor can be set to 0.1 allowing the applied exponential smoothing forecasts (e.g., forecasted weekly revenue totals) to be a weighted average of the time series of the merchant’s periodic revenue totals, with higher weights allocated to the more recent periodic revenue totals
For low processing volume merchants, that are either long tenure (e.g.., Table 2 selection) or regardless of tenure (e.g., Table 1 selection), model selector 342 selects heuristic model forecaster 330-2 to generate a constant value for a merchant’s predicted future weekly revenue from their historical weekly revenue totals. In embodiments, the forecast is X% of the merchant’s average weekly volume over a past 52 weeks, where X is set based on the merchant’s annualized 3-month to 12-month volume ratio, for example, (4*3-month processing volume)/12-month processing volume). Furthermore, X may be further adjusted based on the value of the ratio. In an embodiment, in response to an annualized ratio below 0.75, the average weekly volume is adjusted by a constant factor of 0.90 (e.g., 0.90*average weekly volume over a 12 month period). Similarly, and in embodiments, an annualized ratio between 0.75 and 1.00 is adjusted by a factor of 1.00, and an annualized ratio above 1.00 is adjusted by a factor of 1.15. In other words, the heuristic model forecaster 330-2 generates linear trend forecasts with a constant modifier based on the annualized ratio of 3-month to 12-month processing volume.
For high processing volume merchants, that are either long tenure (e.g.., Table 2 selection) or regardless of tenure (e.g., Table 1 selection), model selector 342 selects ML trend and seasonality model forecaster 330-3 to generate a time series forecasted weekly totals. In an embodiment, the PROPHET™ forecasting tool may be utilized, with the historic revenue totals as input to the PROPHET™ forecasting tool. Furthermore, model hyperparamters may be selected for weekly revenue forecasts, such as linear growth, yearly seasonality and/or monthly seasonality for day-of-year and/or day-of-month seasonality adjustments, multiplicative seasonality such that merchant’s revenue increase by y% yearly, and changepoint of prior scale to adjust flexibility of trend changes. Additionally, a cap and floor may be set by forecaster 330-3, such that predicated revenue cannot fall below a merchant’s weekly average (e.g., cannot fall below 25%, 30%, etc. of a merchant’s weekly average), and cannot exceed an adjusted annualized 3-month to 12-month volume ratio, such as when the ratio is below 1.00, the cap ensures the prediction cannot exceed 1.35*average weekly volume over 12 months. Similarly, when the ratio is between 1.00 and 1.25, the cap ensures the prediction cannot exceed 1.65*average weekly volume over 12 months. Further, when the ratio is between 1.25 and 1.50, the cap ensures the prediction cannot exceed 2.05*average weekly volume over 12 months. Additionally, when the ratio is above 1.50, the cap ensures the prediction cannot exceed 2.50*average weekly volume over 12 months.
As discussed above, model selector 342 selects a forecaster (e.g., 330-1 through 330-3) based on processing volume and optionally tenure length, where the model forecasts future weekly merchant revenue totals, for example the next 32, 45, 52, etc. weeks processing volumes, based on that merchant’s past actual weekly revenue totals. The weekly revenue forecasts, per merchant, are then output by the selected forecaster to forecasts 350. In embodiments, forecasts may be stored in store 258 along with merchant weekly revenue totals, but may also be a different data store (not illustrated).
In embodiments, revenue forecasting engine 326 further includes forecast(s) monitor 352 that detects when models are predicting weekly revenue outside expected boundaries. In an embodiment, a ceiling is set on weekly predictions to ensure model prediction stability and avoid outlier predictions. In an embodiment, a maximum rate of change is set, and predictions outside of the rate of change are identified, and model notifications generated to users of the commerce platform system. Such notifications may include the merchant, the weekly totals with which forecasting was made, and the forecasted values, any adjustments made to predictions, etc., to enable model adjustments as needed.
Thus, as discussed above, revenue forecasting engine 326 employs a set of forecasting techniques, which are selected based on actual historic merchant transaction parameters (e.g., processing volume and tenure). The forecasting may therefore adapt to specific merchants, and without requiring input from the merchants. Furthermore, each forecasting technique is used based on the accuracy that it provides for the merchant having the merchant parameters to ensure that the most accurate prediction is made for each merchant given the merchant’s unique scenario.
