METHOD OF STIMULATING PROLIFERATION OF A CELL

Methods of treating and preventing diseases associated with fibrosis are disclosed, as well as agents for use in such methods. The methods comprise inhibiting at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In one embodiment, the disease is a liver disease or condition. Also disclosed are methods of promoting regeneration of cells, such as hepatocytes.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

This application is a continuation of U.S. application Ser. No. 17/731,259, filed on 27 Apr. 2022, which is a continuation of International Application No. PCT/SG2021/050443, filed on 30 Jul. 2021, which claims priority from SG 10202007297P filed 30 Jul. 2020, the contents and elements of which are herein incorporated by reference for all purposes.

REFERENCE TO AN ELECTRONIC SEQUENCE LISTING SUBMITTED IN XML FORMAT

The Sequence Listing written in file 109046-1326735-SeqListing.xml created on Aug. 29, 2022, 9,219,798 bytes, in accordance with 37 C.F.R. §§ 1.831-1.835, is hereby incorporated by reference in its entirety for all purposes.

FIELD OF THE INVENTION

The present disclosure relates generally to the field of regenerative therapy. In particular, the specification teaches a method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration to stimulate or increase proliferation of the cell in the subject.

BACKGROUND

The rising incidence of acute and chronic liver failure, which causes more than 1.3 million deaths per year worldwide (World Health Organization, 2018), represents a major global health concern. The main underlying causes of end-stage liver disease are hepatitis virus infections (especially hepatitis B and C), drug- and alcohol-induced liver damage, and non-alcoholic fatty liver disease (NAFLD; associated with obesity and progressing to non-alcoholic steatohepatitis (NASH)). Asia has an especially high burden of hepatitis virus infections (WHO), and an increased incidence of NAFLD. Despite advances in the prevention and treatment of viral hepatitis (hepatitis B vaccination and hepatitis C combination therapies) the number of people with end-stage liver disease is expected to rise, mainly fueled by the obesity epidemic and aging societies.

Currently, the only curative treatment for end-stage liver disease is liver transplantation. However, donor organs are limited, and end-stage liver disease patients may also experience complications that render them unfit for major surgery. Therefore, alternative strategies to hold off or reverse end-stage liver disease are being pursued. These include cell transplantation, artificial liver devices, and enhancing the organ's endogenous regenerative capacity.

The liver is the only visceral organ that possesses the remarkable capacity to regenerate. It is known that as little as 25% of the original liver mass can regenerate back to its full size. Adult hepatocytes are long-lived and normally do not undergo cell division (Go). However, upon liver damage, they have the ability to enter the cell cycle and proliferate. Once cell proliferation is completed, the newly divided cells undergo restructuring, and other regeneration-related processes such as angiogenesis and reformation of extracellular matrix to complete the regeneration process.

Despite this amazing ability, the regenerative capacity of the liver seems limited, especially under chronic damaging conditions. The ability of the liver to regenerate is central to liver homeostasis. Because the liver is the main site of drug detoxification, it is exposed to many chemicals in the body which may potentially induce cell death and injury. Furthermore, through the enterohepatic circulation, it is exposed to microbiota related metabolites. The liver can regenerate damaged tissue rapidly thereby preventing functional failure. Liver regeneration is also critical for patients with partial removal of the liver due to tumor resection or living-donor transplantation.

In the last three decades, scientists have gained a better understanding of the process of liver regeneration. For example, the cytokines IL6 and TNFα prime the hepatocyte to enter the cell cycle and mitogens such as HGF and EGF are important for driving proliferation. However, the process of promoting the regenerative process is not well understood. Importantly, not only liver intrinsic signals are involved in the regenerative response but also signals from distant organs.

Many different processes are involved to modify the regenerative response, including nutrients, oxygen level and others. Importantly, the complex liver architecture and especially the interaction with other organs cannot be perfectly simulated in vitro and therefore in vivo experiments are essential. The disadvantage of in vivo models is in their limited potential for high throughput drug discovery pipelines, especially compound screens.

Accordingly, there is a need to overcome, or at least to alleviate, one or more of the above-mentioned problems.

SUMMARY OF THE INVENTION

The present invention concerns the treatment and/or prevention of disease through inhibition of genes and/or proteins identified to be upregulated in profibrotic processes. Inhibition of such genes/proteins has protective and regenerative effects.

The present disclosure provides a method of treating or preventing a disease associated with fibrosis, comprising inhibiting at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Also provided is a method of treating or preventing a disease associated with fibrosis, comprising administering a therapeutically or prophylactically effective amount of an inhibitor of at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to a subject.

Also provided is an inhibitor of at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB for use in a method of treating or preventing a disease associated with fibrosis.

Also provided is the use of an inhibitor of at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the manufacture of a medicament for use in a method of treating or preventing a disease associated with fibrosis.

In some embodiments, the disease is a liver disease or condition.

In some embodiments, the disease or condition is selected from: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, mild liver fibrosis, advanced liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic fatty liver disease (ALFD), alcohol-related liver disease (ARLD), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis, liver damage, liver injury, liver failure, metabolic syndrome, obesity, diabetes mellitus, end-stage liver disease, inflammation of the liver, lobular inflammation, and/or hepatocellular carcinoma (HCC).

In some embodiments, the inhibitor is selected from a nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor. In some embodiments, the inhibitor is capable of binding to a polypeptide according to any one or more of SEQ ID NO: 7156 to 7178, or to a mRNA according to any one of SEQ ID NO: 7179 to 7195.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid having at least 75% sequence identity to any one of SEQ ID NOs: 7179 to 7195, or a portion thereof, or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NOs: 7179 to 7195, or a portion thereof.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1 to 7155, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NOs: 1 to 7155.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of ITFG1.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of MFAP4.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of GRHPR.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1483 to 2208, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1483 to 2208, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of ABCC4.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 2209 to 5060, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 2209 to 5060, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of PAK3.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5061 to 5389, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5061 to 5389, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of TRNP1.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5390 to 5966, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5390 to 5966, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of APLN.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5967 to 6974, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5967 to 6974, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of KIF20A.

In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6975 to 7091, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6975 to 7091, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of LTB.

In some embodiments, the inhibitory nucleic acid comprises: (i) nucleic acid comprising the nucleotide sequence of one of SEQ ID NO: 1 to 7096 or 7146 to 7150, or a nucleotide sequence having at least 75% sequence identity to one of SEQ ID NO: 1 to 7096 or 7146 to 7150; and (ii) nucleic acid comprising a nucleotide sequence having the reverse complement of the nucleotide sequence of (i), or having at least 75% sequence identity to the reverse complement of the nucleotide sequence of (i).

In some embodiments, the inhibitory nucleic acid comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.

In some embodiments, the inhibitory nucleic acid comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7146 to 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7151 to 7155.

In some embodiments, the inhibitor comprises a moiety facilitating uptake of the inhibitory nucleic acid by hepatocytes. In some embodiments, the nucleic acid inhibitor is an antisense nucleic acid, siRNA, or shRNA.

In some embodiments, the method comprises administering the inhibitor to a subject in which expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB is upregulated.

Also provided is an inhibitory nucleic acid for reducing gene and/or protein expression of ITFG1, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7182, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7182, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of MFAP4, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7179 or 7180, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7179 or 7180, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of GRHPR, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7181, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7181, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of ABCC4, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to any one of SEQ ID NO: 7183 to 7186, or a portion thereof, or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 7183 to 7186, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1483 to 2208, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1483 to 2208.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of PAK3, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to any one of SEQ ID NO: 7187 to 7190, or a portion thereof, or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 7187 to 7190, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 2209 to 5060, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 2209 to 5060.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of TRNP1, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7191, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7191, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5061 to 5389, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5061 to 5389.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of APLN, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7192, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7192, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5390 to 5966, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5390 to 5966.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of KIF20A, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7193, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7193, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5967 to 6974, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5967 to 6974.

Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of LTB, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7194 or 7195, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7194 or 7195, or a portion thereof.

In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6975 to 7091, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6975 to 7091.

Also provided is an inhibitory nucleic acid comprising (i) nucleic acid comprising the nucleotide sequence shown in one of SEQ ID NO: 7092 to 7096; and (ii) nucleic acid comprising the nucleotide sequence shown in one of SEQ ID NO: 7141 to 7145.

In some embodiments, the inhibitory nucleic acid comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.

Also provided is inhibitory nucleic acid comprising (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7146 to 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7151 to 7155.

In some embodiments, the inhibitory nucleic acid further comprises a moiety facilitating uptake of the inhibitory nucleic acid by hepatocytes. In some embodiments, the inhibitory nucleic acid is an antisense nucleic acid, siRNA or shRNA.

The present disclosure also provides a nucleic acid, optionally isolated, encoding an inhibitory nucleic acid according to the present disclosure.

The present disclosure also provides an expression vector, comprising a nucleic acid according to the present disclosure.

The present disclosure also provides a composition comprising an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure, and a pharmaceutically acceptable carrier, diluent, excipient or adjuvant.

The present disclosure also provides a cell comprising an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure.

The present disclosure also provides a method of treating or preventing a disease according to the present disclosure, comprising administering a therapeutically or prophylactically effective amount of an inhibitor, an inhibitory nucleic acid, a nucleic acid, an expression vector, a composition, or a cell according to the present disclosure to a subject.

The present disclosure also provides an inhibitor, an inhibitory nucleic acid, a nucleic acid, an expression vector, a composition, or a cell according to the present disclosure for use in therapy. In some embodiments, the inhibitor, inhibitory nucleic acid, nucleic acid, expression vector, composition, or cell is provided for use in a method of treating or preventing a disease, e.g. a disease according to the present disclosure.

The present disclosure also provides the use of an inhibitor, an inhibitory nucleic acid, a nucleic acid, an expression vector, a composition, or a cell according to the present disclosure in the manufacture of a medicament for use in a method of treating or preventing a disease, e.g. a disease according to the present disclosure.

Also disclosed is an in vitro or in vivo method for reducing gene and/or protein expression of one or more of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell, comprising introducing an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure into a cell.

Also disclosed is a method of regenerating liver tissue in vitro or in vivo, the method comprising inhibiting at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell of the tissue.

Also disclosed is a method of proliferating/expanding a hepatocyte in vitro or in vivo, the method comprising inhibiting at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the hepatocyte.

In some embodiments, a method disclosed herein comprises introducing an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure into a cell, e.g. a cell of the tissue or a hepatocyte.

Disclosed herein is a method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to stimulate or increase proliferation and/or regeneration of the cell in the subject.

Disclosed herein is a method of enhancing cell function in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell function in the subject.

Disclosed herein is a method of enhancing cell viability in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell viability in the subject.

Disclosed herein is a method of treating a liver condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the liver condition or disease in the subject.

Disclosed herein is a method of protecting a subject from liver damage, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to protect the subject from liver damage.

Disclosed herein is a method of detecting a liver condition or disease in a subject, the method comprising detecting in a sample the level of one or more biomarkers associated with organ regeneration, wherein a change in the level of the one or more biomarkers as compared to a reference indicates that the subject is suffering from a liver condition or disease.

Disclosed herein is an inhibitor of a gene or corresponding gene product associated with organ regeneration for use in preventing or treating a liver condition or disease in the subject.

Disclosed herein is the use of an inhibitor of a gene or corresponding gene product associated with organ regeneration in the manufacture of a medicament for preventing or treating a liver condition or disease in the subject.

The methods disclosed herein may employ any suitable inhibitor. In some embodiments, the inhibitor is an inhibitor according to the present disclosure.

Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1-14 or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1-14 under stringency conditions.

Disclosed herein is a method of screening for an inhibitor of a gene or corresponding gene product associated with organ regeneration by: a) contacting the gene or corresponding gene product with a chemical compound library, and b) identifying a chemical compound within the library that is binds to the gene or corresponding gene product to inhibit the expression or function of the gene or corresponding gene product.

The invention includes the combination of the aspects and preferred features described except where such a combination is clearly impermissible or expressly avoided.

DETAILED DESCRIPTION

The present invention relates to the identification of proteins that are involved in the development of liver disease and/or are detrimental to liver regeneration after injury, and targeting such proteins to treat liver diseases.

Without being bound by theory, the inventors have used an unbiased in vivo functional genetic screen to identify new therapeutic targets that are upregulated in liver diseases and conditions associated with fibrosis. Enrichment of target shRNAs indicates that the knockdown/inhibition of these targets gives a survival advantage to hepatocytes under a chronic liver damaging condition. As enrichment indicates a relative expansion to the control, knockdown or inhibition of the identified genes supports hepatocyte expansion, proliferation and robustness. This is therapeutically beneficial for liver disease interception, accelerating liver regeneration, protecting against liver damage, promoting cell proliferation, stopping and reversing liver fibrosis, and increasing survival.

Targets

The present disclosure relates to inhibition of gene and/or protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Any one or combination of these genes (i.e. any one, two, three, four, five, six, seven, eight or all nine) may be inhibited in the methods provided herein. Any one or combination of these genes may be referred to herein as a target gene(s), target mRNA(s), or target protein(s). One or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be described herein as a “gene or corresponding gene product associated with organ regeneration”.

MFAP4, GRHPR and ITFG1 are found in recurrent amplifications in hepatocellular carcinoma (Nat Med. 2014 October; 20(10): 1138-1146). ABCC4, PAK3, TRNP1, APLN, KIF20A and LTB were all found by the present inventors to be dysregulated in a local patient cohort with non-alcoholic fatty liver disease (NAFLD). Microfibril-associated glycoprotein 4 (MFAP4) is an extracellular matrix protein belonging to the fibrinogen-related domain (FReD) superfamily. Human MFAP4 is identified by UniProtKB P55083.

MFAP4 structure and function is described in e.g. Pilecki B., et al., J. Biol. Chem. 291:1103-1114 (2016), which is hereby incorporated by reference in its entirety.

MFAP4 is an extracellular glycoprotein found in elastic fibres and is required for proper elastic fibre organisation. It specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and it co-localizes with fibrillin-1-positive fibres in vivo. Human MFAP4 has been localized to elastic fibres in a variety of elastic tissues, including aorta, skin, and lung.

MFAP4 is closely associated with remodelling-related diseases, including liver fibrosis, atherosclerosis, arterial injury stimulated remodelling, and asthma (Wang H B et al., J Am Heart Assoc. 2020; 9(17):e015307). Pan Z et al., FASEB J. 2020, 34(11):14250-14263 reported that MFAP4 deficiency alleviates renal fibrosis by inhibiting the activation of NF-KB and TGF-β/Smad signalling pathways and downregulating the expression of fibrosis-related proteins. MFAP4 is produced by activated myofibroblasts and may be a predictive biomarker for severity of hepatic fibrosis (Madsen B S et al., Liver Int. 2020; 40(7): 1701-1712; Seekmose S G, et al., PLoS One. 2015; 10(10):e0140418). Example 2 of the present application shows that genes known to be involved in liver regeneration, e.g. Ptgs2, Areg, Dhrs9, Hmox1 and Nqo1, are upregulated after Mfap4 knockdown.

Alternative splicing of the mRNA transcribed from the human MFAP4 gene yields two isoforms: isoform 1 (UniProtKB: P55083-1, v2; SEQ ID NO: 7156), and isoform 2 (UniProtKB: P55083-2; SEQ ID NO: 7157) in which the amino acid sequence corresponding to positions 1 to 2 of SEQ ID NO: 7156 are replaced with the sequence ‘MGELSPLQRPLATEGTMKAQGVLLKL’.

The 255-amino acid sequence of human MFP4 isoform 1 comprises an N-terminal signal peptide at positions 1-21 of SEQ ID NO: 7156 and the mature protein region at positions 22-255 of SEQ ID NO: 7156. Positions 26-28 of SEQ ID NO: 7156 constitute the cell attachment site and positions 32-255 of SEQ ID NO: 7156 constitute the fibrinogen C-terminal domain.

In this specification, reference to ‘MFAP4’ encompasses: human MFAP4, isoforms of human MFAP4, homologues of human MFAP4 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, MFAP4 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7156.

Glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is an NADPH/NADH dependent enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. It reduces toxic intermediate glyoxylate to easily-excreted glycolate and reduces hydroxypyruvate into D-glycerate for use in glucose synthesis. Deficiency of GRHPR is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure (Cregeen D P et al., Hum Mol Genet. 1999; 8(11):2063-9). Human GRHPR is identified by UniProtKB Q9UBQ7.

GRHPR structure and function is described in e.g. Rumsby G. and Cregeen D. P. Biochim. Biophys. Acta 1446:383-388 (1999), and Booth et al., J Mol Biol, 2006; 360(1):178-89, which are hereby incorporated by reference in their entirety.

Alternative splicing of the mRNA transcribed from the human GRHPR gene yields two isoforms: isoform 1 (UniProtKB: Q9UBQ7-1, v1; SEQ ID NO: 7158), and isoform 2 (UniProtKB: Q9UBQ7-2; SEQ ID NO: 7159) in which the amino acid sequence corresponding to positions 1 to 21 of SEQ ID NO: 7158 are replaced with the sequence ‘MLGGVPTLCGTGNETWTLLAL’, positions 22-164 of SEQ ID NO: 7158 are missing, and positions 246-328 of SEQ ID NO: 7158 are replaced with the sequence ‘YPRATLPSKPGEEPSPLLPSGDFLPRGLLVRPQAELAGFHKPNNQLRNSWEYTRPPYREEEPSEWAWP VCFSAVAPTRRGLAHSSVASGSVPREPLQAHYPPPQRAGLEDLKGPLEAASHTAEPGFVWLWFSDTLNL MLLGGQTLKLTWS’.

The 328-amino acid sequence of human GRHPR isoform 1 comprises NADP binding sites at positions 217, 243, 162-164, 185-188 and 295 of SEQ ID NO: 7158, and substrate (glyoxylate/hydroxypyruvate) binding sites at positions 83-84, 245, 269, and 293-296 of SEQ ID NO: 7158.

In this specification, reference to ‘GRHPR’ encompasses: human GRHPR, isoforms of human GRHPR, homologues of human GRHPR (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, GRHPR according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7158.

T-cell immunomodulatory protein (ITFG1; also known as Protein TIP, Integrin-alpha FG-GAP repeat-containing protein 1, or Linkin/LNKN-1) is a modulator of T cell function. Human ITFG1 is identified by UniProtKB Q8TB96.

ITFG1 structure and function is described in e.g. Fiscella M., et al., Nat. Biotechnol. 21:302-307 (2003), which is hereby incorporated by reference in its entirety. Treatment of primary human and murine T cells with ITFG1 in vitro resulted in the secretion of IFN-gamma, TNF-alpha, and IL-10, whereas in vivo ITFG1 reportedly has a protective effect in a mouse acute graft-versus-host disease (GVHD) model. The interaction between ITFG1 and the ATPase RUVBL1 is reported to be required for breast cancer cell invasion and progression (Fan W. et al., Biochim Biophys Acta Gen Subj. 2017; 1861(7):1788-1800).

The 612-amino acid sequence of human ITFG1 is shown in SEQ ID NO: 7160 (UniprotKB: Q8TB96-1, v1). This sequence comprises: an N-terminal signal peptide at positions 1-33 of SEQ ID NO: 7160, an FG-GAP repeat at positions 258-293 of SEQ ID NO: 7160, and a transmembrane domain at positions 567-587 of SEQ ID NO: 7160.

In this specification, reference to ‘ITFG1’ encompasses: human ITFG1, isoforms of human ITFG1, homologues of human ITFG1 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, ITFG1 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7160.

ATP-binding cassette sub-family C member 4 (ABCC4; also known as multidrug resistance protein 4 (MRP4)) is an ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. It transports a range of endogenous molecules that have a key role in cellular communication and signalling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins. It is expressed in several tissues, including hepatocytes, with highest expression in the kidney and choroid plexus (Maher J M, et al., Drug Metab. Dispos., 33 (2005), pp. 947-955). Human ABCC4 is identified by UniProtKB 015439.

ABCC4 structure and function is described in e.g. Russel et al., Trends Pharmacol Sci. 2008, 29(4):200-7, which is hereby incorporated by reference in its entirety. ABCC4 is an inducible gene in the liver following toxic acetaminophen exposure in both humans and rodents. In mice, ABCC4 deficiency is linked to increased risk of liver injury, altered gut epithelial function and altered drug disposition, although protein expression is reportedly increased in human livers with steatosis, alcoholic cirrhosis, and diabetic cirrhosis (More V R et al., Drug Metab Dispos. 2013; 41(5): 1148-1155).

Alternative splicing of the mRNA transcribed from the human ABCC4 gene yields four isoforms: isoform 1 (UniProtKB: 015439-1, v3; SEQ ID NO: 7161), isoform 2 (015439-2, SEQ ID NO: 7162) in which the amino acid sequence corresponding to positions 679-725 of SEQ ID NO: 7161 are missing, isoform 3 (015439-3, SEQ ID NO: 7163) in which the amino acid sequence corresponding to positions 846-859 of SEQ ID NO: 7161 are replaced with the sequence ‘RWDLAVLSWLVSNS’ and positions 860-1325 of SEQ ID NO: 7161 are missing, and isoform 4 (015439-4, SEQ ID NO: 7164) in which the amino acid sequence corresponding to positions 103-177 of SEQ ID NO: 7161 are missing, the amino acid sequence corresponding to positions 846-859 of SEQ ID NO: 7161 are replaced with the sequence ‘RWDLAVLSWLVSNS’, and the amino acid sequence corresponding to positions 860-1325 of SEQ ID NO: 7161 are missing.

The 1325-amino acid sequence of human ABCC4 isoform 1 comprises: an ABC transmembrane type-1 1 domain at positions 92-377, an ABC transporter 1 domain at positions 410-633, an ABC transmembrane type-1 2 domain at positions 714-1005, an ABC transporter 2 domain at positions 1041-1274, and ATP binding regions at positions 445-452 and 1075-1082 of SEQ ID NO: 7161.

In this specification, reference to ‘ABCC4’ encompasses: human ABCC4, isoforms of human ABCC4, homologues of human ABCC4 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, ABCC4 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7161.

p21-activated kinase 3 (PAK3; also known as Serine/threonine-protein kinase PAK 3, Beta-PAK or Oligophrenin-3) is a serine/threonine protein kinase that plays a role in a variety of different signalling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. It phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. PAK3 is also a core mediator of integrin beta-1 signalling (a critical mediator of HSC activation and progression of fibrotic disease). Human PAK3 is identified by UniProtKB 075914.

PAK3 structure and function is described in e.g. Deleris P., et al., J. Biol. Chem. 286:6470-6478 (2011) and Chong C. et al., J. Biol. Chem. 276:17347-17353 (2001), which are both hereby incorporated by reference in their entirety.

Alternative splicing of the mRNA transcribed from the human PAK3 gene yields four isoforms: isoform 1 (UniProtKB: 075914-1, v2; SEQ ID NO: 7165), isoform 2 (075914-2, SEQ ID NO: 7166) in which the amino acid sequence corresponding to positions 93-107 of SEQ ID NO: 7165 are missing, isoform 3 (075914-3, SEQ ID NO: 7167) in which the amino acid at position 92 of SEQ ID NO: 7165 is replaced with the sequence ‘TNSPFQTSRPVTVASSQSEGKM’, and isoform 4 (075914-4, SEQ ID NO: 7168) in which the amino acid sequence corresponding to positions 92-107 of SEQ ID NO: 7165 are replaced with the sequence ‘TNSPFQTSRPVTVASSQSEGKM’.

The 559-amino acid sequence of human PAK3 isoform 1 comprises: a CRIB domain at positions 70-83 and a protein kinase domain at positions 283-534 of SEQ ID NO: 7165.

In this specification, reference to ‘PAK3’ encompasses: human PAK3, isoforms of human PAK3, homologues of human PAK3 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, PAK3 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7165.

TMF-regulated nuclear protein 1 (TRNP1) is a DNA-binding factor that regulates the expression of a subset of genes and plays a key role in tangential, radial, and lateral expansion of the brain neocortex. Human TRNP1 is identified by UniProtKB Q6NT89.

TRNP1 structure and function is described in e.g. Stahl R. et al., Cell 153:535-549 (2013), which is hereby incorporated by reference in its entirety.

The 227-amino acid sequence of human TRNP1 is shown in SEQ ID NO: 7169 (UniprotKB: Q6NT89-1, v2).

In this specification, reference to ‘TRNP1’ encompasses: human TRNP1, isoforms of human TRNP1, homologues of human TRNP1 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, TRNP1 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7169.

Apelin (APLN) is a peptide ligand for the G-protein coupled apelin receptor (APLNR). The APLN system plays important and various roles in the physiology and pathophysiology of many organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis or inflammation. Apelin is expressed in the heart, endothelium, vascular smooth muscle cells (VSMCs), brain, kidney, testis, ovary, liver and adipose tissue, with the highest expression levels in the lung and the mammary gland. Human APLN is identified by UniProtKB Q9ULZ1.

APLN structure and function is described in e.g. Tatemoto K. et al., Biochem. Biophys. Res. Commun. 251:471-476 (1998), and Lee D. K. et al., J. Neurochem. 74:34-41 (2000), which are both hereby incorporated by reference in their entirety.

The 77-amino acid sequence of human APLN is shown in SEQ ID NO: 7170 (UniprotKB: Q9ULZ1-1, v1). SEQ ID NO: 7170 encompasses a signal peptide at positions 1-22 and a propeptide at positions 23-41. SEQ ID NO: 7170 is cleaved into one or more active peptides by proteolytic processing: Apelin-36 (SEQ ID NO: 7171) at positions 42-77 of SEQ ID NO: 7170, Apelin-31 (SEQ ID NO: 7172) at positions 47-77 of SEQ ID NO: 7170, Apelin-28 (SEQ ID NO: 7173) at positions 50-77 of SEQ ID NO: 7170, or Apelin-13 (SEQ ID NO: 7174) at positions 65-77 of SEQ ID NO: 7170.

In this specification, reference to ‘APLN’ encompasses: human APLN, isoforms of human APLN, homologues of human APLN (i.e. encoded by the genome of a non-human animal), proteolytic peptides derived from human APLN, and variants thereof. In some embodiments, APLN according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7170.

Kinesin-like protein KIF20A (also known as GG10_2, Mitotic kinesin-like protein 2 (MKIp2), Rab6-interacting kinesin-like protein (RAB6KIFL), Rabkinesin-6) is a mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. KIF20A is a target for polo-like kinase 1 (PIk1), and phosphorylated KIF20A binds to the polo box domain of PIk1. Phosphorylation of KIF20A by PIk1 is necessary for the spatial restriction of PIk1 to the central spindle during anaphase and telophase, and the complex of these two proteins is required for cytokinesis. Human KIF20A is identified by UniProtKB 095235.

KIF20A structure and function is described in e.g. Neef R. et al., J Cell Biol. 2003; 162(5): 863-75, which is hereby incorporated by reference in its entirety.

Alternative splicing of the mRNA transcribed from the human KIF20A gene yields two isoforms: isoform 1 (UniProtKB: 095235-1, v1; SEQ ID NO: 7175), and isoform 2 (UniProtKB: 095235-2; SEQ ID NO: 7176) in which the amino acid sequence corresponding to positions 65-82 of SEQ ID NO: 7175 are missing.

The 890-amino acid sequence of human KIF20A isoform 1 comprises: a kinesin motor domain at positions 64-507 and a coiled coil domain at positions 611-762 of SEQ ID NO: 7175.

In this specification, reference to ‘KIF20A’ encompasses: human KIF20A, isoforms of human KIF20A, homologues of human KIF20A (i.e. encoded by the genome of a non-human animal), and variants thereof.

In some embodiments, KIF20A according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7175.

Lymphotoxin-beta (LTB, also known as Tumor necrosis factor C (TNF-C), Tumor necrosis factor ligand superfamily member 3) is a pro-inflammatory cytokine belonging to the TNF family that binds to receptors LTBR/TNFRSF3. It participates in the regulation of immune and inflammatory responses and, along with other LT-related cytokines such as LT-alpha, TNFα and LIGHT (TNFSF14) and their receptors, plays a role in the development and homeostasis of secondary lymphoid organs. Human LTB is identified by UniProtKB Q06643.

LTB structure and function is described in e.g. Sudhamsu J., et al., Proc Natl Acad Sci USA 110:19896-19901 (2013); Browning J. L., et al., Cell 72:847-856 (1993), Neville M. J. & Campbell R. D. J. Immunol. 162:4745-4754 (1999); Crowe P. D. et al., Science. 1994; 264(5159):707-10; and Bjordahl R. L. et al., Curr Opin Immunol. 2013, 25(2): 222-229, which are all hereby incorporated by reference in their entirety.

Alternative splicing of the mRNA transcribed from the human LTB gene yields two isoforms: isoform 1 (UniProtKB: Q06643-1, v1; SEQ ID NO: 7177), and isoform 2 (UniProtKB: Q06643-2; SEQ ID NO: 7178) in which the amino acid sequence corresponding to positions 53-77 of SEQ ID NO: 7177 are replaced with the sequence ‘GLGFRSCQRRSQKQISAPGSQLPTS’ and positions 78-244 of SEQ ID NO: 7177 are missing.

The 244-amino acid sequence of human LTB isoform 1 comprises: a cytoplasmic domain at positions 1-18, a transmembrane domain at positions 19-48, and an extracellular domain at positions 49-244 of SEQ ID NO: 7177.

In this specification, reference to ‘LTB’ encompasses: human LTB, isoforms of human LTB, homologues of human LTB (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, LTB according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7177.

As used herein, a “fragment”, “variant” or “homologue” of a protein may optionally be characterised as having at least 60%, preferably one of 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of the reference protein (e.g. a reference isoform). In some embodiments, fragments, variants, isoforms and homologues of a reference protein may be characterised by ability to perform a function performed by the reference protein.

A “fragment” generally refers to a fraction of the reference protein. A “variant” generally refers to a protein having an amino acid sequence comprising one or more amino acid substitutions, insertions, deletions or other modifications relative to the amino acid sequence of the reference protein, but retaining a considerable degree of sequence identity (e.g. at least 60%) to the amino acid sequence of the reference protein. An “isoform” generally refers to a variant of the reference protein expressed by the same species as the species of the reference protein. A “homologue” generally refers to a variant of the reference protein produced by a different species as compared to the species of the reference protein. Homologues include orthologues.

A “fragment” may be of any length (by number of amino acids), although may optionally be at least 20% of the length of the reference protein (that is, the protein from which the fragment is derived) and may have a maximum length of one of 50%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the length of the reference protein.

In some embodiments, the target gene/protein (i.e. MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB) is a target gene/protein from a mammal (any species in the class Mammalia, e.g. a primate (rhesus, cynomolgous, non-human primate or human) and/or a rodent (e.g. rat or mouse).

Isoforms, fragments, variants or homologues of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may optionally be characterised as having at least 70%, preferably one of 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of an immature or mature MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB isoform from a given species, e.g. human.

A homologue of a human gene described herein may be from any animal. In some embodiments, a homologue of a human gene described herein may be from a mammal. In some embodiments, the mammal may be a non-human mammal, e.g. a primate (e.g. a non-human primate, e.g. an animal of the genus Macaca (e.g. Macaca fascicularis, Macaca mulatta), e.g. a non-human hominid (e.g. Pan troglodytes)). In some embodiments, the mammal may be a rabbit, guinea pig, rat, mouse or animal of the order Rodentia, cat, dog, pig, sheep, goat, an animal of the order Bos (e.g. cattle), an animal of the family Equidae (e.g. horse) or donkey.

Homologues of a human protein described herein may optionally be characterised as having 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NOs: 7156 to 7178. Variants of a human protein described herein may optionally be characterised as having 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater amino acid sequence identity to the amino acid sequence of SEQ ID NOs: 7156 to 7178.

Isoforms, fragments, variants or homologues may optionally be functional isoforms, fragments, variants or homologues, e.g. having a functional property/activity of the reference MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, as determined by analysis by a suitable assay for the functional property/activity.

Inhibition of Targets

The present invention is concerned with inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (i.e. a target gene/protein described herein). That is, the invention is concerned with inhibition of the expression and/or activity of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and the downstream functional consequences thereof.

Inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB encompasses decreased/reduced expression (gene and/or protein expression) of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and/or decreased/reduced activity of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, relative to the level of expression/activity observed in the absence of inhibition. “Inhibition” may herein also be referred to as “antagonism”. Any one, two, three, four, five, six, seven, eight or nine of the genes/proteins may be inhibited in the methods according to the present disclosure.

In some embodiments, inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be characterised by one or more of the following (relative to the uninhibited state):

    • Reduce expression (e.g. gene and/or protein expression) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reduce/prevent transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Increase degradation of RNA (e.g. mRNA) encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
    • Reduce/prevent post-transcriptional processing (e.g. splicing, translation, post-translational processing) of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Promote/increase degradation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
    • Reduce/prevent the level of a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB function; and/or
    • Reduce/prevent interaction between MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and an interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Gene expression can be determined by means well known to the skilled person. The level of RNA encoding one or more of the target proteins can be determined e.g. by techniques such as RT-qPCR, northern blot, etc. By way of illustration, qRT-PCR may be used to determine the level of RNA encoding a target protein.

A reduction in the level of RNA encoding a target protein may e.g. be the result of reduced transcription of nucleic acid encoding the target protein, or increased degradation of RNA encoding the target protein.

Reduced transcription of nucleic acid encoding a target protein may be a consequence of inhibition of assembly and/or activity of factors required for transcription of the DNA encoding the target protein. Increased degradation of RNA encoding a target protein may be a consequence of increased enzymatic degradation of RNA encoding the target protein, e.g. as a consequence of RNA interference (RNAi), and/or reduced stability of RNA encoding the target protein.

Protein expression can be determined by means well known to the skilled person. The level of protein encoding a target protein can be determined e.g. by antibody-based methods including western blot, immunohisto/cytochemistry, flow cytometry, ELISA, ELISPOT, or by reporter-based methods.

A reduction in the level of a target protein may e.g. be the result of reduced level of RNA encoding the target protein, reduced post-transcriptional processing of RNA encoding the target protein, or increased degradation of the target protein.

Reduced post-transcriptional processing of a target protein may be e.g. reduced splicing of pre-mRNA encoding the target protein to mature mRNA encoding the target protein, reduced translation of mRNA encoding the target protein, or reduced post-translational processing of the target protein.

Reduced splicing of pre-mRNA encoding the target protein to mature mRNA encoding the target protein may be a consequence of inhibition of assembly and/or activity of factors required for splicing. Reduced translation of mRNA encoding the target protein may be a consequence of inhibition of assembly and/or activity of factors required for translation. Reduced post-translational processing (e.g. enzymatic processing, folding) of the target protein may be a consequence of inhibition of assembly and/or activity of factors required for post-translational processing of the target protein. Increased degradation of the target protein may be a consequence of increased enzymatic (e.g. protease-mediated) degradation of the target protein.

In some embodiments, inhibition of a target gene/protein may be characterised by a reduced level of a function of the target protein. A function of the target protein may be any functional property of the target protein.

An interaction partner may be any nucleic acid or protein which interacts with, or jointly contributes to a shared function with, any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some embodiments, an interaction partner for MFAP4 is integrin αvβ3, tropoelastin, fibrillin-1, fibrillin-2, desmosine, LOX, MFAP2, FBLN1, FBLN2, MFAP5, EFEMP2, EFEMP1, SFTPD, or elastin.

In some embodiments, an interaction partner for GRHPR is glyoxylate, hydroxypyruvate, D-glycerate, AGXT, HYI, GLYCTK, PGP, GLO1, HAO1, HAO2, DAO, NADPH or NADH.

In some embodiments, an interaction partner for ITFG1 is RUVBL1, RUVBL2, alpha-tubulin, TIPIN, ATP9A, ASCC2, RFX7, or TM7SF3.

In some embodiments, an interaction partner for ABCC4 is ATP, ABCG4, SNX27, ABCA3, ABCE1, MRPS7, SLC22A8, SLCO1B1, NR1H4 or SLC22A6.

In some embodiments, an interaction partner for PAK3 is PAK1, CDC42, NCK1, MAPK14, RAC1, PXN, GIT1, GIT2, ARHGEF7 or ARHGEF6.

In some embodiments, an interaction partner for TRNP1 is TMF1, FAM18A, CNIH3, SMARCC2, FAM19A3, TBC1D3A, TBC1D3D, ARHGAP11B, or GPR56.

In some embodiments, an interaction partner for APLN is APLNR, AGTR1, AGT, CXCR4, CCR5, KNG1, NPY, PDYN, NMU, or POMC.

In some embodiments, an interaction partner for KIF20A is MAD2L1, AURKB, RACGAP1, KIF11, PLK1, CDCA8, KIF4A, CENPE, PRC1, or INCENP.

In some embodiments, an interaction partner for LTB is LTBR, LTA, TNF, TNFSF14, TNFRSF1B, TNFSF13B, TNFRSF11A, CD40LG, MAP3K14, TNFSF11.

Functional properties of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB can be analysed using appropriate assays, e.g. in vitro assays.

In some embodiments, MFAP4 inhibition increases expression and/or activation of one or more of Ptgs2, Areg, Dhrs9, Hmox1, Nqo1, P70S6k, p38, mTOR, and/or ERK2. In some embodiments, an inhibitor of MFAP4 activates mTOR, p70S6K, ERK and p38 signalling pathways.

Inhibition of interaction between a target protein and an interaction partner for the target protein can be identified e.g. by detection of a reduction in the level of interaction between the target protein and the interaction partner, relative to a control, uninhibited condition. The ability of proteins to interact can be analysed by methods well known to the skilled person, such as co-immunoprecipitation, and resonance energy transfer (RET) assays.

Inhibition of target protein function can also be evaluated by analysis of one or more correlates of target protein function. That is, target protein function can be evaluated by analysis of downstream functional consequences of target protein function. For example, inhibition of target protein function can be identified by detection of reduced expression (gene and/or protein expression) and/or activity of one or more proteins whose expression is directly/indirectly upregulated as a consequence of target protein function. Inhibition of target protein function can also be identified by detection of increased expression (gene and/or protein expression) and/or activity of one or more proteins whose expression is directly/indirectly downregulated as a consequence of target protein function.

Inhibitors

Provided herein are inhibitors that target one or more genes/proteins from the group selected from: MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB.

An “inhibitor of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB” refers to any agent capable of inhibiting any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB expression and/or function. Such agents may be effectors of (i.e. may directly or indirectly cause) inhibition of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB as described hereinabove.

Agents capable of inhibiting any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be referred to herein as MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB inhibitors. MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB inhibitors may also be referred to herein as antagonists of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB antagonists.

“An inhibitor” of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may refer to any agent capable of inhibiting any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In addition, “An inhibitor of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB” may refer to two or more agents capable of inhibiting two, three, four, five, six, seven, eight, or nine target genes/proteins selected from the group consisting of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB. Multiple inhibitors may be used in the methods of the present disclosure to target two or more of the target genes/proteins.

In some embodiments, an inhibitor of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (i.e. a target protein) may:

    • Reduce/prevent expression (e.g. gene and/or protein expression) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reduce/prevent transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Increase degradation of RNA (e.g. mRNA) encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
    • Reduce/prevent post-transcriptional processing (e.g. splicing, translation, post-translational processing) of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Promote/increase degradation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
    • Reduce/prevent the level of a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB function; and/or
    • Reduce/prevent interaction between MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and an interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

It will be appreciated that a given inhibitor may display more than one of the properties recited in the preceding paragraph. A given inhibitor may be evaluated for the properties recited in the preceding paragraph using suitable assays. The assays may be e.g. in vitro assays, optionally cell-based assays or cell-free assays. The assays may be e.g. in vivo assays, i.e. performed in non-human animals.

Where assays are cell-based assays, they may comprise treating cells with an inhibitor (e.g. a nucleic acid) in order to determine whether the inhibitor displays one or more of the recited properties. Assays may employ species labelled with detectable entities in order to facilitate their detection. Assays may comprise evaluating the recited properties following treatment of cells separately with a range of quantities/concentrations of a given inhibitor (e.g. a dilution series). It will be appreciated that the cells are preferably cells that express the target protein to be inhibited, e.g. liver cells (e.g. HepG2 cells or HuH7 cells).

Analysis of the results of such assays may comprise determining the concentration at which 50% of the maximal level of the relevant activity is attained. The concentration of nucleic acid at which 50% of the maximal level of the relevant activity is attained may be referred to as the ‘half-maximal effective concentration’ of the inhibitor in relation to the relevant activity, which may also be referred to as the ‘EC50’. By way of illustration, the EC50 of a given inhibitor (e.g. inhibitory nucleic acid) for increasing degradation of RNA encoding a target protein may be the concentration at which 50% of the maximal level of degradation of RNA encoding a target protein is achieved.

Depending on the property, the EC50 may also be referred to as the ‘half-maximal inhibitory concentration’ or ‘IC50’, this being the concentration of inhibitor at which 50% of the maximal level of inhibition of a given property is observed. By way of illustration, the IC50 of a given inhibitor (e.g. inhibitory nucleic acid) for reducing expression of a gene encoding a target protein may be the concentration at which 50% of the maximal level of inhibition of expression of the gene is achieved.

Agents capable of reducing/preventing gene expression of any one or more MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. reducing the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB; reducing/preventing transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB; and/or increasing degradation of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB) may be identified using assays comprising detecting the level of RNA encoding the target protein, e.g. by RT-qPCR (a technique well known to the skilled person). The methods may employ primers and/or probes for the detection and/or quantification of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Such assays may comprise introducing (e.g. by transfection) into cells that express the target protein in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a control nucleic acid, such as a nucleic acid known not to influence the level of RNA encoding the target protein), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for a reduction in the level of gene expression of the target protein/transcription of nucleic acid encoding the target protein/level of RNA encoding the target protein or an increase in the level of degradation of RNA encoding the target protein to be observed) measuring the level of RNA encoding the target protein in cells according to (i) and (ii), and (iii) comparing the level of RNA encoding the target protein detected to determine whether the putative inhibitor reduces/prevents gene expression of the target protein, reduces/prevents transcription of nucleic acid encoding the target protein, reduces the level of RNA encoding the target protein, and/or increases degradation of RNA encoding the target protein.

Agents capable of reducing protein expression of any one or more MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. reducing the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein, increasing degradation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein) may be identified using assays comprising detecting the level of the target protein, e.g. using antibody/reporter-based methods (western blot, ELISA, immunohisto/cytochemistry, etc.). Such assays may comprise treating cells/tissue with the agent, and subsequently comparing the level of the target protein in such cells/tissue to the level of the target protein in cells/tissue of an appropriate control condition (e.g. untreated/vehicle-treated cells/tissue).

The methods may employ antibodies specific for the target protein. Such assays may comprise introducing (e.g. by transfection) into cells that express a target protein in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a nucleic acid known not to influence the level of the target protein), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for a reduction in the level of the target protein to be observed) measuring the level of the target protein in cells according to (i) and (ii), and (iii) comparing the level of the target protein detected to determine whether the putative inhibitor reduces the level of the target protein and/or reduces/prevents translation of mRNA encoding the target protein.

Agents capable of reducing the level of a function of any one or more MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. a function of a target protein as described herein) may be identified using assays comprising detecting the level of the relevant function. Such assays may comprise introducing (e.g. by transfection) into cells that express the target protein in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a nucleic acid known not to influence target protein function), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for a reduction in the level of a function of the target protein to be observed) measuring the level of a function of the target protein in cells according to (i) and (ii), and (iii) comparing the level of the function of the target protein detected to determine whether the putative inhibitor reduces the level of a function of the target protein.

Reference herein to ‘a function of the target protein’ may refer to any functional property of, and/or activity mediated by, MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein. Agents capable of reducing/preventing normal splicing of pre-mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be identified using assays comprising detecting and/or quantifying the level of RNA (e.g. mature mRNA) encoding one or more isoforms of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Such assays may comprise quantifying RNA (e.g. mature mRNA) encoding one or more isoforms of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB by RT-qPCR. The methods may employ primers and/or probes for the detection and/or quantification of mature mRNA produced by canonical splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and/or primers and/or probes for the detection and/or quantification of mature mRNA produced by alternative splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Mature mRNA produced by canonical splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be mature mRNA encoding the major isoform produced by expression of the gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. The major isoform may be the most commonly produced/detected isoform. For example, mature mRNA produced by canonical splicing of pre-mRNA transcribed from human MFAP4 may be mature mRNA encoding human MFAP4 isoform 1 (i.e. having the amino acid sequence shown in SEQ ID NO: 7156). Mature mRNA produced by alternative splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be mature mRNA encoding an isoform other than the major isoform produced by expression of said gene. For example, mature mRNA produced by alternative splicing of pre-mRNA transcribed from human MFAP4 may be mature mRNA encoding an isoform of human MFAP4 other than isoform 1 (i.e. having an amino acid sequence non-identical to SEQ ID NO: 7156); e.g. mature mRNA encoding human MFAP4 isoform 2 (i.e. having an amino acid sequence shown in SEQ ID NO: 7157).

Such assays may comprise introducing (e.g. by transfection) into cells that express MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a nucleic acid known not to influence splicing of pre-mRNA encoding the target gene), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for an effect on splicing of pre-mRNA encoding the target gene to be observed) measuring the level of mature mRNA encoding one or more isoforms of the target gene in cells according to (i) and (ii), and (iii) comparing the level of mature mRNA encoding the isoform(s) to determine whether the putative inhibitor reduces/prevents normal splicing of pre-mRNA encoding the target gene.

Agents capable of reducing interaction between a target protein described herein and an interaction partner for said target protein may be identified using assays comprising detecting the level of interaction between the target protein and its interaction partner, e.g. using antibody/reporter-based methods. The level of interaction between the target protein and its interaction partner can be analysed e.g. using resonance energy transfer techniques (e.g. FRET, BRET), or methods analysing a correlate of interaction between the target protein and its interaction partner. Assays may comprise treating cells/tissue with the agent, and subsequently comparing the level of interaction between the target protein and its interaction partner in such cells/tissue to the level of interaction between the target protein and its interaction partner in cells/tissue of an appropriate control condition (e.g. untreated/vehicle-treated cells/tissue). The level of interaction between the target protein and its interaction partner can also be analysed e.g. using techniques such as ELISA, surface plasmon resonance or biolayer interferometry analysis. Assays may comprise comparing the level of interaction between the target protein and its interaction partner in the presence of the agent to the level of interaction between the target protein and its interaction partner in an appropriate control condition (e.g. the absence of the agent).

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing expression of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level of expression observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit expression of the relevant gene, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing expression of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level of expression observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit expression of the relevant gene, in a given assay.

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of RNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of RNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay.

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of transcription of nucleic acid encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of transcription of nucleic acid encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay.

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein, in a given assay.

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of a function of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of the function of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of a function of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of the function of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay.

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of binding of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to an interaction partner to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of binding, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of binding of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to an interaction partner to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of the relevant binding, in a given assay.

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing normal splicing of pre-mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce normal splicing of pre-mRNA encoding the relevant target protein(s), in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of normal splicing of pre-mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce normal splicing of pre-mRNA encoding the relevant target protein(s), in a given assay.

In some embodiments, an inhibitor according to the present disclosure may be capable of reducing translation of mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce translation of mRNA encoding the relevant target protein(s), in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing translation of mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce translation of mRNA encoding the relevant target protein(s), in a given assay.

Preferred levels of reduction in accordance with the preceding eight paragraphs are reduction to less than 0.5 times/≤50%, e.g. one of less than 0.4 times/≤40%, less than 0.3 times/≤30%, less than 0.2 times/≤20%, less than 0.15 times/≤15%, or less than 0.1 times/≤10%.

In some embodiments, an inhibitor according to the present disclosure may be capable of increasing degradation of RNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to more than 1 times, e.g. one of ≥1.01 times, ≥1.02 times, ≥1.03 times, ≥1.04 times, ≥1.05 times, ≥1.1 times, ≥1.2 times, ≥1.3 times, ≥1.4 times, ≥1.5 times, ≥1.6 times, ≥1.7 times, ≥1.8 times, ≥1.9 times, ≥2 times, ≥3 times, ≥4 times, ≥5 times, ≥6 times, ≥7 times, ≥8 times, ≥9 times or ≥10 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to increase degradation of RNA encoding the relevant target protein(s), in a given assay. In some embodiments, an inhibitor according to the present disclosure prevents or silences expression of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments, an inhibitor according to the present disclosure prevents or silences expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB at the protein level. As used herein, expression of a given gene/protein may be considered to be ‘prevented’ or ‘silenced’ where the level of expression is reduced to less than 0.1 times/≤10% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to be an inhibitor of expression of the relevant gene(s)/protein(s).

In preferred embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure inhibits greater than 50%, e.g. one of ≥60%, ≥61%, ≥62%, ≥63%, ≥64%, ≥65%, ≥66%, ≥67%, ≥68%, ≥69%, ≥70%, ≥71%, ≥72%, ≥73%, ≥74%, ≥75%, ≥76%, ≥77%, ≥78%, ≥79%, ≥80%, ≥81%, ≥82%, ≥83%, ≥84%, ≥85%, ≥86%, ≥87%, ≥88%, ≥89%, ≥90%, ≥91%, ≥92%, ≥93%, ≥94%, ≥95%, ≥96%, ≥97%, ≥98%, ≥99% or 100% of the gene and/or protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit gene and/or protein expression of the relevant gene(s)/protein(s), in a given assay.

In preferred embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure inhibits greater than 50%, e.g. one of ≥60%, ≥61%, ≥62%, ≥63%, ≥64%, 65%, ≥66%, ≥67%, ≥68%, ≥69%, ≥70%, ≥71%, ≥72%, ≥73%, ≥74%, ≥75%, ≥76%, ≥77%, ≥78%, ≥79%, 80%, ≥81%, ≥82%, ≥83%, ≥84%, ≥85%, ≥86%, ≥87%, ≥88%, ≥89%, ≥90%, ≥91%, ≥92%, ≥93%, ≥94%, ≥95%, ≥96%, ≥97%, ≥98%, ≥99% or 100% of the gene expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by qRT-PCR) observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit gene and/or protein expression of the relevant gene(s)/protein(s), in a given assay.

In preferred embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure inhibits greater than 50%, e.g. one of ≥60%, ≥61%, ≥62%, ≥63%, ≥64%, ≥65%, ≥66%, ≥67%, ≥68%, ≥69%, ≥70%, ≥71%, ≥72%, ≥73%, ≥74%, ≥75%, ≥76%, ≥77%, ≥78%, ≥79%, ≥80%, ≥81%, ≥82%, ≥83%, ≥84%, ≥85%, ≥86%, ≥87%, ≥88%, ≥89%, ≥90%, ≥91%, ≥92%, ≥93%, ≥94%, ≥95%, ≥96%, ≥97%, ≥98%, ≥99% or 100% of the protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by ELISA) observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit gene and/or protein expression of the relevant gene(s)/protein(s), in a given assay.

In some embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure may inhibit gene and/or protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB with an IC50 of ≤1 μM, e.g. one of ≤500 nM, ≤100 nM, ≤75 nM, ≤50 nM, ≤40 nM, ≤30 nM, ≤20 nM, ≤15 nM, ≤12.5 nM, ≤10 nM, ≤9 nM, ≤8 nM, ≤7 nM, ≤6 nM, ≤5 nM, ≤4 nM ≤3 nM, ≤2 nM, ≤1 nM, ≤900 pM, ≤800 pM, ≤700 pM, ≤600 pM, ≤500 pM, ≤400 pM, ≤300 pM, ≤200 pM, ≤100 pM, ≤50 pM, ≤40 pM, ≤30 pM, ≤20 pM, ≤10 pM or ≤1 pM.

In some embodiments an inhibitor according to the present disclosure may inhibit gene expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by qRT-PCR) with an IC50 of ≤1 nM, ≤900 pM, ≤800 pM, ≤700 pM, ≤600 pM, ≤500 pM, ≤400 pM, ≤300 pM, ≤200 pM, ≤100 pM, ≤50 pM, ≤40 pM, ≤30 pM, ≤20 pM, ≤10 pM or ≤1 pM.

In some embodiments an inhibitor according to the present disclosure may inhibit protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by ELISA) with an IC50 of ≤1 nM, ≤900 pM, ≤800 pM, ≤700 pM, ≤600 pM, ≤500 pM, ≤400 pM, ≤300 pM, ≤200 pM, ≤100 pM, ≤50 pM, ≤40 pM, ≤30 pM, ≤20 pM, ≤10 pM or ≤1 pM.

Types of Inhibitors

Inhibitors according to the present disclosure may be any kind of agent possessing the appropriate inhibitory activity.

The term “inhibitor” as used herein refers to an agent that decreases or inhibits at least one function or biological activity of a target molecule, such as those described herein.

An inhibitor according to the present disclosure may be a molecule that is capable of binding to any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB mRNA or protein, a molecule that is capable of binding to an interacting partner of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or a molecule capable of reducing expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some embodiments an inhibitor is capable of binding to a polypeptide according to any one or more of SEQ ID NO: 7156 to 7178, or a mRNA according to any one of SEQ ID NO: 7179 to 7195.

In some embodiments an inhibitor targets, e.g. is capable of binding to, a functional domain or region of any one or more of SEQ ID NO: 7156 to 7178. In some embodiments an inhibitor targets a region comprising positions 22-255, 26-28 or 32-255 of SEQ ID NO: 7156. In some embodiments an inhibitor targets a region comprising one or more of positions 83-84, 162-164, 185-188, 217, 243, 245, 269, and 293-296 of SEQ ID NO: 7158. In some embodiments an inhibitor targets a region comprising positions 258-293 of SEQ ID NO: 7160. In some embodiments an inhibitor targets a region comprising positions 92-377, 410-633, 714-1005, 1041-1274, 445-452, or 1075-1082 of SEQ ID NO: 7161. In some embodiments an inhibitor targets a region comprising positions 70-83 or 283-534 of SEQ ID NO: 7165. In some embodiments an inhibitor targets a region comprising positions 64-507 or 611-762 of SEQ ID NO: 7175. In some embodiments an inhibitor targets a region comprising positions 1-18, 19-48, or 49-244 of SEQ ID NO: 7177.

In some embodiments an inhibitor is capable of binding to an interacting partner of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, such as those described hereinabove.

Such binding molecules can be identified using any suitable assay for detecting binding of a molecule to the relevant factor (i.e. a target gene/protein described herein, or an interaction partner for said protein(s)). Such assays may comprise detecting the formation of a complex between the relevant factor and the molecule.

In some embodiments, the inhibitor is a nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor.

Small molecule inhibitors that bind to the target mRNA/proteins described herein, or their binding partners, can be identified by screening of small molecule libraries. As used herein, a “small molecule” refers to a low molecular weight (<1000 daltons, typically between ˜300-700 daltons) organic compound. Small molecule inhibitors that bind to the target mRNA/proteins described herein can be identified e.g. using a method described in Horswill A R et al., PNAS, 2004,101 (44) 15591-15596, which is hereby incorporated by reference in its entirety.

An inhibitor of GRHPR may be 4-hydroxy-2-oxoglutarate.

An inhibitor of ABCC4 may be Methotrexate, Mercaptopurine, Zidovudine, Dipyridamole, Probenecid, Sulfinpyrazone, Fluorouraci, Rucaparib, Adefovir dipivoxil, Cefazolin, Tyrphostin AG1478, Dantrolene, Glafenine, Nalidixic Acid or Prazosin.

An inhibitor of PAK3 may be FRAX597.

An inhibitor of APLN may be ML221, an apelin receptor (APJ) antagonist.

An inhibitor of KIF20A may be BKS0349 or Paprotrain.

Inhibitors provided herein include peptides/polypeptides, e.g. peptide aptamers, thioredoxins, monobodies, anticalin, Kunitz domains, avimers, knottins, fynomers, atrimers, DARPins, affibodies, nanobodies (i.e. single-domain antibodies (sdAbs)) affilins, armadillo repeat proteins (ArmRPs), OBodies and fibronectin—reviewed e.g. in Reverdatto et al., Curr Top Med Chem. 2015; 15(12): 1082-1101, which is hereby incorporated by reference in its entirety (see also e.g. Boersma et al., J Biol Chem (2011) 286:41273-85 and Emanuel et al., Mabs (2011) 3:38-48). Inhibitors include peptides/polypeptides that can be identified by screening of libraries of the relevant peptides/polypeptides. The peptide/polypeptide inhibitors may be referred to as inhibitory peptides/polypeptides.

Inhibitory peptides/polypeptides may also include e.g. peptide/polypeptide interaction partners for the target gene/mRNA/protein of interest (i.e. MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB).

Peptide/polypeptide interaction partners may be based on an interaction partner for the target gene/mRNA/protein of interest, and may e.g. comprise a fragment of an interaction partner said target(s). Peptide/polypeptide interaction partners may be based on one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and may e.g. comprise a fragment of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB that binds to an interaction partner for said mRNA/protein. Such agents may behave as ‘decoy’ molecules, and preferably display competitive inhibition of interaction between MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and a corresponding interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

An inhibitor of MFAP4 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between MFAP4 and an integrin receptor, integrin αvβ3, tropoelastin, fibrillin-1, fibrillin-2, desmosine, LOX, MFAP2, FBLN1, FBLN2, MFAP5, EFEMP2, EFEMP1, SFTPD, or elastin.

An inhibitor of GRHPR may, for example, be a peptide/polypeptide that is capable of blocking the interaction between GRHPR and glyoxylate, hydroxypyruvate, D-glycerate, AGXT, HYI, GLYCTK, PGP, GLO1, HAO1, HAO2, DAO, NADPH or NADH.

An inhibitor of ITFG1 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between ITFG1 and RUVBL1, RUVBL2, alpha-tubulin, TIPIN, ATP9A, ASCC2, RFX7, or TM7SF3.

An inhibitor of ABCC4 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between ABCC4 and ATP, ABCG4, SNX27, ABCA3, ABCE1, MRPS7, SLC22A8, SLCO1B1, NR1H4 or SLC22A6.

An inhibitor of PAK3 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between PAK3 and PAK1, CDC42, NCK1, MAPK14, RAC1, PXN, GIT1, GIT2, ARHGEF7 or ARHGEF6.

An inhibitor of TRNP1 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between TRNP1 and TMF1, FAM18A, CNIH3, SMARCC2, FAM19A3, TBC1D3A, TBC1D3D, ARHGAP11B, or GPR56.

An inhibitor of APLN may, for example, be a peptide/polypeptide that is capable of blocking the interaction between APLN and APLNR, AGTR1, AGT, CXCR4, CCR5, KNG1, NPY, PDYN, NMU, or POMC.

An inhibitor of KIF20A may, for example, be a peptide/polypeptide that is capable of blocking the interaction between KIF20A and MAD2L1, AURKB, RACGAP1, KIF11, PLK1, CDCA8, KIF4A, CENPE, PRC1, or INCENP.

An inhibitor of LTB may, for example, be a peptide/polypeptide that is capable of blocking the interaction between LTB and LTBR, LTA, TNF, TNFSF14, TNFRSF1B, TNFSF13B, TNFRSF11A, CD40LG, MAP3K14, TNFSF11.

In some embodiments, an inhibitory peptide/polypeptide may comprise or consist of an amino acid sequence having at least 60%, e.g. one of at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of an interaction partner for one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or the amino acid sequence of a fragment thereof.

In some embodiments, an inhibitory peptide/polypeptide may comprise or consist of an amino acid sequence having at least 60%, e.g. one of at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or the amino acid sequence of a fragment thereof. In such embodiments it will be appreciated that the inhibitory peptide/polypeptide will lack normal activity and/or have reduced activity compared to the wildtype version of the protein. For example, in some embodiments an inhibitory peptide/polypeptide may be a variant (e.g. mutant) version of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB having reduced function relative to wildtype MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Inhibitory peptides/polypeptides include aptamers. Nucleic acid aptamers are reviewed e.g. in Zhou and Rossi Nat Rev Drug Discov. 2017 16(3):181-202, and may be identified and/or produced by the method of Systematic Evolution of Ligands by EXponential enrichment (SELEX), or by developing SOMAmers (slow off-rate modified aptamers) (Gold L et al. (2010) PLoS ONE 5(12):e15004). Aptamers and SELEX are described in Tuerk and Gold, Science (1990) 249(4968):505-10, and in WO 91/19813. Nucleic acid aptamers may comprise DNA and/or RNA, and may be single stranded or double stranded. They may comprise chemically modified nucleic acids, for example in which the sugar and/or phosphate and/or base is chemically modified. Such modifications may improve the stability of the aptamer or make the aptamer more resistant to degradation and may include modification at the 2′ position of ribose. Nucleic acid aptamers may be chemically synthesised, e.g. on a solid support. Solid phase synthesis may use phosphoramidite chemistry. Briefly, a solid supported nucleotide is detritylated, then coupled with a suitably activated nucleoside phosphoramidite to form a phosphite triester linkage. Capping may then occur, followed by oxidation of the phosphite triester with an oxidant, typically iodine. The cycle may then be repeated to assemble the aptamer (e.g., see Sinha, N. D.; Biernat, J.; McManus, J.; Köster, H. Nucleic Acids Res. 1984, 12, 4539; and Beaucage, S. L.; Lyer, R. P. (1992). Tetrahedron 48 (12): 2223). Peptide aptamers and methods for their generation and identification are reviewed in Reverdatto et al., Curr Top Med Chem. (2015) 15(12):1082-101, which is hereby incorporated by reference in its entirety.

Inhibitory peptides/polypeptides also include antibodies (immunoglobulins) such as monoclonal antibodies, polyclonal antibodies, monospecific antibodies, multispecific antibodies (e.g., bispecific antibodies), and fragments and derivatives thereof (e.g. Fv, scFv, Fab, scFab, F(ab′)2, Fab2, diabodies, triabodies, scFv-Fc, minibodies, single domain antibodies (e.g. VhH), etc.).

In some embodiments, an inhibitor described herein is an antibody that is capable of binding to one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

An inhibitor of MFAP4 may be an antibody with catalog number PA5-42013 (ThermoFisher) or ab169757 (abcam). An inhibitor of GRHPR may be an antibody with catalog number PA5-54652 (ThermoFisher) or ab155604 (abcam). An inhibitor of ITFG1 may be an antibody with catalog number PA5-54067 (ThermoFisher) or TA339563 (ORIGENE). An inhibitor of ABCC4 may be an antibody with catalog number PA5-82019 (ThermoFisher) or ab15602 (abcam). An inhibitor of PAK3 may be an antibody with catalog number PA5-79781 (ThermoFisher) or ab40808 (abcam). An inhibitor of TRNP1 may be an antibody with catalog number PA5-71277 (ThermoFisher) or ab174303 (abcam). An inhibitor of APLN may be an APLN-blocking antibody. An inhibitor of APLN may be an antibody with catalog number PA5-114860 (ThermoFisher) or ab125213 (abcam). An inhibitor of KIF20A may be an antibody with catalog number PA5-38648 (ThermoFisher). An inhibitor of LTB may be an antibody (e.g. a recombinant Mouse Anti-LTA and LTB Antibody (CBL543)).

Inhibitors/inhibitory molecules that bind to any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or that bind to an interacting partner thereof, may display specific binding to the relevant factor (i.e. the relevant mRNA/protein, or the interaction partner for said mRNA/protein). As used herein, “specific binding” refers to binding which is selective, and which can be discriminated from non-specific binding to non-target molecules.

An inhibitor or binding molecule that specifically binds to any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB preferably binds to any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB with greater affinity, and/or with greater duration than it binds to other, non-target molecules. Such binding molecules may be described as being “specific for” any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. An inhibitor or binding molecule that specifically binds to an interaction partner for any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB preferably binds to the interaction partner for any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB with greater affinity, and/or with greater duration than it binds to other, non-target molecules; such binding molecules may be described as being “specific for” the interaction partner for any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some embodiments an inhibitor/binding molecule described herein inhibits the ability of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to bind to a corresponding interaction partner (i.e. an interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB, respectively). In some embodiments the inhibitor/binding molecule behaves as a competitive inhibitor of interaction between any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and a corresponding interaction partner. The binding molecule may occupy, or otherwise reduce access to, a region of the protein required for binding to a corresponding interaction partner, or may occupy, or otherwise reduce access to, a region of an interaction partner required for binding to the corresponding protein.

The ability of an inhibitor, e.g. a binding molecule, to inhibit interaction between a protein of interest and a corresponding interaction partner can be evaluated e.g. by analysis of interaction in the presence of, or following incubation of one or both of the interaction partners with, the inhibitor. An example of a suitable assay to determine whether a given binding agent is capable of inhibiting interaction between a protein of interest and a corresponding interaction partner is a competition ELISA.

An inhibitor described herein may be a molecule capable of reducing expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. A “molecule capable of reducing expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB” refers to a molecule which is capable of reducing gene, mRNA and/or protein expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments the molecule reduces or prevents the expression of a polypeptide according to SEQ ID NO: 7156 to 7178. In some embodiments the molecule reduces or prevents the expression of a polypeptide from a sequence according to SEQ ID NO: 7179 to 7195.

Repression of expression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB or an isoform thereof will preferably result in a decrease in the quantity of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB expressed by a cell/tissue/organ/organ system/subject. For example, in a given cell the repression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB by administration of a suitable nucleic acid will result in a decrease in the level of expression relative to an untreated cell. Repression may be partial. Preferred degrees of repression are at least 50%, more preferably one of at least 60%, 70%, 80%, 85% or 90%. A level of repression between 90% and 100% is considered a ‘silencing’ of expression or function. Gene and protein expression may be determined as described herein or by methods in the art that are well known to a skilled person.

In some embodiments, inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may comprise modification of a cell(s) to reduce or prevent expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying nucleic acid encoding one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. The modification causes the cell to have a reduced level of gene and/or protein expression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB as compared to an unmodified cell.

In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may comprise modifying a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises introducing an insertion, substitution or deletion into a nucleic acid sequence encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises introducing a modification which reduces or prevents the expression of a polypeptide according to any one of SEQ ID NO: 7156 to 7178 from the modified nucleic acid sequence. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying a cell to comprise an allele of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB which does not encode an amino acid sequence according to any one of SEQ ID NO: 7156 to 7178. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying a cell to lack nucleic acid encoding a polypeptide according to any one of SEQ ID NO: 7156 to 7178.

In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying the relevant gene(s) to introduce a premature stop codon in the sequence transcribed from said gene(s). In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying the relevant gene(s) to encode a truncated and/or non-functional polypeptide(s). In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying the relevant gene(s) to encode polypeptide(s) which is/are misfolded and/or degraded.

Methods for modifying nucleic acids encoding proteins of interest and agents for achieving the same are well known in the art, and include e.g. including modification of the target nucleic acid by homologous recombination, and target nucleic acid editing using site-specific nucleases (SSNs).

Suitable methods may employ targeting by homologous recombination, which is reviewed, for example, in Mortensen Curr Protoc Neurosci. (2007) Chapter 4:Unit 4.29 and Vasquez et al., PNAS 2001, 98(15): 8403-8410, both of which are hereby incorporated by reference in their entirety. Targeting by homologous recombination involves the exchange of nucleic acid sequence through crossover events guided by homologous sequences.

In some embodiments the methods employ target nucleic acid editing using SSNs. Gene editing using SSNs is reviewed e.g. in Eid and Mahfouz, Exp Mol Med. 2016 October; 48(10): e265, which is hereby incorporated by reference in its entirety. Enzymes capable of creating site-specific double strand breaks (DSBs) can be engineered to introduce DSBs to target nucleic acid sequence(s) of interest. DSBs may be repaired by either error-prone non-homologous end-joining (NHEJ), in which the two ends of the break are rejoined, often with insertion or deletion of nucleotides. Alternatively DSBs may be repaired by highly homology-directed repair (HDR), in which a DNA template with ends homologous to the break site is supplied and introduced at the site of the DSB.

SSNs capable of being engineered to generate target nucleic acid sequence-specific DSBs include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) systems.

ZFN systems are reviewed e.g. in Umov et al., Nat Rev Genet. (2010) 11(9):636-46, which is hereby incorporated by reference in its entirety. ZFNs comprise a programmable Zinc Finger DNA-binding domain and a DNA-cleaving domain (e.g. a FokI endonuclease domain). The DNA-binding domain may be identified by screening a Zinc Finger array capable of binding to the target nucleic acid sequence.

TALEN systems are reviewed e.g. in Mahfouz et al., Plant Biotechnol J. (2014) 12(8):1006-14, which is hereby incorporated by reference in its entirety. TALENs comprise a programmable DNA-binding TALE domain and a DNA-cleaving domain (e.g. a FokI endonuclease domain). TALEs comprise repeat domains consisting of repeats of 33-39 amino acids, which are identical except for two residues at positions 12 and 13 of each repeat which are repeat variable di-residues (RVDs). Each RVD determines binding of the repeat to a nucleotide in the target DNA sequence according to the following relationship: ‘HD’ binds to C, ‘NI’ binds to A, ‘NG’ binds to T and ‘NN’ or ‘NK’ binds to G (Moscou and Bogdanove, Science (2009) 326(5959):1501.).

CRISPR/Cas9 and related systems e.g. CRISPR/Cpf1, CRISPR/C2c1, CRISPR/C2c2 and CRISPR/C2c3 are reviewed e.g. in Nakade et al., Bioengineered (2017) 8(3):265-273, which is hereby incorporated by reference in its entirety. These systems comprise an endonuclease (e.g. Cas9, Cpf1 etc.) and the single-guide RNA (sgRNA) molecule. The sgRNA can be engineered to target endonuclease activity to nucleic acid sequences of interest.

In some embodiments, inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB employs a site-specific nuclease (SSN) system targeting the relevant nucleic acid sequence(s). Accordingly in some embodiments the inhibitor comprises or consists of an SSN system targeting nucleic acid(s) encoding one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB employs nucleic acid(s) encoding a SSN system targeting the relevant nucleic acid sequence(s).

In some embodiments, the SSN system targets a region of the nucleic acid encoding a domain of a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein required for protein function, e.g. a domain as described herein.

In some embodiments the SSN system is a ZFN system, a TALEN system, CRISPR/Cas9 system, a CRISPR/Cpf1 system, a CRISPR/C2c1 system, a CRISPR/C2c2 system or a CRISPR/C2c3 system.

In some embodiments the SSN system is a CRISPR/Cas9 system. In such embodiments, the inhibition may employ nucleic acid(s) encoding a CRISPR RNA (crRNA) targeting nucleic acid encoding one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and a trans-activating crRNA (tracrRNA) for processing the crRNA to its mature form.

Nucleic Acid Inhibitors

In some embodiments, the inhibitor is a nucleic acid inhibitor. A nucleic acid inhibitor may also be described herein as an inhibitory nucleic acid.

Nucleic acid inhibitors according to the present disclosure may comprise or consist of DNA and/or RNA. Nucleic acid inhibitors may be single-stranded (e.g. in the case of antisense oligonucleotides (e.g. gapmers)). Nucleic acid inhibitors may be double-stranded or may comprise double-stranded region(s) (e.g. in the case of siRNA, shRNA, etc.). Inhibitory nucleic acids may comprise both double-stranded and single-stranded regions (e.g. in the case of shRNA and pre-miRNA molecules, which are double-stranded in the stem region of the hairpin structure, and single-stranded in the loop region of the hairpin structure).

In some embodiments, a nucleic acid inhibitor according to the present disclosure may be an antisense nucleic acid as described herein. In some embodiments, a nucleic acid inhibitor may comprise an antisense nucleic acid as described herein. In some embodiments, a nucleic acid inhibitor may encode an antisense nucleic acid as described herein.

As used herein, an ‘antisense nucleic acid’ refers to a nucleic acid (e.g. DNA or RNA) that is complementary to at least a portion of a target nucleotide sequence (e.g. of RNA encoding a target gene described herein). Antisense nucleic acids according to the present disclosure are preferably single-stranded nucleic acids, and bind via complementary Watson-Crick base-pairing to a target nucleotide sequence. Complementary base-pairing may involve hydrogen bonding between complementary base pairs. Antisense nucleic acids may be provided as single-stranded molecules, as for example in the case of antisense oligonucleotides, or may be comprised in double-stranded molecular species, as for example in the case of siRNA, shRNA and pre-miRNA molecules.

Complementary base-pairing between the antisense nucleic acid and its target nucleotide sequence may be complete. In such embodiments the antisense nucleic acid comprises, or consists of, the reverse complement of its target nucleotide sequence, and complementary base-pairing occurs between each nucleotide of the target nucleotide sequence and complementary nucleotides in the antisense nucleic acid. Alternatively, complementary base-pairing between the antisense nucleic acid and its target nucleotide sequence may be incomplete/partial. In such embodiments complementary base-pairing occurs between some, but not all, nucleotides of the target nucleotide sequence and complementary nucleotides in the antisense nucleic acid.

Such binding between nucleic acids through complementary base pairing may be referred to as ‘hybridisation’. Through binding to its target nucleotide sequence, an antisense nucleic acid may form a nucleic acid complex comprising (i) the antisense nucleic acid and (ii) a target nucleic acid comprising the target nucleotide sequence.

The nucleotide sequence of an antisense nucleic acid is sufficiently complementary to its target nucleotide sequence such that it binds or hybridises to the target nucleotide sequence. It will be appreciated that an antisense nucleic acid preferably has a high degree of sequence identity to the reverse complement of its target nucleotide sequence. In some embodiments, the antisense nucleic acid comprises or consists of a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of its target nucleotide sequence.

In some embodiments, an antisense nucleic acid according to the present disclosure comprises: a nucleotide sequence which is the reverse complement of its target nucleotide sequence, or a nucleotide sequence comprising 1 to 10 (e.g. one of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10) substitutions relative to the reverse complement of its target nucleotide sequence.

In some embodiments, the target nucleotide sequence for an antisense nucleic acid according to the present disclosure comprises, or consists of, 5 to 100 nucleotides, e.g. one of 10 to 80, 12 to 50, or 15 to 30 nucleotides (e.g. 20 to 27, e.g. ˜21 to 23). In some embodiments, the target nucleotide sequence for an antisense nucleic acid according to the present disclosure comprises or consists of DNA and/or RNA. In some embodiments, the target nucleotide sequence for an antisense nucleic acid according to the present disclosure comprises or consists of RNA.

In some embodiments, the antisense nucleic acid reduces/prevents transcription of nucleic acid comprising its target nucleotide sequence. In some embodiments, the antisense nucleic acid reduces/prevents association of factors required for normal transcription (e.g. enhancers, RNA polymerase) with nucleic acid comprising its target nucleotide sequence.

In some embodiments, the antisense nucleic acid increases/potentiates degradation of nucleic acid comprising its target nucleotide sequence, e.g. through RNA interference. In some embodiments, the antisense nucleic acid reduces/prevents translation of nucleic acid comprising its target nucleotide sequence, e.g. through RNA interference or antisense degradation via RNase H.

RNA interference is described e.g. in Agrawal et al., Microbiol. Mol. Bio. Rev. (2003) 67(4): 657-685 and Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101), both of which are hereby incorporated by reference in their entirety. Briefly, double-stranded RNA molecules are recognised by the argonaute component of the RNA-induced silencing complex (RISC). The double-stranded RNAs are separated into single strands and integrated into an active RISC, by the RISC-Loading Complex (RLC). The RISC-integrated strands bind to their target RNA through complementary base pairing, and depending on the identity of the RISC-integrated RNA and degree of complementarity to the target RNA, the RISC then either cleaves the target RNA resulting in its degradation, or otherwise blocks access of ribosomes thereby preventing its translation. RNAi based therapeutics have been approved for a number of indications (Kim, Chonnam Med J. (2020) 56(2): 87-93).

In some embodiments, the antisense nucleic acid reduces/prevents normal post-transcriptional processing (e.g. splicing and/or translation) of nucleic acid comprising its target nucleotide sequence. In some embodiments, the antisense nucleic acid reduces or alters splicing of pre-mRNA comprising its target nucleotide sequence to mature mRNA. In some embodiments, the antisense nucleic acid reduces translation of mRNA comprising its target nucleotide sequence to protein.

In some embodiments, the antisense nucleic acid reduces/prevents association of factors required for normal post-transcriptional processing (e.g. components of the spliceosome) with nucleic acid comprising its target nucleotide sequence. In such instances, the antisense nucleic may be referred to as a ‘splice-switching’ nucleic acid.

Splice-switching nucleic acids are reviewed e.g. in Haves and Hastings, Nucleic Acids Res. (2016) 44(14): 6549-6563, which is hereby incorporated by reference in its entirety. Splice-switching nucleic acids include e.g. splice-switching oligonucleotides (SSOs). They disrupt the normal splicing of target RNA transcripts by blocking the RNA:RNA base-pairing and/or protein:RNA binding interactions that occur between components of the splicing machinery and pre-mRNA. Splice-switching nucleic acids may be employed to alter the number/proportion of mature mRNA transcripts encoding a protein described herein. Splice-switching nucleic acids may be designed to target a specific region of the target transcript, e.g. to effect skipping of exon(s) of interest, e.g. exons encoding domains/regions of interest. SSOs often comprise alterations to oligonucleotide sugar-phosphate backbones in order to reduce/prevent RNAse H degradation, such as e.g. phosphorothioate linkages, phosphorodiamidate linkages such as phosphorodiamidate morpholino (PMOs), and may comprise e.g. peptide nucleic acids (PNAs), locked nucleic acids (LNAs), methoxyethyl nucleotide modifications, e.g. 2′O-methyl (2′OMe) and 2′-O-methoxyethyl (MOE) ribose modifications and/or 5′-methylcytosine modifications.

In some embodiments, the antisense nucleic acid inhibits/reduces translation of nucleic acid comprising its target nucleotide sequence. In some embodiments, the antisense nucleic acid reduces/prevents association of factors required for translation (e.g. ribosomes) with nucleic acid comprising its target nucleotide sequence.

As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a gene (e.g. a gene associated with organ regeneration), including mRNA that is a product of RNA processing of a primary transcription product.

It will be appreciated that the target nucleotide sequence to which an antisense nucleic acid binds is a nucleotide sequence encoding a protein which it is desired to inhibit expression of. Accordingly, in aspects and embodiments of the present disclosure, the target nucleotide sequence for an antisense nucleic acid is a nucleotide sequence of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of RNA encoded by a gene encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In some embodiments, the target nucleotide sequence is a nucleotide sequence of RNA encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In some embodiments, the target nucleotide sequence comprises one or more nucleotides of an exon of RNA encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In some embodiments, the target nucleotide sequence is a nucleotide sequence of an exon of RNA encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB.

In some embodiments, the target nucleotide sequence is a nucleotide sequence provided in Table 14.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001198695.2 (GI: 1677501926, version 2), which is the NCBI Reference Sequence for human MFAP4 transcript variant 1 mRNA (SEQ ID NO: 7179), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_002404.3 (GI: 1677501522, version 3), which is the NCBI Reference Sequence for human MFAP4 transcript variant 2 mRNA (SEQ ID NO: 7180), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_012203.2 (GI: 1519473711, version 2) which is the NCBI Reference Sequence for human GRHPR transcript variant 1 mRNA (SEQ ID NO: 7181), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_030790.5 (GI: 1653961895, version 5) which is the NCBI Reference Sequence for human ITFG1 transcript variant 1 mRNA (SEQ ID NO: 7182), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_005845.5 (GI: 1813751621, version 5) which is the NCBI Reference Sequence for human ABCC4 transcript variant 1 mRNA (SEQ ID NO: 7183), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001105515.3 (GI: 1677498821, version 3) which is the NCBI Reference Sequence for human ABCC4 transcript variant 2 mRNA (SEQ ID NO: 7184), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001301829.2 (GI: 1677530022, version 2) which is the NCBI Reference Sequence for human ABCC4 transcript variant 3 mRNA (SEQ ID NO: 7185), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001301830.2 (GI: 1677498275, version 2) which is the NCBI Reference Sequence for human ABCC4 transcript variant 4 mRNA (SEQ ID NO: 7186), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001128166.3 (GI: 1889680926, version 3) which is the NCBI Reference Sequence for human PAK3 transcript variant 1 mRNA (SEQ ID NO: 7187), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_002578.5 (GI: 1519316149, version 5) which is the NCBI Reference Sequence for human PAK3 transcript variant 2 mRNA (SEQ ID NO: 7188), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001128167.3 (GI: 1890283404, version 3) which is the NCBI Reference Sequence for human PAK3 transcript variant 3 mRNA (SEQ ID NO: 7189), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001128168.3 (GI: 1676441496, version 3) which is the NCBI Reference Sequence for human PAK3 transcript variant 4 mRNA (SEQ ID NO: 7190), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001013642.3 (GI: 1519242294, version 3) which is the NCBI Reference Sequence for human TRNP1 mRNA (SEQ ID NO: 7191), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_017413.5 (GI: 1519315208, version 5) which is the NCBI Reference Sequence for human APLN mRNA (SEQ ID NO: 7192), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_005733.3 (GI: 1519313609, version 3) which is the NCBI Reference Sequence for human KIF20A transcript variant 1 mRNA (SEQ ID NO: 7193), or a portion thereof.

In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_002341.2 (GI: 1720810086, version 2) which is the NCBI Reference Sequence for human LTB transcript variant 1 mRNA (SEQ ID NO: 7194), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_009588.1 (GI: 6996015, version 1) which is the NCBI Reference Sequence for human LTB transcript variant 2 mRNA (SEQ ID NO: 7195), or a portion thereof.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of any one of SEQ ID NOs: 7179 to 7195, or a portion thereof, e.g. calculated over the length of the antisense nucleic acid or over the length of the portion of the reference sequence.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one of SEQ ID NOs: 7179 to 7195, or a portion thereof, e.g. calculated over the length of the antisense nucleic acid or over the length of the portion of the reference sequence.

In some embodiments the antisense nucleic acid and/or the portion of the reference sequence is 5 to 50, 5 to 40, 8 to 30, 8 to 25, 10 to 25, 15 to 25, or 19 to 22 nucleotides in length. Antisense nucleic acids described herein may comprise thymine or uracil residues. Where antisense nucleic acids described herein are defined by reference to sequence identity with a reference sequence, the nucleic acids may comprise uracil residues in place of any thymine residues in the reference sequence, or vice versa.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to a sequence, or to the reverse complement of a sequence, in any one or more of Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and/or 13, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence from a Table.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 1 to 7155, or to the reverse complement of any one or more of SEQ ID NOs: 1 to 7155, e.g. calculated over the length of the antisense nucleic acid or the length of the reference sequence.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 14 to 7114 or 7141 to 7155, or to the reverse complement of any one or more of SEQ ID NOs: 14 to 7114 or 7141 to 7155, e.g. calculated over the length of the antisense nucleic acid or the length of the reference sequence.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one of SEQ ID NOs: 1 to 13, or to the reverse complement of any one of SEQ ID NOs: 1 to 13, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one of SEQ ID NOs: 7115 to 7140, or to the reverse complement of any one of SEQ ID NOs: 7115 to 7140, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 14 to 347, and/or to the reverse complement of any one or more of SEQ ID NOs: 14 to 347, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NOs: 1, 2, 15, 19 or 25, and/or to the reverse complement of SEQ ID NOs: 1, 2, 15, 19, or 25, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NOs: 7092, 7093, 7141, 7142, 7146, 7147, 7151, 7152 and/or 7097 to 7102, and/or to the reverse complement of SEQ ID NOs: 7092, 7093, 7141, 7142, 7146, 7147, 7151, 7152 and/or 7097 to 7102, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NOs: 7097 or 7100, and/or to the reverse complement of SEQ ID NOs: 7097 or 7100, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7115 to 7120, and/or to the reverse complement of any one or more of SEQ ID NOs: 7115 to 7120, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. mouse MFAP4.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 348 to 456, and/or to the reverse complement of any one or more of SEQ ID NOs: 348 to 456, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. human GRHPR.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 3, 4, 5, 349, 350 and/or 351, and/or to the reverse complement of any one or more of SEQ ID NOs: 3, 4, 5, 349, 350, and/or 351, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. human GRHPR.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7094, 7143, 7148, 7153 and/or 7103 to 7108, and/or to the reverse complement of any one or more of SEQ ID NOs: 7094, 7143, 7148, 7153 and/or 7103 to 7108, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. human GRHPR.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7121 to 7129, and/or to the reverse complement of any one or more of SEQ ID NOs: 7121 to 7129, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. mouse GRHPR.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 457 to 1482, and/or to the reverse complement of any one or more of SEQ ID NOs: 457 to 1482, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. human ITFG1.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 6, 7, 457, 465, 468, 470, and/or 473, and/or to the reverse complement of any one or more of SEQ ID NOs: 6, 7, 457, 465, 468, 470, and/or 473, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. human ITFG1.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7095, 7096, 7144, 7145, 7149, 7150, 7154, 7155, and/or 7109 to 7114, and/or to the reverse complement of any one or more of SEQ ID NOs: 7095, 7096, 7144, 7145, 7149, 7150, 7154, 7155, and/or 7109 to 7114, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. human ITFG1.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7130 to 7140, and/or to the reverse complement of any one or more of SEQ ID NOs: 7130 to 7140, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. mouse ITFG1.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 1483 to 2208, and/or to the reverse complement of any one or more of SEQ ID NOs: 1483 to 2208, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ABCC4, e.g. human ABCC4.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 1483, 1485, 1486, 1488, 1489 and/or 1490, and/or to the reverse complement of any one or more of SEQ ID NOs: 1483, 1485, 1486, 1488, 1489 and/or 1490, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ABCC4, e.g. human ABCC4.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 2209 to 5060, and/or to the reverse complement of any one or more of SEQ ID NOs: 2209 to 5060, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of PAK3, e.g. human PAK3.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 2209, 2225 and/or 2234, and/or to the reverse complement of any one or more of SEQ ID NOs: 2209, 2225 and/or 2234 e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of PAK3, e.g. human PAK3.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5061 to 5389, and/or to the reverse complement of any one or more of SEQ ID NOs: 5061 to 5389, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of TRNP1, e.g. human TRNP1.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5061 and/or 5062, and/or to the reverse complement of any one or more of SEQ ID NOs: 5061 and/or 5062 e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of TRNP1, e.g. human TRNP1.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5390 to 5966, and/or to the reverse complement of any one or more of SEQ ID NOs: 5390 to 5966, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of APLN, e.g. human APLN.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5390, 5391, 5392 and/or 5393, and/or to the reverse complement of any one or more of SEQ ID NOs: 5390, 5391, 5392 and/or 5393, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of APLN, e.g. human APLN.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5967 to 6974, and/or to the reverse complement of any one or more of SEQ ID NOs: 5967 to 6974, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of KIF20A, e.g. human KIF20A.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5967, 5970 and/or 5971, and/or to the reverse complement of any one or more of SEQ ID NOs: 5967, 5970 and/or 5971, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of KIF20A, e.g. human KIF20A.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 6975 to 7091, and/or to the reverse complement of any one or more of SEQ ID NOs: 6975 to 7091, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of LTB, e.g. human LTB.

In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 6977, 6978 and/or 6993, and/or to the reverse complement of any one or more of SEQ ID NOs: 6977, 6978 and/or 6993, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of LTB, e.g. human LTB.

The antisense nucleic acid may comprise or consist of a sequence that hybridises to a sequence listed in any of Tables 1 to 14, or a sequence that hybridises to the complement of a sequence listed in any of Tables 1 to 14.

In some embodiments, a nucleic acid inhibitor is an antisense oligonucleotide (ASO). ASOs are single-stranded nucleic acid molecules comprising or consisting of an antisense nucleic acid to a target nucleotide sequence. An antisense oligonucleotide according to the present disclosure may comprise or consist of an antisense nucleic acid as described herein.

ASOs can modify expression of RNA molecules comprising their target nucleotide sequence by altering splicing, or by recruiting RNase H to degrade RNA comprising the target nucleotide sequence. RNase H recognises nucleic acid complex molecules formed when the ASO binds to RNA comprising its target nucleotide sequence. ASOs according to the present disclosure may comprise or consist of an antisense nucleic acid according to the present disclosure. ASOs may comprise 10 to 40 (e.g. 17 to 30, 20 to 27, 21 to 23) nucleotides in length. Many ASOs are designed as chimeras, comprising a mix of bases with different chemistries, or as gapmers, comprising a central DNA portion surrounded by ‘wings’ of modified nucleotides. ASOs are described in e.g. Scoles et al., Neurol Genet. 2019 April; 5(2): e323. ASOs sometimes comprise alterations to the sugar-phosphate backbone in order to increase their stability and/or reduce/prevent RNAse H degradation, such as e.g. phosphorothioate linkages, phosphorodiamidate linkages such as phosphorodiamidate morpholino (PMOs), and may comprise e.g. peptide nucleic acids (PNAs), locked nucleic acids (LNAs), methoxyethyl nucleotide modifications, e.g. 2′O-methyl (2′OMe) and 2′-O-methoxyethyl (MOE) ribose modifications and/or 5′-methylcytosine modifications.

In some embodiments, a nucleic acid inhibitor is selected from: an siRNA, dsiRNA, miRNA, shRNA, pri-miRNA, pre-miRNA, saRNA, snoRNA, or antisense oligonucleotide (e.g. a gapmer), or a nucleic acid encoding the same. In some embodiments, a nucleic acid inhibitor is selected from: an siRNA, dsiRNA, miRNA, shRNA. In some embodiments, a nucleic acid inhibitor is an siRNA. In some embodiments, a nucleic acid inhibitor is an shRNA.

The nucleic acid inhibitor may be an RNAi agent (e.g. siRNA, shRNA or miRNA-based shRNA or gRNA for CRISR/CAS9 knockout) or a nucleic acid encoding an RNAi agent that reduces expression of a gene/mRNA, e.g. one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some embodiments, an inhibitory nucleic acid may comprise an antisense nucleic acid described herein, e.g. as part of a larger nucleic acid species. For example, in some embodiments, an inhibitory nucleic acid may be an siRNA, dsiRNA, miRNA, shRNA, pri-miRNA, pre-miRNA, saRNA or snoRNA comprising an antisense nucleic acid described herein.

In some embodiments, an inhibitory nucleic acid is a small interfering RNA (siRNA). As used herein, ‘siRNA’ refers to a double-stranded RNA molecule having a length between 17 to 30 (e.g. 20 to 27, e.g. ˜21 to 23) base pairs, which is capable of engaging the RNA interference (RNAi) pathway for the targeted degradation of target RNA. Double-stranded siRNA molecules may be formed as a nucleic acid complex of RNA strands having a high degree of complementarity. The strand of the double-stranded siRNA molecule having complementarity to a target nucleotide sequence (i.e. the antisense nucleic acid) may be referred to as the ‘guide’ strand, and the other strand may be referred to as the ‘passenger’ strand. The structure and function of siRNAs is described e.g. in Kim and Rossi, Biotechniques. 2008 April; 44(5): 613-616.

The RNAi agent may contain one or more overhang regions and/or capping groups at the 3′-end, 5′-end, or both ends of one or both strands e.g. comprising one or two or three nucleotides (e.g. a ‘UU’ 3′ overhang, a ‘TT’ 3′ overhang, or a ‘CCA’ 5′ overhang). The overhang can be 1-6 nucleotides in length, for instance 2-6 nucleotides in length, 1-5 nucleotides in length, 2-5 nucleotides in length, 1-4 nucleotides in length, 2-4 nucleotides in length, 1-3 nucleotides in length, 2-3 nucleotides in length, or 1-2 nucleotides in length. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence. The first and second strands can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.

In some embodiments, a passenger strand of an siRNA according to the present disclosure may comprise a ‘CCA’ modification at the 5′ end, i.e. the addition of nucleotides ‘CCA’. In some embodiments, a passenger strand of an siRNA according to the present disclosure may comprise a ‘TT’ modification at the 3′ end, e.g. replacing the 3′ two nucleotides.

In some embodiments, the guide strand of an siRNA according to the present disclosure may comprise or consist of an antisense nucleic acid according to an embodiment of an antisense nucleic acid described herein.

In some embodiments an siRNA according to the present disclosure (e.g. in Tables 1-11) may be contained within a longer shRNA sequence (e.g. in Tables 12 and 13) that undergoes processing to form the siRNA.

The term “RNAi agent” or “RNAi” as used interchangeably herein, refer to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. RNAi agent directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). The RNAi agent modulates, e.g., inhibits, the expression of a gene associated with organ regeneration in a cell, e.g., a cell within a subject, such as a mammalian subject. The term “RNAi agent” includes both shRNAs (e.g. in Table 12 or 13), or precursor RNAs that are processed by RISC into siRNAs (e.g. in Tables 1 to 11), as well as the siRNAs themselves that inhibits the expression of an endogenous gene.

The invention provides for double-stranded RNAi agents capable of inhibiting the expression of a target gene in vivo. The RNAi agent may comprise a sense strand and an antisense strand. Each strand of the RNAi agent may range from 12-30 nucleotides in length. For example, each strand may be between 14-30 nucleotides in length, 17-30 nucleotides in length, 25-30 nucleotides in length, 27-30 nucleotides in length, 17-23 nucleotides in length, 17-21 nucleotides in length, 17-19 nucleotides in length, 19-25 nucleotides in length, 19-23 nucleotides in length, 19-21 nucleotides in length, 21-25 nucleotides in length, or 21-23 nucleotides in length.

The sense strand and antisense strand typically form a duplex double stranded RNA (“dsRNA”). The duplex region of an RNAi agent may be 12-30 nucleotide pairs in length. For example, the duplex region can be between 14-30 nucleotide pairs in length, 17-30 nucleotide pairs in length, 27-30 nucleotide pairs in length, 17-23 nucleotide pairs in length, 17-21 nucleotide pairs in length, 17-19 nucleotide pairs in length, 19-25 nucleotide pairs in length, 19-23 nucleotide pairs in length, 19-21 nucleotide pairs in length, 21-25 nucleotide pairs in length, or 21-23 nucleotide pairs in length. In another example, the duplex region is selected from 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 nucleotides in length.

In some embodiments, an inhibitory nucleic acid is a dicer small interfering RNA (dsiRNA). As used herein, ‘dsiRNA’ refers to a double-stranded RNA molecule having a length of ˜27 base pairs, which is processed by Dicer to siRNA for RNAi-mediated degradation of target RNA. DsiRNAs are described e.g. in Raja et al., Asian J Pharm Sci. (2019) 14(5): 497-510, which is hereby incorporated by reference in their entirety. DsiRNAs are optimised for Dicer processing and may have increased potency compared with 21-mer siRNAs (see e.g. Kim et al., Nat Biotechnol. (2005) 23(2):222-226), which may be related to the link between Dicer-mediated nuclease activity and RISC loading.

In some embodiments, an inhibitory nucleic acid is a micro RNA (miRNA), or a precursor thereof (e.g. a pri-miRNA or a pre-miRNA). miRNA molecules have a similar structure to siRNA molecules, but are encoded endogenously, and derived from processing of short hairpin RNA molecules. They are initially expressed as long primary transcripts (pri-miRNAs), which are processed within the nucleus into 60 to 70 nucleotide hairpins (pre-miRNAs), which are further processed in the cytoplasm into smaller species that interact with RISC and target mRNA. miRNAs comprise ‘seed sequences’ that are essential for binding to target mRNA. Seed sequences usually comprise six nucleotides and are situated at positions 2 to 7 at the miRNA 5′ end.

In some embodiments, an inhibitory nucleic acid is a short hairpin RNA (shRNA), e.g. as provided in Tables 12 and 13 (showing sense-loop-antisense sequences). shRNA molecules comprise sequences of nucleotides having a high degree of complementarity that associate with one another through complementary base pairing to form the stem region of the hairpin. The sequences of nucleotides having a high degree of complementarity may be linked by one or more nucleotides that form the loop region of the hairpin. shRNA molecules may be processed (e.g. via catalytic cleavage by DICER) to form siRNA or miRNA molecules. shRNA molecules may have a length of between 35 to 100 (e.g. 40 to 70) nucleotides. The stem region of the hairpin may have a length between 17 to 30 (e.g. 20 to 27, e.g. ˜21-23) base pairs. The stem region may comprise G-U pairings to stabilise the hairpin structure. An shRNA sequence described herein may comprise sequences that will be subsequently processed into shorter siRNA strand(s), such as the guide/passenger strands presented in Tables 1-11.

siRNA, dsiRNA, miRNAs and shRNAs for the targeted inhibition of gene and/or protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB may be identified/designed in accordance with principles and/or using tools well known to the skilled person. Parameters and tools for designing siRNA and shRNA molecules are described e.g. in Fakhr et al., Cancer Gene Therapy (2016) 23:73-82 (hereby incorporated by reference in its entirety). Software that may be used by the skilled person for the design of such molecules is summarised in Table 1 of Fakhr et al., Cancer Gene Therapy (2016) 23:73-82, and includes e.g. siRNA Wizard (InvivoGen). Details for making such molecules can be found in the websites of commercial vendors such as Ambion, Dharmacon, GenScript, Invitrogen and OligoEngine.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of any one or more of SEQ ID NOs: 1 to 7091, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 1 to 7091; and (ii) nucleic acid comprising a nucleotide sequence having the reverse complement of the nucleotide sequence of (i), or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of the nucleotide sequence of (i). SEQ ID NOs 1 to 7091 are displayed in Tables 1 to 10 provided herein. The nucleic acid according to the present disclosure may be capable of reducing gene and/or protein expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB, according to the heading of the Table in which the SEQ ID NO is presented. For example, a SEQ ID NO presented in Table 2 may be capable of reducing gene and/or protein expression of MFAP4.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of any one or more of SEQ ID NOs: 7092 to 7096, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 7092 to 7096; and (ii) nucleic acid comprising a nucleotide sequence having the reverse complement of the nucleotide sequence of (i), or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of the nucleotide sequence of (i).

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7092, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7092; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7141, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7141.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7093, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7093; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7142, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7142.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7094, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7094; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7143, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7143.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7095, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7095; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7144, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7144.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7096, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7096; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7145, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7145.

In some embodiments in accordance with the preceding seven paragraphs, the nucleotide sequence of (i) and the nucleotide sequence of (ii) may be provided on different nucleic acids (i.e. separate oligonucleotides). As such, the nucleic acid of (i) and (ii) may be different nucleic acids. In such embodiments, the inhibitory nucleic acid may comprise or consist of a nucleic acid duplex formed by complementary base pairing between the different nucleic acids comprising the nucleotide sequences of (i) and (ii).

Alternatively, in some embodiments the nucleotide sequence of (i) and the nucleotide sequence of (ii) may be provided on the same nucleic acid (i.e. a single oligonucleotide). That is, the nucleic acid of (i) and (ii) may be the same nucleic acid. In such embodiments, the nucleotide sequence of (i) and the nucleotide sequence of (ii) may be connected by one or more linker nucleotides. The inhibitory nucleic acid may comprise a nucleic acid duplex region formed by complementary base pairing between the nucleotide sequences of (i) and (ii), and the linker regions may form a single-stranded loop region.

Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1 to 13 (or any combination of Tables thereof) or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1 to 13 (or any combination of Tables thereof) under stringency conditions.

Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 2-12 (or any combination of Tables thereof) or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 2-12 (or any combination of Tables thereof) under stringency conditions.

Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in Table 1 or 13, or an RNAi agent that hybridizes to the complement of an RNA sequence listed in Table 1 or 13 under stringency conditions.

The terms “nucleic acid” and “polynucleotide’, used interchangeably herein, refer to polymeric forms of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. Thus, these terms include, but are not limited to, single-, double-, or multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising purine and pyrimidine bases or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases. These terms further include, but are not limited to, mRNA or cDNA that comprise intronic sequences. The backbone of the polynucleotide can comprise sugars and phosphate groups (as may typically be found in RNA or DNA), or modified or substituted sugar or phosphate groups. Alternatively, the backbone of the polynucleotide can comprise a polymer of synthetic subunits such as phosphoramidites and thus can be an oligodeoxynucleoside phosphoramidate or a mixed phosphoramidate-phosphodiester oligomer. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs, uracyl, other sugars, and linking groups such as fluororibose and thioate, and nucleotide branches. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. Other types of modifications included in this definition are caps, substitution of one or more of the naturally occurring nucleotides with an analog, and introduction of means for attaching the polynucleotide to proteins, metal ions, labeling components, other polynucleotides, or a solid support. The term “polynucleotide” also encompasses peptidic nucleic acids, PNA and LNA. Polynucleotides may further comprise genomic DNA, cDNA, or DNA-RNA hybrids.

The term “RNA” or “RNA molecule” or “ribonucleic acid molecule” refers to a polymer of ribonucleotides. The term “DNA” or “DNA molecule” or deoxyribonucleic acid molecule” refers to a polymer of deoxyribonucleotides. DNA and RNA can be synthesized naturally (e.g., by DNA replication or transcription of DNA, respectively). RNA can be post-transcriptionally modified. DNA and RNA can also be chemically synthesized. DNA and RNA can be single-stranded (i.e., ssRNA and ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively). “mRNA” or “messenger RNA” is single-stranded RNA that specifies the amino acid sequence of one or more polypeptide chains. This information is translated during protein synthesis when ribosomes bind to the mRNA.

“Stringency conditions” refers to conditions under which a nucleic acid may hybridize to its target polynucleotide sequence, but not other sequences. Stringent conditions are sequence-dependent (e.g., longer sequences hybridize specifically at higher temperatures). Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH, and polynucleotide concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Typically, stringent conditions will be those in which the salt concentration is at least about 0.01 to about 1.0 M sodium ion concentration (or other salts) at about pH 7.0 to about pH 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides).

As used herein, the term “complement” when used in reference to a nucleic acid sequence refers to the complementary sequence of the nucleic acid sequence as dictated by base-pairing, but in reverse orientation so as to result in complementarity upon fold-over into a hairpin structure. The term encompasses partial complementarity where only some of the bases are matched according to base pairing rules as well as total complementarity between the two nucleic acid sequences.

Modifications

Nucleic acid inhibitors/inhibitory nucleic acids according to the present disclosure may comprise chemically modified nucleotide acids, e.g. in which the phosphonate and/or ribose and/or base is/are chemically modified. Such modifications may influence the activity, specificity and/or stability of nucleic acid. One or more (e.g. one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or all) nucleotides of a nucleic acid inhibitor may comprise such chemical modification.

Modifications contemplated in accordance with nucleic acid inhibitors according to the present disclosure include those described in Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101) (incorporated by reference hereinabove), in particular those shown in FIG. 2 of Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101). Further modifications contemplated in accordance with nucleic acid inhibitors according to the present disclosure include those described in Selvam et al., Chem Biol Drug Des. (2017) 90(5): 665-678, which is hereby incorporated by reference in its entirety).

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more nucleotides comprising a phosphonate modification. In some embodiments, the phosphonate modification(s) may be selected from: phosphorothioate (e.g. Rp isomer, Sp isomer), phosphorodithioate, methylphosphonate, methoxypropylphosphonate, 5′-(E)-vinylphosphonate, 5′-methylphosphonate, (S)-5′-C-methyl with phosphate, 5′-phosphorothioate, and peptide nucleic acid. In some embodiments, aa nucleic acid inhibitor comprises one or more nucleotides comprising phosphorothioate modification.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more nucleotides comprising a ribose modification. In some embodiments, the ribose modification(s) may be selected from: 2′-O-methyl, 2′-O-methoxyethyl, 2′-fluoro, 2′-deoxy-2′-fluoro, 2′-methoxyethyl, 2′-O-alkyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, 2′-hydroxyl, 2′-arabino-fluoro, 2′-O-benzyl, 2′-O-methyl-4-pyridine, locked nucleic acid, (S)-cEt-BNA, tricyclo-DNA, PMO, unlocked nucleic acid, hexitol nucleic acid and glycol nucleic acid. In some embodiments, an inhibitory nucleic acid comprises one or more nucleotides comprising 2′-O-methyl modification. In some embodiments, an inhibitory nucleic acid comprises one or more nucleotides comprising 2′-fluoro modification.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more nucleotides comprising a base modification. In some embodiments, the base modification(s) may be selected from: pseudouridine, 2′-thiouridine, N6′-methyladenosine, 5′-methylcytidine, 5′-fluoro-2′-deoxyuridine, N-ethylpiperidine 7′-EAA triazole-modified adenine, N-ethylpiperidine 6′-triazole-modified adenine, 6′-phenylpyrrolo-cytosine, 2′,4′-difluorotoluyl ribonucleoside and 5′-nitroindole.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: one or more nucleotides comprising phosphorothioate modification, one or more nucleotides comprising 2′-O-methyl modification, and one or more nucleotides comprising 2′-fluoro modification.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 3 to 10 (e.g. one of 3, 4, 5, 6, 7, 8, 9 or 10) nucleotides comprising 2′-fluoro modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises 4 to 15 (e.g. one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15) nucleotides comprising 2′-fluoro modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 2 to 6 (e.g. one of 2, 3, 4, 5 or 6) nucleotides comprising phosphorothioate modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises 5 to 20 (e.g. one of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20) nucleotides comprising 2′-O-methyl modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 2 to 6 (e.g. one of 2, 3, 4, 5 or 6) nucleotides comprising 2′-O-methyl and phosphorothioate modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 1 to 4 (e.g. one of 1, 2, 3 or 4) nucleotides comprising 2′-fluoro and phosphorothioate modification.