Returning to
As discussed above, commerce platform system 200 is able to leverage its unique position and environment as a modern transaction processing system when making revenue forecasts upon which services may be offered to merchant users of the commerce platform system 200. The revenue forecasts are made directly from the commerce platform system’s 200 transaction data, which results in low/zero effort on behalf of merchants for making predictions, increased accuracy as no third parties are relied upon to supply information, and leverages the unique position of the commerce platform as a payment processing entity within a networked and distributed computing environment. Furthermore, by deploying the processed discussed above in
Referring to
Processing logic generates weekly revenue transaction processing totals for the merchant (processing block 404). From the weekly transaction totals, processing logic generates a history of processing volume for each merchant (processing block 406), including average weekly processing volume, weekly totals, as well as other processing totals (e.g., 3-month, 12-month, and other processing volume totals). Furthermore, processing logic also determines, from the weekly totals, a tenure of the merchant with the commerce platform (processing block 408). The tenure is indicative of how long the merchant has been conducting transactions with the commerce platform, such as more than a year, within the previous calendar year, etc.
Processing logic then selects a revenue forecasting model from among a plurality of revenue forecasting models based at least in part on the tenure and the processing volume of the merchant (processing block 410). As discussed above, different revenue forecasting models are identified as providing maximum levels of accuracy based on processing volume amount (e.g., <$100 k/yr, or ≥ $100 k/yr) as well as based on the history of available data (e.g., tenure < 1 year, or tenure ≥ 1 year). The models include exponential smoothing, heuristic/linear trend, and ML based time forecasting that accounts for seasonality (e.g., PROPHET™ modeling).
Processing logic then applies the selected revenue forecasting model using the weekly revenue transaction processing totals as input to the selected revenue forecasting model to generate a revenue forecast for the merchant (processing block 412). Furthermore, model parameters may be adjusted based on, for example, annualized revenue totals, constant multipliers, caps and floors, etc., as discussed in greater detail above.
In some embodiments, processing logic, in response to a determination that a revenue forecast exceeds a threshold, transmits a model alert message with monitored model conditions (processing block 414). Model alerts may be used when monitoring any of the models discussed herein. Furthermore, in embodiments, the caps and floors above may serve as alert thresholds, as well additional factors such as rate of change indicators may form additional alerting thresholds. The alert message may include conditions associated with the forecast that caused the alert, such as weekly totals, 3-month processing volume, 12-month processing volume, etc. Such factors may be provided to a user of a commerce platform for model analysis and potential adjustment.
When alerting conditions are satisfied, which is indicative of a model prediction outside an expected or acceptable range, processing logic optionally implements a feedback loop where processing logic receives adjusted model parameters for at least one model (processing block 420), such as from an analysist that received the alert message of processing block 414. Processing logic then tunes the model using the received adjusted parameters (processing block 422). Thus, a model that is not performing as expected may be adjusted to improve its ongoing accurcy. Furthermore, an analyst is provided with data associated with a model prediction outside the norms to ensure that external condition associated with a merchant can be eliminated as a cause of the concerning forecast. In this optional tuning loop, the process would return to processing block 410 to regenerate forecasts.
Processing logic then generates an offer for a commerce platform service based on the generated revenue forecast for the merchant (processing block 416). As discussed herein, the service offer may be a type of service that utilizes revenue forecasts as an input to the offer, such as credit offers, loan offers, etc. The offer is then transmitted to the merchant system, for example, as an electronic message, as a graphical user interface within a web page, etc.
The data processing system illustrated in
The system may further be coupled to a display device 570, such as a light emitting diode (LED) display or a liquid crystal display (LCD) coupled to bus 515 through bus 565 for displaying information to a computer user. An alphanumeric input device 575, including alphanumeric and other keys, may also be coupled to bus 515 through bus 565 for communicating information and command selections to processor 510. An additional user input device is cursor control device 580, such as a touchpad, mouse, a trackball, stylus, or cursor direction keys coupled to bus 515 through bus 565 for communicating direction information and command selections to processor 510, and for controlling cursor movement on display device 570.
Another device, which may optionally be coupled to computer system 500, is a communication device 590 for accessing other nodes of a distributed system via a network. The communication device 590 may include any of a number of commercially available networking peripheral devices such as those used for coupling to an Ethernet, token ring, Internet, or wide area network. The communication device 590 may further be a null-modem connection, or any other mechanism that provides connectivity between the computer system 500 and the outside world. Note that any or all of the components of this system illustrated in
It will be appreciated by those of ordinary skill in the art that any configuration of the system may be used for various purposes according to the particular implementation. The control logic or software implementing the described embodiments can be stored in main memory 550, mass storage device 525, or other storage medium locally or remotely accessible to processor 510.
It will be apparent to those of ordinary skill in the art that the system, method, and process described herein can be implemented as software stored in main memory 550 or read only memory 520 and executed by processor 510. This control logic or software may also be resident on an article of manufacture comprising a computer readable medium having computer readable program code embodied therein and being readable by the mass storage device 525 and for causing the processor 510 to operate in accordance with the methods and teachings herein.