In embodiments wherein nucleic acid inhibitors/inhibitory nucleic acids comprise nucleotides comprising chemical modification as described herein, the nucleotide sequence is nevertheless evaluated for the purposes of sequence comparison in accordance with the present disclosure as if the equivalent unmodified nucleotide were instead present.

Nucleic acids comprising nucleotide(s) comprising a modified phosphonate group are evaluated for the purposes of nucleotide sequence comparison as if nucleotide(s) comprising a modified phosphonate group instead comprise the equivalent unmodified phosphonate group. Nucleic acids comprising nucleotide(s) comprising a modified ribose group are evaluated for the purposes of nucleotide sequence comparison as if nucleotide(s) comprising a modified ribose group instead comprise the equivalent unmodified ribose group. Nucleic acids comprising nucleotide(s) comprising a modified base group are evaluated for the purposes of nucleotide sequence comparison as if nucleotide(s) comprising a modified base group instead comprise the equivalent unmodified base group.

By way of illustration, nucleic acids comprising nucleotides comprising pseudouridine, 2-thiouridine and/or 5′-fluoro-2′-deoxyuridine are evaluated for the purposes of nucleotide sequence comparison as if nucleotides comprising uridine were instead present at their respective positions. By way of illustration, nucleic acids comprising nucleotides comprising N6′-methyladenosine, N-ethylpiperidine 7′-EAA triazole-modified adenine and/or N-ethylpiperidine 6′-triazole-modified adenine are evaluated for the purposes of nucleotide sequence comparison as if nucleotides comprising adenine were instead present at their respective positions. By way of illustration, nucleic acids comprising nucleotides comprising 5′-methylcytidine and/or 6′-phenylpyrrolo-cytosine are evaluated for the purposes of nucleotide sequence comparison as if nucleotides comprising cytosine were instead present at their respective positions.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in Table 11.

In some embodiments, an inhibitory nucleic acid comprises nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in any one or more of SEQ ID NOs: 7146 to 7155 of Table 11. The following six paragraphs refer to SEQ ID NOs presented in Table 11.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of any one of SEQ ID NOs: 7146 to 7150, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 7146 to 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of any one of SEQ ID NOs: 7151 to 7155, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 7151 to 7155.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7146, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7146; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7151, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7151.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7147, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7147; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7152, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7152.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7148, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7148; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7153, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7153.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7149, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7149; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7154, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7154.

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7150, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7155, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7155.

In general, the majority of nucleotides of each strand of a dsRNA molecule are ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide and/or a modified nucleotide. In addition, an “RNAi agent” may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucleotides. Such modifications may include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “RNAi agent” for the purposes of this specification and claims.

In one embodiment, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, 2′-hydroxyl, or 2′-fluoro. The strands can contain more than one modification.

Inhibitory nucleic acids according to the present disclosure may be produced in accordance with techniques well known to the skilled person.

For example, inhibitory nucleic acids may be produced recombinantly by transcription of a nucleic acid sequence encoding the inhibitory nucleic acid. A nucleic acid encoding an inhibitory nucleic acid according to the present disclosure may e.g. be contained within an expression vector for expression of the inhibitory nucleic acid.

Transcription may be performed in cell-free transcription reactions using recombinant enzymes (e.g. RNA polymerase) for transcription of the inhibitory nucleic acids. Alternatively, production of an inhibitory nucleic acid according to the present disclosure may be performed in a cell comprising nucleic acid encoding the inhibitory nucleic acid, and may employ cellular enzymes (e.g. RNA polymerase) for transcription. Production of an inhibitory nucleic acid according to the present disclosure by expression within a cell may comprise transcription from a vector. Introduction of nucleic acid/vectors for the purposes of production of inhibitory nucleic acids according to the present disclosure may be performed in any of the ways known in the art (e.g. transfection, transduction, electroporation, etc.). Expression of an inhibitory nucleic acid can be regulated using a cell-specific promoter (e.g. a liver cell-specific promoter).

For example, an shRNA molecule according to the present disclosure may be produced within a cell by transcription from a vector encoding the shRNA. shRNAs may be produced within a cell by transfecting the cell with a vector encoding the shRNA sequence under control of an RNA polymerase promoter.

An siRNA molecule according to the present disclosure may be produced within a cell by transcription from a vector encoding shRNA encoding/comprising the siRNA, and subsequent processing of the shRNA molecule by cellular DICER to form the siRNA molecule. An shRNA molecule according to the present disclosure, e.g. a sequence in Table 12 or 13, may be embedded into and expressed using a miR-30-based system, e.g. as described in Fellmann C et al., Cell Rep. 2013; 5(6):1704-13, and Rio D C et al., Cold Spring Harb Protoc; 2013; doi:10.1101/pdb.prot075853, which are hereby incorporated by reference in their entirety.

Inhibitory nucleic acids may also be synthesised using standard solid or solution phase synthesis techniques which are well known in the art. Solid phase synthesis may use phosphoramidite chemistry. Briefly, a solid supported nucleotide may be detritylated, then coupled with a suitably activated nucleoside phosphoramidite to form a phosphite triester linkage. Capping may then occur, followed by oxidation of the phosphite triester with an oxidant, typically iodine. The cycle may then be repeated to yield a polynucleotide.

The present disclosure provides nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure. In some embodiments, nucleic acid comprising or encoding an inhibitory nucleic acid comprises, or consists of, DNA and/or RNA.

The present disclosure also provides a vector comprising the nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure.

Nucleic acids and vectors according to the present disclosure may be provided in purified or isolated form, i.e. from other nucleic acid, or naturally-occurring biological material.

The nucleotide sequence of a nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure may be contained in a vector, e.g. an expression vector. A ‘vector’ as used herein is a nucleic acid molecule used as a vehicle to transfer exogenous nucleic acid into a cell. The vector may be a vector for expression of the nucleic acid in the cell. Such vectors may include a promoter sequence operably linked to the nucleotide sequence encoding the sequence to be expressed. A vector may also include a termination codon and expression enhancers. Any suitable vectors, promoters, enhancers and termination codons known in the art may be used to express nucleic acid from a vector according to the present disclosure.

The term ‘operably linked’ may include the situation where a selected nucleic acid sequence and regulatory nucleic acid sequence (e.g. promoter and/or enhancer) are covalently linked in such a way as to place the expression of nucleic acid sequence under the influence or control of the regulatory sequence (thereby forming an expression cassette). Thus, a regulatory sequence is operably linked to the selected nucleic acid sequence if the regulatory sequence is capable of affecting transcription of the nucleic acid sequence.

Suitable vectors include plasmids, binary vectors, DNA vectors, mRNA vectors, viral vectors (e.g. gammaretroviral vectors (e.g. murine Leukemia virus (MLV)-derived vectors), lentiviral vectors, adenovirus vectors, adeno-associated virus vectors, vaccinia virus vectors and herpesvirus vectors), transposon-based vectors, and artificial chromosomes (e.g. yeast artificial chromosomes).

In some embodiments, the vector may be a eukaryotic vector, e.g. a vector comprising the elements necessary for expression of nucleic acid from the vector in a eukaryotic cell. In some embodiments, the vector may be a mammalian vector, e.g. comprising a cytomegalovirus (CMV) or SV40 promoter to drive expression. In some embodiments, the vector comprises a cell- or tissue-specific promoter. In some embodiments, the vector comprises a liver cell-specific promoter.

The present disclosure also provides a plurality of inhibitory nucleic acids according to the present disclosure. The present disclosure also provides nucleic acids and vectors comprising or encoding a plurality of inhibitory nucleic acids according to the present disclosure.

Individual inhibitory nucleic acids of a plurality of inhibitory nucleic acids according to the present disclosure may be identical or non-identical. Similarly, in embodiments wherein a nucleic acid/vector comprising or encoding an inhibitory nucleic acid according to the present disclosure comprises/encodes more than one inhibitory nucleic acid according to the present disclosure, the inhibitory nucleic acids comprised/encoded by the nucleic acid/vector may be identical or non-identical.

In some embodiments, nucleic acids/vectors may encode one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 inhibitory nucleic acids according to the present disclosure. In some embodiments, nucleic acids/vectors may encode multiple (e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) copies of a given inhibitory nucleic acid according to the present disclosure.

In some embodiments, a plurality of inhibitory nucleic acids according to the present disclosure may be a plurality of non-identical inhibitory nucleic acids. In some embodiments, a plurality of inhibitory nucleic acids may comprise one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 non-identical inhibitory nucleic acids. In some embodiments, nucleic acids/vectors may comprise/encode a plurality of non-identical inhibitory nucleic acids according to the present disclosure.

The following two paragraphs further define pluralities of non-identical inhibitory nucleic acids in accordance with embodiments of pluralities of inhibitory nucleic acids according to the present disclosure, and also in accordance with embodiments of nucleic acids/vectors comprising/encoding a plurality of non-identical inhibitory nucleic acids according to the present disclosure.

In some embodiments, the non-identical inhibitory nucleic acids comprise or encode non-identical antisense nucleic acids. In such embodiments, the non-identical antisense nucleic acids may each independently conform to any embodiment of an antisense nucleic acid as described hereinabove.

In some embodiments, the non-identical inhibitory nucleic acids may comprise or encode antisense nucleic acids targeting non-identical target nucleotide sequences. In such embodiments, the non-identical target nucleotide sequences may each independently conform to any embodiment of a target nucleotide sequence for an antisense nucleic acid as described hereinabove.

The present disclosure also provides a cell comprising or expressing (i) an inhibitory nucleic acid according to the present disclosure, (ii) nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure, and/or (iii) a vector comprising nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure.

The cell may be a eukaryotic cell, e.g. a mammalian cell. The mammal may be a primate (rhesus, cynomolgous, non-human primate or human) or a non-human mammal (e.g. rabbit, guinea pig, rat, mouse or other rodent (including any animal in the order Rodentia), cat, dog, pig, sheep, goat, cattle (including cows, e.g. dairy cows, or any animal in the order Bos), horse (including any animal in the order Equidae), donkey, and non-human primate). In preferred embodiments, the cell may be a human cell. In some embodiments, the cell may be a liver cell.

The present disclosure also provides a method for producing a cell comprising a nucleic acid or vector according to the present disclosure, comprising introducing a nucleic acid or vector according to the present disclosure into a cell. In some embodiments, introducing a nucleic acid or vector according to the present disclosure into a cell comprises transformation, transfection, electroporation or transduction (e.g. retroviral transduction).

The present disclosure also provides a method for producing an inhibitory nucleic acid according to the present disclosure or a nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure, comprising culturing a cell comprising nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure or a vector according to the present disclosure under conditions suitable for expression of the nucleic acid or vector by the cell. In some embodiments, the methods are performed in vitro.

The present disclosure also provides compositions comprising nucleic acids (including inhibitory nucleic acids, nucleic acids comprising/encoding an inhibitory nucleic acid, expression vectors comprising/encoding such nucleic acids) or cells according to the present disclosure.

In therapeutic and prophylactic applications, the inhibitors and compositions of the present disclosure are preferably formulated as a medicament or pharmaceutical composition (suitable for clinical use). Such compositions may comprise the inhibitor or cell together with one or more other pharmaceutically-acceptable ingredients well known to those skilled in the art. Such ingredients include, but are not limited to, pharmaceutically-acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, preservatives, anti-oxidants, lubricants, stabilisers, solubilisers, surfactants (e.g., wetting agents), masking agents, colouring agents, flavouring agents, and sweetening agents.

Provided herein is a pharmaceutical composition comprising an inhibitor as defined herein and a pharmaceutically acceptable carrier.

Compositions according to the present disclosure may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active compound with a carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active compound with carriers (e.g., liquid carriers, finely divided solid carrier, etc.), and then shaping the product, if necessary.

The compositions may be prepared for topical, parenteral, systemic, intracavitary, intravenous, intra-arterial, intramuscular, intrathecal, intraocular, intravitreal, intraconjunctival, subretinal, suprachoroidal, subcutaneous, intradermal, intrathecal, oral, nasal or transdermal routes of administration which may include injection or infusion. Suitable formulations may comprise the selected agent in a sterile or isotonic medium. The formulation and mode of administration may be selected according to the agent to be administered, and disease to be treated/prevented.

The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including intranasal or intrapulmonary), oral or parenteral. Parenteral administration includes intravenous, subcutaneous, intraperitoneal or intramuscular injection.

The compositions of the present disclosure may be formulated in fluid, including gel, form. Fluid formulations may be formulated for administration by injection or infusion (e.g. via catheter) to a selected organ or region of the human or animal body. A further aspect of the present disclosure relates to a method of formulating or producing a medicament or pharmaceutical composition according to the present disclosure, the method comprising formulating a pharmaceutical composition or medicament by mixing an agent with a pharmaceutically acceptable carrier, adjuvant, excipient or diluent.

Delivery of Inhibitors

Inhibitors (including e.g. small molecules, antibodies and nucleic acids (including inhibitory nucleic acids, expression vectors)), cells and compositions according to the present disclosure may be modified and/or be formulated to facilitate delivery to, and/or uptake by, a cell/tissue of interest, e.g. a liver cell (hepatocyte) or hepatic tissue.

Strategies for targeted delivery of such species are reviewed e.g. in Li et al., Int. J. Mol. Sci. (2015) 16: 19518-19536 and Fu et al., Bioconjug Chem. (2014) 25(9): 1602-1608, which are hereby incorporated by reference in their entirety. In particular, nucleic acids according to the present disclosure may employ a delivery platform described in Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101) (incorporated by reference hereinabove), or Tatiparti et al. ‘siRNA Delivery Strategies: A Comprehensive Review of Recent Developments.’ Ed. Thomas Nann. Nanomaterials 7.4 (2017): 77, and Lehto T et al., Adv Drug Deliv Rev. 2016, 106(Pt A):172-182, which are hereby incorporated by reference in their entirety.

In some embodiments, articles of the present disclosure may be encapsulated in a nanoparticle or a liposome. In some embodiments, articles of the present disclosure may be (covalently or non-covalently) associated with a cell-penetrating peptide (e.g. a protein transduction domain, trojan peptide, arginine-rich peptide, vectocell peptide), a cationic polymer, a cationic lipid or a viral carrier.

Nanoparticles may be organic, e.g. micelles, liposomes, proteins, solid-lipid particles, solid polymer particles, dendrimers, and polymer therapeutics. Nanoparticles may be inorganic, e.g. such as nanotubes or metal particles, optionally with organic molecules added. In some embodiments, a nanoparticle is a nanoparticle described in Chen et al., Mol Ther Methods Clin Dev. (2016) 3:16023, which is hereby incorporated by reference in its entirety. In some embodiments, a nanoparticle is a PLGA, polypeptide, poly(β-amino ester), DOPE, β-cyclodextrin-containing polycation, linear PEI, PAMAM dendrimer, branched PEI, chitosan or polyphosophoester nanoparticle.

The delivery of a nucleic acid inhibitor, e.g. an RNAi agent, to a cell e.g., a cell within a subject, such as a human subject can be achieved in a number of different ways. For example, delivery may be performed by contacting a cell with a nucleic acid of the invention either in vitro or in vivo. In vivo delivery may also be performed directly by administering a composition comprising a nucleic acid inhibitor, e.g., a siRNA, shRNA, dsRNA, to a subject. Alternatively, in vivo delivery may be performed indirectly by administering one or more vectors (e.g. one or more DNA vectors) that encode and direct the expression of the nucleic acid inhibitor. In one embodiment, the nucleic acid inhibitor is delivered using a viral-based or transposon-based nucleic acid construct. In one embodiment, the nucleic acid inhibitor is encapsulated in a liposome.

In some embodiments, an inhibitor according to the present disclosure (e.g. a small molecule, a peptide, an antibody, an inhibitory nucleic acid, a nucleic acid comprising/encoding an inhibitory nucleic acid, or an expression vector) comprises modification to incorporate one or more moieties facilitating delivery to, and/or uptake by, a cell type or tissue of interest. In some embodiments, an inhibitor according to the present disclosure is linked (e.g. chemically conjugated to) one or more moieties facilitating delivery to, and/or uptake by, a cell type or tissue of interest.

Modification to, and formulation of, inhibitors to facilitate targeted delivery to cell types and/or tissues of interest is described e.g. in Lorenzer et al., J Control Release (2015) 203:1-15, which is hereby incorporated by reference in its entirety. The moiety facilitating delivery to, and/or uptake by, a cell type or tissue of interest may bind selectively to the target cell type/tissue of interest. The moiety may facilitate traversal of the cell membrane of the target cell type and/or of cells of the tissue of interest. The moiety may bind to a molecule expressed at the cell surface of the target cell type/tissue of interest. The moiety may facilitate internalisation of the nucleic acid by the target cell type/tissue of interest (e.g. by endocytosis).

Moieties facilitating delivery to, and/or uptake by, cell types or tissues of interest are described e.g. in Benizri et al., Bioconjug Chem. (2019) 30(2): 366-383, which is hereby incorporated by reference in its entirety. Such moieties include e.g. N-acetylgalactosamine (GalNAc), α-tocopherol, cell-penetrating peptide, nucleic acid aptamer, antibody and antigen-binding fragments/derivatives thereof, cholesterol, squalene, polyethylene glycol (PEG), fatty acid (e.g. palmitic acid) and nucleolipid moieties.

In some embodiments, the moiety may e.g. be a peptide/polypeptide (e.g. an antibody, fragment or derivative thereof, peptide aptamer or cell-penetrating peptide) or nucleic acid (e.g. a nucleic acid aptamer) which binds to the target cell type/tissue of interest, e.g. via interaction with a molecule expressed at the cell surface of the target cell type/tissue of interest.

In some embodiments, a nucleic acid according to the present disclosure comprises a moiety facilitating delivery to, and/or uptake by, a liver cell (e.g. a hepatocyte) and/or hepatic tissue. In such embodiments, the moiety may facilitate traversal of the hepatocyte cell membrane. The moiety may bind to a molecule expressed at the cell surface of hepatocytes. In some embodiments, a molecule expressed at the cell surface of hepatocytes is an asialoglycoprotein receptor, e.g. ASGR1 or ASGR2. The moiety may facilitate internalisation of a nucleic acid by hepatocytes (e.g. by endocytosis).

In some embodiments, the moiety may e.g. be a peptide/polypeptide (e.g. an antibody, fragment or derivative thereof, peptide aptamer or cell-penetrating peptide) or nucleic acid (e.g. a nucleic acid aptamer) which binds to a hepatocyte and/or hepatic tissue, e.g. via interaction with a molecule expressed at the cell surface of a hepatocyte (e.g. an asialoglycoprotein receptor, e.g. ASGR1 or ASGR2).

In some embodiments, the moiety is, or comprises, GalNAc. In some embodiments, an inhibitor, e.g. a nucleic acid, is conjugated to GalNAc. GalNAc interacts with asialoglycoprotein receptors expressed by hepatocytes. Nucleic acids conjugated to GalNAc are efficiently internalised by hepatic cells via receptor-mediated endocytosis following binding of GalNAc to ASGPR (see e.g. Nair et al., J. Am. Chem. Soc. (2014) 136(49): 16958-16961). In some embodiments, an inhibitor, e.g. a nucleic acid, is conjugated to one or more (e.g. 1, 2, 3, 4 or more) GalNAc moieties. In some embodiments, one or more GalNAc moieties may be covalently associated to the 5′ or 3′ end of one or more strands of a nucleic acid. In some embodiments, a nucleic acid is conjugated to a triantennary GalNAc carbohydrate moiety (such moieties are described e.g. in Nair et al., supra).

In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of one of SEQ ID NOs: 1 to 7155, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 1 to 7155; and (ii) a triantennary GalNAc carbohydrate moiety.

In some embodiments, the moiety is, or comprises, α-tocopherol (i.e. vitamin E). In some embodiments, a nucleic acid is conjugated to α-tocopherol. Nucleic acid-α-tocopherol conjugates have been employed for targeted delivery of nucleic acids to the liver (see e.g. Nishina et al., Mol Ther. (2008) 16(4):734-740). In some embodiments, a nucleic acid is conjugated to one or more (e.g. 1, 2, 3, 4 or more) α-tocopherol moieties. In some embodiments, one or more α-tocopherol moieties may be covalently associated to the 5′ or 3′ end of one or more strands of a nucleic acid.

Conjugates of biomolecules may be produced utilising ‘click chemistry’, as described e.g. in Nwe and Brechbiel Cancer Biother Radiopharm. (2009) 24(3):289-302 and Astakhova et al., Mol Pharm. (2018) 15(8): 2892-2899, both of which are hereby incorporated by reference in their entirety. In some embodiments, conjugation may employ akyne-azide or thio-maleimide approaches. In some embodiments, an inhibitor, e.g. nucleic acid, may be conjugated to a moiety facilitating delivery to, and/or uptake by, a cell type or tissue of interest, e.g. at the 3′ and/or 5′ end of one or more strands of the nucleic acid.

Inhibitors may be conjugated to one or more moieties facilitating delivery to, and/or uptake by, cell types or tissues of interest via a linker. In some embodiments, a linker may be or comprise a nucleotide sequence. The nucleotide sequence of a linker may comprise one or more modified nucleotides as described herein.

Treatment/Prevention of Disease

The inhibitors, nucleic acids, expression vectors, cells and compositions described herein find use in therapeutic and prophylactic methods.

The present invention provides methods and articles (agents and compositions) for the treatment and/or prevention of diseases through inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Treatment/prevention of disease is achieved by inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in e.g. a cell, tissue/organ/organ system/subject.

The invention is concerned with the treatment and/or prevention of diseases which are caused and/or exacerbated by an increase in the expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (and/or associated downstream factors), or diseases which are caused and/or exacerbated by a decrease in the expression/activity of one or more associated downstream factors that are downregulated by one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (genes, mRNA and/or proteins) in any of the methods described herein may be achieved using any suitable inhibitor. In some embodiments, the inhibitor is a nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor, e.g. as described herein. Multiple inhibitors may be used to target any two or more of the genes/proteins.

In any method provided herein, the inhibitor may be a nucleic acid as described herein, e.g. an inhibitory nucleic acid.

The utility of the present invention extends to the treatment/prevention of any disease that would derive therapeutic/prophylactic benefit from a reduction in the level of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB expression and/or activity.

In some embodiments, a disease to be treated/prevented may be characterised by an increase in the expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (or a correlate thereof) in an organ/tissue/subject affected by the disease e.g. as compared to normal organ/tissue/subject (i.e. in the absence of the disease).

Treatment/prevention may be of a disease that is associated with an upregulation in the expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (or a correlate thereof) in cells/tissue/an organ in which the symptoms of the disease manifest.

The experimental examples demonstrate that expression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB is upregulated in fibroinflammatory disorders, such as liver disease, inflammatory liver disorders, steatosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC).

Thus, the present disclosure establishes inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB as being useful for the treatment/prevention of diseases that are characterised by, e.g., NAFLD, NASH, fibrosis, and/or inflammation, e.g. of the liver or other tissues.

Aspects of the present invention are concerned with the treatment/prevention of a liver disease or condition.

Thus, in one aspect the present invention provides a method of treating or preventing a liver disease or condition, comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. As described hereinabove, inhibition/inhibiting may refer to inhibition of the expression and/or activity of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and the downstream functional consequences thereof, and encompasses decreased/reduced gene and/or protein expression or decreased/reduced activity of any one of said genes/proteins.

Also provided is a method of treating or preventing a liver disease or condition, comprising administering a therapeutically or prophylactically effective amount of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to a subject. The method may comprise administering two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) inhibitors that target two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Also provided is an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB for use in a method of treating or preventing a liver disease or condition.

Also provided is the use of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the manufacture of a medicament for use in a method of treating or preventing a liver disease or condition.

The inhibitor may be any suitable inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, such as any agent described herein, e.g. nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor. In some embodiments the inhibitor is an inhibitory nucleic acid, such as those described herein.

In some embodiments, the liver disease or condition to be treated/prevented is selected from the group consisting of: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, mild liver fibrosis, advanced liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic fatty liver disease (ALFD), alcohol-related liver disease (ARLD), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis, liver damage, liver injury, liver failure, metabolic syndrome, obesity, diabetes mellitus, end-stage liver disease, inflammation of the liver, lobular inflammation, and/or hepatocellular carcinoma (HCC).

In some embodiments, the liver fibrosis is a virus-induced liver fibrosis. In some embodiments, the hepatitis is an alcohol-induced hepatitis. In some embodiments, the liver damage is a drug or virus-induced liver damage.

The experimental examples of the present disclosure identify MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB as regulators of fibroinflammatory processes, which are moreover conserved between different tissue types.

Aspects of the present invention are concerned with the treatment/prevention of diseases in which profibrotic processes are pathologically implicated. Accordingly, in some embodiments the disease is fibrosis, or a disease characterised by fibrosis.

As used herein, “fibrosis” refers to the formation of excess fibrous connective tissue as a result of the excess deposition of extracellular matrix components, for example collagen. Fibrous connective tissue is characterised by having extracellular matrix (ECM) with a high collagen content. The collagen may be provided in strands or fibers, which may be arranged irregularly or aligned. The ECM of fibrous connective tissue may also include glycosaminoglycans.

As used herein, “excess fibrous connective tissue” refers to an amount of connective tissue at a given location (e.g. a given tissue or organ, or part of a given tissue or organ) which is greater than the amount of connective tissue present at that location in the absence of fibrosis, e.g. under normal, non-pathological conditions. As used herein, “excess deposition of ECM components” refers to a level of deposition of one or more ECM components which is greater than the level of deposition in the absence of fibrosis, e.g. under normal, non-pathological conditions.

The cellular and molecular mechanisms of fibrosis are described in Wynn, J. Pathol. (2008) 214(2): 199-210, and Wynn and Ramalingam, Nature Medicine (2012) 18:1028-1040, which are hereby incorporated by reference in their entirety.

Damage to tissues can result from various stimuli, including infections, autoimmune reactions, toxins, radiation and mechanical injury. Repair typically involves replacement of injured cells by cells of the same type, and replacement of normal parenchymal tissue with connective tissue. Repair processes become pathogenic when they are not controlled properly, resulting in substantial deposition of ECM components in which normal tissue is replaced with permanent scar tissue. In diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, cardiovascular fibrosis, systemic sclerosis and nephritis, extensive tissue remodelling and fibrosis can ultimately lead to organ failure and death.

The main cellular effectors of fibrosis are myofibroblasts, which produce a collagen-rich ECM. In response to tissue injury, damaged cells and leukocytes produce pro-fibrotic factors such as TGFβ, IL-13 and PDGF, which activate fibroblasts to αSMA-expressing myofibroblasts, and recruit myofibroblasts to the site of injury. Myofibroblasts produce a large amount of ECM, and are important mediators in aiding contracture and closure of the wound. However, under conditions of persistent infection or during chronic inflammation there can be overactivation and recruitment of myofibroblasts, and thus over-production of ECM components, resulting in the formation of excess fibrous connective tissue.

Inflammatory reactions play an important part in triggering fibrosis in many different organ systems. Inflammation can lead to excess in deposition of ECM components in the affected tissues. Low-grade but persistent inflammation is also thought to contribute to the progression of fibrosis in cardiovascular disease and hypertension. In many fibrotic disorders, a persistent inflammatory trigger is crucial to upregulation of production of growth factors, proteolytic enzymes, angiogenic factors and fibrogenic cytokines, which stimulate the deposition of connective tissue elements that progressively remodel and destroy normal tissue architecture.

In some embodiments fibrosis may be triggered by pathological conditions, e.g. conditions, infections or disease states that lead to production of pro-fibrotic factors such as TGFβ1. In some embodiments, fibrosis may be caused by physical injury/stimuli, chemical injury/stimuli or environmental injury/stimuli. Physical injury/stimuli may occur during surgery, e.g. iatrogenic causes. Chemical injury/stimuli may include drug induced fibrosis, e.g. following chronic administration of drugs such as bleomycin, cyclophosphamide, amiodarone, procainamide, penicillamine, gold and nitrofurantoin (Daba et al., Saudi Med J 2004 June, 25(6): 700-6). Environmental injury/stimuli may include exposure to asbestos fibres or silica.

Fibrosis can be of any tissue/organ of the body. In some embodiments, fibrosis is of the heart, kidney, liver, lung, skeletal muscle, blood vessels, eye, skin, pancreas, bowel, small intestine, large intestine, colon, brain, or bone marrow. In some embodiments, the fibrosis is of the liver. In some embodiments, the fibrosis is of the heart, lung or kidney. Fibrosis may also occur in multiple tissues/organs at once.

Thus, the present invention provides methods and articles (agents and compositions) for the treatment and/or prevention of diseases characterised by fibrosis through inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Thus, in one aspect the present invention provides a method of treating or preventing a disease characterised by fibrosis, comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Also provided is a method of treating or preventing a disease characterised by fibrosis, comprising administering a therapeutically or prophylactically effective amount of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to a subject. The method may comprise administering two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) inhibitors that target two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Also provided is an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB for use in a method of treating or preventing a disease characterised by fibrosis.

Also provided is the use of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the manufacture of a medicament for use in a method of treating or preventing a disease characterised by fibrosis.

A “disease characterised by fibrosis” refers to a disease in which fibrosis and/or profibrotic processes are pathologically implicated. A “disease characterised by fibrosis” may be fibrosis, e.g. of any cell, tissue or organ.

Diseases characterised by fibrosis include but are not limited to: respiratory conditions such as pulmonary fibrosis, cystic fibrosis, idiopathic pulmonary fibrosis, progressive massive fibrosis, scleroderma, obliterative bronchiolitis, Hermansky-Pudlak syndrome, asbestosis, silicosis, chronic pulmonary hypertension, AIDS associated pulmonary hypertension, sarcoidosis, tumor stroma in lung disease, and asthma; chronic liver disease, cirrhosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), primary biliary cirrhosis (PBC), schistosomal liver disease, cardiovascular conditions such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), fibrosis of the atrium, atrial fibrillation, fibrosis of the ventricle, ventricular fibrillation, myocardial fibrosis, Brugada syndrome, myocarditis, endomyocardial fibrosis, myocardial infarction, fibrotic vascular disease, hypertensive heart disease, arrhythmogenic right ventricular cardiomyopathy (ARVC), tubulointerstitial and glomerular fibrosis, atherosclerosis, varicose veins, cerebral infarcts; neurological conditions such as gliosis and Alzheimer's disease; muscular dystrophy such as Duchenne muscular dystrophy (DMD) or Becker's muscular dystrophy (BMD); gastrointestinal conditions such as Crohn's disease, microscopic colitis and primary sclerosing cholangitis (PSC); skin conditions such as scleroderma, nephrogenic systemic fibrosis and cutis keloid; arthrofibrosis; Dupuytren's contracture; mediastinal fibrosis; retroperitoneal fibrosis; myelofibrosis; Peyronie's disease; adhesive capsulitis; kidney disease (e.g., renal fibrosis, nephritic syndrome, Alport's syndrome, HIV associated nephropathy, polycystic kidney disease, Fabry's disease, diabetic nephropathy, chronic glomerulonephritis, nephritis associated with systemic lupus); progressive systemic sclerosis (PSS); chronic graft versus host disease; diseases of the eye such as Grave's opthalmopathy, epiretinal fibrosis, retinal fibrosis, subretinal fibrosis (e.g. associated with macular degeneration (e.g. wet age-related macular degeneration (AMD)), diabetic retinopathy, glaucoma, corneal fibrosis, post-surgical fibrosis (e.g. of the posterior capsule following cataract surgery, or of the bleb following trabeculectomy for glaucoma), conjunctival fibrosis, subconjunctival fibrosis; arthritis; fibrotic pre-neoplastic and fibrotic neoplastic disease; and fibrosis induced by chemical or environmental insult (e.g., cancer chemotherapy, pesticides, radiation/cancer radiotherapy).

It will be appreciated that many of the diseases/conditions recited in the preceding paragraph are interrelated. For example, fibrosis of the ventricle may occur post myocardial infarction, and is associated with DCM, HCM and myocarditis.

Fibrosis can lead directly or indirectly to, and/or increase susceptibility to development of, diseases. For example, more than 80% of hepatocellular carcinomas (HCCs) develop in fibrotic or cirrhotic livers (Affo et al. 2016, Annu Rev Pathol.), suggesting an important role for liver fibrosis in the premalignant environment (PME) of the liver.

Accordingly, the present invention also finds use in methods for the treatment and prevention of diseases associated with fibrosis, and/or for which fibrosis is a risk factor. In some embodiments, the disease associated with fibrosis, or for which fibrosis is a risk factor, is a cancer, e.g. cancer of the liver (e.g. hepatocellular carcinoma).

In some embodiments, the fibrosis to be treated/prevented according to the present invention may be of fibrosis that is associated with an upregulation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB expression and/or activity, e.g. in cells/tissue/an organ in which the fibrosis occurs or may occur.

The therapy may be effective to inhibit development (delay/prevent) of the fibrosis, or of progression (e.g. worsening) of the fibrosis. In some embodiments therapy may lead to an improvement in the disease, e.g. a reduction in the symptoms of fibrosis. Prevention of fibrosis may refer to prevention of a worsening of the condition or prevention of the development of fibrosis, e.g. preventing an early stage fibrosis (e.g. inflammation, steatosis, NAFLD) developing to a later stage (e.g. fibrosis, cirrhosis, HCC).

Aspects of the present invention are concerned with the treatment/prevention of diseases in which proinflammatory processes are pathologically implicated. Inflammation is reviewed e.g. in Chen et al., Oncotarget. (2018) 9(6): 7204-7218, which is hereby incorporated by reference in its entirety. Inflammation refers to the bodily response to cellular/tissue injury, and is characterised by edema, erythema (redness), heat, pain, and loss of function (stiffness and immobility) resulting from local immune, vascular and inflammatory cell responses to infection or injury. The injury may result from e.g. of physical (e.g. mechanical) or chemical insult, trauma, infection, cancer or overactive/aberrant immune responses (e.g. autoimmune disease). Inflammation forms part of the innate immune response, and plays an important physiological role in wound healing and the control of infection, and contributes to the restoration of tissue homeostasis.

However, many diseases are associated with an overactive inflammatory response (i.e. excessive inflammation and/or aberrantly activated inflammation), and/or chronic (prolonged) inflammation. Herein, excessive and/or chronic inflammation may be referred to as “pathological inflammation”. Pathological inflammation may refer to inflammation which is implicated in (i.e. which positively contributes to) the pathology of a disease.

In some embodiments, the disease to be treated/prevented in accordance with the present invention is a disease characterised by chronic inflammation. In some embodiments, the disease to be treated/prevented is a disease characterised by an overactive inflammatory response.

In some embodiments, the treatment/prevention of chronic inflammation or an overactive inflammatory immune response associated with a chronic infection, cancer, autoimmune disease, degenerative disease or allergic disease is contemplated.

Pathological inflammation which is “associated with” a given disease (e.g. a chronic infection, a cancer, an autoimmune disease, a degenerative disease or an allergic disease) may refer to pathological inflammation caused by, initiated by and/or which is a consequence of the disease. Pathological inflammation associated with a given disease may be concurrent with the disease.

Chronic inflammation generally refers to inflammation lasting for prolonged periods of time, e.g. from months to years. Chronic inflammation can result e.g. from failure to properly control/eliminate an infectious agent causing inflammation (i.e. chronic infection), prolonged/repeated exposure to physical/chemical insult, prolonged/repeated exposure to an allergen (allergy), and autoimmune disease.

The chronic inflammation, overactive inflammatory immune response, chronic infection, cancer, autoimmune disease, degenerative disease or allergic disease may affect any tissue/organ of the body, e.g. the heart, kidney, liver, lung, skeletal muscle, blood vessels, eye, skin, pancreas, bowel, small intestine, large intestine, colon, brain, or bone marrow, or multiple tissues/organs at once.

An overactive inflammatory immune response generally refers to an inflammatory immune response that is excessive, and/or which has been activated inappropriately (i.e. an inflammatory immune response which is aberrant). An excessive inflammatory immune response refers to an inflammatory immune response which is greater than the response required for restoration of tissue homeostasis following injury to tissue (e.g. as a result of physical or chemical insult or infection). Aberrant inflammatory immune responses include inflammatory immune responses resulting from autoimmunity and allergy.

Chronic infections include persistent/unresolved infection by any infectious agent, e.g. chronic viral, bacterial, fungal and protozoal infections. Chronic viral infections may be caused e.g. by infection with human immunodeficiency viruses (HIVs), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr Virus (EBV), measles virus (MV), cytomegalovirus (CMV), human T-cell leukemia viruses (HTLVs), human herpesviruses (HHVs), herpes simplex viruses (HSVs), Varicella-Zoster virus (VZV), human papovaviruses (e.g. JC virus, BK virus), adenoviruses (AdVs), paroviruses or human papillomaviruses (HPVs). Chronic bacterial infections may be caused e.g. by infection with Mycobacterium tuberculosis Helicobacter pylori, Salmonella Typhi, Treponema pallidum, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Hemophilus influenza or Mycobacterium leprae. Chronic fungal infections may be caused e.g. by infection with Candida spp or Aspergillus. Chronic protozoal infections may be caused e.g. by infection with Plasmodium spp., Babesia spp., Giardia spp., Leishmania spp., Trypanosoma spp. or Toxoplasma spp.

A cancer may be any cancer. As used herein, cancers include any unwanted cell proliferation (or any disease manifesting itself by unwanted cell proliferation), neoplasm or tumor. The cancer may be benign or malignant and may be primary or secondary (metastatic). A neoplasm or tumor may be any abnormal growth or proliferation of cells and may be located in any tissue. The cancer may be of tissues/cells derived from e.g. the adrenal gland, adrenal medulla, anus, appendix, bladder, blood, bone, bone marrow, brain, breast, cecum, central nervous system (including or excluding the brain) cerebellum, cervix, colon, duodenum, endometrium, epithelial cells (e.g. renal epithelia), gallbladder, oesophagus, glial cells, heart, ileum, jejunum, kidney, lacrimal glad, larynx, liver, lung, lymph, lymph node, lymphoblast, maxilla, mediastinum, mesentery, myometrium, nasopharynx, omentum, oral cavity, ovary, pancreas, parotid gland, peripheral nervous system, peritoneum, pleura, prostate, salivary gland, sigmoid colon, skin, small intestine, soft tissues, spleen, stomach, testis, thymus, thyroid gland, tongue, tonsil, trachea, uterus, vulva, and/or white blood cells.

An autoimmune disease may be selected from: diabetes mellitus type 1, diabetes mellitus type 2, coeliac disease, Graves' disease, inflammatory bowel disease (e.g. Crohn's disease), multiple sclerosis, psoriasis, rheumatoid arthritis, and systemic lupus erythematosus.

Degenerative diseases are characterised by deterioration of cell/tissue/organ condition or function over time. Proinflammatory and profibrotic processes are implicated in the pathology of many degenerative diseases.

Degenerative disease include e.g. Alzheimer's disease, amyotrophic lateral sclerosis, cancers, Charcot-Marie-Tooth disease, chronic traumatic encephalopathy, cystic fibrosis, degenerative Leigh syndrome, Ehlers-Danlos syndrome, fibrodysplasia ossificans progressiva, Friedreich's ataxia, frontotemporal dementia, cardiovascular diseases (e.g. atherosclerotic cardiovascular disease (e.g. coronary artery disease, aortic stenosis), myocardial infarction, pulmonary arterial hypertension), Huntington's disease, infantile neuroaxonal dystrophy, keratoconus, keratoglobus, leukodystrophies, macular degeneration, Marfan's syndrome, mitochondrial myopathies, mitochondrial DNA depletion syndrome, multiple sclerosis, multiple system atrophy, muscular dystrophies, neuronal ceroid lipofuscinosis, Niemann-Pick disease, osteoarthritis, osteoporosis, Parkinson's disease, pulmonary arterial hypertension, all prion diseases (Creutzfeldt-Jakob disease, fatal familial insomnia etc.), progressive supranuclear palsy, retinitis pigmentosa, rheumatoid arthritis, Sandhoff Disease, spinal muscular atrophy, subacute sclerosing panencephalitis, Tay-Sachs disease and vascular dementia.

An allergic disease may be selected from allergic asthma, allergic rhinitis, food allergy and atopic dermatitis.

In some embodiments the chronic inflammation, overactive inflammatory immune response, chronic infection, cancer, autoimmune disease or allergic disease may be of: an organ of the cardiovascular system, e.g. of the heart or blood vessels; an organ of the gastrointestinal system, e.g. of the liver, bowel, small intestine, large intestine, colon, or pancreas; an organ of the respiratory system, e.g. the lung; the skin; an organ of the nervous system, e.g. the brain; an organ of the urinary system, e.g. the kidneys; or an organ of the musculoskeletal system, e.g. muscle tissue.

Pathological inflammation often leads to fibrosis—see e.g. Mack, Matrix Biol. (2018) 68-69:106-121 and Suthahar et al., Curr Heart Fail Rep. (2017) 14(4): 235-250, both of which are hereby incorporated by reference in their entirety.

The present invention also finds use in methods for the treatment and prevention of diseases associated with pathological inflammation, and/or for which pathological inflammation is a risk factor. In some embodiments, the disease associated with pathological inflammation, or for which pathological inflammation is a risk factor, is fibrosis or a disease characterised by fibrosis.

In some embodiments, the pathological inflammation to be treated/prevented according to the present invention may be of pathological inflammation that is associated with an upregulation of expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, e.g. in cells/tissue/an organ in which the pathological inflammation occurs or may occur.

The therapy may be effective to inhibit development (delay/prevent) of the pathological inflammation, or of progression (e.g. worsening) of the pathological inflammation. In some embodiments therapy may lead to an improvement in the disease, e.g. a reduction in the symptoms of pathological inflammation. Prevention of pathological inflammation may refer to prevention of a worsening of the condition or prevention of the development of pathological inflammation, e.g. preventing an early stage pathological inflammation developing to a later stage.

Therapeutic/prophylactic intervention in accordance with the present invention may be employed in the context of additional treatment for the relevant disease. That is, expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be inhibited in a subject (e.g. by treatment with a suitable inhibitor such as those described herein) that is also receiving/has received/will receive further therapeutic/prophylactic intervention for the treatment/prevention of the disease.

The experimental examples show that proliferation, expansion and regeneration of liver and lung cells/tissue can be achieved via inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In accordance with various aspects of the present invention, a method of treating and/or preventing a disease according to the present invention may comprise one or more of the following:

    • Reducing the level of gene/protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reducing the level of activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
    • Reducing the level of a correlate of fibrosis (e.g. a collagen, αSMA, periostin, fibronectin, CTGF, vimentin or lumican);
    • Reducing gene/protein expression of a pro-fibrotic factor (e.g. a collagen, αSMA, periostin,
    • fibronectin, CTGF, vimentin or lumican);
    • Reducing the number/proportion of myofibroblasts;
    • Reducing the level of a correlate of pathological inflammation;
    • Reducing gene/protein expression of a pro-inflammatory factor;
    • Reducing the number/proportion of myofibroblasts;
    • Increasing the function of an organ/tissue affected by the disease;
    • Stimulating/increasing proliferation of a cell affected by the disease;
    • Stimulating/increasing expansion of a cell affected by the disease;
    • Stimulating/increasing regeneration of a cell affected by the disease;
    • Stimulating/increasing proliferation of a myoblast;
    • Stimulating/increasing expansion of a myoblast;
    • Stimulating/increasing regeneration of a myoblast;
    • Increasing the number/proportion of health myoblasts;
    • Stimulating/increasing regeneration of an organ/tissue affected by the disease;
    • Stimulating/increasing proliferation and/or expansion of a cell in an organ/tissue affected by the disease;
    • Stimulating/increasing proliferation and/or expansion of a hepatocyte, e.g. that is affected by the disease or that is in an organ/tissue affected by the disease;
    • Stimulating/increasing regeneration of liver tissue;
    • Stimulating/increasing regeneration of lung tissue;
    • Stimulating/increasing regeneration of the liver;
    • Stimulating/increasing regeneration of the lung;
    • Increasing function of an organ/tissue affected by the disease;
    • Increasing liver function;
    • Increasing lung function;
    • Increasing wound healing in an organ/tissue affected by the disease;
    • Increasing wound healing in liver tissue;
    • Increasing wound healing in lung tissue;
    • Protecting an organ/tissue affected by the disease;
    • Protecting a liver/liver tissue affected by the disease;
    • Protecting a lung/lung tissue affected by the disease;
    • Increasing the survival of a subject having the disease;
    • Reducing the number/proportion of macrophages in an organ/tissue affected by the disease; and/or
    • Reducing the number/proportion of monocytes in an organ/tissue affected by the disease;

Methods for Treating a Subject are Provided Herein.

The disclosure teaches a method of treating a condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the condition or disease in the subject.

Disclosed herein is a method of treating a liver condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the liver condition or disease in the subject.

A “gene associated with organ regeneration” as used herein may refer to one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB genes. A “corresponding gene product associated with organ regeneration” as used herein may refer to an mRNA encoded by one or more genes above, or a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein.

In one embodiment, a subject herein is suffering from a liver condition or disease, as described herein. The methods described herein may comprise preventing or treating the liver condition or disease.

In one embodiment, a subject herein is suffering from a lung condition or disease. The lung condition or disease may be a cigarette or viral-induced lung condition or disease. The lung condition or disease may be lung damage or fibrosis. The method may comprise preventing or treating the lung condition or disease.

Disclosed herein is a method of protecting a subject from liver damage or a disease associated with fibrosis, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to protect the subject from liver damage. The inhibitor may be one described herein. A gene/corresponding gene product associated with organ regeneration may be one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Disclosed herein is an inhibitor of a gene or corresponding gene product associated with organ regeneration for use in preventing or treating a liver condition or disease in the subject. In one embodiment, the inhibitor is capable of stimulating or increasing proliferation of hepatocytes in the subject.

Disclosed herein is the use of an inhibitor of a gene or corresponding gene product associated with organ regeneration in the manufacture of a medicament for preventing or treating a liver condition or disease in the subject.

Disclosed herein is a method of enhancing cell function in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell function in the subject. “Enhancing cell function” refers to improving the endogenous activity of a cell, e.g. signalling, proliferation, expansion. Function of a cell may be enhanced starting from a healthy state, or from a diseased/impaired state.

The method may comprise improving the robustness of the cell under diseased condition. The term robustness refers to being able to survive under diseased condition.

Disclosed herein is a method of enhancing cell viability in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell viability in the subject, e.g. in inhibitor described herein.

The present disclosure teaches a method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to stimulate or increase proliferation of the cell in the subject.

In one embodiment, the method further increases the robustness of the cell under diseased conditions in the subject.

In one embodiment, the gene associated with organ regeneration is identified by knocking down the gene in a hepatocyte of an animal model and detecting proliferation and/or regeneration of the hepatocyte in the animal model.

The gene associated with organ regeneration is selected from the group consisting of Microfibril Associated Protein 4 (Mfap4), Glyoxylate and Hydroxypyruvate Reductase (Grhpr), Integrin Alpha FG-GAP Repeat Containing 1 (Itfg1), ATP binding cassette subfamily C member 4 (ABCC4), p21 (RAC1) activated kinase 3 (PAK3), TMF1 regulated nuclear protein 1 (TRNP1), Apelin (APLN), Kindesin Family Member 20A (KIF20A) and Lymphotoxin beta (LTB).

A “gene product” is a biopolymeric product that is expressed or produced by a gene. A gene product may be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide etc. Also encompassed by this term is biopolymeric products that are made using an RNA gene product as a template (i.e. cDNA of the RNA). A gene product may be made enzymatically, recombinantly, chemically, or within a cell to which the gene is native. In many embodiments, if the gene product is proteinaceous, it exhibits a biological activity. In many embodiments, if the gene product is a nucleic acid, it can be translated into a proteinaceous gene product that exhibits a biological activity.

Disclosed herein is an in vitro or in vivo method for reducing gene and/or protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell, comprising introducing an inhibitor described herein into the cell. In some embodiments, the inhibitor is an inhibitory nucleic acid as described herein.

Disclosed herein is a method of regenerating liver tissue in vitro or in vivo, the method comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell of the tissue, e.g. using an inhibitor described herein.

Disclosed herein is a method for preventing age-dependent decline in the regenerative capacity of a hepatocyte, the method comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell of the tissue, e.g. using an inhibitor described herein.

The term “treating” as used herein may refer to (1) preventing or delaying the appearance of one or more symptoms of the disorder; (2) inhibiting the development of the disorder or one or more symptoms of the disorder; (3) relieving the disorder, i.e., causing regression of the disorder or at least one or more symptoms of the disorder; and/or (4) causing a decrease in the severity of one or more symptoms of the disorder. The term “treating” may refer to regeneration of the tissue/organ in question, or preventing a disease/condition from progressing to a later, more severe stage.

The term “administering” refers to contacting, applying, injecting, transfusing or providing an inhibitor as referred to herein to a subject.

The term “subject” as used throughout the specification is to be understood to mean a human or may be a domestic or companion animal. While it is particularly contemplated that the methods of the invention are for treatment of humans, they are also applicable to veterinary treatments, including treatment of companion animals such as dogs and cats, and domestic animals such as horses, cattle and sheep, or zoo animals such as primates, felids, canids, bovids, and ungulates. The “subject” may include a person, a patient or individual, and may be of any age or gender.

The patient may have a disease described herein. A subject may have been diagnosed with a disease requiring treatment, may be suspected of having such a disease, or may be at risk from developing a disease.

In embodiments according to the present invention the subject is preferably a human subject. In embodiments according to the present invention, a subject may be selected for treatment according to the methods based on characterisation for certain markers of a disease described herein.

In some embodiments, any method disclosed herein comprises administering an inhibitor according to the present disclosure into a subject, organ, tissue or cell. The organ, tissue or cell may be in vivo or in vitro. Any method described herein may be performed in vivo or in vitro.

Aspects and embodiments of the present invention concern detection of expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (gene and/or protein expression) and/or activity in a cell/tissue/organ of a subject, e.g. as determined by analysis of a cell/tissue/organ of a subject, e.g. in a sample obtained from the subject (such as an in vitro cell/tissue/organ/sample).

Disclosed herein is a method of detecting a liver condition or disease in a subject, the method comprising detecting in a sample the level of one or more biomarkers associated with liver regeneration, wherein a change in the level of the one or more biomarkers as compared to a reference indicates that the subject is suffering from a liver condition or disease. The one or more biomarkers may be one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

Upregulated expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may identify a subject as a subject to be treated with an inhibitor of at least one of those genes/proteins in accordance with the present invention.

Upregulated expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB refers to a level of expression/activity that is greater than would be expected for a cell/tissue of a given type. Gene or protein expression and activity can be analysed as described herein.

Upregulation may be determined by measuring the level of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell/tissue. Comparison may be made between the level of expression/activity in a cell or tissue sample from a subject and a reference level of expression/activity, e.g. a value/range of values representing a normal level of expression/activity for the same or corresponding cell/tissue type. In some embodiments reference levels may be determined by detecting expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a control sample, e.g. in corresponding cells or tissue from a healthy subject or from healthy tissue of the same subject. In some embodiments reference levels may be obtained from a standard curve or data set.

A sample obtained from a subject may be of any kind. A biological sample may be taken from any tissue or bodily fluid, e.g. a blood sample, blood-derived sample, serum sample, lymph sample, semen sample, saliva sample, synovial fluid sample. A blood-derived sample may be a selected fraction of a patient's blood, e.g. a selected cell-containing fraction or a plasma or serum fraction. A sample may comprise a tissue sample or biopsy; or cells isolated from a subject. Samples may be collected by known techniques, such as biopsy or needle aspirate. Samples may be stored and/or processed for subsequent determination of the level of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

In some preferred embodiments a sample may be a tissue sample, e.g. biopsy, taken from a tissue/organ affected by a disease described herein. A sample may contain cells.

A subject may be selected for therapy/prophylaxis in accordance with the present invention based on determination that the subject has an upregulated level of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Upregulated expression/activity of said genes/proteins may serve as a marker of a disease suitable for treatment in accordance with the present invention.

Following selection, a subject may be treated to inhibit expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, e.g. by administration of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. that has an upregulated level of expression/activity).

Detection of upregulation of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may also be used in a method of diagnosing a disease described herein, identifying a subject at risk of developing a disease described herein, and in methods of prognosing a subject's response to inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. via treatment with an inhibitor targeting one or more of said genes/proteins).

In some embodiments a subject may be suspected of having or suffering from a disease, e.g. based on the presence of other symptoms indicative of the disease in the subject's body or in selected cells/tissues of the subject's body, or be considered at risk of developing the disease, e.g. because of genetic predisposition or exposure to environmental conditions, known to be risk factors for the disease. Determination of upregulation of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may confirm a diagnosis or suspected diagnosis, or may confirm that the subject is at risk of developing the disease. The determination may also diagnose a disease or predisposition as one suitable for treatment with an inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

As such, a method of providing a prognosis for a subject having, or suspected of having a disease may be provided, the method comprising determining whether expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB is upregulated in a sample obtained from the subject and, based on the determination, providing a prognosis for treatment of the subject with a inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.

The method may further comprise the step of selecting the subject for treatment with an inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and/or administering an inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to the subject in order to provide a treatment for a disease described herein in the subject or to prevent development or progression of a disease described herein in the subject.

Methods of diagnosis or prognosis may be performed in vitro on a sample obtained from a subject, or following processing of a sample obtained from a subject. Once the sample is collected, the patient is not required to be present for the in vitro method of diagnosis or prognosis to be performed and therefore the method may be one which is not practised on the human or animal body. The sample obtained from a subject may be of any kind, as described herein above.

Other diagnostic or prognostic tests may be used in conjunction with those described here to enhance the accuracy of the diagnosis or prognosis or to confirm a result obtained using the tests described herein.

The terms “therapeutically effective amount” and “effective amount” are used interchangeably and refer to an amount of a compound that is sufficient to effect treatment as defined below, when administered to a patient (e.g., a human) in need of such treatment in one or more doses. The therapeutically effective amount will vary depending upon the patient, the disease being treated, the weight and/or age of the patient, the severity of the disease, the nature of the agent, or the manner of administration as determined by a qualified prescriber or care giver. Examples of the techniques and protocols mentioned above can be found in Remington's Pharmaceutical Sciences, 20th Edition, 2000, pub. Lippincott, Williams & Wilkins.

Multiple doses of the agent may be provided. One or more, or each, of the doses may be accompanied by simultaneous or sequential administration of another therapeutic agent.

Multiple doses may be separated by a predetermined time interval, which may be selected to be one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31 days, or 1, 2, 3, 4, 5, or 6 months. By way of example, doses may be given once every 7, 14, 21 or 28 days (plus or minus 3, 2, or 1 days).

In therapeutic applications, inhibitors for use as described herein are preferably formulated as a medicament or pharmaceutical together with one or more other pharmaceutically acceptable ingredients well known to those skilled in the art, including, but not limited to, pharmaceutically acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, preservatives, anti-oxidants, lubricants, stabilisers, solubilisers, surfactants (e.g., wetting agents), masking agents, colouring agents, flavouring agents, and sweetening agents.

As used herein, “pharmaceutically acceptable carrier” includes excipients or agents such as solvents, diluents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like that are not deleterious to the disclosed compound or use thereof. The use of such carriers and agents to prepare compositions of pharmaceutically active substances is well known in the art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.). Each carrier, adjuvant, excipient, etc. must also be “acceptable” in the sense of being compatible with the other ingredients of the formulation.

Suitable carriers, adjuvants, excipients, etc. can be found in standard pharmaceutical texts, for example, Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Company, Easton, Pa., 1990; and Handbook of Pharmaceutical Excipients, 2nd edition, 1994.

The formulations may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active compound with a carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active compound with carriers (e.g., liquid carriers, finely divided solid carrier, etc.), and then shaping the product, if necessary.

The formulations may be prepared for topical, parenteral, systemic, intravenous, intra-arterial, intramuscular, intrathecal, intraocular, intra-conjunctival, subcutaneous, oral or transdermal routes of administration which may include injection. Injectable formulations may comprise the selected agent in a sterile or isotonic medium. The formulation and mode of administration may be selected according to the agent and disease to be treated/prevented.

Disclosed herein is a method of screening for an inhibitor of a gene or corresponding gene product associated with organ regeneration by: a) contacting the gene or corresponding gene product with a chemical compound library, and b) identifying a chemical compound within the library that is binds to the gene or corresponding gene product to inhibit the expression or function of the gene or corresponding gene product.

Also provided herein are reporter cells lines for screening of small compound inhibitors for a gene or corresponding gene product associated with cell regeneration.

Numbered Paragraphs

1. A method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to stimulate or increase proliferation of the cell in the subject.

2. The method of paragraph 1, wherein the method increases the robustness of the cell under diseased conditions in the subject.

3. The method of paragraph 1, wherein the gene associated with organ regeneration is identified by knocking down the gene in a hepatocyte of an animal model and detecting proliferation and/or regeneration of the hepatocyte in the animal model.

4. The method of paragraph 2, wherein the gene associated with organ regeneration is selected from the group consisting of Microfibril Associated Protein 4 (Mfap4), Glyoxylate and Hydroxypyruvate Reductase (Grhpr), Integrin Alpha FG-GAP Repeat Containing 1 (Itfg1), ATP binding cassette subfamily C member 4 (ABCC4), p21 (RAC1) activated kinase 3 (PAK3), TMF1 regulated nuclear protein 1 (TRNP1), Apelin (APLN), Kindesin Family Member 20A (KIF20A) and Lymphotoxin beta (LTB).

5. The method of paragraph 1, wherein the inhibitor is a nucleic acid, peptide, antibody or small molecule inhibitor.

6. The method of paragraph 5, wherein the inhibitor is a nucleic acid inhibitor comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1-14 or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1-14 under stringency conditions.

7. The method of paragraph 1, wherein the subject is suffering from a liver condition or disease.

8. The method of paragraph 7, wherein the liver condition or disease is selected from the group consisting of acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis and liver damage.

9. The method of paragraph 7, wherein the method comprises preventing or treating the liver condition or disease.

10. A method of enhancing cell function in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell function in the subject.

11. The method of paragraph 10, wherein the method comprises improving the robustness of the cell under diseased condition.

12. A method of enhancing cell viability in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell viability in the subject.

13. A method of treating a liver condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the liver condition or disease in the subject.

14. A method of protecting a subject from liver damage, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to protect the subject from liver damage.

15. A method of detecting a liver condition or disease in a subject, the method comprising detecting in a sample the level of one or more biomarkers associated with liver regeneration, wherein a change in the level of the one or more biomarkers as compared to a reference indicates that the subject is suffering from a liver condition or disease.

16. An inhibitor of a gene or corresponding gene product associated with organ regeneration for use in preventing or treating a liver condition or disease in the subject.

17. The inhibitor of paragraph 16, wherein the liver condition or disease is selected from the group consisting of acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC) hepatitis or liver damage.

18. The inhibitor of paragraph 17, wherein the inhibitor is capable of stimulating or increasing proliferation of hepatocytes in the subject.

19. Use of an inhibitor of a gene or corresponding gene product associated with organ regeneration in the manufacture of a medicament for preventing or treating a liver condition or disease in the subject.

20. The use of paragraph 19, wherein the liver condition or disease is selected from the group consisting of acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC) hepatitis or liver damage.

21. The use of paragraph 19, wherein the inhibitor is capable of stimulating or increasing proliferation of hepatocytes in the subject.

22. A nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1-14 or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1-14 under stringency conditions.

23. A method of screening for an inhibitor of a gene or corresponding gene product associated with organ regeneration by: a) contacting the gene or corresponding gene product with a chemical compound library, and b) identifying a chemical compound within the library that is binds to the gene or corresponding gene product to inhibit the expression or function of the gene or corresponding gene product.

The features disclosed in the foregoing description, or in the following claims, or in the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for obtaining the disclosed results, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications which fall within the spirit and scope. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

For the avoidance of any doubt, any theoretical explanations provided herein are provided for the purposes of improving the understanding of a reader. The inventors do not wish to be bound by any of these theoretical explanations.

Any section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.

As used in this application, the singular form “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “an agent” includes a plurality of agents, including mixtures thereof. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by the use of the antecedent “about,” it will be understood that the particular value forms another embodiment. The term “about” in relation to a numerical value is optional and means for example +/−10%.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavor to which this specification relates.

Certain embodiments of the invention will now be described with reference to the following figures and examples which are intended for the purpose of illustration only and are not intended to limit the scope of the generality hereinbefore described. Further aspects and embodiments will be apparent to those skilled in the art. All documents mentioned in this text are incorporated herein by reference.

For standard molecular biology techniques, see Sambrook, J., Russel, D. W. Molecular Cloning, A Laboratory Manual. 3 ed. 2001, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, which is hereby incorporated by reference in its entirety.

SUMMARY OF THE FIGURES

Embodiments and experiments illustrating the principles of the invention will now be discussed, by way of non-limiting example only, with reference to the accompanying figures in which:

FIG. 1A, 1B, 1C, 1D. Functional genetic in vivo RNAi screen for modulators of liver regeneration FIG. 1A) Outline of screen. A library of 250 shRNAs targeting 89 genes was delivered to the liver by hydrodynamic-tail vine injection (HDTV) of the transposon based construct (upper panel) in combination with a sleeping beauty 13 (SB13) encoding plasmid (5 independent mice). After stable integration in ˜5 to 10% of hepatocytes, thioacetamide (TAA) treatment (3 times per week for 8 weeks) induces chronic liver damage associated with advanced liver fibrosis. Changes in shRNA abundance is detected by deep sequencing. FIG. 1B) Representation of fold change for each shRNA. The majority of shRNAs is depleted but a small number is clearly enriched. FIG. 1C) ROMAampl-library (250 shRNAs) distribution. Abundance of potential candidates is shown. Heatmap based representation of enrichment (dark grey) or depletion (light grey) for each animal. Upper panel shows all shRNAs (each raw represents one animal). Lower panel represents a higher magnification for highly significant enriched, depleted and neutral shRNAs (each column represents one animal). FIG. 1D) Functional genetic screen identifies high confidence candidates (zoom in of FIG. 1 B) is shown). At least two independent shRNAs were enriched targeting Mfap4, Grhpr, and Itfg1. Furthermore, non-targeting control (shNC) shRNAs (Renilla.713 and Luciferase.1309) did not show significant enrichment or depletion and known important liver regeneration genes are depleted, whereas shRNAs targeting the c-Met an essential receptor for liver regeneration are depleted. These results give confidence in the screening approach.

FIG. 2A, 2B, 2C, 2D, 2E, 2F, 2G: In vitro validation of targeting Mfap4 for enhancing regeneration—shRNA mediated knockdown of Mfap4 accelerates proliferation rate in embryonic liver cell line FIG. 2A) Test of knockdown efficiency of top scoring shRNAs targeting Mfap4. Upper panel, retroviral backbone for generating stable cell lines. Lower panel, Western blot showing efficient knockdown of Mfap4 by our shRNAs (control: aTub=α-TUBULIN). FIG. 2B) Schematic outline for stable cell line based assays. FIG. 2C) Wound healing assay in TIB 73 (BNLCL.2) cell line. Stable cell lines were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area. Filling of this “wound” gap was monitored. In the left panels representative images for each group are shown. Three technical replicates were performed. On the right panel the quantification over different time points is shown (Data was analyzed by ImageJ software and 2-way ANOVA test of GraphPad Prism software). Significant difference between shMfap4.1356 (SEQ ID NO: 1), shMfap4.760 (SEQ ID NO: 2) and shNC is shown by ‘*’). FIG. 2D) EdU incorporation assay. DNA synthesis of TIB 73 cells (BNLCL.2) transfected with shMfap4.1356 (SEQ ID NO: 2) and shNC was assessed by EdU assays. Quantification shows significant difference between experiment and control. Three technical replicates were performed. FIG. 2E) Cell doubling. Doubling time assay results are shown. Cells were seeded at same seeding densities. Doubling time was calculated based on the exponential phase of the growth curve. Three technical replicates were performed. FIG. 2F) Cell cycle analysis by flow cytometry using the Guava Muse Cell Analyzer. Shown is the percentage of cells in the indicated cell cycle phase. Greater amount of cells in G2 phase is indicated in case of experiment (cells with stable Mfap4 knockdown by shMfap4.1356 and shMfap4.760) compared to control NC. FIG. 2G) Wound healing assay using adult liver mouse cell line AML12. Left panel, the same effects were observed as in FIG. 2C). Right panel. quantification of FIG. 2A) shows significantly faster wound closure already at the 14 h time-point.

FIG. 3A, 3B, 3C, 3D, 3E, 3F: Mfap4 knockdown accelerates liver repopulation FIG. 3A) FAH knockout mice based liver repopulation assay. Upper panel shows the outline of the transposon based vector for the expression of the enzyme FAH, the marker GFP and the shRNA of interest. Lower panel shows the outline and rational for the assay. If the knockdown of a certain shRNA is able to enhance regeneration and accelerate hepatocyte proliferation, we should be able to see a faster clonal expansion compared to a control shRNA starting from the stably integrated hepatocytes. FIG. 3B) GFP imager images. GFP imaging of explanted mouse livers shows enhanced clonal expansion (repopulation) of hepatocytes stably expressing shMfap4.1356 (SEQ ID NO: 1) compared to hepatocytes expressing shNC (day 18 after HDTV injection of 25 μg of the indicated plasmid). Representative photographs are shown for each group (n=8 in group with shMfap4.1356, n=6 in group with shMfap4.760, n=6 in group with shNC). Light, white points represent GFP positive macroscopically visible clonal expansions. FIG. 3C) Native GFP on tissue sections. Shown are representative GFP fluorescence photographs of liver sections (200×) of FAH−/− mice 18 days after in vivo delivery of transposon constructs either expressing shMfap4 or a control shRNA corresponding to B). FIG. 3D) Histological analysis (immunostaining against GFP) for GFP-positive cells of mouse livers with stable expression of shMfap4.1356 (SEQ ID NO: 1), shMfap4.760 (SEQ ID NO: 2) and shNC (shown are representative photographs, n=8 in group with shMfap4.1356, n=6 in group with shMfap4.760, n=6 in group with shNC). Day 18 after HDTV injection of 1.25 μg of the indicated plasmid (200× magnification). Increased clonal expansion can be seen for shMfap4. FIG. 3E) Quantification of GFP-positive cells (corresponding to FIG. 3D) shows significant increase in GFP positive hepatocytes in case of Mfap4 knockdown compared to control. Each dot represents one animal. FIG. 3F) Kaplan-Meier survival curve of FAH−/− mice injected with a 1:30 (0.83 μg plasmid and 0.17 mg SB13) dilution of either p/T-FAHIG-shMfap4.1356 (n=5) or p/T-FAHIG-shNC (n=5) and SB13 (p<0.05). NTBC off indicates the time of NTBC drug removal, inducing the selection process (1 day post injection).

FIG. 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H: “Western Diet” (WD) mouse fatty liver model FIG. 4A) WD+fructose Diet facts. The used diet is rich in fat and carbohydrates. 45% energy comes from fat, predominantly saturated fat, with 0.2% cholesterol. In addition, the animals get 60% fructose/water (wt/vol). FIG. 4B) Pathological evaluation. Histological slides of liver tissue form C56B16 mice exposed for the indicated time to the “Western Diet” or normal chow were evaluated and scored by a certified pathologist. Shown are the scoring results for steatosis and fibrosis. Each point represents an animal. FIG. 4C) Mice on “Western Diet” show a progressive weight gain independent of gender. FIG. 4D) WD model shows progressive fibrosis similar to human patients (see FIG. 4E). FIG. 4E) Progressive increase in fibrosis in human patients based and disease stage, similar to the mouse model (FIGS. 4D & 4B). FIG. 4F). Advanced liver fibrosis can already macroscopically be detected after 24 weeks of WD (representative image). FIG. 4G) After 24 weeks of WD mouse liver show high levels of steatosis (H&E stained liver tissue, representative image). FIG. 4H) Sirius Red staining for collagen fibers indicating advanced fibrosis after 24 weeks of WD exposure.

FIG. 5A, 5B, 5C, 5D, 5E, 5F: Mfap4 knockdown attenuates NASH related liver fibrosis FIG. 5A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months, so that every hepatocyte in the liver expresses the shRNA construct of interest. After full repopulation was reached mice were exposed to the “Western Diet” (high fat diet and 60% fructose) for 24 weeks. Livers were harvested, processed and analyzed. FIG. 5B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 5C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=5 per experimental group and n=7 per control group; representative sections are shown, 50× magnification). FIG. 5D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental group. Fibrosis score is significantly lower in the experimental group compared to the control group. FIG. 5E) The score of oval cell hyperplasia is shown. The score was given by a certified pathologist, who was blinded regarding the experimental group. The score is significantly lower (=0) in the experimental group compared to the control group. Oval cell hyperplasia is considered a compensatory mechanism, if regeneration through hepatocytes is not sufficient anymore. FIG. 5F) Representative GFP-scanner macro-photographs of the livers are shown. Strong GFP signal on the surface of the livers indicates full repopulation.

FIG. 6A, 6B, 6C, 6D: Mfap4 knockdown attenuates chronic liver damage related liver fibrosis FIG. 6A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that chronic liver damage was induced by repetitive doses of thioacetamide administered intraperitoneal 3 times per week for 8 weeks. Livers were harvested, processed and analyzed. FIG. 6B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 6C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=6 per experimental group and n=7 per control group; representative sections are shown, 50× magnification). FIG. 6D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups. Fibrosis score is significantly lower in the experimental group compared to the control group.

FIG. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J: Mfap4 knockdown accelerates liver regeneration after partial hepatectomy (PH) FIG. 7A) Experimental outline. FRGN were injected with our constructs, then, mice were kept for full repopulation for 3 months. FRGN mice are FAH−/−, Rag2−/−, II2rg−/− on a NOD background and are immune compromised. After full repopulation of mouse liver, ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested 48 h after surgery. FIG. 7B) Representative photographs of Ki67 immunofluorescence stained (top row) and DAB Ki67-stained (bottom row) liver sections 48 h post hepatectomy are shown (200× magnification, n=5 per experimental/control group). FIG. 7C) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to FIG. 7B)) show increased hepatocyte proliferation after partial hepatectomy in shMfap4-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM, n=5 per group). FIG. 7D) Western blot analyses for cyclin A (nuclear extracts from repopulated mouse livers at the indicated time point) indicate an earlier cell-cycle entry and faster cell-cycle progression of shMfap4-expressing mouse livers (n=2). FIG. 7E) Experimental outline. Immune-competent FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested 42 h and 48 h after surgery. FIG. 7F) Representative photographs of DAB Ki67-stained liver sections 42 h (n=5 per experimental group, n=6 per control group) and 48 h (n=5 per experimental group, n=10 per control group) post hepatectomy are shown (200× magnification). FIG. 7G) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to FIG. 7B)) show increased hepatocyte proliferation and accelerated liver regeneration after partial hepatectomy in shMfap4-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM). FIG. 7H) Western blot analyses for cyclin E (nuclear extracts from repopulated mouse livers at the indicated time point) indicate an earlier cell-cycle entry and faster cell-cycle progression of shMfap4-expressing mouse livers (n=2). FIG. 7I) GFP-imaging of fully repopulated FAH−/− livers (3 months post-HDTV injections) after ⅔ surgical partial removal of livers corresponding to different time-points of PHx. Strong GFP signal on the surface of the livers indicates full repopulation. FIG. 7J) Representative pictures of DAB GFP staining which show that full repopulation of FAH livers is around 90-95%. Dark brown zones represent repopulated hepatocytes, light brow zones are non-repopulated.

FIG. 8A, 8B, 8C, 8D, 8E, 8F, 8G, 8H, 8I, 8J, 8K: In vivo knockdown of Mfap4 impacts mTOR and p38 signalling FIG. 8A) Schematic outline of experiment. Whole-cell protein extracts from repopulated mouse livers were isolated and analyzed by protein array. FIG. 8B) Heat map shows results for phospho-antibody MAPK pathway protein array. Whole-cell protein extracts from repopulated mouse livers with stable expression of either shMfap4 or shNC were analyzed (shown is the relative spot intensity). FIG. 8C) According to STRING database, all indicated proteins are interacting and are linked to cell growth and proliferation. FIG. 8D) After performing a broad protein array focused Western blot experiments were done. Results of Western blot are shown here. Proteins from fully repopulated livers were isolated. P-P70S6k, p-p38, p-mTOR, p-ERK2 are greater expressed in case of Mfap4 knockdown compare to control and, thus, show stronger activation in case of Mfap4 knockdown compared to control. There are 3 biological replicates in experiment and 3 biological replicates in control. FIG. 8E) Schematic representation for mTOR mediated regulation. The specific mTOR phosphorylation is upstream of p70S6k activation and leads to enforced translation. FIG. 8F Wound healing under double knockdown conditions. Based on pathway analysis double knockout experiments were commenced. Our stable cell line was expanded, cells were treated with respective siRNAs and the silicon gasket was removed. Wound healing was monitored. Slower growth and migration were observed in case of double-knockdown of Mfap4 and p70S6k and Mfap4 and p38. FIG. 8G) Western blot on proteins from cells in FIG. 8F were isolated. Interestingly p38 knockdown also affects p70S6k. FIG. 8H) Schematic outline of preparation of stable cell line with Mfap4 knockdown for transcriptomic analysis. FIG. 8I) Principal component analysis for AML12-shMfap4.1356, AML12-shMfap4.760, AML12-shNC, (Rb88-RMA050 & Ren_RMA061) and AML12 (AML_RMA052) is shown. We observed cluster separation between experiment and control. FIG. 8J) Heatmap of the following samples is shown. Ptgs2, Areg, Dhrs9, Hmox1, Nqo1 are upregulated in experimental samples compared to control and these genes are known to be involved in liver regeneration according to the literature. FIG. 8K) String Database shows connections between proteins which are upregulated according to FIGS. 8D and 8J.

FIG. 9A, 9B, 9C, 9D, 9E, 9F, 9G, 9H, 9I, 9J, 9K, 9L, 9M, 9N, 9O: Mfap4 effect is conserved in human cells FIG. 9A) shRNAs were identified that efficiently targeting human Mfap4. Knockdown test by Western blot analysis using whole-cell lysates. HepG2 cells with stable expression of indicated shRNAs targeting human Mfap4 were generated by retroviral infection and selection. Tubulin serves as a loading control. FIG. 9B) EdU incorporation assay. DNA synthesis of HepG2 cells transfected with hushMfap4 and shNC was assessed by EdU assays. Quantification shows significant difference between experiment and control. FIG. 9C-9E) Transcriptomic analysis of liver samples from −150 patients shows increased Mfap4 expression in NAFLD patients with cirrhosis and fibrosis 4 score (Table: boxes indicate disease stages with significant change, but less than log 2 2 fold change; grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005). FIG. 9F) Human tissue samples from healthy and cirrhotic liver was stained for Mfap4 protein (Mfap4 specific antibody & DAB staining). On the left side healthy liver tissue was stained without primary antibody as a control. In the middle, the staining of healthy liver indicates hepatocytes are slightly positive for Mfap4. Interestingly we also see some nuclear staining. Right panel shows staining of cirrhotic human liver. Human hepatocytes show strong staining in cytoplasm as well as nuclear staining. On the left side of the cirrhotic liver fibrotic scar tissue can be seen and is highly positive for Mfap4. FIG. 9G) Knockdown test of human MFAP4 siRNA pool. Western blot analysis of protein extracts from immortalized human hepatocytes (Creative Bioarray CSC-19016L) either treated with si huMFAP4 or siNC., α-Tubulin serves as loading control (n=3). FIG. 9H) EdU incorporation assay shows greater number of EdU-positive cells in experiment compared to control. FIG. 91) EdU incorporation assay (3 technical replicates). Shown is the value of % EdU positive cells±SEM. Immortalized human hepatocytes were either treated with siRNA targeting human MFAP4 or siNC as control (*p<0.05). FIG. 9J) Scheme of retroviral backbone for generating stable cell lines. FIG. 9K) Representative GFP pictures of immortalized Human Hepatocytes (Creative Bioarray CSC-19016L) with stable integration of shRNAs against human Mfap4. FIG. 9L) qPCR analysis showing efficient knockdown of huMfap4 by two shRNAs—hu shMfap4.1812 (SEQ ID NO: 7100) and hu shMfap4.1602 (7097) compared to non-targeting control. FIG. 9M) Western blot showing efficient knockdown of human Mfap4 by two independent shRNAs in immortalized human hepatocytes-SV40. FIG. 9N) Mfap4 knockdown in human immortalized hepatocytes accelerates wound healing. Wound healing assay using immortalized human hepatocytes with stable expression of shhuMFAP4.1602 or shNC respectively. Cells were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area (0 h). Filling of this “wound” gap was monitored (48 h; n=3 for each condition). FIG. 9O) Quantification of L), wound healing area (n=3; *p<0.05, ns=non-significant).

FIG. 10A, 10B, 10C, 10D: In vitro validation of targeting Grhpr for enhancing regeneration FIG. 10A) Outline of retroviral backbone for generating stable cell lines. FIG. 10B) Test of knockdown efficiency of top scoring shRNAs targeting Grhpr. Western blot showing efficient knockdown of Grhpr by our shRNAs (Alpha-tubulin, αTub functions as loading control). FIG. 10C) Wound healing assay. Stable cell lines were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area. Filling of this “wound” gap was monitored. Representative images for each group are shown. FIG. 10D) Quantification over different time points of wound healing assay is shown (Data was analyzed by ImageJ software and 2-way ANOVA test of GraphPad Prism software. Significant difference between shGrhpr361 (SEQ ID NO: 3) and shNC is shown by ‘*’).

FIG. 11A, 11B, 11C, 11D, 11E, 11F, 11G: Grhpr knockdown accelerates liver repopulation FIG. 11A) Outline shows the transposon based vector for the expression of the enzyme FAH, the marker GFP and the shRNA of interest. FIG. 11B) FAH knockout mice based liver repopulation assay. Outline shows the rational for the assay. If the knockdown of a certain shRNA is able to enhance regeneration and accelerate hepatocyte proliferation, we should be able to see a faster clonal expansion compared to a control shRNA starting from the stably integrated hepatocytes. FIG. 11C) GFP imager images. GFP imaging of explanted mouse livers shows enhanced clonal expansion (repopulation) of hepatocytes stably expressing shGrhpr.361 (SEQ ID NO: 3) compared to hepatocytes expressing shNC (day 18 after HDTV injection of 25 μg of the indicated plasmid). Representative photographs are shown for each group (n=5). Light, white points represent GFP positive macroscopically visible clonal expansions. FIG. 11D) Native GFP on tissue sections. Shown are representative GFP fluorescence photographs of liver sections (200×) of FAH−/− mice 18 days after in vivo delivery of transposon constructs either expressing shGrhpr or a control shRNA corresponding to C). FIG. 11E) Histological analysis (immunostaining against GFP) for GFP-positive cells of mouse livers with stable expression of shGrhpr.361 (SEQ ID NO: 3) and shNC (shown are representative photographs, n=5 in group with shGrhpr.361, n=5 in group with shNC). Day 18 after HDTV injection of 1.25 μg of the indicated plasmid (200× magnification). Increased clonal expansion can be seen for shMfap4. FIG. 11F) Quantification of GFP-positive cells (corresponding to E)) shows significant increase in GFP positive hepatocytes in case of Mfap4 knockdown compared to control. Each dot represents one animal. FIG. 11G) Survival curve with dilution of constructs (1:30) as 0.83 μg plasmid and 0.17 mg SB13. All experimental mice with shGrhpr constructs (n=5) survived whereas control mice died (n=5).

FIG. 12A, 12B, 12C, 12D: Grhpr knockdown accelerates liver regeneration after partial hepatectomy FIG. 12A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested at different time points after surgery. FIG. 12B) Representative photographs of Ki67 DAB-stained liver sections (200× magnification) at 24 hours' (n=5 per group), 38 hours' (n=6 per group), 48 hours' (n=9 per group) time points after partial hepatectomy. Earlier and increased hepatocyte proliferation after partial hepatectomy in shGrhpr-expressing livers compared to shNC livers can be seen. FIG. 12C) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to B)) show earlier and increased hepatocyte proliferation after partial hepatectomy in shGrhpr-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM). FIG. 12D) Schematic representation of peak shifting of mitotic cycle in case of Grhpr knockdown compare to control shNC (corresponding to C)).

FIG. 13A, 13B, 13C, 13D: Grhpr knockdown attenuates chronic liver damage related liver fibrosis FIG. 13A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that chronic liver damage was induced by repetitive doses of thioacetamide administered intraperitoneal 3 times per week for 8 weeks. Livers were harvested, processed and analyzed. FIG. 13B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 13C) Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=5 per each group, 50× magnification). FIG. 13D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups.

FIG. 14A, 14B, 14C, 14D: Grhpr knockdown does not protect against NASH related liver fibrosis FIG. 14A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After full repopulation was reached mice were exposed to the “Western Diet” (high fat diet and 60% fructose) for 24 weeks. Livers were harvested, processed and analyzed. FIG. 14B) Representative macro-photographs of the livers are shown. FIG. 14C) Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=6 per experimental group and n=7 per control group; representative sections are shown, 50× magnification). FIG. 14D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental group.

FIG. 15A, 15B, 15C: Grhpr expression changes in human NAFLD A) Transcriptomic analysis of liver samples from ˜150 patients shows slight but significant decrease in Grhpr expression in NASH patients with advanced fibrosis and cirrhosis. Consistent with this we detected a significant reduction in patients with fibrosis 3 and 4 score (* p<0.05, ** p<0.01, ***p,0.005).

FIG. 16A, 16B, 16C, 16D, 16E, 16F, 16G, 16H: Itfg1 knockdown accelerates wound healing and liver repopulation FIG. 16A) Outline of retroviral backbone for generating stable cell lines. FIG. 16B) Test of knockdown efficiency of top scoring shRNAs targeting Itfg1. qPCR analysis and Western blot analysis show efficient knockdown of Itfg1 by our shRNAs. FIG. 16C) Itfg1 knockdown accelerates wound healing in vitro. Stable cell lines were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area. Filling of this “wound” gap was monitored. Representative images are shown in upper part. Quantification over different time points of wound healing assay is shown (lower part, Data was analyzed by ImageJ software and 2-way ANOVA test of GraphPrizm software. Significant difference between shltfg1.698 (SEQ ID NO: 6), shltfg1.680 (SEQ ID NO: 7) and shNC is shown by ‘*’). FIG. 16D) Outline shows the transposon-based vector for the expression of the enzyme FAH, the marker GFP and the shRNA of interest (upper panel). Lower panel shows FAH knockout mice based liver repopulation assay. Outline shows the rational for the assay. If the knockdown of a certain shRNA is able to enhance regeneration and accelerate hepatocyte proliferation, we should be able to see a faster clonal expansion compared to a control shRNA starting from the stably integrated hepatocytes. FIG. 16E) GFP imager images. GFP imaging of explanted mouse livers shows enhanced clonal expansion (repopulation) of hepatocytes stably expressing shltfg1 compared to hepatocytes expressing shNC (day 18 after HDTV injection of 1.25 μg of the indicated plasmid; representative photographs are shown; n=8 per experimental group with knockdown by shltfg1.698, n=6 per experimental group with knockdown by shltfg1.680, and n=6 per control group). Light, white points represent GFP positive macroscopically visible clonal expansions. FIG. 16F) Histological analysis (immunostaining against GFP) for GFP-positive cells of mouse livers with stable expression of shltfg1.698, shltfg1.680 and shNC (shown are representative photographs). Day 18 after HDTV injection of 1.25 μg of the indicated plasmid (200× magnification). Increased clonal expansion can be seen for shltfg1. FIG. 16G) Quantification of GFP-positive cells (corresponding to F)) shows significant increase in GFP positive hepatocytes in case of Itfg1 knockdown compared to control. Each dot represents one animal. FIG. 16H) Repopulation survival assay. The right panel shows the outline of the experiments. We further diluted the plasmid amount delivered to the liver. At a certain dilution the amount of hepatocytes with stable integration will be not enough to expand and compensate for the loss of FAH−/− hepatocytes. However, if the knockdown by our candidate accelerates repopulation it might be sufficient to compensate and allow survival. Left panel shows the survival curve after 1:30 dilution. All animals injected with our construct expressing the control shRNA died, whereas all mice injected with our construct expressing shltfg1 survived. There is statistical significance between experiment and control. Statistical significance was calculated using a log rank test (n=5 per group).

FIG. 17A, 17B, 17C, 17D, 17E: Itfg1 knockdown attenuates chronic liver damage related liver fibrosis FIG. 17A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that chronic liver damage was induced by repetitive doses of thioacetamide administered intraperitoneal 3 times per week for 8 weeks. Livers were harvested, processed and analyzed. FIG. 17B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 17C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=6 for shltfg1.698 and n=7 for control group, 50× magnification). FIG. 17D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups. FIG. 17E) Representative macro-photographs of the livers with GFP-imaging system is shown. Livers are all green, hence fully repopulated.

FIG. 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I: ITFG1 expression in human liver tissue; knockdown protects against NASH related fibrosis (see also FIG. 35A-35F). FIG. 18A) Macroscopic pictures of mice with repopulated liver exposed to Western Diet. shltfg1 indicates liver was repopulated so that every hepatocyte expresses the shRNA targeting Itfg1, whereas shNC indicates repopulation so that every hepatocyte expresses a non-targeting control shRNA. Already macroscopically, livers with Itfg1 knockdown show reduced fibrosis. FIG. 18B-18D) Transcriptomic analysis of liver samples from ˜150 patients show no significant expression change for Itfg1. FIG. 18E) ITFG1 is expressed in healthy liver tissue and in NASH Cirrhosis. FIG. 18F) Expression of ITFG1 in human tissues is shown. Data is taken from The Human Protein Atlas. FIG. 18G) Low expression of ITFG1 is associated with longer survival in case of liver cancer. Data is taken from The Human Protein Atlas. FIG. 18H) Scheme of retroviral backbone for generating stable cell lines. FIG. 181) shRNAs efficiently targeting human ITFG1 were identified. Knockdown test by Western blot analysis using whole-cell lysates. HepG2 cells stably expressing the shRNA of interest were generate by retroviral infection and selection. GAPDH serves as a loading control.

FIG. 19A, 19B, 19C, 19D: EMULSION +500 in vivo functional genetic screen FIG. 19A) Schematic outline of the screen. A pooled shRNA library screen targeting 467 genes, dysregulated in human NAFLD patients, is set up. The screen is conducted in mice of both gender using two diet based NAFLD models. FIG. 19B) Representation of fold change for each shRNA passing a p-value of 0.1 from male mice exposed to choline-deficient L-amino acid defined high fat diet for 8 weeks. The majority of shRNAs is deplete but a small number is clearly enriched. FIG. 19C) Principal component analysis based on normalized shRNA abundance level. We can see a clear separation based on diet exposure. FIG. 19D) Heatmap based enrichment/depletion for each animal for top-enriched and depleted shRNAs. Based on our analysis we identified 6 high confidence targets.

FIG. 20A, 20B: CDHFD mouse fatty liver model FIG. 20A) Choline deficient L-amino acid defined high fat diet (CDHFD) leads to fast and progressive fatty liver disease in mice. Already after 8 weeks of diet exposure mice show NASH with advanced fibrosis. FIG. 20B) Pathological evaluation. Histological slides of liver tissue form C56B16 mice exposed to the indicated time to the CDHFD or normal chow were evaluated and scored by a certified pathologist. Shown are the scoring results for steatosis and fibrosis. Each point represents an animal.

FIG. 21A, 21B, 21C, 21D, 21E: Abcc4 is a potential therapeutic target for NAFLD FIG. 21A) Shown is the relative read numbers for the shRNA expression cassette targeting Abcc4 for each animal (NC=normal chow, CD=CDHFD). FIG. 21B) Summary of screening result for the shRNA expression cassette targeting Abcc4. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 21C-21E) Transcriptomic analysis of liver samples from ˜150 patients show significant increase in Abcc4 gene expression at NASH late fibrosis and cirrhosis stage. Furthermore, an increase expression can be detected based on ballooning and fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).

FIG. 22A, 22B, 22C, 22D, 22E: Pak3 is a potential therapeutic target for NAFLD FIG. 22A) Shown is the relative read numbers for the shRNA expression cassette targeting Pak3 for each animal (NC=normal chow, CD=CDHFD). FIG. 22B) Summary of screening result for the shRNA expression cassette targeting Pak3. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 22C-22E) Transcriptomic analysis of liver samples from ˜150 patients show significant increase in Pak3 gene expression at NASH cirrhosis stage. Furthermore, an increase expression can be detected based on fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).

FIG. 23A, 23B, 23C, 23D, 23E: Trnp1 is a potential therapeutic target for NAFLD FIG. 23A) Shown is the relative read numbers for the shRNA expression cassette targeting Trnp1 for each animal (NC=normal chow, CD=CDHFD). FIG. 23B) Summary of screening result for the shRNA expression cassette targeting Trnp1. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 23C-23E) Transcriptomic analysis of liver samples from −150 patients show significant increase in Trnp1 gene expression at NASH cirrhosis stage. Interestingly, with increased steatosis and inflammation expression seems to be downregulated (Table: grey mark indicates significant upregulation of at least log 2 2 fold; boxed grey mark indicates significant downregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).

FIG. 24A, 24B, 24C, 24D, 24E: Apln is a potential therapeutic target for NAFLD FIG. 24A) Shown is the relative read numbers for the shRNA expression cassette targeting Apln for each animal (NC=normal chow, CD=CDHFD). FIG. 24B) Summary of screening result for the shRNA expression cassette targeting Apln. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 24C-24E) Transcriptomic analysis of liver samples from ˜150 patients show significant increase in Apln gene expression at NASH cirrhosis stage. Interestingly, with increased inflammation expression seems to be downregulated (Table: grey mark indicates significant upregulation of at least log 2 2 fold; boxed grey mark indicates significant downregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).

FIG. 25A, 25B, 25C, 25D, 25E: Kif20a is a potential therapeutic target for NAFLD FIG. 25A) Shown is the relative read numbers for the shRNA expression cassette targeting Kif20a for each animal (NC=normal chow, CD=CDHFD). FIG. 25B) Summary of screening result for the shRNA expression cassette targeting Kif20a. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 25C-25E) Transcriptomic analysis of liver samples from ˜150 patients show a progressive increase in Kif20a gene expression till the NASH advanced fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005)

FIG. 26A, 26B, 26C, 26D, 26E: Ltb is a potential therapeutic target for NAFLD FIG. 26A) Shown is the relative read numbers for the shRNA expression cassette targeting Ltb for each animal (NC=normal chow, CD=CDHFD). FIG. 26B) Summary of screening result for the shRNA expression cassette targeting Ltb. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 26C-26E) Transcriptomic analysis of liver samples from ˜150 patients show a progressive increase in Ltb gene expression till the NASH advanced fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).

FIG. 27: Layout for NASH disease interception in vivo functional genetic screen FIG. 27) A genome wide in vivo functional genetic screen for disease interception. Nearly 80.000 shRNAs split into 32 sub-pools are screened. ShRNA expresses ion is inducible and only activated after liver shows steatosis but before NASH progression.

FIG. 28A, 28B, 28C, 28D, 28E: Mfap4 knockdown for 1 year does not lead to liver cancer FIG. 28A) Schematic representation of the experiment. FAH−/− mice were injected with p/T-FAHIG-shRNA & SB13 expressing constructs via HDTV; then, mice were kept for 1 year to observe any tumor formation or abnormal liver histology. FIG. 28B) Bright field. Representative pictures are shown (both surfaces of the liver) (n=5 mice per experimental group, n=5 mice per control group). FIG. 28C) GFP-imaging. Representative pictures are shown (both surfaces of the liver). No GFP-positive tumor is observed. Livers are fully repopulated (strong GFP-positive signal). FIG. 28D) Hematoxylin & Eosin staining. Representative pictures are shown. No malignant disease is observed in both: experimental group and control group. Pathology evaluation is conducted by certified pathologist. The pathologist did not find malignant lesions in the liver. FIG. 28E) GFP (DAB) staining. Representative pictures are shown. Around 95% of hepatocytes are GFP-positive which means livers were fully repopulated.

FIG. 29A, 29B, 29C: GalNAC conjugates with siRNA against Mfap4 (BNL CL.2 cell line; 72 h post-transfection) FIG. 29A) Structure of GalNAC-siRNA conjugate used in studies. Exact backbone modifications can be found in the sequence appendix (SEQ ID NOs: 7092 and 7093). The target sequence for the siRNA was based on the shRNA guide sequence. FIG. 29B) Western blot analysis with concentration 6 μM shows efficient knockdown of Mfap4 by two different conjugates GalNAC-si Mfap4.1356 (SEQ ID NOs: 7092) and GalNAC-si Mfap4. 760 (SEQ ID NOs: 7093) compared to control. FIG. 29C) Western blot analysis with concentration 11 μM shows efficient knockdown of Mfap4 by two different conjugates GalNAC-si Mfap4.1356 and GalNAC-si Mfap4. 760 compared to control.

FIG. 30A, 30B, 30C: Grhpr knockdown for 1 year does not lead to liver cancer FIG. 30A) Schematic representation of the experiment. FAH−/− mice were injected with p/T-FAHIG-shRNA & SB13 expressing constructs via HDTV; then, mice were kept for 1 year to observe any tumor formation or abnormal liver histology. Livers were harvested at 1 year after injections. FIG. 30B) Bright field. Representative pictures are shown (both surfaces of the liver) (n=3 mice per experimental group, n=5 mice per control group). FIG. 30C) GFP-imaging. Representative pictures are shown (both surfaces of the liver). No GFP-positive tumor is observed. Livers are fully repopulated (strong GFP-positive signal).

FIG. 31A, 31B, 31C: Grhpr expression in human hepatocytes (HpG2 cell line) FIG. 31A) Scheme of retroviral backbone for generating stable cell lines. FIG. 31B) shRNAs efficiently targeting human Grhpr were identified. Knockdown test by qPCR using whole-cell lysates. HepG2 cells were cotransfected with pMSCV vector. FIG. 31C) Knockdown test by Western blot using whole-cell lysates. HepG2 cells with stable expression of indicated shRNAs were generated by retroviral infection and selection. Tubulin serves as a loading control.

FIG. 32A, 32B: GalNAC conjugates with siRNA against Grhpr (BNL CL.2 cell line; 72 h post-transfection) FIG. 32A) Structure of GalNAC-siRNA conjugate used in studies. Exact backbone modifications can be found in the sequence appendix (SEQ ID NO: 7094). The target sequence for the siRNA was based on the shRNA guide sequence. FIG. 32B) Western blot analysis with concentration 6 μM shows efficient knockdown of Grhpr by conjugate GalNAC-si Grhpr.361 (SEQ ID NO: 7094) compared to scrambled control. Western blot analysis with concentration 11 μM shows efficient knockdown of Grhpr by conjugate GalNAC-si Grhpr.361 compared to scrambled control.

FIG. 33A, 33B, 33C: Itfg1 knockdown accelerates liver regeneration after partial hepatectomy (PH) FIG. 33A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested at 42 h and 48 h after surgery. FIG. 33B) Representative photographs of DAB Ki67-stained liver sections 42 h (n=4 per experimental group, n=6 per control group) and 48 h (n=5 per experimental group, n=10 per control group) post hepatectomy are shown (200× magnification). FIG. 33C) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to B) show increased hepatocyte proliferation after partial hepatectomy in shltfg1-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM).

FIG. 34A, 34B, 34C, 34D, 34E, 34F, 34G: Itfg1 knockdown for 1 year does not lead to liver cancer FIG. 34A) Schematic representation of the experiment. FAH−/− mice were injected with p/T-FAHIG-shRNA & SB13 expressing constructs via HDTV; then, mice were kept for 1 year to observe any tumor formation or abnormal liver histology. Livers were harvested at 1 year after injections. FIG. 34B) Bright field. Representative pictures are shown (both surfaces of the liver). No tumor is observed (n=5 mice per experimental group, n=5 mice per control group). FIG. 34C) GFP-imaging. Representative pictures are shown (both surfaces of the liver). No GFP-positive tumor is observed. Livers are fully repopulated (GFP-positive). FIGS. 34D and 34F) Hematoxylin & Eosin staining. Representative pictures are shown. No malignant disease is observed in both: experimental group and control group. Pathology evaluation is conducted by certified pathologist. FIGS. 34E and 34G) GFP (DAB) staining. Representative pictures are shown. Around 95% of hepatocytes are GFP-positive which means livers were fully repopulated.

FIG. 35A, 35B, 35C, 35D, 35E, 35F: Itfg1 knockdown attenuates chronic liver damage related liver fibrosis in a NASH model FIG. 35A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After full repopulation was reached mice were exposed to the “Western Diet” (high fat diet and 60% fructose) for 24 weeks. Livers were harvested, processed and analyzed. FIG. 35B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 35C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (representative images are shown; n=6 for shltfg1.698 and n=7 for control group, 50× magnification). FIG. 35D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups. FIG. 35E) Objective, Al-based analysis of steatosis done by HistoIndex. Representative pictures are shown. FIG. 35F) Quantification analysis shows significantly lower steatosis score in experimental group (n=7 mice per group) compared to control group (n=7 mice per group).

FIG. 36A, 36B, 36C: Knockdown of Itfg1 impacts MKK6, JNK, and RPS6 signaling FIG. 36A) Schematic outline of isolating proteins from full repopulated livers for further broad protein array analysis. FIG. 36B) After performing a broad protein array focused Western blot experiments were done. Results of Western blot are shown here. Proteins from fully repopulated livers were isolated. Especially P-MKK6/P-MKK3 are greater activated in case of Itfg1 knockdown compared to control. There are 3 biological replicates in experiment and 3 biological replicates in control. FIG. 36C) According to STRING database, all indicated proteins are interacting and are linked to cell growth and proliferation.

FIG. 37A, 37B: GalNAC conjugates with siRNA against Itfg1 (BNL CL.2 cell line; 72 h post-transfection) FIG. 37A) Structure of GalNAC-siRNA conjugate used in studies. Exact backbone modifications can be found in the sequence appendix (SEQ ID NOs: 7095 and 7096). The target sequence for the siRNA was based on the shRNA guide sequence. FIG. 37B) Western blot analysis with concentration 6 μM shows efficient knockdown of Itfg1 by two different conjugates GalNAC-si Itfg1.698 (SEQ ID NO: 7095) and GalNAC-si Itfg1.680 (SEQ ID NO: 7096) compared to control. Western blot analysis with concentration 11 μM shows efficient knockdown of Itfg1 by two different conjugates GalNAC-si Itfg1.698 and GalNAC-si Itfg1.680 compared to control.

FIG. 38A, 38B, 38C: Mfap4 and Itfg1 knockdown enhances proliferation and regeneration beyond liver FIG. 38A) Outline of the wound healing assay. Stable cell lines were generated expressing the respective shRNAs. FIG. 38B) Knockdown of Mfap4 as well as the knockdown of Itfg1 accelerates wound healing of mouse lung cells (cell line CCL206). FIG. 38C) Knockdown of Mfap4 as well as the knockdown of Itfg1 accelerates wound healing of mouse myoblast cells (Myoblast cell line CRL1772).

FIG. 39: Pak3 knockdown accelerates wound healing in vitro Stable knockdown of Pak3 in AML12 adult hepatocyte cell line accelerates wound healing (representative images are shown).

EXAMPLES Example 1 Functional Genetic In Vivo RNAi Screen

An in vivo functional genetic screen was conducted to identify new modulators of liver regeneration as therapeutic targets to increase endogenous regeneration and counteract liver disease. This approach was originally pioneered by taking advantage of FAH−/− mice. From there the screening set up was further modified and improved, so it can be applied to any mouse independent of genetic background and modification (FIG. 1A). A focused shRNA library was delivered, comprising of 250 shRNAs targeting 89 genes, by hydrodynamic tail vine injection to the liver. Through the combination with a plasmid encoding for the sleeping beauty 13 transposase, stable integration was obtained in around 5 to 10% of hepatocytes. Therefore, a chimeric mouse liver in which the shRNA expressing hepatocytes are surrounded by “wt” hepatocytes is generated. To simulate chronic liver damage the inventors treated 3 times per week for 8 weeks mice with thioacetamid (TAA), a chemical inducing liver damage (FIG. 1A). Cycles of liver damage and compensatory regeneration induce a competitive environment. If the knockdown by a certain shRNA gives an advantage to hepatocytes, the cells will expand and an enrichment for the shRNA can be detected. In contrast, if the expression of a shRNA is detrimental, this shRNA should deplete. No change compared to the starting pool indicates no effect in this environment. The abundance of the shRNAs can be determined by Illumina based deep sequencing. For sequencing, the genomic DNA was isolated from the liver, the shRNA expressing cassette was amplified with primers including Illumina adapter sequences and the product was directly sequenced.

Also, the majority of the shRNAs were depleted in this screen, a subset was consistently enriched in all biological replicates (5 independent mice) (FIG. 1B-1C). Importantly and giving confidence in the screen, two independent non-targeting control shRNAs (also named shNC or shCTRL; one targeting renilla and one targeting luciferase, both are not expressed in mice) were not enriched or depleted. Furthermore, three independent shRNAs targeting c-Met the receptor for hepatocyte growth factor and essential for liver regeneration were depleted (FIG. 1D). To avoid off-target effects of the shRNAs the inventors focused on targets against which at least two independent shRNAs were enriched (FIG. 1D). Four independent shRNAs were found enriched targeting Mfap4, two independent shRNAs for each targeting Grhpr and Itfg1.

Example 2 Validation of Identified Therapeutic Targets

Mfap4—Microfibril Associated Protein 4

For validation, the knockdown efficiency of the two top-enriched shRNAs targeting Mfap4 in vitro were first tested (FIG. 2A). Both shRNAs show efficient knockdown. For each shRNA stable expressing cell lines (FIG. 2B) were generated as well as for a non-targeting control shRNA and the effect of the shRNAs in a wound healing assay was tested. The knockdown of Mfap4 (two independent shRNAs tested) increased wound closure in TIB 73 (BNLCL.2) cells and AML 12 cells, indicating increased proliferation (FIGS. 2C and 2G). Furthermore, using the stable cell lines the inventors checked for enhanced cell replication by EdU incorporation and determining the cell doubling time (FIG. 2D-2E). Accelerated proliferation was clearly detected. Cell cycle analysis by flow cytometry using the Guava Muse Cell Analyzer showed greater cell amounts (shown is amount of cell in %) in the G2 phase of cell cycle for cells with stable Mfap4 knockdown by shMfap4.1356 (SEQ ID NO: 1) and shMfap4.760 (SEQ ID NO: 2) compared to the non-targeting control (shNC), likewise indicating increased proliferation (FIG. 2F).