The embodiments discussed herein may also be embodied in a handheld or portable device containing a subset of the computer hardware components described above. For example, the handheld device may be configured to contain only the bus 515, the processor 510, and memory 550 and/or 525. The handheld device may also be configured to include a set of buttons or input signaling components with which a user may select from a set of available options. The handheld device may also be configured to include an output apparatus such as a liquid crystal display (LCD) or display element matrix for displaying information to a user of the handheld device. Conventional methods may be used to implement such a handheld device. The implementation of embodiments for such a device would be apparent to one of ordinary skill in the art given the disclosure as provided herein.
The embodiments discussed herein may also be embodied in a special purpose appliance including a subset of the computer hardware components described above. For example, the appliance may include a processor 510, a data storage device 525, a bus 515, and memory 550, and only rudimentary communications mechanisms, such as a small touch-screen that permits the user to communicate in a basic manner with the device. In general, the more special-purpose the device is, the fewer of the elements need be present for the device to function.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reading and understanding the above description. The scope should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
The foregoing description, for purpose of explanation, has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the described embodiments to the precise forms disclosed. Many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles and practical applications of the various embodiments, to thereby enable others skilled in the art to best utilize the various embodiments with various modifications as may be suited to the particular use contemplated.
Claims
1. A method for a transaction processing system offering a service to a user system, comprising:
- accessing, by the transaction processing system, a plurality of transactions associated with the user system and processed by the transaction processing system over a period of time;
- determining, by the transaction processing system based on the plurality of transactions, a processing volume of the transactions associated with the user system indicative of a revenue total generated from the plurality of transactions over the period of time;
- selecting, by the transaction processing system, a revenue forecasting model from among a set of revenue forecasting models based on the processing volume of the transactions associated with the user system;
- applying, by the transaction processing system, the selected revenue forecasting model to generate a revenue forecast for the user system based on revenue data within the plurality of transactions over the period of time; and
- generating, by the transaction processing system, an offer for a transaction processing system service based on the generated revenue forecast, the offer transmitted to the user system.
2. The method of claim 1, further comprising:
- generating, by the transaction processing system, weekly revenue transaction processing totals for the merchant using the plurality of transactions over the period of time; and
- determining the processing volume of the user system based on the weekly revenue transaction processing totals.
3. The method of claim 2, wherein applying the selected revenue forecasting model, further comprises:
- inputting the weekly revenue transaction processing totals to the selected revenue forecasting model; and
- generating, by the selected revenue forecasting model, a forecast of future weekly revenue totals for the user system for a future period of time after the period of time.
4. The method of claim 1, further comprising:
- determining, by the transaction processing system based on the plurality of transactions, a tenure of the user system based on the plurality of transactions, wherein the tenure is indicative of a length of time the transaction processing system has processed transactions for the user system; and
- selecting, by the transaction processing system, the revenue forecasting model from among the set of revenue forecasting models based on both the processing volume and the tenure of the user system.
5. The method of claim 4, wherein the set of revenue forecasting models comprises an exponential smoothing revenue forecasting model that performs time series weekly revenue total forecasting, a heuristic revenue forecasting model that performs linear trend based weekly revenue total forecasting, and a machine learning revenue forecasting model that outputs time series weekly revenue totals with seasonality adjustment.
6. The method of claim 5, wherein selecting the revenue forecasting model further comprises:
- selecting the exponential smoothing revenue forecasting model when the tenure of the user system fails to satisfy a tenure threshold value;
- selecting the heuristic revenue forecasting model when the tenure satisfies the tenure threshold value and the processing volume fails to satisfy a processing volume threshold value;
- selecting the machine learning revenue forecasting model when the tenure satisfies the tenure threshold value and the processing volume satisfies the processing volume threshold value; and
- wherein the tenure threshold value comprises a length of time with which the user system has had transactions processed by the transaction processing system, the processing volume threshold value comprises a predetermined currency amount.
7. The method of claim 1, further comprising:
- detecting, by the transaction processing system, when the revenue forecast for the user system satisfies one or more alerting threshold values;
- generating, by the transaction processing system, an alert to a user of the transaction processing system indicative of the user system and a set of parameters associated with the plurality of transactions;
- receiving one or more adjusted model parameters of the forecasting model; and
- tuning the forecasting model based on the received one or more adjusted model parameters.
8. The method of claim 1, wherein selecting the revenue forecasting model further comprises:
- selecting a heuristic revenue forecasting model when the processing volume fails to satisfy a processing volume threshold value;
- selecting a machine learning revenue forecasting model when the processing volume satisfies the processing volume threshold value; and
- wherein the processing volume threshold value comprises a predetermined currency amount.
9. The method of claim 1, wherein the transaction processing system comprises a commerce platform system or a payment processing system, and wherein the user system comprises a merchant system that utilizes the transaction processing services of the commerce platform system or the payment processing system for transactions between the merchant and customers of the merchant.