The inventors then took advantage of the FAH (fumarylacetoacetate) knock out mouse. The defect in the tyrosine metabolism leads to the accumulation of toxic side products in hepatocytes resulting in liver failure. Delivering a construct to around 5-10% of hepatocytes for the expression of the missing enzyme FAH and the shRNAs by hydrodynamic tail vine injection, the repopulation efficiency could be tested. If the knockdown by the shRNA targeting Mfap4 enhances regeneration and proliferation, a faster clonal expansion should be seen (FIG. 3A). As expected, knockdown of Mfap4 enhances repopulation detected by GFP-imaging of the whole liver (FIG. 3B), native-GFP fluorescence of cryosections (FIG. 3C) of the liver and antibody based staining for GFP in paraffin sections (FIG. 3D-3E). A further dilution of the amount of injected plasmids could reduce the amount of hepatocytes with stable expression of FAH, GFP and the shRNA of interest, so that the FAH expressing hepatocytes cannot fast enough expand and compensate for FAH−/− hepatocyte loss. However a shRNA dependent acceleration of regeneration might be able to allow survival. At a 1:30 dilution still all shMfap4.1356 (SEQ ID NO: 1) injected mice survive whereas all control shNC injected mice die (FIG. 3F). This further supports the Mfap4 knockdown mediated acceleration, as only in case of Mfap4 the hepatocytes expand fast enough to compensate for hepatocyte loss.

The “Western Diet” induces progressive NAFLD, leading to NASH and fibrosis (FIG. 4). The inventors repopulated FAH−/− mouse liver so that all hepatocytes express either a shRNA targeting Mfap4 or a non-targeting control shRNA. After full repopulation, the mice were exposed to the “Western Diet” (FIG. 5A). Knockdown of Mfap4 clearly attenuates disease progression, reflected in reduced fibrosis (FIG. 5B-5F). Chronic TAA exposure to shMfapp4 and shCTRL repopulated FAH mice (FIG. 6A) was also applied. Consistent with the screening results Mfap4 knockdown protects against TAA induced liver damage and fibrosis (FIG. 6B-6D). As an acute damage model, a ⅔ partial hepatectomy (PH) on repopulated mice (FIGS. 7A and 7E) was performed. Enhanced Ki67 staining (FIGS. 7B-7C and 7F-7G) as well as earlier activation of cyclin A (FIG. 7D) and cyclin E (FIG. 7H), respectively, after PH indicate faster regeneration. GFP-imaging (FIG. 7I) and DAB GFP staining (FIG. 7J) of FAH−/− livers after ⅔ surgical partial removal of livers indicated that mice were fully repopulated.

The inventors also checked for differences in pathway activation by protein arrays and Western blot after full repopulation with either shMfap4 or non-targeting control shRNA. Livers were collected and proteins for protein array and Western blot as well as RNA for transcriptomics were isolated (FIG. 8A-8H). Consistently with an enhanced regenerative capacity Mfap4 knockdown induces activation of mTOR, p70S6K, ERK and p38 (FIGS. 8B and 8D). The identified pathways are all linked (FIGS. 8C, 8E and 8K) based on STRING analysis (string-db.org) and impact cell growth and proliferation. P70S6K is a major substrate of mTOR (FIG. 8E) and contributes to liver regeneration. Furthermore, impairments in p70S6K and ERK signaling is linked to the age dependent decline of liver's regenerative capacity. Using the in vitro wound healing assay, double knockout experiments combining the stable shMfap4 or shCTRL expressing cell lines with siRNAs targeting either p70s6k or p38 (FIG. 8F-8G) were conducted. A slowdown in wound healing under such conditions was detected. This puts the knockdown of Mfap4 in line with enhancing regeneration and rejuvenating the liver. Principal component analysis for AML12-shMfap4.1356, AML12-shMfap4.760, and AML12-shNC shows cluster separation between experiment (shMfap4) and control (shNC). A heatmap comparison of Mfap4 and control indicates that genes known to be involved in liver regeneration according to the literature, such as Ptgs2, Areg, Dhrs9, Hmox1 and Nqo1, are upregulated after Mfap4 knockdown compared to control (FIG. 8H-8J). Furthermore, string analysis shows that the transcriptomic pathways coming from the cell line as well as the proteomic identified pathways from the repopulated liver are connected (FIG. 8K).

The inventors then identified 2 independent shRNAs targeting human Mfap4: huMfap4.1812 (SEQ ID NO: 7100) and huMfap4.1602 (SEQ ID NO: 7097). Efficient knockdown in the human liver cancer cell line HepG2 (FIG. 9A) was observed. Furthermore, both shRNAs show a strong on-target knockdown of huMfap4 compared to non-targeting control as determined by qPCR analysis (FIG. 9K) and Western blot (FIG. 9L) in immortalized human hepatocytes-SV40 (FIG. 91-9J). Edu incorporation assay indicates a conserved mechanism between mouse and human, as higher EdU incorporation in human HepG2 cells with Mfap4 knockdown was seen (FIG. 9B), transient knockdown of Mfap4 by siRNA in immortalised human hepatocytes shows higher EdU incorporation (FIG. 9G-9H), and stable knockdown of Mfap4 in immortalised human hepatocytes enhances wound healing (FIG. 9M-9N).

Importantly expression of Mfap4 in the liver increases in NAFLD patients with cirrhosis (FIG. 9C-9D), based on a local patient cohort. This is consistent with previous studies indicating increased Mfap4 in liver and lung fibrosis. Interestingly, Mfap4 was suggested as potential biomarker for non-invasive assessment of hepatic fibrosis in hepatitis C patients. Staining for Mfap4 of human liver tissue from healthy and cirrhotic liver done by the inventors also showed increased detection in the diseased liver. Interestingly beside strong staining in fibrotic scar areas Mfap4 was also detected in the cytoplasm and nucleus of hepatocytes (FIG. 9E). Mfap4 is thought to be an extracellular matrix protein but not much is known about its role in hepatocytes. It represents therefore a new target for liver disease therapy, with new biology.

The inventors also investigated the development of liver cancer in Mfap4 treated mice. shMfap4 constructs were delivered by HDTV to FAH−/− mice. After keeping mice for 1 year, livers were harvested to determine any tumor formation in the liver (FIG. 28A). No GFP-positive tumor is observed and livers are fully repopulated as indicated by a strong GFP-positive signal (FIGS. 28B-28C and 28E). Around 95% of hepatocytes are GFP-positive. Also, Hematoxylin & Eosin staining did not reveal any malignant disease in both the shMfap4 and shNC treated group. Certified pathologists who conducted the evaluation did not find malignant lesions in the liver (FIG. 28D). The experiments show that Mfap4 knockdown for 1 year does not lead to liver cancer in mice.

Modified siRNA-GalNAC conjugates targeting Mfap4 were generated (FIG. 29A; Table 11; SEQ ID NOs: 7092 and 7093). Human immortalised hepatocytes were treated for 72 h with siRNA and were then exposed for 4 h to EdU, then fixed and analysed. Western blot analysis with shows efficient knockdown of Mfap4 by two different conjugates GalNAC-si Mfap4.1356 and GalNAC-si Mfap4.760 compared to scrambled control.

Grhpr—Qlyoxylate and Hydroxypyruvate Reductase

The second identified target is an enzyme with hydroxyl-pyruvate reductase, glyoxylate reductase and D-glycerate dehyrdrogenase enzymatic activities. Two shRNAs targeting Grhpr were strongly enriched in the screen (FIG. 1A-1D). Validation followed the same way as was described for Mfap4. First, stable cell lines were generated and the knockdown efficiency of the shRNAs was determined (FIG. 10A-10B). Both shRNAs show a strong on-target knockdown. The wound healing assay supported a faster healing and faster proliferation under Grhpr knockdown condition (FIG. 10C-10D). Again, taking advantage of the FAH−/− mice, repopulation between Grhpr targeting and control shRNA was compared. Grhpr knockdown accelerates liver repopulation under these conditions and all shGrhpr injected mice still survive at a 1:30 dilution whereas all control shNC injected mice die (FIG. 11A-11G). Next, the liver was completely repopulated so that every hepatocyte expresses shGrhpr or a non-targeting control shRNA (FIG. 12A). In the acute liver damaging model of ⅔ partial hepatectomy, Grhpr knockdown accelerates regeneration indicated by the earlier peak of Ki67 positive cells (FIG. 12B-12D). Furthermore, applying chronic TAA treatment to shGrhpr expressing repopulated FAH−/− mouse liver showed reduced liver injury and reduced fibrosis compared to control (FIG. 13A-13D). However, Grhpr knockdown does not seem to protect against NAFLD related disease progression and fibrosis development in the Western Diet mouse model (FIG. 14A-14D).

Interestingly, the NAFLD patient cohort showed a significant reduction in Grhpr expression in the liver at NASH advanced fibrosis and cirrhosis stages, but not very strongly (FIG. 15A-15C).

Similar to the experimental set up for targeting Mfap4, the development of liver cancer was investigated under Grhpr knockdown conditions (FIG. 30A). FAH−/− mice were injected with a combination of p?T-FAHIG-shGrhpr and SB13 plasmids for liver repopulation. Initially 5 to 10% of hepatocytes will have stable integration. After NTBC drug withdrawal after injection the liver will be repopulated, so that nearly every hepatocyte will express the shRNA targeting Grhpr. 1 year after injection livers were harvested and evaluated for liver tumor development. No GFP-positive tumor were observed in FAH−/− mice, and livers are fully repopulated (FIG. 30B-30C), indicating that long term Grhpr knockdown in the liver does not induce liver cancer and is safe

Furthermore, HepG2 cells with stable expression of shRNAs were generated by retroviral transfection and selection (FIG. 31A). Grhpr knockdown was determined by qPCR and Western blot using RNA or whole-cell lysates (Tubulin was used as a loading control). Several independent shRNAs targeting human Grhpr were identified (FIG. 31 B) that lead to efficient Grhpr knockdown in the human liver cancer cell line HepG2 (FIG. 31C).

Modified siRNA-GalNAC conjugates targeting Grhpr were generated (FIG. 32A, Table 11; SEQ ID NO: 7094), following the same way as was described for Mfap4. BNL CL.2 cell line; 72 h post-transfection. Western blot analysis with 6 μM and 11 μM, respectively, shows efficient knockdown of Grhpr by conjugate GalNAC-si Grhpr.361 compared to scrambled control.

Itfg1—Integrin Alpha FG-GAP Repeat Containing 1

The on-target knockdown efficiency of the top enriched shRNA and an additional independent shRNA were first tested. Both shRNAs show a good on-target knockdown by qPCR and Western blot (FIG. 16A-16B). Itfg1 knockdown strongly accelerates wound healing in vitro, taking advantage of the stable cell lines (FIG. 16C). The inventors then took advantage of the FAH−/− mice and did a repopulation assay (FIG. 16D). Consistent with the screening results, both Itfg1 knockdowns accelerate repopulation (FIG. 16E-16G). Interestingly, if the plasmid input was further diluted, at some point, the amount of hepatocytes with stable integration should be not sufficient to compensate for hepatocyte loss after NTBC withdrawal (FIG. 16H right panel). At a 1:30 dilution still all shltfg1 injected mice survive whereas all shCTRL injected mice die (FIG. 16H left panel). This further supports the Itfg1 knockdown mediated acceleration, as only in case of shltfg1 the hepatocytes expand fast enough to compensate for hepatocyte loss. Consistent with this, after full liver repopulation, a protective effect of Itfg1 knockdown against chronic TAA induced liver damage and fibrosis (FIG. 17A-17E) was seen.

In the mouse Western Diet NAFLD model (FIG. 35A), knockdown of Itfg1 attenuates fibrosis development (FIG. 35B-35F), which could already be seen macroscopically (FIG. 18A). The rough surface on the liver of mice expressing a non-targeting control shRNA indicates advanced fibrosis. In contrast the surface of shltfg1 expressing livers indicates strong reduction in fibrosis. In addition objective analysis by HistoIndex with a proprietary AI pathology system, further showed significant reduction in steatosis by Itfg1 knockdown (FIG. 35E-35F). The expression data from our NAFLD patient cohort indicates no major expression changes in the liver during disease progression (FIG. 18B), suggesting a postransciptional regulation. Itfg1 is expressed in healthy liver tissue and in NASH, Cirrhosis and hepatocellular carcinoma (FIG. 18C-18E). Data from The Human Protein Atlas show that low expression of Itfg1 is associated with increased survival in liver cancer patients (FIG. 18G). Interestingly, so far not much is known about Itfg1 and therefore it represents an interesting novel target for liver disease. Generating stable human HepG2 cell lines and determining the knockdown efficiency of different Itfg1 shRNAs showed a strong on-target knockdown (FIG. 18G-18H) for human Itfg1.

Again, taking advantage of the FAH−/− mice, the liver was completely repopulated for 3 months so that every hepatocyte expresses shltfg1 or a non-targeting control shRNA (shNC). Afterwards, ⅔ of the liver was removed and liver regeneration monitored (FIG. 33A). In the acute liver damaging model of ⅔ partial hepatectomy, Itfg1 knockdown accelerates regeneration after partial hepatectomy indicated by an earlier peak and higher amount of Ki67 positive cells (FIG. 33B-33C). No malignant disease and no GFP-positive tumor is observed 1 year after Itfg1 knockdown in mice (FIG. 34A-34E). Livers are fully repopulated in both the shltfg1 group and control group as indicated by around 95% GFP-positive hepatocytes.

To investigate the differences in pathway activation after full repopulation with either shltfg1 or non-targeting control shRNA, proteins from full repopulated livers were isolated for further broad protein array analysis (FIG. 36A). After performing the broad protein array, focused Western blot experiments were carried out. It was observed that knockdown of ITFG1 impacts MKK6, JNK, and RPS6 signaling. In particular, P-MKK6/P-MKK3 are greater activated in case of Itfg1 knockdown compared to control (FIG. 36B). According to STRING database, all indicated proteins are interacting and are linked to cell growth and proliferation (FIG. 36C).

Modified siRNA-GalNAC conjugates were generated to target Itfg1 (FIG. 37A, Table 11; SEQ ID NOs: 7095 and 7096). Western blot analysis with 6 μM and 11 μM, respectively, shows efficient knockdown of Itfg1 by two different conjugates GalNAC-si Itfg1.698 and GalNAC-si Itfg1.680 compared to control (FIG. 37B).

Mfap4 or Itfg1 Knockdown in Mouse Lung Cell Line and Mouse Myoblast Cell Line

Stable cell lines using mouse lung cell line CCL206 and mouse myoblast cell line CRL1722 were generated expressing the respective shRNA—shMfap4, shltfg1 or control shNC (FIG. 38A). Knockdown of Mfap4 as well as the knockdown of Itfg1 accelerates wound healing of mouse lung cells as well as of mouse myoblast cells. These results suggest that Mfap4 and Itfg1 knockdown enhances proliferation and regeneration not only of liver but also of lung and myoblasts.

Example 3—Emulsion +500 Screen and Target Validation

Independent of the TAA chronic damage-induced screen, a functional genetic screen using a focused shRNA library containing 1780 shRNAs targeting 467 genes was also conducted. These 467 genes are the mouse homologs corresponding to differentially up-regulated genes found in our NAFLD patient cohort (FIG. 19A). The screen was conducted in two diet-based mouse models of NAFLD, the “Western Diet” (WD) model (FIG. 4A-4H) and the Choline deficient L-amino acid defined high fat diet (CDHFD) model (FIGS. 20A and 20B). The CDHFD is a very aggressive and fast model leading to NASH with advanced fibrosis in 8 weeks. In contrast, the WD takes about half a year to reach this stage. Similar to the TAA screen, the shRNA library was delivered to the liver by hydro-dynamic tail vine injection (HDTV). The combination of transposon-based constructs with a sleeping beauty 13 transposase-expressing plasmid leads to the stable integration in about 5 to 10% of hepatocytes. After injection, the respective diet exposure was started until NASH with late fibrosis is reached. After harvesting the liver the genomic DNA is isolated, part of the shRNA expression cassette is amplified and the abundance sequenced by NGS. Enriched shRNAs are identified, which indicates an advantage by these shRNAs in the context of fatty liver disease.

In the CDHFD model the majority of shRNAs were depleted (FIG. 19B). Interestingly, based on normalized shRNA abundance level in a principal component analysis, clear segregation between our CDHFD vs normal chow exposed mice (FIG. 19C) was seen. In-depth differential abundance shRNA analysis was then performed. Six shRNAs/targets for validation (FIG. 19D) were identified based on reliable enrichment in the majority of animals. Importantly, as the library was designed based on relevant human patient data and this is a functional genetic screen, scoring in the screen can already be seen as the first validation step.

ABCC4—ATP Binding Cassette Subfamily C Member 4 (MRP4)

This target is a transporter that mediates the efflux of bile components into the blood. Interestingly in all control diet exposed mice, only a low number of relative reads was detected, whereas a strong enrichment in 3 out of 5 CDHFD mice was seen (FIG. 21A-21B). Furthermore, the expression of this gene increases during disease progression in the human patient cohort (FIG. 21C-21E). The expression also significantly increases in relation to the inflammation, fibrosis and ballooning score.

PAK3—P21 (RAC1) Activated Kinase 3

This target is a serine-threonine kinase. In 4 out of 5 mice enrichment for the shRNA targeting PAK3 (FIG. 22A-B; SEQ ID NO: 9) was seen. The expression of PAK3 is significantly upregulated in cirrhosis and fibrosis score 4 NAFLD patients (FIG. 22C-22E). As liver and pancreas both derive from the foregut endoderm during development, it is interesting that Pak 3 was described as a regulator of beta-cell differentiation. In that context, Pak3 promotes cell cycle exit and therefore would have an anti-proliferative function. Therefore, this is a highly interesting target for liver disease and regeneration, too, as confirmed by stable knockdown of Pak3 in the AML12 adult hepatocyte cell line, which accelerates wound healing (FIG. 39).

TRNP1—TMF1 Regulated Nuclear Protein 1

This target is a DNA-binding factor with a crucial role in brain development and accelerates cell-cycle progression. So far, no liver related function is described. In control fed mice, a consistent selection against shTrnp1 expressing cells (low relative reads) was detected. However, 4 out of 5 mice on CDHFD show enrichment for shTrnp1 (FIG. 23A-23B; SEQ ID NO: 13). Our human NAFLD patient cohort shows a complicated gene expression pattern of Trnp1 in the liver. In the earlier disease stages, we see a downregulation, but upregulation at the cirrhosis stage (FIG. 23C-23E). Consistent with this during steatosis we see a progressive downregulation.

APLN—Apelin

This target encodes a peptide that functions as an endogenous ligand for the G-protein coupled apelin receptor. In 3 out of 5 CDHFD mice, a strong enrichment for the shRNA targeting Apln compared to the control (FIG. 24A-24B; SEQ ID NO: 11) was seen. Based on the NAFLD patient cohort a significant upregulation at the cirrhosis stage is seen and consistent with this at a fibrotic score of 4 (FIG. 24C-24E). There is already a publication suggesting that Apln promotes hepatic fibrosis through ERK signaling. Also, Apln was described to be different in NAFLD patients and fatty liver rats and suggested as a diagnostic marker. Importantly, the encoded protein is processed into active peptide fragments, making it difficult to be targeted by classic drug approaches and ideal for RNAi based therapeutics.

KIF20A—Kinesin Family Member 20A

This target encodes a mitotic kinesin required for cytokinesis. In 3 out of 5 CDHFD mice, a strong enrichment for the shRNA targeting Kif20a compared to the control (FIG. 25A-25B; SEQ ID NO: 12) is seen. Based on the NAFLD patient cohort data, expression of Kif20a is increasing during disease progression (FIG. 25C-25E). Furthermore, high expression of Kif20a is associated with poor survival in case of HCC. Interestingly, Kif20a-knockdown affects cytokinesis leading to higher polyploidy. Higher polyploidy is also seen in many chronic liver diseases.

LTB—Lymphotoxin Beta

This target encodes a type II membrane protein of the TNF family. In 4 out of 5 CDHFD mice a strong enrichment for the shRNA targeting LTB compared to the control is seen (FIG. 26A-26B; SEQ ID NO: 10). Based on the NAFLD patient cohort data expression of LTB is consistently increasing during disease progression, except at the cirrhosis stage (FIG. 26C-26E). A significant expression increase based on steatosis, inflammation, ballooning and fibrosis score is also seen. Interestingly, LTB was found to regulate liver regeneration, is linked to obesity and animals lacking the lymphotoxin pathway were shown to resist diet-induced obesity.

In addition, a functional genetic screen targeting the top down-regulated genes based on the NAFLD patient cohort is under the way. Also, a functional genomic screen is on the finishing line. In this set up, the inventors screen genome wide (32 shRNA pools of around 2500 to 3000 shRNAs in mice) specifically for modulators of NAFLD disease progression, by only inducing shRNA expression after steatosis is reached before progression to NASH (FIG. 27).

List of siRNA Guide Strands:

The siRNA guide strand is identical to the anti-sense strand of the sense-loop-anti-sense RNA structure. This sequence equals the reverse complement sequence of the targeting sequence in the mRNA. The list shows the 21 bp siRNA guide strand. SEQ ID NOs: 15 and 19 were used in the Examples. Light grey marked, bold and underlined are siRNA guide strands with top-DSIR prediction score and predicted by the genomewide sensor prediction algorithm (SEQ ID NOs: 349-351, 457, 465, 468, 470, 473, 1483, 1485, 1486, 1488-1490, 2209, 2225, 2234, 5061, 5062, 5390-5993, 5967, 5970, 5971, 6977, 6978 and 6993).

Sequence Identity

Pairwise and multiple sequence alignment for the purposes of determining percent identity between two or more amino acid or nucleic acid sequences can be achieved in various ways known to a person of skill in the art, for instance, using publicly available computer software such as ClustalOmega (Söding, J. 2005, Bioinformatics 21, 951-960), T-coffee (Notredame et al. 2000, J. Mol. Biol. (2000) 302, 205-217), Kalign (Lassmann and Sonnhammer 2005, BMC Bioinformatics, 6(298)) and MAFFT (Katoh and Standley 2013, Molecular Biology and Evolution, 30(4) 772-780) software. When using such software, the default parameters, e.g. for gap penalty and extension penalty, are preferably used.

Tables

TABLE 1 Mouse (musmusculus): SEQ ID siRNA guide strand/AS NO siRNA_id Sequence 1 Mfap4.1356 UUCAGAGUUGAGCAGUAGCCG 2 Mfap4.760 UUGAGGGAGUAAUAGAAGCCU 3 Grhpr.361 UUCUGCAGUGGCAUCUGUCAG 4 Grhpr.1024 UACAGCUUGAGUUCGCUGGGC 5 Grhpr.1025 UUACAGCUUGAGUUCGCUGGG 6 Iftg1.698 UUAGAGGCAGUCAAUGUCGUG 7 Itfg1.680 UUGAAGUCCAUAAUCAGUGGU 8 Abcc4 UCGAAUUUGUUCACGUCGUUG 9 Pak3 UGUGUAAACAGUUCCUGAUGC 10 Ltb UCUGGUGUAGAAUCCGCAGCU 11 Apin UCAAGGAGAGCCAGAGCAGCA 12 Kif20a UAAUUGACUUGUUUCAUCUAG 13 Trnpl UGACUUAGUGGGGGUCGGAGU

Human (Homo Sapiens):

TABLE 2 Results for MFAP4. Score threshold: 70. Design: siRNA 21 nt. SEQ ID siRNA_ siRNA guide strand/ NO id AS Sequence 14 1 AUAGAUGUCGUCACAGUCCAG 15 2 UAUUAUGUUAUUAUUACACUG 16 3 UUGUAGUCAUUCCAGCCGCGG 17 4 UUAUUGAGACCUUCAGUCCCU 18 5 UAGAACCAUGUGCCUCUCGGA 19 6 UAUUGAGACCUUCAGUCCCUA 20 7 UCACACUGCACUGCUCAGCUU 21 8 UUCUGCACCUGACUCCAGGUG 22 9 UCGAAGGUAGAGAACUUCUGG 23 10 UCAGCUUAGCACACUAGGGUG 24 11 UAGGACACCAUCAGCAGGGGA 25 12 UUUAUUGAGACCUUCAGUCCC 26 13 UUGGAGGCAACUCAUUCUCAU 27 14 UAUGUUAUUAUUACACUGUCU 28 15 UCGCAGCUCAUACUUCUGCUU 29 16 UAGAUGUCGUCACAGUCCAGG 30 17 UUAUGUUAUUAUUACACUGUC 31 18 UUGGUGCUCGGGAAUCAGCAG 32 19 UAAACCUCUCAACACCCAGAG 33 20 UAGUAGAAGCCCUUCCACUGG 34 21 UGUAAGGAGUUGGUGCUCGGG 35 22 AUCAGCAGAAGCAUGCAUCAG 36 23 UGUUAUUAUUACACUGUCUUU 37 24 UUCAUUCAGGUUCUGAAGGUU 38 25 UUCUGCACAAAGAGGUCCUGG 39 26 UCUCCAGAGCAUCUCCUCGGA 40 27 UUUGAGAGCAGCCCAGAGGAG 41 28 UUGAGGGAGUAGUAGAAGCCC 42 29 UAUGAUAGUGAGGUGGGCUGG 43 30 UAGAAUACACCAUGGGCCCUG 44 31 UGUAACUUCAGGUGUAGGGGA 45 32 UUGUAAGGAGUUGGUGCUCGG 46 33 UUGUUCUCAAAGUCCUCCAAG 47 34 UGAGGGAGUAGUAGAAGCCCU 48 35 UUCUGCUUCAGUGUCAGGAGG 49 36 AUACUUCUGCUUCAGUGUCAG 50 37 UUAUUAUUACACUGUCUUUUU 51 38 AUGUCGUCACAGUCCAGGGGU 52 39 AUGUUAUUAUUACACUGUCUU 53 40 UCUGCGCUGACCGCGUUCGGG 54 41 UUCCACGGUACUCACCACAGG 55 42 AAGGUUUAUUGAGACCUUCAG 56 43 UAAGGAGUUGGUGCUCGGGAA 57 44 UGUCAGGAGGUGCAUGUUCUG 58 45 AUUAUGUUAUUAUUACACUGU 59 46 UCCUCCUCUGCGCUGACCGCG 60 47 UGAAGGUUUAUUGAGACCUUC 61 48 AAGAUGGACCACAAAGGCCUG 62 49 UUCAGUGUCAGGAGGUGCAUG 63 50 UAGAUGAGGUACACGCCGUCU 64 51 UCAUACUUCUGCUUCAGUGUC 65 52 UUAGGAAUGGAUGCCCUGGGU 66 53 AUGGAGACCAUGGGUGUCCAG 67 54 UACUUCUGCUUCAGUGUCAGG 68 55 UUCAUGCUGUCAGUUCUGCUC 69 56 AAGCAGGACAAGAUGGACCAC 70 57 AUUCUCAUGGAGCCCAGCCAG 71 58 UGCGGAACCAGAAGGCUCCUG 72 59 AGAGAUUGUCCUCUGCUCCCU 73 60 AAGUCCUCCAAGUCCACUCGC 74 61 UCCAAGUCCACUCGCAGCUCA 75 62 UUCAGUCCCUACCCACUCCCA 76 63 UGUUCACACUGCACUGCUCAG 77 64 UAGGAAUGGAUGCCCUGGGUG 78 65 AACCUCUCAACACCCAGAGGG 79 66 UGGGCAUAGAUGUCGUCACAG 80 67 UGGGACAUGGUUUGAGAGCAG 81 68 UCCACGGUACUCACCACAGGG 82 69 AAGACCUCAUAUGCAUGCCUA 83 70 AGCUUGUAGUCAUUCCAGCCG 84 71 UCAUGCUGUCAGUUCUGCUCA 85 72 UGUUGGGACAGGUUGGAGGCA 86 73 AAGCUGAGUAUGAUAGUGAGG 87 74 UGUUGUUCUCAAAGUCCUCCA 88 75 UCUGCUUCAGUGUCAGGAGGU 89 76 UGUUUCAGGGUGGUGUGCGGU 90 77 UGUGCCUCUCGGAAGAGGCCU 91 78 UGUAGUCAUUCCAGCCGCGGA 92 79 UAUUAUUAUUAUGUUAUUAUU 93 80 UAUUAUUAUGUUAUUAUUACA 94 81 UCAGUCCCUACCCACUCCCAG 95 82 UUAUUAUGUUAUUAUUACACU 96 83 UAGGACAGGGAGUCACCUGCC 97 84 UACUCUCCAUCAGCACGGCCG 98 85 UGAGUAUGAUAGUGAGGUGGG 99 86 AUGGAGAAGUCAGCGUACUUG 100 87 AUGAUAGUGAGGUGGGCUGGG 101 88 UGGUAGGACAGGGAGUCACCU 102 89 UGUCAGUUCUGCUCAGAGUGG 103 90 UCUCAAAGUCCUCCAAGUCCA 104 91 UCUGAAGGUUUAUUGAGACCU 105 92 AUUAUUAUUAUGUUAUUAUUA 106 93 UACACGCCGUCUGACUGGUAG 107 94 UUGUCCUCUGCUCCCUCAUGU 108 95 UGUGAAAUACAAGGUUCCCUU 109 96 UCCUGGUCCCGGUCGAAGGUA 110 97 AGCAGAAGCAUGCAUCAGGGG 111 98 GAUGUCGUCACAGUCCAGGGG 112 99 AUGAGGUACACGCCGUCUGAC 113 100 UUUCAGGGUGGUGUGCGGUAG 114 101 UCCACAGUGAGGAAGCAGGAC 115 102 UUUGAGGGAGUAGUAGAAGCC 116 103 UCGGAUCCCGGAGACCUGGGG 117 104 UUCCCUUCUGCACCUGACUCC 118 105 UGCAGAGAUUGUCCUCUGCUC 119 106 AUCUCAGUGCGUUUGAGGGAG 120 107 UCGGUGGUCAUGUCACAGAAG 121 108 CUGAGUAUGAUAGUGAGGUGG 122 109 UGAAAUACAAGGUUCCCUUCU 123 110 AGGUUCUGAAGGUUUAUUGAG 124 111 UGGUCAUGUCACAGAAGACGG 125 112 UUCCAGCCGCGGAAGAAACUU 126 113 UGAUAGUGAGGUGGGCUGGGG 127 114 CAUGCUGUCAGUUCUGCUCAG 128 115 UCAGCUGUUGGGACAGGUUGG 129 116 ACAUGGUUUGAGAGCAGCCCA 130 117 UAAGUUGGUGGGAGGGAUGCU 131 118 CAAGGUUCCCUUCUGCACCUG 132 119 CUCAGCUUAGCACACUAGGGU 133 120 AGAGCAUCUCCUCGGAUCCCG 134 121 UCCUCGGAUCCCGGAGACCUG 135 122 CAUAGAUGUCGUCACAGUCCA 136 123 AACCAGAAGGCUCCUGAGGAG 137 124 CUUGUAGUCAUUCCAGCCGCG 138 125 AGGCCUGUGAAAUACAAGGUU 139 126 UCCCUUCUGCACCUGACUCCA 140 127 UGUGGUAGGACAGGGAGUCAC 141 128 UGAGGAAGCAGGACAAGAUGG 142 129 AGCAUCUCCUCGGAUCCCGGA 143 130 AGAACCAUGUGCCUCUCGGAA 144 131 UGGUGCUCGGGAAUCAGCAGA 145 132 GUUCUGCACAAAGAGGUCCUG 146 133 GUCGAAGGUAGAGAACUUCUG 147 134 AGGUACACGCCGUCUGACUGG 148 135 AACUCAUUCUCAUGGAGCCCA 149 136 AUGCUGAAGAUGGGACAUGGU 150 137 UGCUGAAGAUGGGACAUGGUU 151 138 UGCGCAGUUCUGCACAAAGAG 152 139 UAGCCCUGGGCAUAGAUGUCG 153 140 AAGACGGGCACAGGCACACUG 154 141 AUGCUGUCAGUUCUGCUCAGA 155 142 AAAGUCCUCCAAGUCCACUCG 156 143 AGUAGAAGCCCUUCCACUGGG 157 144 UGUCCUCUGCUCCCUCAUGUG 158 145 UCCACUCGCAGCUCAUACUUC 159 146 UCGGGAAUCAGCAGAAGCAUG 160 147 AUCAGCACGGCCGAAGCCCAG 161 148 GUUAUUAUUACACUGUCUUUU 162 149 UGCGCUGACCGCGUUCGGGGA 163 150 ACAAAGAGGUCCUGGUCCCGG 164 151 AAGUUGGUGGGAGGGAUGCUG 165 152 UGCACCUGACUCCAGGUGUAA 166 153 UGCACUGCUCAGCUUAGCACA 167 154 AGUCCUCCAAGUCCACUCGCA 168 155 UUCACACUGCACUGCUCAGCU 169 156 UCAUAUGCAUGCCUACCUUGG 170 157 UGAGGAGAGAGCUGCGCAGUU 171 158 CAGCUCAUACUUCUGCUUCAG 172 159 UGUCACAGAAGACGGGCACAG 173 160 AAACCUCUCAACACCCAGAGG 174 161 UCUGCACCUGACUCCAGGUGU 175 162 ACAGUGAGGAAGCAGGACAAG 176 163 UGGUUUGAGAGCAGCCCAGAG 177 164 UCUGACUGGUAGCCCUGGGCA 178 165 UCAUCUCAGUGCGUUUGAGGG 179 166 UGAAGAUGGGACAUGGUUUGA 180 167 CAGCUUAGCACACUAGGGUGG 181 168 UCUGCACAAAGAGGUCCUGGU 182 169 UGCCUCUCGGAAGAGGCCUGG 183 170 UGCUCAGCUUAGCACACUAGG 184 171 ACUUCUGCUUCAGUGUCAGGA 185 172 AUUAUUAUGUUAUUAUUACAC 186 173 UCAUGUCACAGAAGACGGGCA 187 174 AGAUGAGGUACACGCCGUCUG 188 175 GUUGUUCUCAAAGUCCUCCAA 189 176 UCAACACCCAGAGGGUAUGGG 190 177 AUUCAGGUUCUGAAGGUUUAU 191 178 CUGAAGGUUUAUUGAGACCUU 192 179 UGGAGAGAAGCAGCAGCAGCG 193 180 UCAAAGUCCUCCAAGUCCACU 194 181 UUGAGAGCAGCCCAGAGGAGU 195 182 UUGGUGGGAGGGAUGCUGAAG 196 183 UAGUCAUUCCAGCCGCGGAAG 197 184 AUGGACCACAAAGGCCUGCAG 198 185 AAUACAAGGUUCCCUUCUGCA 199 186 CAUGGUUUGAGAGCAGCCCAG 200 187 UCAUUCAGGUUCUGAAGGUUU 201 188 UUAUUAUUAUGUUAUUAUUAC 202 189 AGGCAACUCAUUCUCAUGGAG 203 190 UGGAGAAGUCAGCGUACUUGG 204 191 AGUACUCUCCAUCAGCACGGC 205 192 AUACAAGGUUCCCUUCUGCAC 206 193 ACUGCUCAGCUUAGCACACUA 207 194 CUAGAAUACACCAUGGGCCCU 208 195 UCAGCAGAAGCAUGCAUCAGG 209 196 UCCUGAGGAGAGAGCUGCGCA 210 197 AUCCUCCUCUGCGCUGACCGC 211 198 CUCCAGAGCAUCUCCUCGGAU 212 199 AGUGCCUUCAUGCUGUCAGUU 213 200 CACACUGCACUGCUCAGCUUA 214 201 CUCUCCAGAGCAUCUCCUCGG 215 202 AAAUACAAGGUUCCCUUCUGC 216 203 UGGAGGCAACUCAUUCUCAUG 217 204 UUCAGGUUCUGAAGGUUUAUU 218 205 CUGCUCAGCUUAGCACACUAG 219 206 CACAAAGAGGUCCUGGUCCCG 220 207 UACACCAUGGGCCCUGUUCAC 221 208 UCAGGAGGUGCAUGUUCUGCA 222 209 UGUCAGCUGUUGGGACAGGUU 223 210 AGCAGAGGGAGCACUCAUGGA 224 211 GAGACCUUCAGUCCCUACCCA 225 212 ACUCGCAGCUCAUACUUCUGC 226 213 ACUCAUUCUCAUGGAGCCCAG 227 214 UGGUCCCGGUCGAAGGUAGAG 228 215 CUGUGAAAUACAAGGUUCCCU 229 216 UACCCACUCCCAGCCCUGCAG 230 217 UUCUCAAAGUCCUCCAAGUCC 231 218 AGCCGCGGAAGAAACUUACUG 232 219 AGAUGUCGUCACAGUCCAGGG 233 220 AGCACUCAUGGAGACCAUGGG 234 221 ACUCUCCAUCAGCACGGCCGA 235 222 CUUCAGUGUCAGGAGGUGCAU 236 223 GAAGCUGAGUAUGAUAGUGAG 237 224 CAGGAGGUGCAUGUUCUGCAG 238 225 CAUCUCAGUGCGUUUGAGGGA 239 226 AGUGUAACUUCAGGUGUAGGG 240 227 ACAAGGUUCCCUUCUGCACCU 241 228 AGGUUUAUUGAGACCUUCAGU 242 229 CUCCUCUGCGCUGACCGCGUU 243 230 AUUGUCCUCUGCUCCCUCAUG 244 231 CACUCGCAGCUCAUACUUCUG 245 232 UCCACUUCCCGCCCUCGGUGG 246 233 CAGGCUAGAACCAUGUGCCUC 247 234 AAAGAGGUCCUGGUCCCGGUC 248 235 CUCGGGAAUCAGCAGAAGCAU 249 236 ACGGGCACAGGCACACUGGGG 250 237 CUCUCCAUCAGCACGGCCGAA 251 238 UCAGGUUCUGAAGGUUUAUUG 252 239 AGUUCUGCACAAAGAGGUCCU 253 240 UAGAAGCCCUUCCACUGGGCC 254 241 AGUAUGAUAGUGAGGUGGGCU 255 242 ACAGGUUGGAGGCAACUCAUU 256 243 ACCAUGUGCCUCUCGGAAGAG 257 244 AGCUGUUGGGACAGGUUGGAG 258 245 ACCUCUCCAGAGCAUCUCCUC 259 246 UCCUCUGCGCUGACCGCGUUC 260 247 GGUCAUGUCACAGAAGACGGG 261 248 AUGGUUUGAGAGCAGCCCAGA 262 249 UCAGGGUGGUGUGCGGUAGCU 263 250 UACAAGGUUCCCUUCUGCACC 264 251 AAGAGGUCCUGGUCCCGGUCG 265 252 UCCAGCCGCGGAAGAAACUUA 266 253 CUCAUAUGCAUGCCUACCUUG 267 254 AAGGUUCCCUUCUGCACCUGA 268 255 UGCUGUCAGUUCUGCUCAGAG 269 256 AACACCCAGAGGGUAUGGGGA 270 257 GUAGAUGAGGUACACGCCGUC 271 258 UAGGCCGUGUUGUUCUCAAAG 272 259 AGAUGGGACAUGGUUUGAGAG 273 260 UUCCACUGGGCCCAGUUGAUG 274 261 CAGCUGUUGGGACAGGUUGGA 275 262 AGCCCUGCAGAGAUUGUCCUC 276 263 CAUACUUCUGCUUCAGUGUCA 277 264 UUCUGAAGGUUUAUUGAGACC 278 265 AGGACAGGGAGUCACCUGCCC 279 266 ACAAGAUGGACCACAAAGGCC 280 267 AGAGGUCCUGGUCCCGGUCGA 281 268 AGCUGAGUAUGAUAGUGAGGU 282 269 UCCCUACCCACUCCCAGCCCU 283 270 AGGCUCCUGAGGAGAGAGCUG 284 271 AGACCAUGGGUGUCCAGGGGA 285 272 GUCCACUCGCAGCUCAUACUU 286 273 AUUGAGACCUUCAGUCCCUAC 287 274 AUGAGGCCUGUGAAAUACAAG 288 275 UCACAGAAGACGGGCACAGGC 289 276 AGAUUGUCCUCUGCUCCCUCA 290 277 AGACCUUCAGUCCCUACCCAC 291 278 CUGUUCACACUGCACUGCUCA 292 279 GUAGGACACCAUCAGCAGGGG 293 280 GUGUAACUUCAGGUGUAGGGG 294 281 GAGACCAUGGGUGUCCAGGGG 295 282 CAACUCAUUCUCAUGGAGCCC 296 283 CUGACUGGUAGCCCUGGGCAU 297 284 GGAAGAAACUUACUGAGCCAU 298 285 CGGAAGAAACUUACUGAGCCA 299 286 CUGUCAGUUCUGCUCAGAGUG 300 287 CCCAGCUUGUAGUCAUUCCAG 301 288 AAGCCCUUCCACUGGGCCCAG 302 289 GUACACGCCGUCUGACUGGUA 303 290 GCUAAACCUCUCAACACCCAG 304 291 AGAAGCAGCAGCAGCGGCAGG 305 292 UCAGUGUCAGGAGGUGCAUGU 306 293 AGAGAAGCAGCAGCAGCGGCA 307 294 UGACUGGUAGCCCUGGGCAUA 308 295 CUGCUUCAGUGUCAGGAGGUG 309 296 CACGGUACUCACCACAGGGGA 310 297 CUCGGUGGUCAUGUCACAGAA 311 298 AAGGAGUUGGUGCUCGGGAAU 312 299 GAGUAUGAUAGUGAGGUGGGC 313 300 GGAAUCAGCAGAAGCAUGCAU 314 301 CUAGAACCAUGUGCCUCUCGG 315 302 CUCGCAGCUCAUACUUCUGCU 316 303 UGCUUCAGUGUCAGGAGGUGC 317 304 UCCUCCAAGUCCACUCGCAGC 318 305 AGGAGUGCCUUCAUGCUGUCA 319 306 GUCCUCCAAGUCCACUCGCAG 320 307 ACACUGCACUGCUCAGCUUAG 321 308 GAGUAGUAGAAGCCCUUCCAC 322 309 GUAGUCAUUCCAGCCGCGGAA 323 310 CUGCAGAGAUUGUCCUCUGCU 324 311 AUGGGCCCUGUUCACACUGCA 325 312 AUAGGCCGUGUUGUUCUCAAA 326 313 AUGGGACAUGGUUUGAGAGCA 327 314 GAGGGAGUAGUAGAAGCCCUU 328 315 GACAGGUUGGAGGCAACUCAU 329 316 CCUCAUAUGCAUGCCUACCUU 330 317 AAUCAGCAGAAGCAUGCAUCA 331 318 CCAGGCUAGAACCAUGUGCCU 332 319 UGCACAAAGAGGUCCUGGUCC 333 320 CGUGGAGAGAAGCAGCAGCAG 334 321 CUGCACCUGACUCCAGGUGUA 335 322 CUCCAAGUCCACUCGCAGCUC 336 323 AGUAGUAGAAGCCCUUCCACU 337 324 UCAGUGCGUUUGAGGGAGUAG 338 325 GGUAGGACAGGGAGUCACCUG 339 326 CAGGGUGGUGUGCGGUAGCUG 340 327 AGACGGGCACAGGCACACUGG 341 328 CACAGUGAGGAAGCAGGACAA 342 329 CUUCAUGCUGUCAGUUCUGCU 343 330 GGAGAGAAGCAGCAGCAGCGG 344 331 UGAGGUACACGCCGUCUGACU 345 332 CUCCUGAGGAGAGAGCUGCGC 346 333 AUCUCCUCGGAUCCCGGAGAC 347 334 UGAGACCUUCAGUCCCUACCC

TABLE 3 Results for GRHPR. Score threshold: 70. Design: siRNA 21 nt. SEQ ID siRNA guide strand/AS NO siRNA_id Sequence 348 1 UUCUGGGCUCGUCACAUCCAG 349 2 UGAUGUUGAUGAACACAGCUG 350 3 AUGUUGAUGAACACAGCUGUU 351 4 UAGACACAAACUCUGCCUGGA 352 5 UUCUGGAAGAAGUCCUUGUUG 353 6 UUGUUGCAGAGUCCCUCGGUU 354 7 UCACAUCCAGUCCAGCAGCUG 355 8 AUCUUCUGGAAGAAGUCCUUG 356 9 UGGAAGAAGUCCUUGUUGCAG 357 10 UUUGUAGGCAGUGGUUCUGGG 358 11 UGUUGAUGAACACAGCUGUUU 359 12 AAUCUCUGGACACCGAAUGGU 360 13 UUCUGCUGCUUCCUCAGGCCU 361 14 UACAGAAAUCUCUGGACACCG 362 15 UCGUCACAUCCAGUCCAGCAG 363 16 UUGAUGAACACAGCUGUUUCC 364 17 UUGCAGAGUCCCUCGGUUGCA 365 18 UGAUGAACACAGCUGUUUCCU 366 19 UCAUCUUCUGGAAGAAGUCCU 367 20 UCUGCUGCUUCCUCAGGCCUG 368 21 UCGGUUGCAGGUGUUAAGGAG 369 22 UUGUAGGCAGUGGUUCUGGGC 370 23 UUCCUUCAUCUUCUGGAAGAA 371 24 UCUGCCUGGAAUUCUGCUGCU 372 25 UUCUUCAGGGUCAGGAGAGGG 373 26 UGGAAUUCUGCUGCUUCCUCA 374 27 AGCUGUUUCCUUCAUCUUCUG 375 28 UGUUUCCUUCAUCUUCUGGAA 376 29 UUCAUCUUCUGGAAGAAGUCC 377 30 AUGAACACAGCUGUUUCCUUC 378 31 ACAGAAAUCUCUGGACACCGA 379 32 UUGCAGGUGUUAAGGAGCAGG 380 33 UCUCUGGACACCGAAUGGUUU 381 34 UCUUCUGGAAGAAGUCCUUGU 382 35 UGGUACAGGUCGUCCUGGUUU 383 36 CUGAUGUUGAUGAACACAGCU 384 37 GUAGACACAAACUCUGCCUGG 385 38 AUGGUUUCAGACGCCGAGCAA 386 39 AACUCUGCCUGGAAUUCUGCU 387 40 AUCUCUGGACACCGAAUGGUU 388 41 UAGGCAGUGGUUCUGGGCUCG 389 42 UGUACAGAAAUCUCUGGACAC 390 43 UGUUGCAGAGUCCCUCGGUUG 391 44 UGCUGAUGUUGAUGAACACAG 392 45 UUCAGGGUCAGGAGAGGGUGG 393 46 CUUGUUGCAGAGUCCCUCGGU 394 47 ACUCUGCCUGGAAUUCUGCUG 395 48 CAGAAAUCUCUGGACACCGAA 396 49 UGAAAUCAGAUUGGGCAGCCA 397 50 CAUCUUCUGGAAGAAGUCCUU 398 51 UGCAGAGUCCCUCGGUUGCAG 399 52 AGUCCUUGUUGCAGAGUCCCU 400 53 AAGUCCUUGUUGCAGAGUCCC 401 54 UCCUGGUUUACGACGUCGCCC 402 55 GAUGUUGAUGAACACAGCUGU 403 56 AAAUCUCUGGACACCGAAUGG 404 57 UCAGGGUCAGGAGAGGGUGGU 405 58 UUUCCUUCAUCUUCUGGAAGA 406 59 AAGAAGUCCUUGUUGCAGAGU 407 60 CUGCCUGGAAUUCUGCUGCUU 408 61 UCGUCCUGGUUUACGACGUCG 409 62 UGAACACAGCUGUUUCCUUCA 410 63 GAACACAGCUGUUUCCUUCAU 411 64 CAGUCCAGCAGCUGCAAUCUU 412 65 ACAUCCAGUCCAGCAGCUGCA 413 66 UCCUUGUUGCAGAGUCCCUCG 414 67 AGACACAAACUCUGCCUGGAA 415 68 AGUCCAGCAGCUGCAAUCUUA 416 69 AAUUCUGCUGCUUCCUCAGGC 417 70 UGCUGCUUCCUCAGGCCUGGG 418 71 ACAGCUGUUUCCUUCAUCUUC 419 72 CUUCUGGAAGAAGUCCUUGUU 420 73 AAACUCUGCCUGGAAUUCUGC 421 74 CACAGCUGUUUCCUUCAUCUU 422 75 UCUGGGCUCGUCACAUCCAGU 423 76 AUCCAGUCCAGCAGCUGCAAU 424 77 AGCAGCUGCAAUCUUACCACU 425 78 UGCUUCCUCAGGCCUGGGCUG 426 79 UGUAGGCAGUGGUUCUGGGCU 427 80 UACAGGUCGUCCUGGUUUACG 428 81 CAUCCAGUCCAGCAGCUGCAA 429 82 AGAGUCCCUCGGUUGCAGGUG 430 83 UCUUCAGGGUCAGGAGAGGGU 431 84 UCCUUCAUCUUCUGGAAGAAG 432 85 CCUUGUUGCAGAGUCCCUCGG 433 86 AACACAGCUGUUUCCUUCAUC 434 87 AGUCCCUCGGUUGCAGGUGUU 435 88 GUUGCAGGUGUUAAGGAGCAG 436 89 UCUGGAAGAAGUCCUUGUUGC 437 90 GAUGAACACAGCUGUUUCCUU 438 91 CUGGUUUACGACGUCGCCCCU 439 92 CUGGUACAGGUCGUCCUGGUU 440 93 CUGUUUCCUUCAUCUUCUGGA 441 94 AGGCCUGGUACAGGUCGUCCU 442 95 ACGACGAUGAAAUCAGAUUGG 443 96 AUUCUGCUGCUUCCUCAGGCC 444 97 CAGCUGCAAUCUUACCACUGG 445 98 GCAGCUGCAAUCUUACCACUG 446 99 AGUUCUUCAGGGUCAGGAGAG 447 100 ACCGAAUGGUUUCAGACGCCG 448 101 ACAGUUCUUCAGGGUCAGGAG 449 102 GUCCUUGUUGCAGAGUCCCUC 450 103 GCUGUUUCCUUCAUCUUCUGG 451 104 AAUGGUUUCAGACGCCGAGCA 452 105 UCUGGACACCGAAUGGUUUCA 453 106 ACAAACUCUGCCUGGAAUUCU 454 107 UGGUUUGUAGGCAGUGGUUCU 455 108 CAAACUCUGCCUGGAAUUCUG 456 109 CUGCUGAUGUUGAUGAACACA

TABLE 4 Results for ITFG1. Score threshold: 70. Design: siRNA 21 nt. SEQ ID siRNA_ siRNA guide strand/ NO id AS Sequence 457 1 UAUAAAUACACAAACACUGGA 458 2 UAGAUCACCAUUGAAAUCCAU 459 3 UAGAAUAAGAAGCAAGACCAA 460 4 UUGCAUUGAAGUCUGAAUGUA 461 5 UUGACCACUUACUCUGUGCUA 462 6 UUAAUGUUUACAGUAACUCAA 463 7 UAUACAUGAUAUAAGGUCCAG 464 8 UUAUCUUACGAGGACAGUCAU 465 9 UUAUAAAUACACAAACACUGG 466 10 UUUAGGUCUGUCAGCUCCCAG 467 11 UAUCAAUGCACUGUGAUUCUU 468 12 UAUUGCUGAAAUCUUGUAGGA 469 13 AUAUUGACCACUUACUCUGUG 470 14 UACUUGUAGUGGUCAAUGCUG 471 15 UUACUCUGUGCUAGGCACCAA 472 16 AUUUAUUUGAAUACUUUCCAA 473 17 UAUGGAAUGACAAUUAGCUGG 474 18 UAGGACUGGAACCCACUGCUU 475 19 UAAUAUGAGCAAGUAAAUCUU 476 20 UAAGUCUAAUAAGAUCAUCUA 477 21 UUUACUUAGCACUACAAUGUC 478 22 UUAUAGACUUCUCCAAGUGUU 479 23 UGACCUGCUGUGAUGAAGCUG 480 24 AUACUUUCCAAUAAUUACCAU 481 25 UUGCGCUCCGACCUAAACCAA 482 26 UAGACUUUAAACAUUCGACGC 483 27 UUAUUAGCAUUGAUAAACUUU 484 28 UAGAACACAGACCACUAAGAA 485 29 UUCUUUAGUAUGACCAGAGCG 486 30 UAGCACUACAAUGUCCAAGAU 487 31 UUGAGUAUGGUCAUAUUGUUA 488 32 UAUAGCAGUAAGCAGAACAAU 489 33 UGACUGUCCAACCACCAUCAU 490 34 AAUCUUUAUGUCAAUCACCAA 491 35 AUUAUUAGCAUUGAUAAACUU 492 36 UAUUGUAGUCUCCAAUAUGAA 493 37 UUAGUAUGACCAGAGCGUCUG 494 38 AUAAAUACACAAACACUGGAG 495 39 UUGAAUUAGGAGUUUAAGGCA 496 40 UUGUAGGACUGGAACCCACUG 497 41 UAGGAGUUUAAGGCAAGUCUG 498 42 UAUCAGGAAUUAGAUCACCAU 499 43 UCGUCAGGAAUAAAUCUGCUG 500 44 UUGAUUUAGGUCUGUCAGCUC 501 45 UAUUUAUUUGAAUACUUUCCA 502 46 UAUUUCUAUAAUUAGAUGUAU 503 47 UUGUAGUGGUCAAUGCUGGAU 504 48 UGGAAUGACAAUUAGCUGGGA 505 49 UUGUAUAUCCUUUACUUAGCA 506 50 AUUAUAAAUACACAAACACUG 507 51 UAUAGUACUGACAGAGAAGUU 508 52 UAAACAUUCGACGCGCCUCUU 509 53 AUUAAUAAUGACAACUACCAC 510 54 UUGUUAUCAAUGCACUGUGAU 511 55 UAUCAAGUCUAUGUAUUUCUA 512 56 UUGGAGAGCUAAAUGUGCGGA 513 57 UUUCCAAUAAUUACCAUGGGA 514 58 UAUUGUUAGGAUCUAAUGUUU 515 59 UAGUAUGACCAGAGCGUCUGG 516 60 UUAAUAAUGACAACUACCACA 517 61 UAAGGCAAGUCUGUCUUACUG 518 62 AAGUCUAAUAAGAUCAUCUAA 519 63 UAAGCAGAACAAUAUUACUUG 520 64 UUGAAAGAUACCUUUACUUUG 521 65 UACUGUGCUACCAAGUCAGAG 522 66 UAAGCACUUCACAUACAUCAU 523 67 UUUGGAAUGAUUGCAGUCCAC 524 68 UAUAAUUAGAUGUAUAAGUCU 525 69 UAAUUAGAUGUAUAAGUCUAA 526 70 UAAAUUAUAGACUUCUCCAAG 527 71 AUAUGUCAGAAGGACAUCCAU 528 72 UCUUUGUAUAUCCUUUACUUA 529 73 UUGGAGAGUACUAUAAUUUUU 530 74 UUAAUUCUUGGAGAGUACUAU 531 75 AUAAUUAGAUGUAUAAGUCUA 532 76 UAAGAAGCAAGACCAAGUCAA 533 77 UAGGGCACAUUAAUUCUUGGA 534 78 UCUGUCUUACUGUGCUACCAA 535 79 UUCUUUGUAUAUCCUUUACUU 536 80 UUAUAAAUAAUAUUUAAUCUC 537 81 UACAUCAUCCCAUUUAAUGUU 538 82 UUGCAUUAUUACAAGGGACGU 539 83 UAAUAAUGACAACUACCACAU 540 84 UUUGAUUUAGGUCUGUCAGCU 541 85 UUUCAGUUGGUUGCUGUUCAU 542 86 UGAUUCUUGAAAGAUACCUUU 543 87 UUGGUUGCUGUUCAUCCACAA 544 88 UUGCAUUCCCAGAUGCUGCCU 545 89 UAUAUCCUUUACUUAGCACUA 546 90 AAUGAUUGCAGUCCACUCUUG 547 91 UUGUAUACAUGAUAUAAGGUC 548 92 UUCAACUAAUCAAGUGAACAG 549 93 UUAAAGGCAAGUCACAUAGCA 550 94 UUACAGUAACUCAAGUAUUAG 551 95 AAUAUGAGCAAGUAAAUCUUU 552 96 AAUAAUGACAACUACCACAUA 553 97 AUGUCGUCAGGAAUAAAUCUG 554 98 UAUCUUACGAGGACAGUCAUU 555 99 UUACUUAGCACUACAAUGUCC 556 100 AUUUAGGUCUGUCAGCUCCCA 557 101 UUUAUUUGAAUACUUUCCAAU 558 102 UCGAGGGACAUUGUGAGGGUA 559 103 UUCCAUCUUCGUAAAUGUCAA 560 104 AAGAAUAUUUCUUCAUGCCUG 561 105 AUCUUGUAGGACUGGAACCCA 562 106 UACUUAGCACUACAAUGUCCA 563 107 UAAUUGGAAUUGGUAUUUCAG 564 108 UUUAAUGUUUACAGUAACUCA 565 109 UUGCUGUUCAUCCACAAAUGG 566 110 UGAAUGCCUAAUGACUCCGUG 567 111 UCAAACUGGAAGGUACUAGUG 568 112 AACAGCUCCUAAUUCACUCUU 569 113 UCCAAUAUAGUACUGACAGAG 570 114 UUCAAGAAAUCAAAUGUUCUU 571 115 UUAAGAAGACAUGUUAACAUG 572 116 UAAAGGCAAGUCACAUAGCAU 573 117 UACACAAACACUGGAGUACAU 574 118 UGAAUUAGGAGUUUAAGGCAA 575 119 AAUUUGAUUUAGGUCUGUCAG 576 120 UUUACAGAGGUUAAACAAGAG 577 121 AAGAACAAUAACUUUAACAAA 578 122 UAAAUAAUAUUUAAUCUCCCC 579 123 AUAUUGUUAGGAUCUAAUGUU 580 124 UAUUUAUUAAGAAGACAUGUU 581 125 UAGAUGUAUAAGUCUAAUAAG 582 126 UAAGUAGAUGGUACUCUUUUG 583 127 AACUAAUCAAGUGAACAGCCA 584 128 UACAUGCAACACAUUCCACAA 585 129 UUUGCAUUGAAGUCUGAAUGU 586 130 UUUGAGAAUAGAAAUGUGAUU 587 131 UAAGUGGUUGAAUUAGGAGUU 588 132 UUUAUUAAGAAGACAUGUUAA 589 133 UUGGAAUUGGUAUUUCAGUUG 590 134 AUCAAGUCUAUGUAUUUCUAU 591 135 UUCAUUAUCACAUGAUAAGGA 592 136 AACAAUGACUUUGUAAGUGGU 593 137 AUUGAGUAUGGUCAUAUUGUU 594 138 UACAGUUGUAUACAUGAUAUA 595 139 UACCAAGUCAGAGUACCCGAU 596 140 UAUAAGUCUAAUAAGAUCAUC 597 141 UGGUAUUUCAGUUGGUUGCUG 598 142 AAGCAGAACAAUAUUACUUGG 599 143 AAAUACACAAACACUGGAGUA 600 144 UGCAUUAUUACAAGGGACGUU 601 145 UUGUAAGUGGUUGAAUUAGGA 602 146 UACUUGGUGUAAGAUACAGUU 603 147 UUAAUUUGAUUUAGGUCUGUC 604 148 AAUAAGAUUAUAAAUACACAA 605 149 UUGGAUUCAUUUGUGAUACCA 606 150 UAAGCAUCUGCUUCAAAGUUA 607 151 AGACUUUAAACAUUCGACGCG 608 152 ACAUAUUGACCACUUACUCUG 609 153 UGACAGAGAAGUUUCCAUCCA 610 154 UAGGUCUGUCAGCUCCCAGUA 611 155 AUCUACAGUUGUAUACAUGAU 612 156 UAUGUAUUUCUAUAAUUAGAU 613 157 ACCACUAAGAACAAUAACUUU 614 158 UGUGAUGAAGCUGAAUGCCUA 615 159 UCAGAUACCCAUUUGCAUCUA 616 160 AUUAGCAUUGAUAAACUUUUU 617 161 UAACAGCUCCUAAUUCACUCU 618 162 AUAAUGACAACUACCACAUAU 619 163 UAUUAAUAAUGACAACUACCA 620 164 UAUUUGAAUACUUUCCAAUAA 621 165 UAAAUGCAUGAGAAUGUGGAA 622 166 UAAUGUUUACAGUAACUCAAG 623 167 UACAGCACUACAGAAUAGAGA 624 168 UUGGUGUAAGAUACAGUUUGG 625 169 AAUGUGAUUGAAGAUUUGCAU 626 170 UGUAAGUGGUUGAAUUAGGAG 627 171 AUUACUUGGUGUAAGAUACAG 628 172 UUUACAGUAACUCAAGUAUUA 629 173 UCGUAAAUGUCAAAGAAGGUG 630 174 UUGGUAUUUCAGUUGGUUGCU 631 175 ACACUUGUUAUCAAUGCACUG 632 176 UUCACAUACAUCAUCCCAUUU 633 177 AACUGGAAGGUACUAGUGGUG 634 178 UAGGAUCUAAUGUUUGAUUUU 635 179 UCUUUAGUAUGACCAGAGCGU 636 180 UUAUGUAAUAUUAAAGGCAAG 637 181 UACUGACAGAGAAGUUUCCAU 638 182 AUGACUUUGUAAGUGGUUGAA 639 183 AUUACAAGGGACGUUCUCCAG 640 184 UCUGUGCUAGGCACCAAGCUA 641 185 UACCCAUUUGCAUCUACAGUU 642 186 UGCAUCUACAGUUGUAUACAU 643 187 UCAUUCUUUGUAUAUCCUUUA 644 188 UUAGAUCACCAUUGAAAUCCA 645 189 UUGAGAAUAGAAAUGUGAUUG 646 190 UAUGUCAGAAGGACAUCCAUU 647 191 UAAGAACAAUAACUUUAACAA 648 192 UUGUGACAUAUUCAAACCAUA 649 193 UUUAGUAUGACCAGAGCGUCU 650 194 UUGUAUGGUAGUUGGAGAGCU 651 195 UUGCAGUCCACUCUUGUUUUC 652 196 UAUUAGCAUUGAUAAACUUUU 653 197 UAGUCUCCAAUAUGAAGGGUA 654 198 UUUCAAACUGGAAGGUACUAG 655 199 AAUUAUAGACUUCUCCAAGUG 656 200 AUAAGCAUCUGCUUCAAAGUU 657 201 AAACUGGAAGGUACUAGUGGU 658 202 AUGACAACUACCACAUAUUGA 659 203 UGUAUUUCUAUAAUUAGAUGU 660 204 AAGUCUGCAAAUGCUGACUGU 661 205 UCUCUAUCAUCUGCUUUCUUU 662 206 ACAACUACCACAUAUUGACCA 663 207 UAUUCAAACCAUAUUUAUUUG 664 208 UUCGUAAAUGUCAAAGAAGGU 665 209 AUUGCUGAAAUCUUGUAGGAC 666 210 UUCGAGGGACAUUGUGAGGGU 667 211 AGUCAUUAGAACACAGACCAC 668 212 UAGACUUCUCCAAGUGUUUGA 669 213 UUAUUGCUGAAAUCUUGUAGG 670 214 ACUAAUCAAGUGAACAGCCAU 671 215 UUGAAGUCUGAAUGUAAAUUA 672 216 AUGAGAAUGUGGAAUUCGCAU 673 217 UGUAAAUUAUAGACUUCUCCA 674 218 UAUAGACUUCUCCAAGUGUUU 675 219 UUAGGAUCUAAUGUUUGAUUU 676 220 UCUUGUAGGACUGGAACCCAC 677 221 UGCUGACUGUCCAACCACCAU 678 222 UUAGAAUAAGAAGCAAGACCA 679 223 UGUUAGGAUCUAAUGUUUGAU 680 224 UGGUCAUAUUGUUAGGAUCUA 681 225 UUGAAUACUUUCCAAUAAUUA 682 226 UGAUUGCAGUCCACUCUUGUU 683 227 UUAAACAUUCGACGCGCCUCU 684 228 AUGUUUACAGUAACUCAAGUA 685 229 UUACUGUGCUACCAAGUCAGA 686 230 UUCUUCAUUAUCACAUGAUAA 687 231 UGAAUGUAAAUUAUAGACUUC 688 232 UAGCUGGGAAUUUGGAAUGAU 689 233 UAGGCAUCACAUGUCCAUUUG 690 234 UGAUAUAAGGUCCAGGUUGAU 691 235 UCUAUGUAUUUCUAUAAUUAG 692 236 UGCAACACAUUCCACAAAGGA 693 237 UUUAAACAUUCGACGCGCCUC 694 238 UUGAAGAUUUGCAUUCCCAGA 695 239 UGUGAUUCUUGAAAGAUACCU 696 240 GUAAAUUAUAGACUUCUCCAA 697 241 AAAUGCUGACUGUCCAACCAC 698 242 UCUUGAAAGAUACCUUUACUU 699 243 UACUUUCCAAUAAUUACCAUG 700 244 AUUGAAGAUUUGCAUUCCCAG 701 245 UGCUGAAAUCUUGUAGGACUG 702 246 AUUCCCUCCUAAUAGUAUCUG 703 247 UGUAGUCUCCAAUAUGAAGGG 704 248 UGUUUCAACUAAUCAAGUGAA 705 249 UAUAAUUUGCAUCAUUAGAAU 706 250 AUUGUUAGGAUCUAAUGUUUG 707 251 AUAUCCUUUACUUAGCACUAC 708 252 UGUAUGGUAGUUGGAGAGCUA 709 253 AACAUGCUUAGAUACAAAGUA 710 254 AUGUUCUUCAUUAUCACAUGA 711 255 UACCCGAUCACUAUAUUGUAU 712 256 UGUUCUUCAUUAUCACAUGAU 713 257 UUAGCUGGGAAUUUGGAAUGA 714 258 UAAAUACACAAACACUGGAGU 715 259 AGGAAUUAGAUCACCAUUGAA 716 260 UUCCCUCCUAAUAGUAUCUGU 717 261 UUACUUGGUGUAAGAUACAGU 718 262 AAAGAUACCUUUACUUUGGGU 719 263 UUAGAUGUAUAAGUCUAAUAA 720 264 ACACAUUCCACAAAGGAACAA 721 265 UCUACAGUUGUAUACAUGAUA 722 266 UGUAUAUCCUUUACUUAGCAC 723 267 UUGUUAGGAUCUAAUGUUUGA 724 268 UCUGCAAAUGCUGACUGUCCA 725 269 UACCAACGUAGAGAUGGUCAA 726 270 UAAACCAAGCACGUUGUAUGG 727 271 AAGAAAUCAAAUGUUCUUCAU 728 272 UCACAUGAUAAGGAUAAGUUU 729 273 UGAAAUCUUGUAGGACUGGAA 730 274 UGUCAGAAGGACAUCCAUUUG 731 275 ACUUAGCACUACAAUGUCCAA 732 276 AACUUCGAGGGACAUUGUGAG 733 277 AUGGAAUGACAAUUAGCUGGG 734 278 AUAUUUAUUAAGAAGACAUGU 735 279 UACCAUGGGAUACAUCAUUUA 736 280 AUCUUCGUAAAUGUCAAAGAA 737 281 UCUUACUGUGCUACCAAGUCA 738 282 UCAUUAUCACAUGAUAAGGAU 739 283 UAAUUUGAUUUAGGUCUGUCA 740 284 AGUACAUGCAACACAUUCCAC 741 285 AUCAUUCUUUGUAUAUCCUUU 742 286 AAAUAAUAUUUAAUCUCCCCU 743 287 CAAGUCUGUCUUACUGUGCUA 744 288 AAAGUCUGCAAAUGCUGACUG 745 289 AUGAUUGCAGUCCACUCUUGU 746 290 AAACCAAGCACGUUGUAUGGU 747 291 AUAAAUAAUAUUUAAUCUCCC 748 292 UUUGCAUCAUUAGAAUAAGAA 749 293 AACACAGACCACUAAGAACAA 750 294 ACAAUGACUUUGUAAGUGGUU 751 295 UUCUAUAAUUAGAUGUAUAAG 752 296 AUUUAUUAAGAAGACAUGUUA 753 297 AUUGAAAUCCAUAAUUAGUGG 754 298 AUUAUAGACUUCUCCAAGUGU 755 299 AAUGACAACUACCACAUAUUG 756 300 AAGUGGUUGAAUUAGGAGUUU 757 301 AUAGUACUGACAGAGAAGUUU 758 302 AAAGAAUAUUUCUUCAUGCCU 759 303 UCCAUCUCCAUCAAAGUCUGC 760 304 UGACAUAUUCAAACCAUAUUU 761 305 UAGCAGUAAGCAGAACAAUAU 762 306 UGACCACUUACUCUGUGCUAG 763 307 AUAAGGUCCAGGUUGAUUCAC 764 308 UAUAGGCAUCACAUGUCCAUU 765 309 UGUUUGAGAAUAGAAAUGUGA 766 310 AUAGACUUCUCCAAGUGUUUG 767 311 UGUCCAAGAUUCCAUCUUCGU 768 312 UUCUAUCAAGUCUAUGUAUUU 769 313 AGAAGACAUGUUAACAUGCUU 770 314 AUGUACAGCACUACAGAAUAG 771 315 UAGGCACCAAGCUAAGCACUU 772 316 UCAUUAGAACACAGACCACUA 773 317 UCAUUUAUAAAUAAUAUUUAA 774 318 AGAAUCUCCAUCAUAAUCCCC 775 319 UAAUUCUUGGAGAGUACUAUA 776 320 AUCUCAGUGAACUAUAAAGAA 777 321 AUCCUUUACUUAGCACUACAA 778 322 AUGUCCAUUUGCAUACUAGAA 779 323 UAAAUCUUUAUGUCAAUCACC 780 324 UCCAUCUUCGUAAAUGUCAAA 781 325 UUUAAGGCAAGUCUGUCUUAC 782 326 ACUAAGUAGAUGGUACUCUUU 783 327 AUGCUGACUGUCCAACCACCA 784 328 UCAACUAAUCAAGUGAACAGC 785 329 UAUUACAAGGGACGUUCUCCA 786 330 UGAAGGGUAAUUGGAAUUGGU 787 331 UGAUUCACUCCAAAGGGUGUU 788 332 AUUAAUUCUUGGAGAGUACUA 789 333 AUUUGGAAUGAUUGCAGUCCA 790 334 UUAACAUGCUUAGAUACAAAG 791 335 AUAAGGAAUAUUUAUUAAGAA 792 336 UAAUUUGCAUCAUUAGAAUAA 793 337 AGCAGAACAAUAUUACUUGGU 794 338 CUUAAUUUGAUUUAGGUCUGU 795 339 AAUAGAAAUGUGAUUGAAGAU 796 340 UAUGAGCAAGUAAAUCUUUAU 797 341 UUUGAGAAUCUCCAUCAUAAU 798 342 AGUUCAAACAAUGACUUUGUA 799 343 UAGUUGGAGAGCUAAAUGUGC 800 344 AUAGGGUGCAUUCUGGUCUGC 801 345 UUGUAGUCUCCAAUAUGAAGG 802 346 AUAAGAAGCAAGACCAAGUCA 803 347 AUUAUGUAAUAUUAAAGGCAA 804 348 UUCUUGGAGAGUACUAUAAUU 805 349 UACACUUGUUAUCAAUGCACU 806 350 AAGAAGACAUGUUAACAUGCU 807 351 UUACAAGGGACGUUCUCCAGU 808 352 CAUCAUUAGAAUAAGAAGCAA 809 353 UUCAAUAAGGAAUAUUUAUUA 810 354 UACAUGAUAUAAGGUCCAGGU 811 355 AUUAGAACACAGACCACUAAG 812 356 AUUAUUACAAGGGACGUUCUC 813 357 UAGUGGUCAAUGCUGGAUGCC 814 358 AUCCAUAUUGUAGUCUCCAAU 815 359 AUAUGAGCAAGUAAAUCUUUA 816 360 UUUGCAUCUACAGUUGUAUAC 817 361 AGUAUGACCAGAGCGUCUGGA 818 362 UACAAGGGACGUUCUCCAGUA 819 363 UUACGAGGACAGUCAUUAGAA 820 364 AUUAAGAAGACAUGUUAACAU 821 365 UGAAGUCUGAAUGUAAAUUAU 822 366 ACACAGACCACUAAGAACAAU 823 367 CACUACAGAAUAGAGAACCCA 824 368 UUCAAACCAUAUUUAUUUGAA 825 369 UCAAAUGUUCUUCAUUAUCAC 826 370 UCAGGAAUAAAUCUGCUGUAA 827 371 UAUAAGGUCCAGGUUGAUUCA 828 372 ACAAACACUGGAGUACAUGCA 829 373 UUUAUAAAUAAUAUUUAAUCU 830 374 ACAGAGGUUAAACAAGAGCCA 831 375 UGUAGGACUGGAACCCACUGC 832 376 UGUCCAACCACCAUCAUAUUU 833 377 CAGUAGACUUUAAACAUUCGA 834 378 ACAUGCAACACAUUCCACAAA 835 379 UCAGAAGGACAUCCAUUUGAG 836 380 UCUAUCAUCUGCUUUCUUUUC 837 381 AUCAAUGCACUGUGAUUCUUG 838 382 UUGCAUCAUUAGAAUAAGAAG 839 383 UCAAAGUCUGCAAAUGCUGAC 840 384 AGUCCUAUUGAGUAUGGUCAU 841 385 UACCACAUAUUGACCACUUAC 842 386 AGUAACUCAAGUAUUAGCCCC 843 387 UAACAUGCUUAGAUACAAAGU 844 388 UCACAUACAUCAUCCCAUUUA 845 389 AUCAUUUAUAAAUAAUAUUUA 846 390 CUUGUGACAUAUUCAAACCAU 847 391 UGAUUGAAGAUUUGCAUUCCC 848 392 ACUUGUUAUCAAUGCACUGUG 849 393 AGGCAAGUCACAUAGCAUCAA 850 394 UUGAUUCACUCCAAAGGGUGU 851 395 AAUGUGAAGUUCACAAUACAA 852 396 AGGACAGUCAUUAGAACACAG 853 397 UGUUCUUUAGUAUGACCAGAG 854 398 UAUUGAGUAUGGUCAUAUUGU 855 399 GUAGUCUCCAAUAUGAAGGGU 856 400 AUGUAUUUCUAUAAUUAGAUG 857 401 UACUCUGUGCUAGGCACCAAG 858 402 UGUUAACAUGCUUAGAUACAA 859 403 AUAAAUGCAUGAGAAUGUGGA 860 404 AUUUCAAACUGGAAGGUACUA 861 405 UCCAAGAUUCCAUCUUCGUAA 862 406 UCCUUUACUUAGCACUACAAU 863 407 AAUACCAACGUAGAGAUGGUC 864 408 ACAUGAUAUAAGGUCCAGGUU 865 409 AUCUUUAUGUCAAUCACCAAA 866 410 UGAAAGAUACCUUUACUUUGG 867 411 AAGGCAAGUCUGUCUUACUGU 868 412 UGGAAUUGGUAUUUCAGUUGG 869 413 UAUAAAUAAUAUUUAAUCUCC 870 414 AUAAAUUCCCUCCUAAUAGUA 871 415 AUAAUUUGCAUCAUUAGAAUA 872 416 ACUUGUAGUGGUCAAUGCUGG 873 417 AUCUGCUUCAAAGUUAUUUUU 874 418 UAAGAAGACAUGUUAACAUGC 875 419 AAGCACUUCACAUACAUCAUC 876 420 UACAUCAUUUAUAAAUAAUAU 877 421 AUUGACCACUUACUCUGUGCU 878 422 UUCAAUGUCGUCAGGAAUAAA 879 423 AUACAUGAUAUAAGGUCCAGG 880 424 AAAUGUUCUUCAUUAUCACAU 881 425 AUUCAAACCAUAUUUAUUUGA 882 426 CAUUAGAACACAGACCACUAA 883 427 UGCUGGUUGCUUCCAGAUGUG 884 428 AUUGGAAUUGGUAUUUCAGUU 885 429 UAAUAUUAAAGGCAAGUCACA 886 430 CACUUCACAUACAUCAUCCCA 887 431 UAUCCUUUACUUAGCACUACA 888 432 AAUACUUUCCAAUAAUUACCA 889 433 UCCCUCCUAAUAGUAUCUGUG 890 434 AUGUGAUUGAAGAUUUGCAUU 891 435 AGAACAAUAUUACUUGGUGUA 892 436 AAUAUUUAUUAAGAAGACAUG 893 437 UCUAUCAAGUCUAUGUAUUUC 894 438 AAUAUUAAAGGCAAGUCACAU 895 439 UAUUUCAGUUGGUUGCUGUUC 896 440 GUAUGGAAUGACAAUUAGCUG 897 441 UCACAGCUUGCAUUAUUACAA 898 442 AAGUCUGUCUUACUGUGCUAC 899 443 AGUAUGGUCAUAUUGUUAGGA 900 444 UCAAUAAGGAAUAUUUAUUAA 901 445 AAACAAUGACUUUGUAAGUGG 902 446 UGGAUUCAUUUGUGAUACCAA 903 447 UAUUAAAGGCAAGUCACAUAG 904 448 UGGGAAUUUGGAAUGAUUGCA 905 449 AAUCUUGUAGGACUGGAACCC 906 450 AUCUCCAUCAAAGUCUGCAAA 907 451 UUAGAACACAGACCACUAAGA 908 452 UCACUAAGUAGAUGGUACUCU 909 453 UUUCUAUAAUUAGAUGUAUAA 910 454 UGCAUUGAAGUCUGAAUGUAA 911 455 UUUGCGCUCCGACCUAAACCA 912 456 UGAUUUAGGUCUGUCAGCUCC 913 457 AACCGGUGGGCUUCUUGUCGU 914 458 UGAAGAUUUGCAUUCCCAGAU 915 459 UUAUUUGAAUACUUUCCAAUA 916 460 UCCCAGUAGACUUUAAACAUU 917 461 UCAGUCAGAUCAAUAAAUGCA 918 462 CAUCCAUUUGAGAAUCUCCAU 919 463 UAGAAAUGUGAUUGAAGAUUU 920 464 ACAGCUCCUAAUUCACUCUUG 921 465 UUAGGUCUGUCAGCUCCCAGU 922 466 AAGACAUGUUAACAUGCUUAG 923 467 AUACCCAUUUGCAUCUACAGU 924 468 AAAUCUUUAUGUCAAUCACCA 925 469 CAGAGGUUAAACAAGAGCCAA 926 470 AUCAGGAAUUAGAUCACCAUU 927 471 UCCCAUUUAAUGUUUACAGUA 928 472 AGGCAAGUCUGUCUUACUGUG 929 473 UCUCAGUGAACUAUAAAGAAA 930 474 UAUUGACCACUUACUCUGUGC 931 475 AUGUAAAUUAUAGACUUCUCC 932 476 UCAGAUCAAUAAAUGCAUGAG 933 477 UGAGAAUGUGGAAUUCGCAUU 934 478 UUGCAUCUACAGUUGUAUACA 935 479 CUUAUUGCUGAAAUCUUGUAG 936 480 ACUUGGUGUAAGAUACAGUUU 937 481 AUAUUGUAGUCUCCAAUAUGA 938 482 ACAUCCAUUUGAGAAUCUCCA 939 483 UUAUCAAUGCACUGUGAUUCU 940 484 AUUACCAUGGGAUACAUCAUU 941 485 ACUUCACAUACAUCAUCCCAU 942 486 AUCAAAGUCUGCAAAUGCUGA 943 487 AUCCUUAAUUUGAUUUAGGUC 944 488 UGAAGCUGAAUGCCUAAUGAC 945 489 AGCAAGACCAAGUCAAGUGGA 946 490 AUUGCAGUCCACUCUUGUUUU 947 491 CAAACAAUGACUUUGUAAGUG 948 492 UCUAAUAAGAUCAUCUAAAAU 949 493 AUAACAGCUCCUAAUUCACUC 950 494 UAAGGAAUAUUUAUUAAGAAG 951 495 AAGGGUGUUAUCUUACGAGGA 952 496 UAAUGACAACUACCACAUAUU 953 497 UAUUACUUGGUGUAAGAUACA 954 498 AUCAUUAGAAUAAGAAGCAAG 955 499 CAAUAUAGUACUGACAGAGAA 956 500 AUUGUAGUCUCCAAUAUGAAG 957 501 UGACAACUACCACAUAUUGAC 958 502 ACUACAAUGUCCAAGAUUCCA 959 503 UCAGGAAUUAGAUCACCAUUG 960 504 ACCGGUGGGCUUCUUGUCGUU 961 505 AUGUCCAAGAUUCCAUCUUCG 962 506 AAUAAAUGCAUGAGAAUGUGG 963 507 AAGCAAGACCAAGUCAAGUGG 964 508 UCUUCGUAAAUGUCAAAGAAG 965 509 UUACCAUGGGAUACAUCAUUU 966 510 UUACAGAGGUUAAACAAGAGC 967 511 UUGCUGAAAUCUUGUAGGACU 968 512 UUGGAAUGAUUGCAGUCCACU 969 513 UAUGAAGGGUAAUUGGAAUUG 970 514 AUGAGCAAGUAAAUCUUUAUG 971 515 UUUGUAAGUGGUUGAAUUAGG 972 516 AACUACCACAUAUUGACCACU 973 517 UCAAACAAUGACUUUGUAAGU 974 518 AAUUCUUGGAGAGUACUAUAA 975 519 CUUACUGUGCUACCAAGUCAG 976 520 ACAAUUAGCUGGGAAUUUGGA 977 521 UGGAGUACAUGCAACACAUUC 978 522 AGAAAUGUGAUUGAAGAUUUG 979 523 UGCAUUCCCAGAUGCUGCCUA 980 524 UAAAUUCCCUCCUAAUAGUAU 981 525 AUUCUUUGUAUAUCCUUUACU 982 526 UUCCAAUAAUUACCAUGGGAU 983 527 UUCUUGAAAGAUACCUUUACU 984 528 UGAGCAAGUAAAUCUUUAUGU 985 529 CUGAAUGUAAAUUAUAGACUU 986 530 UGUGAGGGUAUGGAAUGACAA 987 531 AAUGUUCUUCAUUAUCACAUG 988 532 ACAGACACCGAUGAGAGCUAU 989 533 CCAACUUCGAGGGACAUUGUG 990 534 UAGUACUGACAGAGAAGUUUC 991 535 UUCACAGCUUGCAUUAUUACA 992 536 CAUAUUGACCACUUACUCUGU 993 537 AGGGACUACACUUGUUAUCAA 994 538 UUAUCACAUGAUAAGGAUAAG 995 539 AAUUACCAUGGGAUACAUCAU 996 540 ACUACACUUGUUAUCAAUGCA 997 541 UACAAUGUCCAAGAUUCCAUC 998 542 AUUUGCAUUGAAGUCUGAAUG 999 543 AUGAAGGGUAAUUGGAAUUGG 1000 544 ACUACAGAAUAGAGAACCCAA 1001 545 GAGAGCUAUAGCAGUAAGCAG 1002 546 AGAAUGUGGAAUUCGCAUUUU 1003 547 UCCAGGUUGAUUCACUCCAAA 1004 548 UUUCAAGAAAUCAAAUGUUCU 1005 549 ACCUAAACCAAGCACGUUGUA 1006 550 AAUAUAGUACUGACAGAGAAG 1007 551 GAUCUCACUAAGUAGAUGGUA 1008 552 UGUACAGCACUACAGAAUAGA 1009 553 UGUAAUAUUAAAGGCAAGUCA 1010 554 UUCCUUUCAAGAAAUCAAAUG 1011 555 AUCCAUUUGAGAAUCUCCAUC 1012 556 UAUCACAUGAUAAGGAUAAGU 1013 557 CAAUGCACUGUGAUUCUUGAA 1014 558 UGGAGAGCUAAAUGUGCGGAU 1015 559 UAAGAUUAUAAAUACACAAAC 1016 560 AUAAGAUUAUAAAUACACAAA 1017 561 UCUUGGAGAGUACUAUAAUUU 1018 562 AACAAUAUUACUUGGUGUAAG 1019 563 UCAAGAAAUCAAAUGUUCUUC 1020 564 UGUCGUCAGGAAUAAAUCUGC 1021 565 GAGUACAUGCAACACAUUCCA 1022 566 UAUGACCAGAGCGUCUGGAUA 1023 567 UCCAACCACCAUCAUAUUUUG 1024 568 CUGCAAAUGCUGACUGUCCAA 1025 569 UCCGACCUAAACCAAGCACGU 1026 570 UGUCAGCUCCCAGUAGACUUU 1027 571 AUUCUAUCAAGUCUAUGUAUU 1028 572 CUUAGCACUACAAUGUCCAAG 1029 573 UGAGAAUAGAAAUGUGAUUGA 1030 574 AAGCACGUUGUAUGGUAGUUG 1031 575 UAGGGUGCAUUCUGGUCUGCC 1032 576 UCAAUGCACUGUGAUUCUUGA 1033 577 UCCAAGUGUUUGAGAAUAGAA 1034 578 UCCAAUAUGAAGGGUAAUUGG 1035 579 CUUUCCAAUAAUUACCAUGGG 1036 580 UUAAUAUGAGCAAGUAAAUCU 1037 581 UUUCCUUUCAAGAAAUCAAAU 1038 582 UGACUUUGUAAGUGGUUGAAU 1039 583 GUAAGCAGAACAAUAUUACUU 1040 584 AUUCCAUCUUCGUAAAUGUCA 1041 585 UCUUACGAGGACAGUCAUUAG 1042 586 AAAUGUGAUUGAAGAUUUGCA 1043 587 ACAUAUUCAAACCAUAUUUAU 1044 588 UGUGACAUAUUCAAACCAUAU 1045 589 UUUGAAUACUUUCCAAUAAUU 1046 590 AAUGCCUAAUGACUCCGUGAU 1047 591 AUUUGAUUUAGGUCUGUCAGC 1048 592 AUAGGCAUCACAUGUCCAUUU 1049 593 UCAUGAUGCAAAUAAGAUUAU 1050 594 AGUUGGUUGCUGUUCAUCCAC 1051 595 AAGUCUAUGUAUUUCUAUAAU 1052 596 UGCACUGUGAUUCUUGAAAGA 1053 597 UGACAAUUAGCUGGGAAUUUG 1054 598 UGUCCAUUUGCAUACUAGAAA 1055 599 AUAGAAAUGUGAUUGAAGAUU 1056 600 UCCAACUUCGAGGGACAUUGU 1057 601 UUGAGAAUCUCCAUCAUAAUC 1058 602 GAUCACUAUAUUGUAUGCCAU 1059 603 UUCAUCCCAGAUCUCACUAAG 1060 604 UGAGUAUGGUCAUAUUGUUAG 1061 605 UGUGCUACCAAGUCAGAGUAC 1062 606 CAAACUGGAAGGUACUAGUGG 1063 607 ACACAAACACUGGAGUACAUG 1064 608 AUAUCAGGAAUUAGAUCACCA 1065 609 AAUGUUUACAGUAACUCAAGU 1066 610 UGUUUACAGUAACUCAAGUAU 1067 611 ACAUGCUUAGAUACAAAGUAA 1068 612 AUCACCAUUGAAAUCCAUAAU 1069 613 UAUUUCUUCAUGCCUGAAAAU 1070 614 UCAAGUCUAUGUAUUUCUAUA 1071 615 CAGAACAAUAUUACUUGGUGU 1072 616 UAGUUAAUAUGAGCAAGUAAA 1073 617 CUGAAAUCUUGUAGGACUGGA 1074 618 AAACAUUCGACGCGCCUCUUC 1075 619 UUCCUGCUCAUUUAAUUAUUU 1076 620 UGGGAAGAUAUGUCAGAAGGA 1077 621 UUUCAAUAAGGAAUAUUUAUU 1078 622 AUGACUCCGUGAUAUAUUCAC 1079 623 CAAACACUGGAGUACAUGCAA 1080 624 AAUGACUUUGUAAGUGGUUGA 1081 625 AAUGUCGUCAGGAAUAAAUCU 1082 626 UUCCAUUAUGUAAUAUUAAAG 1083 627 UUUGCAUUCCCAGAUGCUGCC 1084 628 UCAUAUUGUUAGGAUCUAAUG 1085 629 AAGUGUUUGAGAAUAGAAAUG 1086 630 AAGAUAACAGCUCCUAAUUCA 1087 631 AUUCUUGAAAGAUACCUUUAC 1088 632 AGUUUAAGGCAAGUCUGUCUU 1089 633 ACUACCACAUAUUGACCACUU 1090 634 AGGAGUUUAAGGCAAGUCUGU 1091 635 UUCAGUUGGUUGCUGUUCAUC 1092 636 AUUUAAUGUUUACAGUAACUC 1093 637 UCACAUGUCCAUUUGCAUACU 1094 638 UGCCCUUAUUGCUGAAAUCUU 1095 639 UGUAUAAGUCUAAUAAGAUCA 1096 640 UACAGAGGUUAAACAAGAGCC 1097 641 AAUUAGAUGUAUAAGUCUAAU 1098 642 GAGAAUAGAAAUGUGAUUGAA 1099 643 UGUCCAUCUCCAUCAAAGUCU 1100 644 UUCAAACAAUGACUUUGUAAG 1101 645 AAUGUAAAUUAUAGACUUCUC 1102 646 GUAUACAUGAUAUAAGGUCCA 1103 647 AGACUUCUCCAAGUGUUUGAG 1104 648 UACAGAAUAGAGAACCCAAAU 1105 649 CUUGUAGUGGUCAAUGCUGGA 1106 650 UUUGUAUAUCCUUUACUUAGC 1107 651 UUCUCCAAGUGUUUGAGAAUA 1108 652 UCAAACCAUAUUUAUUUGAAU 1109 653 AAUGACUCCGUGAUAUAUUCA 1110 654 AUUCUUGGAGAGUACUAUAAU 1111 655 CAUCAAAGUCUGCAAAUGCUG 1112 656 AGACAUGUUAACAUGCUUAGA 1113 657 UGUGAUUGAAGAUUUGCAUUC 1114 658 AAGAUACCUUUACUUUGGGUU 1115 659 AGAAUAUUUCUUCAUGCCUGA 1116 660 AUUUGCAUCUACAGUUGUAUA 1117 661 UCCAUUUGAGAAUCUCCAUCA 1118 662 UCCAAAGAAUAUUUCUUCAUG 1119 663 AAUAAUUACCAUGGGAUACAU 1120 664 UGGAAAUGUGAAGUUCACAAU 1121 665 ACACCGAUGAGAGCUAUAGCA 1122 666 ACUGGAGUACAUGCAACACAU 1123 667 AGGUCUGUCAGCUCCCAGUAG 1124 668 UUAGGAGUUUAAGGCAAGUCU 1125 669 AUAUAGUACUGACAGAGAAGU 1126 670 CCAUUUGAGAAUCUCCAUCAU 1127 671 UGUCUUACUGUGCUACCAAGU 1128 672 ACAGCUUGCAUUAUUACAAGG 1129 673 AGUAGACUUUAAACAUUCGAC 1130 674 UACAGUAACUCAAGUAUUAGC 1131 675 UGAGAGCUAUAGCAGUAAGCA 1132 676 ACCAUUGAAAUCCAUAAUUAG 1133 677 AGCUUGCAUUAUUACAAGGGA 1134 678 CAUAUUUCAAACUGGAAGGUA 1135 679 AACCAAGCACGUUGUAUGGUA 1136 680 UCUGAAUGUAAAUUAUAGACU 1137 681 ACCAUAUUUAUUUGAAUACUU 1138 682 CUUGUUAUCAAUGCACUGUGA 1139 683 AAAUCAAAUGUUCUUCAUUAU 1140 684 UAUGGUCAUAUUGUUAGGAUC 1141 685 AUCUUCAGUCAGAUCAAUAAA 1142 686 UAUGGUAGUUGGAGAGCUAAA 1143 687 UCCUUAAUUUGAUUUAGGUCU 1144 688 AUCCCAGAUCUCACUAAGUAG 1145 689 AAUAAGAAGCAAGACCAAGUC 1146 690 AAACCGGUGGGCUUCUUGUCG 1147 691 AGAUCUCACUAAGUAGAUGGU 1148 692 AUUUCUAUAAUUAGAUGUAUA 1149 693 UGGAAUGAUUGCAGUCCACUC 1150 694 UUCAGUCAGAUCAAUAAAUGC 1151 695 CACAUGUCCAUUUGCAUACUA 1152 696 GUCAGGAAUAAAUCUGCUGUA 1153 697 ACCCAUUUGCAUCUACAGUUG 1154 698 AGGAUCUAAUGUUUGAUUUUG 1155 699 AUAUUCAAACCAUAUUUAUUU 1156 700 AGGUUGAUUCACUCCAAAGGG 1157 701 GAAUGAUUGCAGUCCACUCUU 1158 702 UCGACGCGCCUCUUCACAGCU 1159 703 AUGACAAUUAGCUGGGAAUUU 1160 704 AGAAUAAGAAGCAAGACCAAG 1161 705 AGCUAAGCACUUCACAUACAU 1162 706 UCCAUUUGCAUACUAGAAAAU 1163 707 CACAUAUUGACCACUUACUCU 1164 708 AUAUUUAUUUGAAUACUUUCC 1165 709 AAUUGGUAUUUCAGUUGGUUG 1166 710 AGCACUACAAUGUCCAAGAUU 1167 711 AUGCCUAAUGACUCCGUGAUA 1168 712 UCAUCAUGAUGCAAAUAAGAU 1169 713 ACCUGCUGUGAUGAAGCUGAA 1170 714 AAACACUGGAGUACAUGCAAC 1171 715 UGCAUGAGAAUGUGGAAUUCG 1172 716 GUCCAAGAUUCCAUCUUCGUA 1173 717 CUACCACAUAUUGACCACUUA 1174 718 UCCAUCAUCAUGAUGCAAAUA 1175 719 CAAUGUCCAAGAUUCCAUCUU 1176 720 UUAUUAAGAAGACAUGUUAAC 1177 721 AGAAGGACAUCCAUUUGAGAA 1178 722 UCAGAGUACCCGAUCACUAUA 1179 723 AAUACACAAACACUGGAGUAC 1180 724 CUGAAUGCCUAAUGACUCCGU 1181 725 AUGUGAAGUUCACAAUACAAA 1182 726 AGCAAGUAAAUCUUUAUGUCA 1183 727 AAUUGGAAUUGGUAUUUCAGU 1184 728 AAUAUUACUUGGUGUAAGAUA 1185 729 CUUGGUGUAAGAUACAGUUUG 1186 730 GUGAUUCUUGAAAGAUACCUU 1187 731 UCACCAUUGAAAUCCAUAAUU 1188 732 UGUAGUGGUCAAUGCUGGAUG 1189 733 UCUUCAUUAUCACAUGAUAAG 1190 734 AAGUUCAAACAAUGACUUUGU 1191 735 UAUUUCAAACUGGAAGGUACU 1192 736 AAGUCUGAAUGUAAAUUAUAG 1193 737 AAUGUCCAAGAUUCCAUCUUC 1194 738 UGUUAUCUUACGAGGACAGUC 1195 739 GUGUUUGAGAAUAGAAAUGUG 1196 740 AGACCUUGUGACAUAUUCAAA 1197 741 AGAGCUAUAGCAGUAAGCAGA 1198 742 AAGGGUAAUUGGAAUUGGUAU 1199 743 UCCUGCUCAUUUAAUUAUUUU 1200 744 CUGGAGUACAUGCAACACAUU 1201 745 ACACAGACACCGAUGAGAGCU 1202 746 AUCAUGAUGCAAAUAAGAUUA 1203 747 AUUUGAAUACUUUCCAAUAAU 1204 748 AGAUUAUAAAUACACAAACAC 1205 749 GUAGUUGGAGAGCUAAAUGUG 1206 750 AGUCAGAUCAAUAAAUGCAUG 1207 751 UUUCAACUAAUCAAGUGAACA 1208 752 ACUUCGAGGGACAUUGUGAGG 1209 753 UUAUUACAAGGGACGUUCUCC 1210 754 UGGUUGCUGUUCAUCCACAAA 1211 755 ACAUGUCCAUUUGCAUACUAG 1212 756 ACAGUUGUAUACAUGAUAUAA 1213 757 UGCUGCCUACAGCAGUUUCCU 1214 758 AUUAGAUGUAUAAGUCUAAUA 1215 759 UUCGACGCGCCUCUUCACAGC 1216 760 AAAUGCAUGAGAAUGUGGAAU 1217 761 UCUAUAAUUAGAUGUAUAAGU 1218 762 GACAGAGAAGUUUCCAUCCAA 1219 763 UACAGCAGUUUCCUUUCAAGA 1220 764 CUAUUGAGUAUGGUCAUAUUG 1221 765 GUAUAAGUCUAAUAAGAUCAU 1222 766 CAGUCAUUAGAACACAGACCA 1223 767 AUUCAAUGUCGUCAGGAAUAA 1224 768 AUGAUAUAAGGUCCAGGUUGA 1225 769 AUUAUCACAUGAUAAGGAUAA 1226 770 GUGUUCUUUAGUAUGACCAGA 1227 771 CAGAGUGUGCCCUUAUUGCUG 1228 772 AAGCUAAGCACUUCACAUACA 1229 773 CUUUAGUAUGACCAGAGCGUC 1230 774 UACGAGGACAGUCAUUAGAAC 1231 775 AUGUAUAAGUCUAAUAAGAUC 1232 776 CAUAUUGUUAGGAUCUAAUGU 1233 777 AUGUCAGAAGGACAUCCAUUU 1234 778 UGUGCUAGGCACCAAGCUAAG 1235 779 AUUUGCAUCAUUAGAAUAAGA 1236 780 CAAAGGGUGUUAUCUUACGAG 1237 781 AGCAGUAAGCAGAACAAUAUU 1238 782 AGAACAAUAACUUUAACAAAA 1239 783 CAUUUGAGAAUCUCCAUCAUA 1240 784 AUGCACUGUGAUUCUUGAAAG 1241 785 ACACUGGAGUACAUGCAACAC 1242 786 CCUUAUUGCUGAAAUCUUGUA 1243 787 AUGACCAGAGCGUCUGGAUAG 1244 788 AGGCCUGCUGGUUGCUUCCAG 1245 789 AGGUUUACAGAGGUUAAACAA 1246 790 AAAUUAUAGACUUCUCCAAGU 1247 791 AGAUGCUGCCUACAGCAGUUU 1248 792 UGGUUGGAUUCAUUUGUGAUA 1249 793 CAUGAGAAUGUGGAAUUCGCA 1250 794 GUACUGACAGAGAAGUUUCCA 1251 795 GUCCAGGUUGAUUCACUCCAA 1252 796 CCGACCUAAACCAAGCACGUU 1253 797 AGUUGGAGAGCUAAAUGUGCG 1254 798 CAUAUUGUAGUCUCCAAUAUG 1255 799 CAUUAUGUAAUAUUAAAGGCA 1256 800 CUACACUUGUUAUCAAUGCAC 1257 801 AACCAUAUUUAUUUGAAUACU 1258 802 AUAUUAAAGGCAAGUCACAUA 1259 803 ACCAAGCUAAGCACUUCACAU 1260 804 GAAAGAUACCUUUACUUUGGG 1261 805 UUAAGGCAAGUCUGUCUUACU 1262 806 AAUUUGCAUCAUUAGAAUAAG 1263 807 CAUGAUAUAAGGUCCAGGUUG 1264 808 AUAGCAGUAAGCAGAACAAUA 1265 809 CAAUAAAUGCAUGAGAAUGUG 1266 810 AGAAGUUUCCAUCCAAAUUUU 1267 811 AAGCAUCUGCUUCAAAGUUAU 1268 812 CACUUGUUAUCAAUGCACUGU 1269 813 AUUCGACGCGCCUCUUCACAG 1270 814 AAGCUGAAUGCCUAAUGACUC 1271 815 UCCAUAUUGUAGUCUCCAAUA 1272 816 AUAUUAAUAAUGACAACUACC 1273 817 CUUUAAACAUUCGACGCGCCU 1274 818 CUUCGAGGGACAUUGUGAGGG 1275 819 AUGAAGCUGAAUGCCUAAUGA 1276 820 GAACCCACUGCUUCAUCCCAG 1277 821 AAAUGUGAAGUUCACAAUACA 1278 822 ACCGAUGAGAGCUAUAGCAGU 1279 823 CUUUGUAUAUCCUUUACUUAG 1280 824 GUCGUCAGGAAUAAAUCUGCU 1281 825 AGUCUGCAAAUGCUGACUGUC 1282 826 UGUUAUCAAUGCACUGUGAUU 1283 827 AUACACAAACACUGGAGUACA 1284 828 GUUGGAGAGCUAAAUGUGCGG 1285 829 AUUGAAGUCUGAAUGUAAAUU 1286 830 CCUUGUGACAUAUUCAAACCA 1287 831 UCAGCUCCCAGUAGACUUUAA 1288 832 ACAGCACUACAGAAUAGAGAA 1289 833 CUACAAUGUCCAAGAUUCCAU 1290 834 ACUGCUUCAUCCCAGAUCUCA 1291 835 ACCACUUACUCUGUGCUAGGC 1292 836 AGAAUAGAGAACCCAAAUUUU 1293 837 ACUAAGAACAAUAACUUUAAC 1294 838 AUUGUGAGGGUAUGGAAUGAC 1295 839 ACAUCAUUUAUAAAUAAUAUU 1296 840 UUCAAACUGGAAGGUACUAGU 1297 841 ACUCCAAAGGGUGUUAUCUUA 1298 842 UGAGGGUAUGGAAUGACAAUU 1299 843 ACAAUGUCCAAGAUUCCAUCU 1300 844 CUAAGUAGAUGGUACUCUUUU 1301 845 CCAUUUGCAUCUACAGUUGUA 1302 846 AAGAAGCAAGACCAAGUCAAG 1303 847 AGUGGUUGAAUUAGGAGUUUA 1304 848 UAUGUAAUAUUAAAGGCAAGU 1305 849 AAGAUUAUAAAUACACAAACA 1306 850 AAUCUCAGUGAACUAUAAAGA 1307 851 CAACUACCACAUAUUGACCAC 1308 852 ACAAGGGACGUUCUCCAGUAA 1309 853 UGACUCCGUGAUAUAUUCACA 1310 854 CUACCAAGUCAGAGUACCCGA 1311 855 AUGAAACCGGUGGGCUUCUUG 1312 856 UGUGAAGUUCACAAUACAAAA 1313 857 ACUGGAAGGUACUAGUGGUGG 1314 858 UAUUAAGAAGACAUGUUAACA 1315 859 UCUUCACAGCUUGCAUUAUUA 1316 860 ACAUGUUAACAUGCUUAGAUA 1317 861 AAGAUAUGUCAGAAGGACAUC 1318 862 GUUUAAGGCAAGUCUGUCUUA 1319 863 AUUCCUGCUCAUUUAAUUAUU 1320 864 GAAGACAUGUUAACAUGCUUA 1321 865 AAUAUGAAGGGUAAUUGGAAU 1322 866 CAAAUGCUGACUGUCCAACCA 1323 867 UAUAUACAAAGUGCUUUAAAA 1324 868 UAAUGACUCCGUGAUAUAUUC 1325 869 GUCAUUAGAACACAGACCACU 1326 870 AUCCCAUUUAAUGUUUACAGU 1327 871 ACAUCAUCCCAUUUAAUGUUU 1328 872 AUACCUUUACUUUGGGUUUAA 1329 873 GAAUAUUUCUUCAUGCCUGAA 1330 874 GUCUGUCUUACUGUGCUACCA 1331 875 AGUGUUUGAGAAUAGAAAUGU 1332 876 AUCAUCAUGAUGCAAAUAAGA 1333 877 GUAACUCAAGUAUUAGCCCCA 1334 878 GUUGUAUACAUGAUAUAAGGU 1335 879 UCUCACUAAGUAGAUGGUACU 1336 880 UGAUGAAGCUGAAUGCCUAAU 1337 881 UGCGCUCCGACCUAAACCAAG 1338 882 CAGCUUGCAUUAUUACAAGGG 1339 883 UGGAACCCACUGCUUCAUCCC 1340 884 AUAAGUCUAAUAAGAUCAUCU 1341 885 AAAGGGUGUUAUCUUACGAGG 1342 886 AACGUAGAGAUGGUCAAGAAA 1343 887 AGGGUAUGGAAUGACAAUUAG 1344 888 AUUAGCUGGGAAUUUGGAAUG 1345 889 ACUUCUCCAAGUGUUUGAGAA 1346 890 UCAGUGAACUAUAAAGAAAAA 1347 891 UCUUCAGUCAGAUCAAUAAAU 1348 892 UGGUUGAAUUAGGAGUUUAAG 1349 893 AUGGGAUACAUCAUUUAUAAA 1350 894 CCUUAAUUUGAUUUAGGUCUG 1351 895 AUCAAUAAAUGCAUGAGAAUG 1352 896 AUUUGAGAAUCUCCAUCAUAA 1353 897 UUAGCACUACAAUGUCCAAGA 1354 898 AGAGUGUGCCCUUAUUGCUGA 1355 899 UCCCAUAUUUCAAACUGGAAG 1356 900 GACUUUAAACAUUCGACGCGC 1357 901 GAUUGCAGUCCACUCUUGUUU 1358 902 GUCCAUCUCCAUCAAAGUCUG 1359 903 ACUUUAAACAUUCGACGCGCC 1360 904 CUGUGCUACCAAGUCAGAGUA 1361 905 UCCUAUUGAGUAUGGUCAUAU 1362 906 AGUAUAAUUUGCAUCAUUAGA 1363 907 ACCAACGUAGAGAUGGUCAAG 1364 908 ACAUUCGACGCGCCUCUUCAC 1365 909 CAGUUGGUUGCUGUUCAUCCA 1366 910 CUGUCUUACUGUGCUACCAAG 1367 911 AUGCAACACAUUCCACAAAGG 1368 912 AGGACUGGAACCCACUGCUUC 1369 913 UCUCCAAGUGUUUGAGAAUAG 1370 914 UGCUUCAUCCCAGAUCUCACU 1371 915 AAUAUUUCUUCAUGCCUGAAA 1372 916 AGAAAUCAAAUGUUCUUCAUU 1373 917 UCUCCAUCAAAGUCUGCAAAU 1374 918 UCAAUAAAUGCAUGAGAAUGU 1375 919 AUCACAUGAUAAGGAUAAGUU 1376 920 ACAGUCAUUAGAACACAGACC 1377 921 UCUGUCAGCUCCCAGUAGACU 1378 922 CAUUGAAAUCCAUAAUUAGUG 1379 923 CUUUGUAAGUGGUUGAAUUAG 1380 924 AAGGCAAGUCACAUAGCAUCA 1381 925 ACUUUGUAAGUGGUUGAAUUA 1382 926 AAAUAAGAUUAUAAAUACACA 1383 927 AUACAUCAUCCCAUUUAAUGU 1384 928 UAAGGUCCAGGUUGAUUCACU 1385 929 GACCACUAAGAACAAUAACUU 1386 930 CUGUGAUGAAGCUGAAUGCCU 1387 931 UGCUAGGCACCAAGCUAAGCA 1388 932 GUACCCGAUCACUAUAUUGUA 1389 933 CACCGAUGAGAGCUAUAGCAG 1390 934 UCCCAGAUGCUGCCUACAGCA 1391 935 CAGUCAGAUCAAUAAAUGCAU 1392 936 AUGCAUGAGAAUGUGGAAUUC 1393 937 UGUAUACAUGAUAUAAGGUCC 1394 938 UCCAAUAAUUACCAUGGGAUA 1395 939 CAAUAUUACUUGGUGUAAGAU 1396 940 AAAGGCAAGUCACAUAGCAUC 1397 941 AUUGGUAUUUCAGUUGGUUGC 1398 942 UCCUUUCAAGAAAUCAAAUGU 1399 943 GUAUUUCUAUAAUUAGAUGUA 1400 944 UCCAUUAUGUAAUAUUAAAGG 1401 945 AACACUGGAGUACAUGCAACA 1402 946 AAGAUUUGCAUUCCCAGAUGC 1403 947 GUAGACUUUAAACAUUCGACG 1404 948 CCACUAAGAACAAUAACUUUA 1405 949 GAUUCUUGAAAGAUACCUUUA 1406 950 CAAUUAGCUGGGAAUUUGGAA 1407 951 AGUCUAUGUAUUUCUAUAAUU 1408 952 CACGUUGUAUGGUAGUUGGAG 1409 953 UGCCUAAUGACUCCGUGAUAU 1410 954 UGAAACCGGUGGGCUUCUUGU 1411 955 GUUGAUUCACUCCAAAGGGUG 1412 956 AAUUAGAUCACCAUUGAAAUC 1413 957 UGAUAAAUUCCCUCCUAAUAG 1414 958 AUUCACUCCAAAGGGUGUUAU 1415 959 UGAAUACUUUCCAAUAAUUAC 1416 960 AAUGCUGACUGUCCAACCACC 1417 961 AAUGCACUGUGAUUCUUGAAA 1418 962 GAAUUGGUAUUUCAGUUGGUU 1419 963 AUAAUUACCAUGGGAUACAUC 1420 964 AGAUCAAUAAAUGCAUGAGAA 1421 965 GCUGAAAUCUUGUAGGACUGG 1422 966 AUUCAUUUGUGAUACCAAAAA 1423 967 GUUCAAACAAUGACUUUGUAA 1424 968 AUUCCAUUAUGUAAUAUUAAA 1425 969 GUACAUGCAACACAUUCCACA 1426 970 AUUCCCAGAUGCUGCCUACAG 1427 971 AGUCUGAAUGUAAAUUAUAGA 1428 972 CACAGCUUGCAUUAUUACAAG 1429 973 CAAUAUGAAGGGUAAUUGGAA 1430 974 CAUCUCCAUCAAAGUCUGCAA 1431 975 AGUCUAAUAAGAUCAUCUAAA 1432 976 UGCUGUGAUGAAGCUGAAUGC 1433 977 CUUUACUUAGCACUACAAUGU 1434 978 AUGUUAACAUGCUUAGAUACA 1435 979 UGCUUAGAUACAAAGUAAAAA 1436 980 AUGGUCAUAUUGUUAGGAUCU 1437 981 AACAUUCGACGCGCCUCUUCA 1438 982 UACCUUUACUUUGGGUUUAAA 1439 983 GUGAUGAAGCUGAAUGCCUAA 1440 984 AGGGCACAUUAAUUCUUGGAG 1441 985 ACAGCAGUUUCCUUUCAAGAA 1442 986 AUGCUUAGAUACAAAGUAAAA 1443 987 ACUCCGUGAUAUAUUCACAAA 1444 988 UCUUUAUGUCAAUCACCAAAA 1445 989 GAUUGAAGAUUUGCAUUCCCA 1446 990 AUUAGGAGUUUAAGGCAAGUC 1447 991 AAUUUGGAAUGAUUGCAGUCC 1448 992 UCCCAGAUCUCACUAAGUAGA 1449 993 CACUAAGUAGAUGGUACUCUU 1450 994 UGCAUCAUUAGAAUAAGAAGC 1451 995 AGAUGUAUAAGUCUAAUAAGA 1452 996 UUGUGAGGGUAUGGAAUGACA 1453 997 AGUCAGAGUACCCGAUCACUA 1454 998 CUGUGCUAGGCACCAAGCUAA 1455 999 GUAUAAUUUGCAUCAUUAGAA 1456 1000 UAAUUACCAUGGGAUACAUCA 1457 1001 CACAUUAAUUCUUGGAGAGUA 1458 1002 CUUGAAAGAUACCUUUACUUU 1459 1003 CUGCCUACAGCAGUUUCCUUU 1460 1004 AAGACCAAGUCAAGUGGACAC 1461 1005 GGAAUUGGUAUUUCAGUUGGU 1462 1006 CCAUAUUUCAAACUGGAAGGU 1463 1007 GAACAAUAUUACUUGGUGUAA 1464 1008 CAAGUCUAUGUAUUUCUAUAA 1465 1009 AAGAUUCCAUCUUCGUAAAUG 1466 1010 ACAUGAUAAGGAUAAGUUUUU 1467 1011 ACAUACAUCAUCCCAUUUAAU 1468 1012 GACAUGUUAACAUGCUUAGAU 1469 1013 UGGUAGUUGGAGAGCUAAAUG 1470 1014 CUAUAGCAGUAAGCAGAACAA 1471 1015 CUUCAUCCCAGAUCUCACUAA 1472 1016 CUCUGUGCUAGGCACCAAGCU 1473 1017 AAGGUCCAGGUUGAUUCACUC 1474 1018 GACUGGAACCCACUGCUUCAU 1475 1019 AUCACAUGUCCAUUUGCAUAC 1476 1020 CUACAGAAUAGAGAACCCAAA 1477 1021 AAUGACAAUUAGCUGGGAAUU 1478 1022 GUAAAUCUUUAUGUCAAUCAC 1479 1023 GUAUGGUAGUUGGAGAGCUAA 1480 1024 CAUCCUUAAUUUGAUUUAGGU 1481 1025 AUCUUACGAGGACAGUCAUUA 1482 1026 CACAUGAUAAGGAUAAGUUUU