10. The method of claim 1, wherein the offer for the transaction processing system service is generated without receiving input from the user system.
11. A non-transitory computer readable storage medium including instructions that, when executed by a processor, cause the processor to perform operations for a transaction processing system offering a service to a user system, the operations comprising:
- accessing, by the transaction processing system, a plurality of transactions associated with the user system and processed by the transaction processing system over a period of time;
- determining, by the transaction processing system based on the plurality of transactions, a processing volume of the transactions associated with the user system indicative of a revenue total generated from the plurality of transactions over the period of time;
- selecting, by the transaction processing system, a revenue forecasting model from among a set of revenue forecasting models based on the processing volume of the transactions associated with the user system;
- applying, by the transaction processing system, the selected revenue forecasting model to generate a revenue forecast for the user system based on revenue data within the plurality of transactions over the period of time; and
- generating, by the transaction processing system, an offer for a transaction processing system service based on the generated revenue forecast, the offer transmitted to the user system.
12. The non-transitory computer readable storage medium of claim 11, further comprising:
- generating, by the transaction processing system, weekly revenue transaction processing totals for the merchant using the plurality of transactions over the period of time; and
- determining the processing volume of the user system based on the weekly revenue transaction processing totals.
13. The non-transitory computer readable storage medium of claim 12, wherein applying the selected revenue forecasting model, further comprises:
- inputting the weekly revenue transaction processing totals to the selected revenue forecasting model; and
- generating, by the selected revenue forecasting model, a forecast of future weekly revenue totals for the user system for a future period of time after the period of time.
14. The non-transitory computer readable storage medium of claim 11, further comprising:
- determining, by the transaction processing system based on the plurality of transactions, a tenure of the user system based on the plurality of transactions, wherein the tenure is indicative of a length of time the transaction processing system has processed transactions for the user system; and
- selecting, by the transaction processing system, the revenue forecasting model from among the set of revenue forecasting models based on both the processing volume and the tenure of the user system.
15. The non-transitory computer readable storage medium of claim 14, wherein the set of revenue forecasting models comprises an exponential smoothing revenue forecasting model that performs time series weekly revenue total forecasting, a heuristic revenue forecasting model that performs linear trend based weekly revenue total forecasting, and a machine learning revenue forecasting model that outputs time series weekly revenue totals with seasonality adjustment.
16. The non-transitory computer readable storage medium of claim 15, wherein selecting the revenue forecasting model further comprises:
- selecting the exponential smoothing revenue forecasting model when the tenure of the user system fails to satisfy a tenure threshold value;
- selecting the heuristic revenue forecasting model when the tenure satisfies the tenure threshold value and the processing volume fails to satisfy a processing volume threshold value;
- selecting the machine learning revenue forecasting model when the tenure satisfies the tenure threshold value and the processing volume satisfies the processing volume threshold value; and
- wherein the tenure threshold value comprises a length of time with which the user system has had transactions processed by the transaction processing system, the processing volume threshold value comprises a predetermined currency amount.
17. The non-transitory computer readable storage medium of claim 11, further comprising:
- detecting, by the transaction processing system, when the revenue forecast for the user system satisfies one or more alerting threshold values;
- generating, by the transaction processing system, an alert to a user of the transaction processing system indicative of the user system and a set of parameters associated with the plurality of transactions;
- receiving one or more adjusted model parameters of the forecasting model; and
- tuning the forecasting model based on the received one or more adjusted model parameters.
18. The non-transitory computer readable storage medium of claim 11, wherein the transaction processing system comprises a commerce platform system or a payment processing system, and wherein the user system comprises a merchant system that utilizes the transaction processing services of the commerce platform system or the payment processing system for transactions between the merchant and customers of the merchant.
19. The non-transitory computer readable storage medium of claim 11, wherein the offer for the transaction processing system service is generated without receiving input from the user system.
20. A transaction processing system for offering a service to a user system, comprising:
- a memory; and
- a processor coupled with the memory configured to:
- access a plurality of transactions associated with the user system and processed by the transaction processing system over a period of time,
- determine, based on the plurality of transactions, a processing volume of the transactions associated with the user system indicative of a revenue total generated from the plurality of transactions over the period of time,
- select a revenue forecasting model from among a set of revenue forecasting models based on the processing volume of the transactions associated with the user system,
- apply the selected revenue forecasting model to generate a revenue forecast for the user system based on revenue data within the plurality of transactions over the period of time, and
- generate an offer for a transaction processing system service based on the generated revenue forecast, the offer transmitted to the user system.
Type: Application
Filed: Oct 5, 2021
Publication Date: Apr 6, 2023
Inventors: Mengjie Ding (New York, NY), Bo Xu (Dublin, CA), Jack Dent (San Francisco, CA)
Application Number: 17/494,453