TABLE 5 Results for ABCC4. Score threshold: 70. Design: siRNA 21 nt. SEQ ID siRNA_ siRNA guide strand/ NO id AS Sequence 1483 1 UUAACAGUGAUGACUUCCCUG 1484 2 UUGACAAAUACACAGUUCGAA 1485 3 UUAAGAUCUAGCUUCUCGGUU 1486 4 UAACACUUUAUGAUUGCUCUU 1487 5 UUCACUUUCCUCAUUAUCCUU 1488 6 UUCAAUAUCAGAAUCUGACUU 1489 7 UUAAACCUGAAUAAAUUCCUA 1490 8 UAGAAUACCAAUAGAGAUCUU 1491 9 UGCACUGAGAGGAUCGUCCAG 1492 10 UCAUCUUCCUCUAAUCUCCGU 1493 11 UAUAACUUCAUUCAUGGUCCU 1494 12 UUUGACAAAUACACAGUUCGA 1495 13 AUAACUUCAUUCAUGGUCCUG 1496 14 UUAAAGAAGGCUUCUGUGCGU 1497 15 UGUAAGAACACUGUCACCUGA 1498 16 UAAGAUUUCCAGUAACACUUU 1499 17 UCAUUCAUGGUCCUGAUCCUG 1500 18 UCAGAAUCUGACUUGCAGCUU 1501 19 UACACGGGCAGCAUCUUGCCG 1502 20 AUACAUAUCAUCUUCCUCUAA 1503 21 UGAAGAGUUAACAAGGACGUA 1504 22 UUUGUGAAGAGUUAACAAGGA 1505 23 UCUAUCAAAGAAUAAUACCGG 1506 24 UGAUAUCUCAUCAAGUAGCAA 1507 25 UGACAUUUAGCAUACUUUGUU 1508 26 AAACUUGUUCACAUCAUUGGA 1509 27 UUUACAGUGACAUUUAGCAUA 1510 28 AUUUACAGUGACAUUUAGCAU 1511 29 AAGCACAUAGGCAACAUCUUG 1512 30 UUCUCGGUUACAUUUCCUCCU 1513 31 UAAACCUGAAUAAAUUCCUAA 1514 32 AAUCUUGGAAAUCUCCUUCUU 1515 33 UAUUACUCCUCAGAGUUCCCG 1516 34 UUCCUAUUGGAUUUCUAUCAA 1517 35 AUACCAAUAGAGAUCUUGCUA 1518 36 UUUCCAGUAACACUUUAUGAU 1519 37 UUGCUCUUGUUAAAGAAGGCU 1520 38 UAUCAAAGAAUAAUACCGGAG 1521 39 UGAGGUACUGCAACUGAUGAG 1522 40 UUCCGCAUCUACUGCACUGAG 1523 41 UGAAUACAUAUCAUCUUCCUC 1524 42 AUCACCAUCCUCCAACAGCUG 1525 43 UUGCAACUCCUCUCCAAGGUG 1526 44 UUGUUAAAGAAGGCUUCUGUG 1527 45 UCUUGAUACACUGCUCUUGCA 1528 46 UUUCAGAAUUGACUCAAACAU 1529 47 AGUGAUGAGAACAACUUCCCA 1530 48 UCAAUAUCAGAAUCUGACUUG 1531 49 AAUCUUGAAGCACAUAGGCAA 1532 50 UCUUCCAUGCACGCUGACCAG 1533 51 AAGAUUUCCAGUAACACUUUA 1534 52 UACUGCACUGAGAGGAUCGUC 1535 53 UAAGAUCUAGCUUCUCGGUUA 1536 54 UUAGUGUGGGAGUUCCUGGAA 1537 55 AACACUUUAUGAUUGCUCUUG 1538 56 UACACUGCUCUUGCAAGGUUU 1539 57 AUAUCAGAAUCUGACUUGCAG 1540 58 AUAGAGAUCUUGCUAUGCCAA 1541 59 AAUACAUAUCAUCUUCCUCUA 1542 60 UACACAGUUCGAACAAGUGUC 1543 61 UAUUGGAUUUCUAUCAAAGAA 1544 62 AUCAUCUUCCUCUAAUCUCCG 1545 63 UAGAAGAUUGUUGAGACCAAA 1546 64 UACCAAUAGAGAUCUUGCUAU 1547 65 UUGUGAAGAGUUAACAAGGAC 1548 66 UGCUCUUGCAAGGUUUACCCG 1549 67 AUACUUUGUUUGUUUGCCCAG 1550 68 UUAUACCAGUUAUAACUUCAU 1551 69 UAAAUUCCUAAGUACCAGUUA 1552 70 UUGCCUCUGACACCCUCUCAA 1553 71 UAACUUCCGCAUCUACUGCAC 1554 72 UAUUCCUAUCUCCAUCCAGAG 1555 73 AUACACAGUUCGAACAAGUGU 1556 74 UUACUCCUCAGAGUUCCCGAG 1557 75 AACAAGGACGUAGAAUACCAA 1558 76 UUUAGCAUACUUUGUUUGUUU 1559 77 UCAGCAUCUUGAUACACUGCU 1560 78 UGCAGCUUUGAGGUACUGCAA 1561 79 AGAUUGUUGAGACCAAACCGA 1562 80 UUGAGGUACUGCAACUGAUGA 1563 81 UAUACCAGUUAUAACUUCAUU 1564 82 UUAGCAUACUUUGUUUGUUUG 1565 83 UUCUUUAUCCCAGAACCCUUG 1566 84 AAUACCAAUAGAGAUCUUGCU 1567 85 UUCAGAAUUGACUCAAACAUU 1568 86 UCUGAGGCAGGAACUUCUCAG 1569 87 UGUCACCUGAUCAAACUUGUU 1570 88 UCUUUCAAUAUCAGAAUCUGA 1571 89 UUGGAAAUCUCCUUCUUUCUC 1572 90 UUACAUUUCCUCCUCCAUUUA 1573 91 AUCUUGGAAAUCUCCUUCUUU 1574 92 UUCUAUCAAAGAAUAAUACCG 1575 93 UGCGCUGUGAUAUCUCAUCAA 1576 94 AAGAUUGUUGAGACCAAACCG 1577 95 UUGCAAGGUUUACCCGUGCUU 1578 96 UCCAUUUACAGUGACAUUUAG 1579 97 UGAGACACAUAGGCAAUUCUU 1580 98 UAAGUACCAGUUAAGAUCUAG 1581 99 AUUUAGCAUACUUUGUUUGUU 1582 100 UCUUGUUAAAGAAGGCUUCUG 1583 101 AAUAGAGAUCUUGCUAUGCCA 1584 102 UGUCAGCAUCUUGAUACACUG 1585 103 UACAGUGACAUUUAGCAUACU 1586 104 UGAGCAGAGGUUCGCGUCCUG 1587 105 UGACAGUAAAGGAAAGGCCUU 1588 106 ACAAGUGUCUGCUAACUUCCG 1589 107 AUACACUGCUCUUGCAAGGUU 1590 108 UCACAGUCAGAUCACCAUCCU 1591 109 UUUGAGGUACUGCAACUGAUG 1592 110 ACACAUAGGCAAUUCUUCCAU 1593 111 AUAGAUGUCAGCAUCUUGAUA 1594 112 UUUACCCGUGCUUUCUGCCCU 1595 113 UUCCUGGAACUGGAGGUUGUU 1596 114 AGUCAGAUCACCAUCCUCCAA 1597 115 UUUAUCCCAGAACCCUUGCAA 1598 116 UUCCUAUCUCCAUCCAGAGUA 1599 117 UUCCUCAUUAUCCUUCUUUAA 1600 118 AAUCUGACUUGCAGCUUUGAG 1601 119 CACAGUUCGAACAAGUGUCUG 1602 120 UACCAGUUAAGAUCUAGCUUC 1603 121 AGUUCGAACAAGUGUCUGCUA 1604 122 AAGUGUCUGCUAACUUCCGCA 1605 123 UCUGACUUGCAGCUUUGAGGU 1606 124 UCUCGGUUACAUUUCCUCCUC 1607 125 UUCAUUCAUGGUCCUGAUCCU 1608 126 UACGAUUCCUUAGUGUGGGAG 1609 127 UCCAACAGCUGUAAAUCCUUU 1610 128 UUGUGCAAAGUUUGUGAAGAG 1611 129 AAUAUCAGAAUCUGACUUGCA 1612 130 UCUUCCUCUAAUCUCCGUUUA 1613 131 AUAAGAUUUCCAGUAACACUU 1614 132 AUCCUGCACAUGCACCAUCUU 1615 133 AUCUUUCAAUAUCAGAAUCUG 1616 134 UCCUGCACAUGCACCAUCUUU 1617 135 AACCCUUGCAACUCCUCUCCA 1618 136 UCCUUCUUUCUCAAAUUGGUA 1619 137 UACUAAGACGAAGUGCCUCAA 1620 138 UCACCAUCCUCCAACAGCUGU 1621 139 UGUCUUUGGAGAAACGAUUUA 1622 140 UGUGAUCACACUGCCGAGGAG 1623 141 ACCACAGCUAACAAUUCGCCA 1624 142 UUCACAUCAUUGGACAGCAGA 1625 143 UUCUGCCCUCCACUCAGCGUG 1626 144 UUUAUGAUUGCUCUUGUUAAA 1627 145 ACCAGUUAUAACUUCAUUCAU 1628 146 UCUCCAUCCAGAGUAGGGCAG 1629 147 CAUCUUGAUACACUGCUCUUG 1630 148 UUCAAGGAGGGUCUAGAAGAU 1631 149 UAAAGAAGGCUUCUGUGCGUC 1632 150 UUGAUACACUGCUCUUGCAAG 1633 151 UUUCCUCCUCCAUUUACAGUG 1634 152 AAGUGUCCAAUGUCUUUGGAG 1635 153 UCUGAGAAGGUACGAUUCCUU 1636 154 ACAAAUACACAGUUCGAACAA 1637 155 UCAGAAUCUUGGAAAUCUCCU 1638 156 UUUCUGCCCUCCACUCAGCGU 1639 157 AGUGUCUGCUAACUUCCGCAU 1640 158 UAAAGGAAAGGCCUUGUAGAG 1641 159 UUCUGUGCGUCAUUCUCAGCU 1642 160 UCCUUAGUGUGGGAGUUCCUG 1643 161 CUGACUUGCAGCUUUGAGGUA 1644 162 AACAGUGAUGACUUCCCUGCU 1645 163 UCUAGCUUCUCGGUUACAUUU 1646 164 UCUAGAAGAUUGUUGAGACCA 1647 165 UAACCGUCAGCCGCACAGCCC 1648 166 UUGGACAGCAGAUUGACUAUC 1649 167 UAGGAACUCAGUGUAAGUCCC 1650 168 AUGCACGCUGACCAGCCCGUG 1651 169 AUAUCAUCUUCCUCUAAUCUC 1652 170 UUCCAGUAACACUUUAUGAUU 1653 171 ACUGAGAGGAUCGUCCAGGAG 1654 172 UUACCCGUGCUUUCUGCCCUC 1655 173 UAUCAUCUUCCUCUAAUCUCC 1656 174 CUUAACAGUGAUGACUUCCCU 1657 175 AAAUUCAUCCCUCUGAGGCAG 1658 176 UCCAAGUGUCCAAUGUCUUUG 1659 177 AUGAUUGCUCUUGUUAAAGAA 1660 178 UGUGCGUCAUUCUCAGCUCUU 1661 179 UGAGGCAGGAACUUCUCAGAA 1662 180 UUCACCUCCUGGUACACGGGC 1663 181 UCCAGUAACACUUUAUGAUUG 1664 182 UCAAACUUGUUCACAUCAUUG 1665 183 UAACAGUGAUGACUUCCCUGC 1666 184 UAUCACAGUCAGAUCACCAUC 1667 185 UAGCAUACUUUGUUUGUUUGC 1668 186 AAGACUCUGAGAAGGUACGAU 1669 187 AACUUGUUCACAUCAUUGGAC 1670 188 AGCAUCUUGAUACACUGCUCU 1671 189 UUGCGCUGUGAUAUCUCAUCA 1672 190 UGGAGGUUGUUCACUUUCCUC 1673 191 UAUCUCAUCAAGUAGCAAAAA 1674 192 UGGUGAAGGUCACAAACACGA 1675 193 AAGAGGGUAACCGUCAGCCGC 1676 194 UAUCAGAAUCUGACUUGCAGC 1677 195 ACAUUUAGCAUACUUUGUUUG 1678 196 UAACAAGGACGUAGAAUACCA 1679 197 UUGCAGCUUUGAGGUACUGCA 1680 198 GUUAAGAUCUAGCUUCUCGGU 1681 199 AGGGUCUAGAAGAUUGUUGAG 1682 200 UAACUUCAUUCAUGGUCCUGA 1683 201 AUAAAUUCCUAAGUACCAGUU 1684 202 UUCCUUAGUGUGGGAGUUCCU 1685 203 AGAAUUGACUCAAACAUUUUG 1686 204 UGUUACUAAGACGAAGUGCCU 1687 205 AGUCACUGCAAUCGCCUGCAG 1688 206 AGGAAGUGUAAGAACACUGUC 1689 207 CUUGAUACACUGCUCUUGCAA 1690 208 UCGGUUACAUUUCCUCCUCCA 1691 209 UAGGGCAGUCACUGCAAUCGC 1692 210 UCAAAGAAUAAUACCGGAGCU 1693 211 UUCUUCCUAUUGGAUUUCUAU 1694 212 UCAGAAUUGACUCAAACAUUU 1695 213 UUGUUCACAUCAUUGGACAGC 1696 214 UAUUAUCCUUAUACCAGUUAU 1697 215 UUGAAGCACAUAGGCAACAUC 1698 216 UGCUAACUUCCGCAUCUACUG 1699 217 GUGAUGAGAACAACUUCCCAA 1700 218 UCUCCAAGGUGCUGUGAGCGG 1701 219 UAUCUCCAUCCAGAGUAGGGC 1702 220 UACCAUCUUUCAAUAUCAGAA 1703 221 UCGUCCAGGAGAUAGAUGUCA 1704 222 AUCCAAGUGUCCAAUGUCUUU 1705 223 AGCUUUGAGGUACUGCAACUG 1706 224 AUUGCCUCUGACACCCUCUCA 1707 225 CAGAAUCUUGGAAAUCUCCUU 1708 226 UCUCCUUCUUUCUCAAAUUGG 1709 227 ACUUCUUUAUCCCAGAACCCU 1710 228 ACUUUCCUCAUUAUCCUUCUU 1711 229 UACAUAUCAUCUUCCUCUAAU 1712 230 CUAACUUCCGCAUCUACUGCA 1713 231 UCGGAUGCUGACGAUUGCCUC 1714 232 AAUACACAGUUCGAACAAGUG 1715 233 AAGUUUGUGAAGAGUUAACAA 1716 234 UCAAAUUGGUAAUAAGAUUUG 1717 235 ACUUGCAGCUUUGAGGUACUG 1718 236 UUGCAAGGGCAGGAGAAUGAU 1719 237 GAUAUUCCUAUCUCCAUCCAG 1720 238 UCCUAUUGGAUUUCUAUCAAA 1721 239 UGGUACACGGGCAGCAUCUUG 1722 240 ACUGUCACCUGAUCAAACUUG 1723 241 UGGAAAUCUCCUUCUUUCUCA 1724 242 AGUUAAGAUCUAGCUUCUCGG 1725 243 AUUUCCAGUAACACUUUAUGA 1726 244 AUCAGAAUCUGACUUGCAGCU 1727 245 AAGAAGGCUUCUGUGCGUCAU 1728 246 ACCCUUGCAACUCCUCUCCAA 1729 247 UGACCAGCCCGUGACUUGGGG 1730 248 CUAAGUACCAGUUAAGAUCUA 1731 249 UUCCCGAGAACACCCAGGGCU 1732 250 UACUUUGUUUGUUUGCCCAGU 1733 251 AAUUCUUCCAUGCACGCUGAC 1734 252 UCAGUGAUGAGAACAACUUCC 1735 253 AUGACUUCCCUGCUCCCACGG 1736 254 AUUCUUCCUAUUGGAUUUCUA 1737 255 UUUCCUCAUUAUCCUUCUUUA 1738 256 UACCGGAGCUUUCAGAAUUGA 1739 257 AUAGGCAAUUCUUCCAUGCAC 1740 258 UUUCAAUAUCAGAAUCUGACU 1741 259 AGUUAUAACUUCAUUCAUGGU 1742 260 UUCGGAUGCUGACGAUUGCCU 1743 261 CAAGUGUCUGCUAACUUCCGC 1744 262 UCUGCUAACUUCCGCAUCUAC 1745 263 UGGGAGUUCCUGGAACUGGAG 1746 264 CUAUCAAAGAAUAAUACCGGA 1747 265 ACUUCCGCAUCUACUGCACUG 1748 266 UUCUCAAAUUGGUAAUAAGAU 1749 267 AUUGUUGAGACCAAACCGAAG 1750 268 CAAUCUUGAAGCACAUAGGCA 1751 269 UGUCCGCUCGGCUGGAGCCUG 1752 270 AGGAGGGUCUAGAAGAUUGUU 1753 271 UGCUCUUGUUAAAGAAGGCUU 1754 272 UUUGUUUGUUUGCCCAGUAUG 1755 273 UUCCUAAGUACCAGUUAAGAU 1756 274 UCUCCUAUCACAGUCAGAUCA 1757 275 UCACAUCAUUGGACAGCAGAU 1758 276 UACCAGUUAUAACUUCAUUCA 1759 277 UUACAGUGACAUUUAGCAUAC 1760 278 UGACUUCCCUGCUCCCACGGG 1761 279 UAGCUUCUCGGUUACAUUUCC 1762 280 AAAUUGGUAAUAAGAUUUGAA 1763 281 ACAGUGACAUUUAGCAUACUU 1764 282 CAAGUGUCCAAUGUCUUUGGA 1765 283 AGAGUUAACAAGGACGUAGAA 1766 284 GUACCAGUUAAGAUCUAGCUU 1767 285 AUUGGACAGCAGAUUGACUAU 1768 286 AGAAUCUGACUUGCAGCUUUG 1769 287 UGGAUUUCUAUCAAAGAAUAA 1770 288 AGAAUACCAAUAGAGAUCUUG 1771 289 UGAAUAAAUUCCUAAGUACCA 1772 290 AUCAAACUUGUUCACAUCAUU 1773 291 AUCAUUGGACAGCAGAUUGAC 1774 292 UCAGCGGCAGCAAAUCAUCCA 1775 293 AGUGACAUUUAGCAUACUUUG 1776 294 CACUUUAUGAUUGCUCUUGUU 1777 295 UAGAUGUCAGCAUCUUGAUAC 1778 296 CAUCUUCCUCUAAUCUCCGUU 1779 297 CUGAAUACAUAUCAUCUUCCU 1780 298 ACAGUGAUGACUUCCCUGCUC 1781 299 UUAUCCUUAUACCAGUUAUAA 1782 300 UCCUUAUACCAGUUAUAACUU 1783 301 UGUUGUGCAAAGUUUGUGAAG 1784 302 UGACUUGCAGCUUUGAGGUAC 1785 303 ACUGCAACUGAUGAGUCACUA 1786 304 ACACGGGCAGCAUCUUGCCGG 1787 305 UGUUUGUUUGCCCAGUAUGAA 1788 306 AUUUGACAAAUACACAGUUCG 1789 307 UUCGCGUCCUGCAGCGGGUUG 1790 308 UUAUGAUUGCUCUUGUUAAAG 1791 309 UCUGUGCGUCAUUCUCAGCUC 1792 310 AAGGUCACAAACACGAUGAUU 1793 311 UUCCUCCUCCAUUUACAGUGA 1794 312 UCUCAGAAUCUUGGAAAUCUC 1795 313 UGAUACACUGCUCUUGCAAGG 1796 314 UUGUUGAGACCAAACCGAAGA 1797 315 AUUGUGAUCUUCUCAUGCAAA 1798 316 AGAGUUCCCGAGAACACCCAG 1799 317 ACAGGAAGUGUAAGAACACUG 1800 318 AAGAACACUGUCACCUGAUCA 1801 319 UUACUAAGACGAAGUGCCUCA 1802 320 AUCUCCUUCUUUCUCAAAUUG 1803 321 ACACAGUUCGAACAAGUGUCU 1804 322 AUCUUCCUCUAAUCUCCGUUU 1805 323 UCACCUGAUCAAACUUGUUCA 1806 324 UACUGCAACUGAUGAGUCACU 1807 325 UCAAGGAGGGUCUAGAAGAUU 1808 326 UGAGAGGAUCGUCCAGGAGAU 1809 327 AGUGUAAGAACACUGUCACCU 1810 328 UCCUCCUCCAUUUACAGUGAC 1811 329 UAGCUACAGUUAAACCUGAAU 1812 330 UGAGAAGGUACGAUUCCUUAG 1813 331 UUCUUUCUCAAAUUGGUAAUA 1814 332 UCCAGAGUAGGGCAGUCACUG 1815 333 AAAGGCCUUGUAGAGUUGGGG 1816 334 UUAACAAGGACGUAGAAUACC 1817 335 UUGGAUUUCUAUCAAAGAAUA 1818 336 UGCUUUCUGCCCUCCACUCAG 1819 337 UUGUUUGUUUGCCCAGUAUGA 1820 338 UUCAUCCCUCUGAGGCAGGAA 1821 339 AGAAUCUUGGAAAUCUCCUUC 1822 340 UACCAUCUGACGGCAGCUGAC 1823 341 AUUACUCCUCAGAGUUCCCGA 1824 342 GAGAAUGAUUAGAACUGCCAU 1825 343 ACGUAGAAUACCAAUAGAGAU 1826 344 UUGUGAUCUUCUCAUGCAAAA 1827 345 UACAUUUCCUCCUCCAUUUAC 1828 346 UGAUCAAACUUGUUCACAUCA 1829 347 GAACUUCUCAGAAUCUUGGAA 1830 348 UUCCUCUAAUCUCCGUUUAUG 1831 349 UAGGCAAUUCUUCCAUGCACG 1832 350 UGUGGGAGUUCCUGGAACUGG 1833 351 AUCUCCAUCCAGAGUAGGGCA 1834 352 AUUCCUAUCUCCAUCCAGAGU 1835 353 UGAAGGUCACAAACACGAUGA 1836 354 UCACUUUCCUCAUUAUCCUUC 1837 355 AAGUGUAAGAACACUGUCACC 1838 356 AGAACACUGUCACCUGAUCAA 1839 357 AACUUCAUUCAUGGUCCUGAU 1840 358 AAGGUUUACCCGUGCUUUCUG 1841 359 UCACUGCAAUCGCCUGCAGUG 1842 360 UCGCCUGCAGUGGUCCUGCCC 1843 361 UCCGCAUCUACUGCACUGAGA 1844 362 UGAGACCAAACCGAAGACUCU 1845 363 UCUUUCAAGGAGGGUCUAGAA 1846 364 AGCUUCUCGGUUACAUUUCCU 1847 365 AACAAGUGUCUGCUAACUUCC 1848 366 GUGUAAGAACACUGUCACCUG 1849 367 CUUUGAGGUACUGCAACUGAU 1850 368 UGAAGCACAUAGGCAACAUCU 1851 369 UUCUUCCAUGCACGCUGACCA 1852 370 AAUAAUACCGGAGCUUUCAGA 1853 371 CAGAUCACCAUCCUCCAACAG 1854 372 UUGAGACCAAACCGAAGACUC 1855 373 AAGAUCUAGCUUCUCGGUUAC 1856 374 AGGAACUUCUCAGAAUCUUGG 1857 375 UCAUCCAAGUGUCCAAUGUCU 1858 376 AUGUCUUUGGAGAAACGAUUU 1859 377 AGGAACUCAGUGUAAGUCCCC 1860 378 CAAAGAAUAAUACCGGAGCUU 1861 379 UGGAACUGGAGGUUGUUCACU 1862 380 AGCACAUAGGCAACAUCUUGG 1863 381 ACGAUUGCCUCUGACACCCUC 1864 382 UGAUGAGAACAACUUCCCAAA 1865 383 UUGGUAAUAAGAUUUGAAAAU 1866 384 UAAUACCGGAGCUUUCAGAAU 1867 385 CAAUCGCCUGCAGUGGUCCUG 1868 386 UGCAAAGUUUGUGAAGAGUUA 1869 387 AAGAACACGCGUGAGCAGAGG 1870 388 UCCUAUCUCCAUCCAGAGUAG 1871 389 AACUUCCGCAUCUACUGCACU 1872 390 AGAAGGUACGAUUCCUUAGUG 1873 391 UGCAACUGAUGAGUCACUAAA 1874 392 UGUCUGCUAACUUCCGCAUCU 1875 393 UCACACUGCCGAGGAGCACGU 1876 394 AUGCUGACGAUUGCCUCUGAC 1877 395 GUCUGCUAACUUCCGCAUCUA 1878 396 CAUACUUUGUUUGUUUGCCCA 1879 397 AGUAACACUUUAUGAUUGCUC 1880 398 GAAUAAAUUCCUAAGUACCAG 1881 399 UCUGGAUUCUUCGGAUGCUGA 1882 400 GACAGCAGAUUGACUAUCUGG 1883 401 CUCCAGAGCACCAUCUUUCAA 1884 402 CAGAAGAACACGCGUGAGCAG 1885 403 GUUCACAUCAUUGGACAGCAG 1886 404 UCUCAAAUUGGUAAUAAGAUU 1887 405 UCUGACGGCAGCUGACGGUUG 1888 406 UUGUUCACUUUCCUCAUUAUC 1889 407 AGCACGGCACUUAACAGUGAU 1890 408 GUAGCUACAGUUAAACCUGAA 1891 409 UUUGCCCAGUAUGAAAGCCAC 1892 410 UGGUCCUGCCCACAGGAAGUG 1893 411 AGUUUGUGAAGAGUUAACAAG 1894 412 GAUUGUUGAGACCAAACCGAA 1895 413 CCACAGCUAACAAUUCGCCAG 1896 414 AUCCCUCUGAGGCAGGAACUU 1897 415 CACAGUCAGAUCACCAUCCUC 1898 416 AACUCCUCUCCAAGGUGCUGU 1899 417 UCGAACAAGUGUCUGCUAACU 1900 418 UCUGACAGUAAAGGAAAGGCC 1901 419 UUGGGCUUCACCUCCUGGUAC 1902 420 AUUCUUCGGAUGCUGACGAUU 1903 421 GCACUGAAUACAUAUCAUCUU 1904 422 UAAGACGAAGUGCCUCAAUUA 1905 423 AAUGUCUUUGGAGAAACGAUU 1906 424 CUUGUUCACAUCAUUGGACAG 1907 425 AUCAUCCAAGUGUCCAAUGUC 1908 426 UAAGAACACUGUCACCUGAUC 1909 427 AUCUGACGGCAGCUGACGGUU 1910 428 AGGAUCGUCCAGGAGAUAGAU 1911 429 CAGAAUCUGACUUGCAGCUUU 1912 430 AGCACAAGCCUUUAUGACUUU 1913 431 GAGCUUUCAGAAUUGACUCAA 1914 432 AUCCGUGAAAGUUGCAGUUUU 1915 433 UCCAGGAGAUAGAUGUCAGCA 1916 434 ACACUUUAUGAUUGCUCUUGU 1917 435 UGCAAGGUUUACCCGUGCUUU 1918 436 UGGACCUCAAGCAGGGAUGCU 1919 437 AAAUUCCUAAGUACCAGUUAA 1920 438 GAGACCAAACCGAAGACUCUG 1921 439 ACUUUAUGAUUGCUCUUGUUA 1922 440 UCCUCUCCAAGGUGCUGUGAG 1923 441 AGGUUCGCGUCCUGCAGCGGG 1924 442 UACAGUUAAACCUGAAUAAAU 1925 443 CAGAGCACCAUCUUUCAAGGA 1926 444 ACGGUAGCUACAGUUAAACCU 1927 445 AAGGUACGAUUCCUUAGUGUG 1928 446 AACUUCUCAGAAUCUUGGAAA 1929 447 CUCAGUGAUGAGAACAACUUC 1930 448 CACACUGCCGAGGAGCACGUA 1931 449 AUCUGACUUGCAGCUUUGAGG 1932 450 GAUUCUUCGGAUGCUGACGAU 1933 451 ACUGCAAUCGCCUGCAGUGGU 1934 452 UCCUCCAUUUACAGUGACAUU 1935 453 CAACUCCUCUCCAAGGUGCUG 1936 454 UUCUUCGGAUGCUGACGAUUG 1937 455 AAACCGAAGACUCUGAGAAGG 1938 456 CAGCAUCUUGAUACACUGCUC 1939 457 UCUCCAGAGCACCAUCUUUCA 1940 458 CAAACUUGUUCACAUCAUUGG 1941 459 AGAGUAGGGCAGUCACUGCAA 1942 460 UCUUGGAAAUCUCCUUCUUUC 1943 461 UUUCUAUCAAAGAAUAAUACC 1944 462 UCACCUCCUGGUACACGGGCA 1945 463 AUCUACUGCACUGAGAGGAUC 1946 464 UCCGCUCGGCUGGAGCCUGUG 1947 465 AUCUUGAUACACUGCUCUUGC 1948 466 GUUCGAACAAGUGUCUGCUAA 1949 467 AUUUCCUCCUCCAUUUACAGU 1950 468 UCUUGAAGCACAUAGGCAACA 1951 469 UCCGUGAAAGUUGCAGUUUUA 1952 470 UGACGGCAGCUGACGGUUGCG 1953 471 UCCUGGACCUCAAGCAGGGAU 1954 472 CAUCUGACGGCAGCUGACGGU 1955 473 AAGGAGGGUCUAGAAGAUUGU 1956 474 CUUCUUUAUCCCAGAACCCUU 1957 475 UCCAGAGCACCAUCUUUCAAG 1958 476 ACCGAAGACUCUGAGAAGGUA 1959 477 AAUCAUCCAAGUGUCCAAUGU 1960 478 AAUAAGAUUUCCAGUAACACU 1961 479 CUAGAAGAUUGUUGAGACCAA 1962 480 AAGGACGUAGAAUACCAAUAG 1963 481 UCUUUCUCAAAUUGGUAAUAA 1964 482 UCUCUGAUGCCUUAUCCCAAA 1965 483 UCCAUGCACGCUGACCAGCCC 1966 484 AUUGCUCUUGUUAAAGAAGGC 1967 485 GGAACUUCUCAGAAUCUUGGA 1968 486 UGCGUCAUUCUCAGCUCUUAA 1969 487 UUUCUCAAAUUGGUAAUAAGA 1970 488 AUCGUCCAGGAGAUAGAUGUC 1971 489 UGCAGUGGUCCUGCCCACAGG 1972 490 GUCUGGAUUCUUCGGAUGCUG 1973 491 UGACGAUUGCCUCUGACACCC 1974 492 AAUAAAUUCCUAAGUACCAGU 1975 493 AGCACCAUCUUUCAAGGAGGG 1976 494 GUAAGAACACUGUCACCUGAU 1977 495 UCUUGCAAGGUUUACCCGUGC 1978 496 AGGUUGUUCACUUUCCUCAUU 1979 497 GCAUCUUGAUACACUGCUCUU 1980 498 ACAGUUCGAACAAGUGUCUGC 1981 499 AGCAAAUCAUCCAAGUGUCCA 1982 500 UAGGUGGUGAAGGUCACAAAC 1983 501 CAGAGUUCCCGAGAACACCCA 1984 502 UGUUGAGACCAAACCGAAGAC 1985 503 ACCAAUAGAGAUCUUGCUAUG 1986 504 CAGUUCGAACAAGUGUCUGCU 1987 505 AAAGAAUAAUACCGGAGCUUU 1988 506 UGGAUUCUUCGGAUGCUGACG 1989 507 AUCUAGCUUCUCGGUUACAUU 1990 508 AUAAUACCGGAGCUUUCAGAA 1991 509 GUGACAUUUAGCAUACUUUGU 1992 510 UCAUUGGACAGCAGAUUGACU 1993 511 CUGCACUGAGAGGAUCGUCCA 1994 512 UAUGAUUGCUCUUGUUAAAGA 1995 513 AUCUUGAAGCACAUAGGCAAC 1996 514 UCUACUGCACUGAGAGGAUCG 1997 515 UGUCCAAUGUCUUUGGAGAAA 1998 516 AGUACCAGUUAAGAUCUAGCU 1999 517 CUUAGUGUGGGAGUUCCUGGA 2000 518 UGAUUGCUCUUGUUAAAGAAG 2001 519 CAAAUUGGUAAUAAGAUUUGA 2002 520 GAUAGAUGUCAGCAUCUUGAU 2003 521 UACUCCUCAGAGUUCCCGAGA 2004 522 UCUUCGGAUGCUGACGAUUGC 2005 523 GAAGCACAUAGGCAACAUCUU 2006 524 GAAGACUCUGAGAAGGUACGA 2007 525 CUGUGCGUCAUUCUCAGCUCU 2008 526 AGAGCACCAUCUUUCAAGGAG 2009 527 GACAUUUAGCAUACUUUGUUU 2010 528 CUGCCGAGGAGCACGUAGGUG 2011 529 CUCCAACAGCUGUAAAUCCUU 2012 530 AUUGGUAAUAAGAUUUGAAAA 2013 531 CAGAAUUGACUCAAACAUUUU 2014 532 CUAUCACAGUCAGAUCACCAU 2015 533 CUGUGAUAUCUCAUCAAGUAG 2016 534 AGAUAGAUGUCAGCAUCUUGA 2017 535 AUUAUCCUUAUACCAGUUAUA 2018 536 AGAACCCUUGCAACUCCUCUC 2019 537 AUACCGGAGCUUUCAGAAUUG 2020 538 ACGCGUGAGCAGAGGUUCGCG 2021 539 ACAAGGACGUAGAAUACCAAU 2022 540 GUGAAGGUCACAAACACGAUG 2023 541 AAGGCCUUGUAGAGUUGGGGU 2024 542 AACCGUCAGCCGCACAGCCCC 2025 543 GAGAUAGAUGUCAGCAUCUUG 2026 544 AAACCUGAAUAAAUUCCUAAG 2027 545 ACGAAGUGCCUCAAUUAACGU 2028 546 UCGUAUUUCUUCCCAAAUAAA 2029 547 UCGCGCUGAUCAGGCGGCGGU 2030 548 UGCUGAGACACAUAGGCAAUU 2031 549 AGAGGGUAACCGUCAGCCGCA 2032 550 GAUCAAACUUGUUCACAUCAU 2033 551 UGUGCAAAGUUUGUGAAGAGU 2034 552 CAGCAAGGCACGAUAUUCCUA 2035 553 UUAUAACUUCAUUCAUGGUCC 2036 554 UUCGAACAAGUGUCUGCUAAC 2037 555 UUUCAAGGAGGGUCUAGAAGA 2038 556 ACAGCUUUGCAAGGGCAGGAG 2039 557 GUGAUGACUUCCCUGCUCCCA 2040 558 UAGUGUGGGAGUUCCUGGAAC 2041 559 UGUGAAGAGUUAACAAGGACG 2042 560 CAAAUACACAGUUCGAACAAG 2043 561 AUACCAGUUAUAACUUCAUUC 2044 562 AUAUUCCUAUCUCCAUCCAGA 2045 563 AAGAAGAGGGUAACCGUCAGC 2046 564 UGCAACUCCUCUCCAAGGUGC 2047 565 GUUACUAAGACGAAGUGCCUC 2048 566 ACGCCUGUCCGCUCGGCUGGA 2049 567 CAUCCAAGUGUCCAAUGUCUU 2050 568 ACCGUCAGCCGCACAGCCCCA 2051 569 CAUUGGACAGCAGAUUGACUA 2052 570 UGUUCACAUCAUUGGACAGCA 2053 571 ACCUGAAUAAAUUCCUAAGUA 2054 572 AUUGGAUUUCUAUCAAAGAAU 2055 573 UUUGUUUGCCCAGUAUGAAAG 2056 574 CAAGGUGCUGUGAGCGGUCUU 2057 575 AACUGGAGGUUGUUCACUUUC 2058 576 GUGCUGUGAGCGGUCUUCUGG 2059 577 CUACUGCACUGAGAGGAUCGU 2060 578 UCCCGAGAACACCCAGGGCUG 2061 579 AACCGAAGACUCUGAGAAGGU 2062 580 AAAUACACAGUUCGAACAAGU 2063 581 UUCUCAGAAUCUUGGAAAUCU 2064 582 AUUCAUCCCUCUGAGGCAGGA 2065 583 ACCUCAAGCAGGGAUGCUGGG 2066 584 GACACAUAGGCAAUUCUUCCA 2067 585 UCAGAGCACAAGCCUUUAUGA 2068 586 ACUAAAUAAGAUUUCCAGUAA 2069 587 AGUUCCUGGAACUGGAGGUUG 2070 588 CAGAGUAGGGCAGUCACUGCA 2071 589 GUCUCUGAUGCCUUAUCCCAA 2072 590 CAUCUUUCAAGGAGGGUCUAG 2073 591 CCAUCUUUCAAGGAGGGUCUA 2074 592 UACUCCUCAGUGAUGAGAACA 2075 593 AACCUGAAUAAAUUCCUAAGU 2076 594 AUUUCUAUCAAAGAAUAAUAC 2077 595 CGGUAGCUACAGUUAAACCUG 2078 596 GAAGAAGAGGGUAACCGUCAG 2079 597 UCCAAGGUGCUGUGAGCGGUC 2080 598 UGUUAAAGAAGGCUUCUGUGC 2081 599 ACGCUGACCAGCCCGUGACUU 2082 600 AAGACGAAGUGCCUCAAUUAA 2083 601 AGGACGUAGAAUACCAAUAGA 2084 602 UAUCCUUAUACCAGUUAUAAC 2085 603 GCUGCUGAGACACAUAGGCAA 2086 604 CACCUGAUCAAACUUGUUCAC 2087 605 GAGGUUCGCGUCCUGCAGCGG 2088 606 UGUGAUAUCUCAUCAAGUAGC 2089 607 CACUGUCACCUGAUCAAACUU 2090 608 CUUUCCUCAUUAUCCUUCUUU 2091 609 UCCACUCAGCGUGGUUCCCCG 2092 610 AGAGGUUCGCGUCCUGCAGCG 2093 611 CUUCCGCAUCUACUGCACUGA 2094 612 GUCACAAACACGAUGAUUUUG 2095 613 CCAAUCUUGAAGCACAUAGGC 2096 614 CACUGAAUACAUAUCAUCUUC 2097 615 ACCAGUUAAGAUCUAGCUUCU 2098 616 AGGGCAGUCACUGCAAUCGCC 2099 617 AAAUAAGAUUUCCAGUAACAC 2100 618 AGCACGUAGGUGGUGAAGGUC 2101 619 GAAUCUGACUUGCAGCUUUGA 2102 620 GUCAGCAUCUUGAUACACUGC 2103 621 AAGAAUAAUACCGGAGCUUUC 2104 622 AGAUUUCCAGUAACACUUUAU 2105 623 ACAUCAUUGGACAGCAGAUUG 2106 624 UCCUCUAAUCUCCGUUUAUGG 2107 625 AGACCAAACCGAAGACUCUGA 2108 626 CUUCACCUCCUGGUACACGGG 2109 627 UUUGGAGAAACGAUUUAAAAU 2110 628 UCGCGUCCUGCAGCGGGUUGG 2111 629 ACUGCCGAGGAGCACGUAGGU 2112 630 AGGUACGAUUCCUUAGUGUGG 2113 631 CUUGCAACUCCUCUCCAAGGU 2114 632 UCUUUAUCCCAGAACCCUUGC 2115 633 GAAGUGUAAGAACACUGUCAC 2116 634 CUGGAGGUUGUUCACUUUCCU 2117 635 UAUCCCAGAACCCUUGCAACU 2118 636 GGUAGCUACAGUUAAACCUGA 2119 637 AUGUCAGCAUCUUGAUACACU 2120 638 CCAGUUAAGAUCUAGCUUCUC 2121 639 CUCCAAGGUGCUGUGAGCGGU 2122 640 CAGUAACACUUUAUGAUUGCU 2123 641 AUCCAGAGUAGGGCAGUCACU 2124 642 GUGAAGAGUUAACAAGGACGU 2125 643 GGACAGCAGAUUGACUAUCUG 2126 644 GUGAGCAGAGGUUCGCGUCCU 2127 645 CUCUGAGGCAGGAACUUCUCA 2128 646 CAAUUCUUCCAUGCACGCUGA 2129 647 GAAGGUCACAAACACGAUGAU 2130 648 AGGAGAAUGAUUAGAACUGCC 2131 649 CAGGAAGUGUAAGAACACUGU 2132 650 AGAAGAACACGCGUGAGCAGA 2133 651 GAACUGGAGGUUGUUCACUUU 2134 652 CGAAGUGCCUCAAUUAACGUA 2135 653 ACCAUCCUCCAACAGCUGUAA 2136 654 CAUCCGUGAAAGUUGCAGUUU 2137 655 AUCGCCUGCAGUGGUCCUGCC 2138 656 CCGAGGAGCACGUAGGUGGUG 2139 657 CUGCACAUGCACCAUCUUUUU 2140 658 ACUUUGUUUGUUUGCCCAGUA 2141 659 GAUGUCAGCAUCUUGAUACAC 2142 660 GAGGUUGUUCACUUUCCUCAU 2143 661 UUAUCCCAGAACCCUUGCAAC 2144 662 AAUUGGUAAUAAGAUUUGAAA 2145 663 UCCUAUCACAGUCAGAUCACC 2146 664 CUGACAGUAAAGGAAAGGCCU 2147 665 CAUCAUUGGACAGCAGAUUGA 2148 666 ACCAAUCUUGAAGCACAUAGG 2149 667 AGAUCUAGCUUCUCGGUUACA 2150 668 UACCCGUGCUUUCUGCCCUCC 2151 669 CUGUCCGCUCGGCUGGAGCCU 2152 670 AAGGUGCUGUGAGCGGUCUUC 2153 671 AAUUCCUAAGUACCAGUUAAG 2154 672 ACUGAAUACAUAUCAUCUUCC 2155 673 GCUCUUGCAAGGUUUACCCGU 2156 674 GAAUACAUAUCAUCUUCCUCU 2157 675 UCUGCCCUCCACUCAGCGUGG 2158 676 UCUUCCUAUUGGAUUUCUAUC 2159 677 UGGACAGCAGAUUGACUAUCU 2160 678 CAAUGUCUUUGGAGAAACGAU 2161 679 UUCCAUGCACGCUGACCAGCC 2162 680 AGAACACCCAGGGCUGCUGAG 2163 681 UGUGAUCUUCUCAUGCAAAAU 2164 682 ACGGGCAGCAUCUUGCCGGGC 2165 683 GAACAAGUGUCUGCUAACUUC 2166 684 UGCCUCUGACACCCUCUCAAU 2167 685 CCAUGCACGCUGACCAGCCCG 2168 686 AAGGAAAGGCCUUGUAGAGUU 2169 687 CACCAUCCUCCAACAGCUGUA 2170 688 CGAACAAGUGUCUGCUAACUU 2171 689 GAAGAGGGUAACCGUCAGCCG 2172 690 ACUCCUCUCCAAGGUGCUGUG 2173 691 GAAUCUUGGAAAUCUCCUUCU 2174 692 CAGCGGCAGCAAAUCAUCCAA 2175 693 AAGGGCAGGAGAAUGAUUAGA 2176 694 AUAUCUCAUCAAGUAGCAAAA 2177 695 UUUGCAAGGGCAGGAGAAUGA 2178 696 AAAUCAUCCAAGUGUCCAAUG 2179 697 CGAUAUUCCUAUCUCCAUCCA 2180 698 UAAAUAAGAUUUCCAGUAACA 2181 699 CUUGAAGCACAUAGGCAACAU 2182 700 AGGAAAGGCCUUGUAGAGUUG 2183 701 UGCACGCUGACCAGCCCGUGA 2184 702 UCCCUCUGAGGCAGGAACUUC 2185 703 ACACUGCUCUUGCAAGGUUUA 2186 704 CAGGAGAAUGAUUAGAACUGC 2187 705 CACAUAGGCAAUUCUUCCAUG 2188 706 GCAUCUACUGCACUGAGAGGA 2189 707 CACUGCAAUCGCCUGCAGUGG 2190 708 GAACACUGUCACCUGAUCAAA 2191 709 AAGGCUUCUGUGCGUCAUUCU 2192 710 GUGUCCAAUGUCUUUGGAGAA 2193 711 AUCCCAGAACCCUUGCAACUC 2194 712 UCAGAGUUCCCGAGAACACCC 2195 713 CCAAUGUCUUUGGAGAAACGA 2196 714 ACGUCAGCGGCAGCAAAUCAU 2197 715 AGAACGGUAGCUACAGUUAAA 2198 716 GACCAAACCGAAGACUCUGAG 2199 717 GAACACGCGUGAGCAGAGGUU 2200 718 CUCUUGCAAGGUUUACCCGUG 2201 719 CAGUGAUGAGAACAACUUCCC 2202 720 AACACGCGUGAGCAGAGGUUC 2203 721 GUGAUAUCUCAUCAAGUAGCA 2204 722 GCAGGAACUUCUCAGAAUCUU 2205 723 CUUUAUCCCAGAACCCUUGCA 2206 724 ACCAUCUUUCAAUAUCAGAAU 2207 725 ACCUGAUCAAACUUGUUCACA 2208 726 AAUACCGGAGCUUUCAGAAUU

TABLE 6 Results for PAK3. Score threshold: 70. Design: siRNA 21 nt. SEQ ID siRNA_ siRNA guide strand/ NO id AS Sequence 2209 1 UAUAUCUCUAUGGAUCACCUG 2210 2 UUAUCUUGCAAGUUCAACCCA 2211 3 UUAGGUAUCAUUAUCUUUGUU 2212 4 UAAUGUAUCUAUUUCCUCCUG 2213 5 UAAUUUGUCAACAUUUCUCAA 2214 6 UUUACAAUGACACACACACGA 2215 7 UUCUGUAUUGAGAAUGACCAA 2216 8 AUUAAGGAGAUUAACAACCUG 2217 9 UCUAAUAGUGACAUCUCCCUA 2218 10 UUAAUAUUAAACACAUUCCCA 2219 11 UUACAAUGACACACACACGAG 2220 12 UAAAUAAUCUCUACUGUGCUU 2221 13 UUAACUGAAUAUUAACUGCAA 2222 14 UUCAUUAAUAAUUAAUUCCUU 2223 15 UUCUCUACUAUCGCUGUUGAU 2224 16 ACAACUACUGCAAACAACCUA 2225 17 UUGAGUGCUGAAGAAUCCCGG 2226 18 UAAUAUUAAACACAUUCCCAA 2227 19 AUGAUAUACAGUAAUAUCCUG 2228 20 UAUCUUGCAAGUUCAACCCAA 2229 21 UCAUUCUCUACUAUCGCUGUU 2230 22 UUCAGAACCUGAACUCACCUA 2231 23 UUCCUGAACACACAUAUUCCU 2232 24 UAUACAGACAACAGGAAGCAA 2233 25 UUAUGGGAUAGCAUUUGCCUG 2234 26 UUGCUGUUGAAGGUUCAUCUG 2235 27 UUUACAGAUAACACAUUCUGA 2236 28 UAUAGAAUCUCUCAGAACUGG 2237 29 UUAGAGAAACAACUUUCUGUA 2238 30 UAAGUGUUUAGGUUCACUCUU 2239 31 UGAUAUUAUAGAAUCUCUCAG 2240 32 UUAAUAAUUAAUUCCUUCUUG 2241 33 UAUUAUUAUCAAAUCUUGGUA 2242 34 UACUAUAUCACCUUUCUCUAG 2243 35 UUGAGUUAAAUCUUCUUACAU 2244 36 UAGAAUACUCGUACACACAGG 2245 37 UUUACAUACAGACUGUAUGGA 2246 38 UAUUAUGAACUUCAUUUGCUU 2247 39 UUUGGUUAGAUGGUCUCCCUU 2248 40 UUUGCAAUACUUUAGGUCCAA 2249 41 UUCUAAUAGUGACAUCUCCCU 2250 42 UUAUAGAAUCUCUCAGAACUG 2251 43 UUUCUUACAGAGUUGAAUGUU 2252 44 UAAGGCUUGCAGUCUUAGCGG 2253 45 UAUAGUUUGCUGAAACUCUAA 2254 46 UUGCCUAGCGUCACAUAGCAA 2255 47 UAACUUAUAGAUAAUAGUCUC 2256 48 UUAUAGAUAAUAGUCUCCUAA 2257 49 AUUAACAGAACUAUAACUGAA 2258 50 UAAAUAAAUAAUCUCUACUGU 2259 51 UAAAUUACAUAAUCUGAGGGA 2260 52 AAGUUGUAUAGAAUACUCGUA 2261 53 UUUAAUAUUAAACACAUUCCC 2262 54 UAGAGAAACAACUUUCUGUAA 2263 55 UAUAAUUAUUUACACGAUCUU 2264 56 UGUAACUAGCAAAUAUCUCUG 2265 57 UAGACAAAUAUCUCAAACUAU 2266 58 AUUUACACGAUCUUUGAGCUG 2267 59 AUAAUUAACAAUAUUAGGGUU 2268 60 UUGUUGACUGUUUCUUUGGAA 2269 61 UUGGGUACUAAAUCUGUUGAA 2270 62 UUAAUUUGUCAACAUUUCUCA 2271 63 UCUACUGUGCUUCUCACCCUU 2272 64 UAUAUUAUUAUCAAAUCUUGG 2273 65 UAAUUUAGGUAUCAUUAUCUU 2274 66 UUACUAUUCAUCCUCAGUGGA 2275 67 UUAAGGAGAUUAACAACCUGG 2276 68 UUUGAGAACAUCUAGAACAGC 2277 69 UACAGAUGAGGAAACAGCCAU 2278 70 UUAAUGUAUCUAUUUCCUCCU 2279 71 UGGAAUAAUUGUAACUAGCAA 2280 72 UUCUAUAACACAAAUUGUUAG 2281 73 UAACUGAAUAUUAACUGCAAG 2282 74 AAGACCAAGAGAUUCAACCGG 2283 75 UUAACAACCUGGUUUACUCAA 2284 76 UUCUCUAUGUUGGUCAGGCUG 2285 77 UAUUUCUGGUUGUUGACUGUU 2286 78 AAUAUUAACUGCAAGUAGCUU 2287 79 UAUUGCUUCAACCACAAUUUA 2288 80 UUUAUUUAGAUAUACAGUUUU 2289 81 UUAACUGCAAGUAGCUUAGAU 2290 82 AUAGAAUUUGAGAACAUCUAG 2291 83 UUUCAUAGGAGAAAUAUUCCA 2292 84 UUGUUUAAUAUUAAACACAUU 2293 85 UUAACUUAUAGAUAAUAGUCU 2294 86 UAUCGCUGUUGAUUUCCUCUU 2295 87 UUACUAUAUCACCUUUCUCUA 2296 88 UAGUGCUUCGUUUACUUUGCU 2297 89 UAUAGCAGGCUGAAUUUGCAA 2298 90 UUUGGAAUCAUAGAAUUUGAG 2299 91 UACUUGAGUUAAAUCUUCUUA 2300 92 UACAUAGUUGUAAUCCCUGUU 2301 93 UACACUAUAUAGUUUGCUGAA 2302 94 AAUCUGUUGAACAUGUUGCCA 2303 95 UUGUCCUGUUGCAAUGUCUAG 2304 96 UAUCUCAGGGCACACUAGCAA 2305 97 UCUAGCAAGUGUGACAGUGUG 2306 98 UAAAGCUCAUAUUAGACUCCG 2307 99 UUAUAUUCUAGCAAGUGUGAC 2308 100 UUACCCAACAUGGUGACUGAU 2309 101 UAUUUCAGUCUUACUCAUGAG 2310 102 UCUCCUGAACAUAAACACGUA 2311 103 UUAGAUGGAUGGAUGUACCUU 2312 104 UUCCUUUGCAGCGAUAAUCAG 2313 105 UAUGACAACGCACUGGAUCCU 2314 106 UUACUUAAUGUCCAACAAGGA 2315 107 UCUCUCUGCAACUUGUAAGUG 2316 108 UAUGCUCUGGUCUUGGUGCGA 2317 109 UUGUAUAGAAUACUCGUACAC 2318 110 UUGCUCUGGAAUUCCAGUGAA 2319 111 UAGAAUUUGAGAACAUCUAGA 2320 112 UUAUUUGGUACUGCUGGUGAA 2321 113 AUUAUUUACACGAUCUUUGAG 2322 114 UAAUUGCUUCCUUUGCAGCGA 2323 115 AUAAAUUACAUAAUCUGAGGG 2324 116 UUAAACACAUUCCCAAUGCAU 2325 117 UUUCUUAUUCUUCUCUUCAGG 2326 118 AUUUCCUAGGUUCAGAACCUG 2327 119 AUGAGAAACAGCUUCUUUCUA 2328 120 UUCUCCUAUGAGGAUUUCCUA 2329 121 UUCUCCUUCUUCUUAUUGGUU 2330 122 UAUCCCACUACAUCUGACUCA 2331 123 UUAGCUUCUCUAAGAUCUCCU 2332 124 UGGAAGUUUGGAGUAAUCGUG 2333 125 UAUAGUUCCCUUUCUGCUGUU 2334 126 UUACAGAUAACACAUUCUGAC 2335 127 UUACUCAUGAGGGAGAUGGUG 2336 128 UCAUCUAGUCCAAUACACUUA 2337 129 UUGUCACUCUUUAUAUCUCUA 2338 130 UUCAGUCUUACUCAUGAGGGA 2339 131 UAUCUGAGGUGACUACCUCAU 2340 132 UAGAACAGCUUGUGGGUUCUU 2341 133 UAUUUAUCCCACUACAUCUGA 2342 134 UAAGAUCUCCUCAUCUGUCAU 2343 135 UAGUCCAAUACACUUAUUUUA 2344 136 UUACAUACAGACUGUAUGGAA 2345 137 UGAGAACAUCUAGAACAGCUU 2346 138 AUAAGUUCUGUUUAGAUUCUU 2347 139 UACUCGAUUGUACCAAAUGUG 2348 140 UAACAUAAAGAAUAAAUACUU 2349 141 UUGUACCAAAUGUGAAUCCUU 2350 142 UCUUAUUCUUCUCUUCAGGGG 2351 143 UUCUCUGCCUACAGUGAUCUG 2352 144 UAUAACACAAAUUGUUAGUUU 2353 145 UUAAGUGACUUGCCUAGCGUC 2354 146 UUUAGGUUCACUCUUAGCAGU 2355 147 UAUUAUUAUGAACUUCAUUUG 2356 148 AUAGGUACACAAACCAAGCCA 2357 149 AAGAAUUUCACUACACAUGGU 2358 150 UACAAUGACACACACACGAGA 2359 151 AAGUAUUCCAUGACUACCCAU 2360 152 UAUCUCUAUGGAUCACCUGGU 2361 153 UAAGGAAUUCUGUCGGACUGA 2362 154 AUAUAGUUUGCUGAAACUCUA 2363 155 AUCUAGAACAGCUUGUGGGUU 2364 156 UACUUAAUGUCCAACAAGGAU 2365 157 UUCCUCUUCAUCUUCUUCUUC 2366 158 AACAUCUAGAACAGCUUGUGG 2367 159 UCAUAUAAGGAAUUCUGUCGG 2368 160 UUAGGUCCAAGUUUCAAACUG 2369 161 UUUCUCCUUCUUCUUAUUGGU 2370 162 UUCCUGUACAAAGUACUGGAA 2371 163 AUUAGUAGCUACAGGAUUCUG 2372 164 UAAUGAAUAUGGUAUUUGCGG 2373 165 UUGAGAACAUCUAGAACAGCU 2374 166 AUCUUCUUCUUCUUCUUCCUC 2375 167 UAUUCUACAUUUAUCUGGUUU 2376 168 UGAAACUAAGCAGCAUAUCUG 2377 169 UUCAUAGGAGAAAUAUUCCAU 2378 170 AAGACAUUUAUGAAUAUGCUU 2379 171 UCUAGUGCUGUAUAAACAGUA 2380 172 UAGCCUUCACUGACCUCCCAU 2381 173 UAUUUAACUGCAACAUAAGAG 2382 174 UUUCUAUUCAUUUGAAAGGUA 2383 175 UAGCUUCUCUAAGAUCUCCUC 2384 176 UUAUUAUGAACUUCAUUUGCU 2385 177 UUUACAAAUGCUGAAUUUCAG 2386 178 UUAUAAGAAGUUUCUAUUCAU 2387 179 UCAGUAUUCUACAUUUAUCUG 2388 180 UUUAUGGUCACUUCAACAUUG 2389 181 AUUGUUAAUAUGCUGAACUGA 2390 182 UUGCAGUCUUAGCGGCUGCUG 2391 183 AUACAGCUGACAGUCUCUCAG 2392 184 UAAAUACUUGAGUUAAAUCUU 2393 185 UAGUAGCUACAGGAUUCUGUG 2394 186 CUUGCUAACAACAUUAACGUU 2395 187 AUGGUCACUUCAACAUUGCUG 2396 188 UUCGUUUACUUUGCUCAGGAG 2397 189 UCACAUAAUUCCACCACCCUA 2398 190 AUAUACAGUAAUAUCCUGUUG 2399 191 UAUCACCUUUCUCUAGAUCUU 2400 192 UAUGAACUUCAUUUGCUUGAG 2401 193 UUAGAAAUAUACAUAACUCUC 2402 194 UAUUAUAACAAUAUCAAAUAA 2403 195 UAACUUCUAUUGAAAUUAGUG 2404 196 UUCUUCUUCCUCUUCAUCUUC 2405 197 UUGUCAACAUUUCUCAAUGCU 2406 198 UUCUGCUGUUUAUUUAUUGUA 2407 199 UAGAUGGUCUCCCUUGCUCUU 2408 200 AUACUCGUACACACAGGUGUG 2409 201 UUCUUCUUCUUCUUCCUCUUC 2410 202 AUACUUGAGUUAAAUCUUCUU 2411 203 UUGUAACUAGCAAAUAUCUCU 2412 204 UUCACAUAAUUCCACCACCCU 2413 205 UAAAGCUCAUGUAUUUCUGGU 2414 206 UAACUAGCAAAUAUCUCUGCC 2415 207 UAUUGAUUGGGAUGUAGCCUU 2416 208 AUAAUCUCUACUGUGCUUCUC 2417 209 UAAUCGUGCCCAUUGCUCUGG 2418 210 UUAGUAGCUACAGGAUUCUGU 2419 211 AAGGAGAUUAACAACCUGGUU 2420 212 UAAAGAAUAAAUACUUGAGUU 2421 213 UUUAACUGCAACAUAAGAGAC 2422 214 UCUAGGUAUAGGGUCUGCUUU 2423 215 AUGAACACACCAUAUUCCGAA 2424 216 UUGGAGUUCUAAUAGUGACAU 2425 217 AUAGUGACAUCUCCCUAGCUU 2426 218 UCACACAGUACUUGCUCUGGU 2427 219 UUUAGGUAUCAUUAUCUUUGU 2428 220 UAUUUCUGUAUUGAGAAUGAC 2429 221 UCUAAUGACAAUGCAAGUGAA 2430 222 UUCACACAGUACUUGCUCUGG 2431 223 UUCUUCUUCAGACACAGGAGG 2432 224 UCUGUCGGACUGACAUUUCUU 2433 225 UUCUUAUUCUUCUCUUCAGGG 2434 226 AAGGCUUAGAGAAACAACUUU 2435 227 UAAUAUGCUGAACUGAAAGCA 2436 228 UUAAUUGCUUCCUUUGCAGCG 2437 229 UUGUUCAGAGCUCAGAGACUG 2438 230 ACAUCUAGAACAGCUUGUGGG 2439 231 AUCUGUUGAACAUGUUGCCAG 2440 232 AAAUAAAUAAUCUCUACUGUG 2441 233 UUACAACUAAUUUCACAGCUC 2442 234 AUAGAAUACUCGUACACACAG 2443 235 UUACACGAUCUUUGAGCUGAG 2444 236 UAUGGUCACUUCAACAUUGCU 2445 237 UAUUCUAGCAAGUGUGACAGU 2446 238 UAAUAGUCUCCUAAGAAAGCG 2447 239 AACUAAGCAUGAACACACCAU 2448 240 UUUCAUAAGCACAAGAGAGGA 2449 241 UACUUUAGGUCCAAGUUUCAA 2450 242 UAUUAUCAAAUCUUGGUACAA 2451 243 UUUCGCUUCACGGUGGAAGUG 2452 244 UUAUACAGACAACAGGAAGCA 2453 245 UCGGACUGACAUUUCUUGGGA 2454 246 UCUUCUUCUUCAGACACAGGA 2455 247 UAUAUGGUGAAAUAGUAGUCA 2456 248 UUUCUCAAUGCUAAUAGCAUG 2457 249 UUUGUCCAUAUGCAUUUCUUU 2458 250 UUGCUAACAACAUUAACGUUC 2459 251 UCUAUAGUUCCCUUUCUGCUG 2460 252 UAGGUUCAGAACCUGAACUCA 2461 253 UCAUCUUACAUAGUUCUUUUA 2462 254 UUUAUAGACAAAUAUCUCAAA 2463 255 AAACUAAGCAGCAUAUCUGAG 2464 256 ACUCUUAGCAGUCUCAGCCAU 2465 257 AAAGCUUGCAGGCACUCUCUG 2466 258 UUAUGUUGGAAGUUUGGAGUA 2467 259 AUACUUAUUAGAAAUAUACAU 2468 260 UCUUUGGUGAGUUAGAAGGAA 2469 261 UAGAUAAUAGUCUCCUAAGAA 2470 262 AUCACCUUUCUCUAGAUCUUU 2471 263 UGAAGGAAGAGAGAUCUCUGG 2472 264 UCAUCCAUACAGGUCUCUGUG 2473 265 UACCAAAUGUGAAUCCUUCAG 2474 266 AUUCUGUGAAGAUCUUAUCAU 2475 267 UUCUUAAUUGCUUCCUUUGCA 2476 268 UAAGGAGAUUAACAACCUGGU 2477 269 UGAAUGUACAUAAGUUCUGUU 2478 270 UUUACUAUAUCACCUUUCUCU 2479 271 AUAAUUAUUUACACGAUCUUU 2480 272 UCAUCUGUCAUCUUGGAUUUU 2481 273 AUCAUCUAGUCCAAUACACUU 2482 274 AUAGUCUCCUAAGAAAGCGUG 2483 275 AUCUCCUGAACAUAAACACGU 2484 276 UAAGGGAUGCUAACUAAUGAA 2485 277 ACAACAGGAAGCAAUUUCGUG 2486 278 UGAAAUAGUAGUCAAAUUUUG 2487 279 UAUGUAACUGAUCUCUUUCCC 2488 280 AUUAACAAUAUUAGGGUUCUU 2489 281 UUUACUUUGCUCAGGAGUGAU 2490 282 UUGGUCACUUAAAGGAGUGUG 2491 283 UAUACAGUAAUAUCCUGUUGG 2492 284 UACAGUAAUAUCCUGUUGGAC 2493 285 AAGCACACCACACACAAGCAC 2494 286 AUUAUGAACUUCAUUUGCUUG 2495 287 UAAUUAAUUCCUUCUUGGGUU 2496 288 UAAAUAAUUAACAAUAUUAGG 2497 289 UUCUACAUUUAUCUGGUUUUG 2498 290 UUGCAAUGUCUAGUGCUGUAU 2499 291 UGUGCAUCUUUGAGAAACCUU 2500 292 UACAGCUGACAGUCUCUCAGG 2501 293 UGUAACUGAUCUCUUUCCCCU 2502 294 UCAAGUACAGUUAUAUUCUAG 2503 295 UGGACAUCUAAUGACAAUGCA 2504 296 ACUCAUUCUCUACUAUCGCUG 2505 297 UUGAGAAUUAAACUCUAGAAA 2506 298 UGAAUAGGGCUUCCUAACCAG 2507 299 AUUCUAGCAAGUGUGACAGUG 2508 300 UAAUGAUUUCAAAGUCAGCUU 2509 301 UAGCAAUUUAGUAAUAAAGCU 2510 302 UGACAGUCUCUCAGGAUUCUG 2511 303 AUCGCUGUUGAUUUCCUCUUG 2512 304 UGUUCCUGUACAAAGUACUGG 2513 305 UACAAUUCUGAUAAACAAUGA 2514 306 AUAAUUAAUUCCUUCUUGGGU 2515 307 AUUAAUAAUUAAUUCCUUCUU 2516 308 UUCUUCUUCUGUUCCAAUUUU 2517 309 AAGCAGAGGGCAGACAACCUG 2518 310 UUCUCUUCAUUAUCCAGACCG 2519 311 UUCUUUGGUGAGUUAGAAGGA 2520 312 UACAUCUGACUCAUUCUCUAC 2521 313 AAACACAACACUAUGAAGAGG 2522 314 UCUUAAUUGCUUCCUUUGCAG 2523 315 AUUUGAGAACAUCUAGAACAG 2524 316 UCGAACUCCUGACCUCAGGUG 2525 317 UAUGCUCAAAGUCUGAAGGAA 2526 318 UAGUUCAUCACCCACCAAGUA 2527 319 AUUUAUAGACAAAUAUCUCAA 2528 320 UAGAAAUAUACAUAACUCUCC 2529 321 UAGAUGUAAGGAUCAGGUGGU 2530 322 AAUUUAGGUAUCAUUAUCUUU 2531 323 AUAUAUUAUUAUCAAAUCUUG 2532 324 UCUGCAGACAGCUGCUAUCUG 2533 325 UAUCUUUGUUUACUUAAUGUC 2534 326 UAUUCCGAAACAGAAAUAGGU 2535 327 UAUCAUUAUCUUUGUUUACUU 2536 328 UGAACAUAAACACGUACACUA 2537 329 UUGAUUUCCUCUUGGGUACUA 2538 330 UAAACAGUACCUGAUGCCCCU 2539 331 UAGAAGGAAGUUAUCCUUUGG 2540 332 AAUAAUUAACAAUAUUAGGGU 2541 333 UCUUUGUUUACUUAAUGUCCA 2542 334 UGAACUGAAAGCAUAAGAGAG 2543 335 UAGAUAUAUGGUGAAAUAGUA 2544 336 UAGACAUCACUACCCUGUGAU 2545 337 AUAAAUAAUCUCUACUGUGCU 2546 338 UGCUAUCUGUCCUUCAUCCAU 2547 339 UUAGACAUUGUUUAAUAUUAA 2548 340 UUAUGAACUUCAUUUGCUUGA 2549 341 UUUCAUUAAUAAUUAAUUCCU 2550 342 UAACACAACUGAUUUCAAUUA 2551 343 AUUAGAAAUAUACAUAACUCU 2552 344 UUCAUCUUCUUCUUCAGACAC 2553 345 UUAAUGUCCAACAAGGAUUUC 2554 346 UCUUGGUACAAAGUGGUAGUA 2555 347 UACAGUGAUCUGAAGGGUCAC 2556 348 AUGACAACGCACUGGAUCCUU 2557 349 UUUAACUUAUAGAUAAUAGUC 2558 350 UUGGUACUGCUGGUGAAGCAA 2559 351 UGUUUAUUUAUUGUAAAGCAA 2560 352 UUGCAAGUCAUAACUUCUAUU 2561 353 AACACGUACACUAUAUAGUUU 2562 354 UUCAUAAGCACAAGAGAGGAU 2563 355 AACAACUGUAAAUGAAUUGGA 2564 356 UUCCCAUUUAUUUCCUUCCCA 2565 357 UUGGUGAGUUAGAAGGAAGUU 2566 358 UUUAUUGUAAAGCAAUAUUAU 2567 359 UAAGUAUUUCUGUAUUGAGAA 2568 360 UCUGGUUGUUGACUGUUUCUU 2569 361 AAUUGCAAGUCAUAACUUCUA 2570 362 AGACUUUACAUACAGACUGUA 2571 363 UAACACAAAUUGUUAGUUUUU 2572 364 UGGUUAAACUCAAACAUUGGG 2573 365 UUUCUCUCUGCAACUUGUAAG 2574 366 UAAUAAUUAAUUCCUUCUUGG 2575 367 UACUCGUACACACAGGUGUGC 2576 368 UGAUAUACAGUAAUAUCCUGU 2577 369 UCCUCGCCUAUCCACAUCCAU 2578 370 AUUUGCAAUACUUUAGGUCCA 2579 371 AUAAUCAGAGGAGUCAGGCUG 2580 372 UGUAUCUAUUUCCUCCUGGUA 2581 373 UAUAUGGAUGGUUAGAUGGAU 2582 374 UACUAUUCAUCCUCAGUGGAG 2583 375 AUAAGGAAUUCUGUCGGACUG 2584 376 AGAACUAUAACUGAAUGCCAA 2585 377 ACAAGCACACACAUUGAACUU 2586 378 UCACCUAGCAGGAUGUCACAG 2587 379 UUUGCAGCGAUAAUCAGAGGA 2588 380 UAACAGAACUAUAACUGAAUG 2589 381 UUGCUCAGGAGUGAUCUGGGC 2590 382 UUGGGAUGUAGCCUUCACUGA 2591 383 AUAUUGAUUGGGAUGUAGCCU 2592 384 UUAUUUAGAUAUACAGUUUUU 2593 385 UGUUGCAAUGUCUAGUGCUGU 2594 386 AACAGCUUCUUUCUAAUACUU 2595 387 UAGGUAUCAUUAUCUUUGUUU 2596 388 AUUGUAACUAGCAAAUAUCUC 2597 389 UUAGAAGGAAGUUAUCCUUUG 2598 390 AUUUCUUGGGAUAUGAUUGUA 2599 391 UUGAAGGUUCAUCUGCUUUAU 2600 392 UUAUCCUUUGGUUAGAUGGUC 2601 393 UCUUUAUUUGGUACUGCUGGU 2602 394 UCAUCAAUAAUGAAUAUGGUA 2603 395 UUUCAGUCUUACUCAUGAGGG 2604 396 UUAGAAGCUGUUCUCAUUUGA 2605 397 UCUUCUUCUUCUUCUUCCUCU 2606 398 UUAACAGAACUAUAACUGAAU 2607 399 UAAUAGCAUGUAAUUACUUUU 2608 400 AUAGACAAAUAUCUCAAACUA 2609 401 ACUCUCUGCAGACAGCUGCUA 2610 402 UUAUAUUCAUUUGGUCACUUA 2611 403 UCAGUCAAUUUAACAGAGCCA 2612 404 UUACAUAAUCUGAGGGAGUAG 2613 405 UUUAGAAGCUGUUCUCAUUUG 2614 406 ACUUCUAUUGAAAUUAGUGGG 2615 407 UUAACUGCAACAUAAGAGACU 2616 408 UUUGUAUCAUAAGUAAAUGAU 2617 409 UCUUCUUCAGACACAGGAGGG 2618 410 UUCACUGACCUCCCAUUUCUU 2619 411 UCCUCUUGGGUACUAAAUCUG 2620 412 AUCUCCUCAUCUGUCAUCUUG 2621 413 AAUAAUUAAUUCCUUCUUGGG 2622 414 AUUGUCACUCUUUAUAUCUCU 2623 415 UGUCGGACUGACAUUUCUUGG 2624 416 UGAAUUUGCAAGGCAACCUAU 2625 417 UUUACAUGAAUACAAAUUUAU 2626 418 UAUUAGGGCAUGGACUUCCAC 2627 419 UUUCCCGGCACUAUGAGUGAA 2628 420 UACAUAACUCUCCAAUACAGG 2629 421 ACAAAUAUCUCAAACUAUCAA 2630 422 UAGGUACACAAACCAAGCCAC 2631 423 UUCUGUCGGACUGACAUUUCU 2632 424 UUCAACAUUGCUGCCCUGUUU 2633 425 UGAAGAGGGAGUGUGCAUCUU 2634 426 UGAAACUCUAAAGAAAGUGCU 2635 427 UGUCACUCUUUAUAUCUCUAU 2636 428 UUCAUUUGGUCACUUAAAGGA 2637 429 AAGCUCAUAUUAGACUCCGGG 2638 430 AUACAUAACUCUCCAAUACAG 2639 431 UGUCUAGUGCUGUAUAAACAG 2640 432 UAGUGACAUCUCCCUAGCUUU 2641 433 UUCUAUUGAAAUUAGUGGGAC 2642 434 UUAUUUAUUGUAAAGCAAUAU 2643 435 AUAUGGUGAAAUAGUAGUCAA 2644 436 UGAAGCAAUGGAUUCAACCAC 2645 437 UUGUCCAUAUGCAUUUCUUUU 2646 438 UUCCGAAACAGAAAUAGGUGA 2647 439 AUUAGAAAUAAACCCAUUGAG 2648 440 UAAUUCCUUCUUGGGUUGCUG 2649 441 UGGGAUUAUGACAACGCACUG 2650 442 UUCAUUAUCCAGACCGUCAGA 2651 443 UCUCUUCAUUAUCCAGACCGU 2652 444 UUCUUUGGAAUCAUAGAAUUU 2653 445 AUAUUCUAGCAAGUGUGACAG 2654 446 UACUGCAAAUUAAGAAGCCUU 2655 447 AAAUAAAUUACAUAAUCUGAG 2656 448 AAAGUAUAACAUAGUAUGCUU 2657 449 UGACUCAUUCUCUACUAUCGC 2658 450 AGUACAGUUAUAUUCUAGCAA 2659 451 AACAUUAACGUUCUUUCCUUU 2660 452 UUAUCAUCAAUAAUGAAUAUG 2661 453 UUUAUUUCCUUCCCAGUCCAC 2662 454 UAGCGUCACAUAGCAAUUUAG 2663 455 UACAGGUCUCUGUGACCACAU 2664 456 UUUCCCACUGCCCUAUUCCUA 2665 457 UAUGUAUCCAUGUGCACUUUU 2666 458 UCAGUCUUACUCAUGAGGGAG 2667 459 AUAGGAAAUACACCAGUGGGG 2668 460 AAACAACCUAUAAAUAGGCAG 2669 461 AUCAUUAUCUUUGUUUACUUA 2670 462 UAUAGAAUACUCGUACACACA 2671 463 AAUAGUGACAUCUCCCUAGCU 2672 464 AUCUCUAUGGAUCACCUGGUU 2673 465 UUAACAAUAUUAGGGUUCUUA 2674 466 UCUCUAAGAUCUCCUCAUCUG 2675 467 UCCUCAUCUGUCAUCUUGGAU 2676 468 UUCAUCCAUACAGGUCUCUGU 2677 469 UGAAUGUUUACUAUAUCACCU 2678 470 ACAGAUAACACAUUCUGACAA 2679 471 UUUACACGAUCUUUGAGCUGA 2680 472 AAUACUCGUACACACAGGUGU 2681 473 AAAUCUUGGUACAAAGUGGUA 2682 474 AUAUCUGAGGUGACUACCUCA 2683 475 UCUCUCAUUAGAGCAGUGUGG 2684 476 UUGGAAGUUUGGAGUAAUCGU 2685 477 UUGGUUAGAUGGUCUCCCUUG 2686 478 UUUGAGCUGAGAAAUAUCAUU 2687 479 UUGAUUGGGAUGUAGCCUUCA 2688 480 UGACCUCAGGUGAUCCGCCUG 2689 481 AAUAUUUACAAUGACACACAC 2690 482 UGGAUUCAACCACAGAACGAG 2691 483 UUUCUGUAUUGAGAAUGACCA 2692 484 UUGUUAAUAUGCUGAACUGAA 2693 485 ACAACUGAUUUCAAUUAUCUG 2694 486 UGCUUAACUGAAUAUUAACUG 2695 487 AUUGCAAGUCAUAACUUCUAU 2696 488 AAUGUUUACUAUAUCACCUUU 2697 489 UGCUUCGUUUACUUUGCUCAG 2698 490 AAAGCUCAUAUUAGACUCCGG 2699 491 UGUCAGUUUACAAAUGCUGAA 2700 492 UGAACUUCAUUUGCUUGAGUU 2701 493 UCCACCACCCUAACACAACUG 2702 494 UAUGGUGAAAUAGUAGUCAAA 2703 495 AAUGAUUUCAAAGUCAGCUUU 2704 496 UCACUCUUGUUGCCGAGGCUG 2705 497 AAGAACGAAGUCAUUACCCAA 2706 498 UUUAAAUGUGGUUUCUCCUAU 2707 499 AACAUAAAGAAUAAAUACUUG 2708 500 AUGCAUUAGUAGCUACAGGAU 2709 501 UCGCCUAUCCACAUCCAUCUC 2710 502 AAUGUAUCUAUUUCCUCCUGG 2711 503 UAUUGUCACUCUUUAUAUCUC 2712 504 UAUUCAUCCUCAGUGGAGGAG 2713 505 UGAGUGCUGAAGAAUCCCGGU 2714 506 UGACUUCUCUAGGUAUAGGGU 2715 507 UCAUUUGGUCACUUAAAGGAG 2716 508 UUAUCUUUGUUUACUUAAUGU 2717 509 AUAUUAUUAUCAAAUCUUGGU 2718 510 UAAGCAUGAACACACCAUAUU 2719 511 AUGAAUAUGGUAUUUGCGGGU 2720 512 UUAUUGUAAAGCAAUAUUAUA 2721 513 UGUUUCUUUGGAAUCAUAGAA 2722 514 UACUCUCAGAAGAUUCAGGAA 2723 515 UCCUGAACACACAUAUUCCUC 2724 516 AUGGAUUCAACCACAGAACGA 2725 517 UGCAAGAGGGACUACUCUCUA 2726 518 UUCCUAACUCAGGACAUUUUG 2727 519 UAUAACAUAGUAUGCUUCAAA 2728 520 AAUUUCAGUCCUCUUGUUCAG 2729 521 UUAGUAAUAAAGCUCAUAUUA 2730 522 UCACUCUUUAUAUCUCUAUGG 2731 523 UUUCUCUAUGUUGGUCAGGCU 2732 524 UAUUAAGGAGAUUAACAACCU 2733 525 UCGCUGUUGAUUUCCUCUUGG 2734 526 UAUGUUGGAAGUUUGGAGUAA 2735 527 UACCUGAAUGAUAUACAGUAA 2736 528 UACACUCAAGACACAGUCAUG 2737 529 UCUCUGCCUACAGUGAUCUGA 2738 530 UUGGGUUAUAUUCAUUUGGUC 2739 531 UAGGUAUAGGGUCUGCUUUUA 2740 532 UUCAAAUUAAUAUUACCGUUU 2741 533 UAUAUAGUUUGCUGAAACUCU 2742 534 UAGUCUCCUAAGAAAGCGUGU 2743 535 AAUCGUAUGCUCAAAGUCUGA 2744 536 AUCAGAAAUGCUAUCUUUGGU 2745 537 UAGAAGCUGUUCUCAUUUGAA 2746 538 UUUAGUAAUAAAGCUCAUAUU 2747 539 AAACACGUACACUAUAUAGUU 2748 540 AAUGCUUCUUAGCUUCUCUAA 2749 541 UAUUGAAAUUAGUGGGACUUG 2750 542 AUUUGGAUAGACUCACCUGUG 2751 543 UAUCUAAAUAAUUAACAAUAU 2752 544 UUUCCUAGGUUCAGAACCUGA 2753 545 AUAAUGAAUAUGGUAUUUGCG 2754 546 UAAGAAGUUUCUAUUCAUUUG 2755 547 UAAAGCAAUAUUAUAACAAUA 2756 548 AACAGGAAGCAAUUUCGUGUU 2757 549 UUCACUCUUGUUGCCGAGGCU 2758 550 UUAAUGAUUUCAAAGUCAGCU 2759 551 UAAGCAGCAUAUCUGAGGUGA 2760 552 UAUGGGAUAGCAUUUGCCUGA 2761 553 UCUCAGAGAAAGUCCCAUCUU 2762 554 UUGCAGAUUCAGUUAGACAUU 2763 555 UAGCAAUGGAAUGUGCUUCAC 2764 556 UCCAUUAUUUCCAAGUUCCCA 2765 557 UUCACAGGAAAGGAGAAGCUC 2766 558 UGACUGUUUCUUUGGAAUCAU 2767 559 UAUGUUUCAUAAGCACAAGAG 2768 560 AGUAGCUUAGAUAAAGACCAA 2769 561 UGUGCUUCUCACCCUUCCCUG 2770 562 UUUAUCUUGCAAGUUCAACCC 2771 563 AAAUAAUUAACAAUAUUAGGG 2772 564 UCCACAUCCAUCUCAAGACAG 2773 565 ACACAGUCAUGCACAAUCCAU 2774 566 AUUAAUUUGUCAACAUUUCUC 2775 567 UCUGAAGGGUCACUGCUCCAA 2776 568 AACAGCUUGUGGGUUCUUCUU 2777 569 UAGGAAAUACACCAGUGGGGU 2778 570 AUAUUAUAGAAUCUCUCAGAA 2779 571 UGAGAAACAGCUUCUUUCUAA 2780 572 UGGGAUUACAGGUAUGAGCCA 2781 573 UUAGGUUCACUCUUAGCAGUC 2782 574 UGCUGUAUAAACAGUACCUGA 2783 575 UAGAUGGAUGGAUGUACCUUG 2784 576 UCUUCUUCUGUUCCAAUUUUG 2785 577 UGGUCUCGAACUCCUGACCUC 2786 578 UAAUCCAAAGUUACAGAAGAA 2787 579 AUAUUAACUGCAAGUAGCUUA 2788 580 AAGGAUUUCAGUAUUCUACAU 2789 581 UUGAGCUGAGAAAUAUCAUUU 2790 582 UGGAGCUGUGGUUGAGUGCUG 2791 583 UUCCUAACCAGGUAUUGGGCU 2792 584 AUCAUCAAUAAUGAAUAUGGU 2793 585 AGAACAUCUAGAACAGCUUGU 2794 586 UACCUCAUUAUUAAAGUUCUC 2795 587 UCAUUUAUAGACAAAUAUCUC 2796 588 AAUAAACUGUUAACAAUCUGG 2797 589 UACUGCUGGUGAAGCAAUGGA 2798 590 UCUCCUAUGAGGAUUUCCUAG 2799 591 UAACUCUCCAAUACAGGGAAG 2800 592 ACAAUUCUGAUAAACAAUGAA 2801 593 UAUUAGAAAUAUACAUAACUC 2802 594 AUAGAUGUAAGGAUCAGGUGG 2803 595 UGUAUUUCUGGUUGUUGACUG 2804 596 AUGGUGACUGAUUUGAGGGGA 2805 597 AAUGAAUAUGGUAUUUGCGGG 2806 598 ACUCUUUAUAUCUCUAUGGAU 2807 599 UUCCAGCAGUGUACUCAUCAU 2808 600 UUGUAUCAUAAGUAAAUGAUG 2809 601 UAAUCUCUACUGUGCUUCUCA 2810 602 AUGUUCACACAGUACUUGCUC 2811 603 UUUGAGUGCAGGAAAUCCAAA 2812 604 AAUGGAAUGUGCUUCACCGGG 2813 605 UCUCUCAGGAUUCUGGAGCUC 2814 606 AAACUCUAAAGAAAGUGCUUU 2815 607 UCUUGGGUACUAAAUCUGUUG 2816 608 AAUUAAACUCUAGAAAGCCCA 2817 609 AUAUUUACAAUGACACACACA 2818 610 UUCUUCCUCUUCAUCUUCUUC 2819 611 UAUCUCCUGAUGUAAAGCUCA 2820 612 UUUGCUGAAACUCUAAAGAAA 2821 613 UUGGUGCGAUAACUGGUGGUG 2822 614 UAAUUAUUUACACGAUCUUUG 2823 615 UAUUUCCUCCUGGUAUGCCUA 2824 616 ACAAAUAAAUUACAUAAUCUG 2825 617 AUUUACAUGAAUACAAAUUUA 2826 618 UACACAGACACUCCGCAGAUA 2827 619 UGGGUUCUUCUUCUGUUCCAA 2828 620 UGGAUCCUUGCUAACAACAUU 2829 621 UCUCUGCAACUUGUAAGUGUU 2830 622 UACAUGAAUACAAAUUUAUAA 2831 623 UCAAGUUACUCGAUUGUACCA 2832 624 UCUGUGACCACAUCAGUCAGA 2833 625 AUAACUCUCCAAUACAGGGAA 2834 626 UUCACUACACAUGGUUUACAG 2835 627 UAACUGCAACAUAAGAGACUC 2836 628 AACUGAUUUCAAUUAUCUGUG 2837 629 UGCUGUUCUUAAUUGCUUCCU 2838 630 UCUCAAUGCUAAUAGCAUGUA 2839 631 AUUUACAAUGACACACACACG 2840 632 AUACAGUAAUAUCCUGUUGGA 2841 633 AUGAGGAUUUCCUAGGUUCAG 2842 634 AACUUCUAUUGAAAUUAGUGG 2843 635 UGCAUCUUUGAGAAACCUUUU 2844 636 UCAGAAAUGCUAUCUUUGGUU 2845 637 AUCUGCAACAGAUGUUAUCAA 2846 638 AUUGCAACUCUAUUAGGGCAU 2847 639 UGUAAAGCUCAUGUAUUUCUG 2848 640 AGAUUUGGAUAGACUCACCUG 2849 641 UUCCACCAUUUCAAUUGCCAU 2850 642 UUACUCGAUUGUACCAAAUGU 2851 643 UUUGCUCAGGAGUGAUCUGGG 2852 644 UAACAUAGUAUGCUUCAAAUU 2853 645 UCAAAUCUUGGUACAAAGUGG 2854 646 AAUCUUGGUACAAAGUGGUAG 2855 647 UUCCUUCUUGGGUUGCUGUUG 2856 648 GAGAACAUCUAGAACAGCUUG 2857 649 AUUAUUAAAGUUCUCACCUAA 2858 650 AAGGCUUGCAGUCUUAGCGGC 2859 651 UGCAUUAGUAGCUACAGGAUU 2860 652 AGAAUUUCACUACACAUGGUU 2861 653 UUGUAAUCCCUGUUUAUGUUA 2862 654 UGGUUGUUGACUGUUUCUUUG 2863 655 UUAGAUGGUCUCCCUUGCUCU 2864 656 UCUGGAGCUCUGGAGUUCCAU 2865 657 ACUCACAAUGCUUCUUAGCUU 2866 658 AUAACUUCUAUUGAAAUUAGU 2867 659 UCAACAUUGAAAGAUGUGCCC 2868 660 UCAUCACCCACCAAGUAGCUA 2869 661 AAGUCAGUCAAUUUAACAGAG 2870 662 UAGGGCAUGGACUUCCACAUG 2871 663 AUCUCAGCUCACCACAACCUC 2872 664 AUGUUAUGAGUAUAAUCCCAG 2873 665 UUUCAUUGAAUUUCCCGGCAC 2874 666 UAUUCCAUUAUUUCCAAGUUC 2875 667 AAGAAUAUUGUCACUCUUUAU 2876 668 AGAAAUAUACAUAACUCUCCA 2877 669 UUACAGAAGAAUUUCACUACA 2878 670 UAUAAUCCCAGUAGACAUCAC 2879 671 UUUGUCAACAUUUCUCAAUGC 2880 672 UGGUCUUGGUGCGAUAACUGG 2881 673 AAGUAAAUGAUGAUUAAUGUA 2882 674 UACUUAUUAGAAAUAUACAUA 2883 675 AUAUCUCUAUGGAUCACCUGG 2884 676 UUGACUGUUUCUUUGGAAUCA 2885 677 UCUGUAUUGAGAAUGACCAAU 2886 678 UUCAACCUGAGAGUCUGUUAA 2887 679 UUGUUUAAUGAUUUCAAAGUC 2888 680 AUUCCGAAACAGAAAUAGGUG 2889 681 ACUAAAUCUGUUGAACAUGUU 2890 682 UAAUCAGAGGAGUCAGGCUGG 2891 683 AAGUAUAACAUAGUAUGCUUC 2892 684 UACACGAUCUUUGAGCUGAGA 2893 685 AAAUGCUGAAUUUCAGUCCUC 2894 686 CUAAGCAGCAUAUCUGAGGUG 2895 687 UUCUAUUCAUUUGAAAGGUAA 2896 688 UUUGCAGAUUCAGUUAGACAU 2897 689 UAGCUUUAACUUAUAGAUAAU 2898 690 UAAUCCCAGUAGACAUCACUA 2899 691 UAUAUUCAUUUGGUCACUUAA 2900 692 UAGUAAUAAAGCUCAUAUUAG 2901 693 UUCUCUAGGUAUAGGGUCUGC 2902 694 UCAAUGCAUUAGUAGCUACAG 2903 695 GUGCUGUAUAAACAGUACCUG 2904 696 AAUAUGCUGAACUGAAAGCAU 2905 697 UAAUAAAUAGAUAUAUGGUGA 2906 698 AUUAAACUCUAGAAAGCCCAG 2907 699 AUCUGACUCAUUCUCUACUAU 2908 700 AGACAGCUGCUAUCUGUCCUU 2909 701 AAUUCUGUCGGACUGACAUUU 2910 702 UAUUUGUUUAAUGAUUUCAAA 2911 703 UGUCAACAUUUCUCAAUGCUA 2912 704 UAGUUUGCUGAAACUCUAAAG 2913 705 UGUUUCAUAAGCACAAGAGAG 2914 706 AUGUGACAGGAUUUCACCGUU 2915 707 AUACUGCAAAUUAAGAAGCCU 2916 708 UAAUUGCAAGUCAUAACUUCU 2917 709 UUAUCCAGACCGUCAGACAUU 2918 710 UUUAUUUGGUACUGCUGGUGA 2919 711 AAUUGCUUCCUUUGCAGCGAU 2920 712 UAAGUGACUUGCCUAGCGUCA 2921 713 AUCAAAUCUUGGUACAAAGUG 2922 714 UCAUGGGAUUAUGACAACGCA 2923 715 UACAGUUAUAUUCUAGCAAGU 2924 716 ACAAGUUGUAUAGAAUACUCG 2925 717 AGAAUUUGAGAACAUCUAGAA 2926 718 UUCAGUUAGACAUUGUUUAAU 2927 719 UAAAUGAUGAUUAAUGUAUCU 2928 720 AAUGAUAUACAGUAAUAUCCU 2929 721 AAGUCAUUACCCAACAUGGUG 2930 722 UCUUCUUCUUCUUCCUCUUCA 2931 723 UAUUAACUGCAAGUAGCUUAG 2932 724 UGGUAGUAAAGAAGUACCUGG 2933 725 UAAGUUCUGUUUAGAUUCUUU 2934 726 UAUAAGAAGUUUCUAUUCAUU 2935 727 ACAACAUUAACGUUCUUUCCU 2936 728 UUCAAGACAUUUAUGAAUAUG 2937 729 ACAACUGUAAAUGAAUUGGAA 2938 730 AUUGUUUAAUAUUAAACACAU 2939 731 UAAAUCUGUUGAACAUGUUGC 2940 732 AACAUUGCUGCCCUGUUUGGG 2941 733 UUUCUUUGGAAUCAUAGAAUU 2942 734 UGAGUUCACUUCAAAUCCCAG 2943 735 UAAACGUUAUAAAUUGUCAAA 2944 736 UAGGGCUUCCUAACCAGGUAU 2945 737 UGUAAAGCAAUAUUAUAACAA 2946 738 UUAAAUGUGGUUUCUCCUAUG 2947 739 UCUUGGUGCGAUAACUGGUGG 2948 740 UCAGAACCUGAACUCACCUAG 2949 741 UUUCUUGGGAUAUGAUUGUAA 2950 742 UUAAUAUUACCGUUUCAUUUU 2951 743 UGAGCUGAGAAAUAUCAUUUA 2952 744 UUGUGGGUUCUUCUUCUGUUC 2953 745 UUGAGCUUUAUUUAGAUAUAC 2954 746 AGACCAGAUAUCAACUUUCGG 2955 747 GAAAUAUACAUAACUCUCCAA 2956 748 AAGAUUUGGAUAGACUCACCU 2957 749 UCUACUAUCGCUGUUGAUUUC 2958 750 AUGGUUUACAGAUAACACAUU 2959 751 UAUCAUAAGUAAAUGAUGAUU 2960 752 AUAAAGCACACCACACACAAG 2961 753 UCAGCUCACCACAACCUCCGC 2962 754 AAUAGUCUCCUAAGAAAGCGU 2963 755 UACAGAGUUGAAUGUUUACUA 2964 756 UUCCUAGGUUCAGAACCUGAA 2965 757 UUUGGUCACUUAAAGGAGUGU 2966 758 AAAGGCUUAGAGAAACAACUU 2967 759 AAAUUAGUGGGACUUGCCCUA 2968 760 AAAUUACAUAAUCUGAGGGAG 2969 761 AUUGCUUCAACCACAAUUUAA 2970 762 UACAAGUUGUAUAGAAUACUC 2971 763 UAAUUAACAAUAUUAGGGUUC 2972 764 AACAUAAACACGUACACUAUA 2973 765 AACUUUCGGACCAUAAGCUUU 2974 766 UUAUGAGUAUAAUCCCAGUAG 2975 767 UCUCAGAAGAUUCAGGAAGUG 2976 768 UGAUUAAUGUAUCUAUUUCCU 2977 769 AAUCAUAGAAUUUGAGAACAU 2978 770 ACAGCUGACAGUCUCUCAGGA 2979 771 UCAUCCUCAGUGGAGGAGCCG 2980 772 ACUAGCAACAUCAAAGAUUUG 2981 773 UAGCAACAUCAAAGAUUUGGA 2982 774 CAGUAUUCUACAUUUAUCUGG 2983 775 AACACACAUAUUCCUCUCCAC 2984 776 UUAAACUCUAGAAAGCCCAGC 2985 777 AACACAACUGAUUUCAAUUAU 2986 778 UAGAAAUAAACCCAUUGAGCA 2987 779 UACAGAUAACACAUUCUGACA 2988 780 UUGGAGCUGUGGUUGAGUGCU 2989 781 AACGAGUAUAGAUUGAUUUUG 2990 782 UGAUCUGGGCACAGAACCCAA 2991 783 AUGGAGACCAUCCCAAGCCAA 2992 784 AGUUAGAAGGAAGUUAUCCUU 2993 785 CUUAUAGAUAAUAGUCUCCUA 2994 786 UACCUUUGCUUAACUGAAUAU 2995 787 UUCUCUAAGAUCUCCUCAUCU 2996 788 UCAAGACACAGUCAUGCACAA 2997 789 AUGACACACACACGAGAUCAG 2998 790 UGGAAUUCCAGUGAAUUCCCC 2999 791 UCUCUCUCUCAUUAGAGCAGU 3000 792 UGAAUCCUUCAGCAUCACUGU 3001 793 AUUAACUGCAAGUAGCUUAGA 3002 794 UUCCAAGAGACCAGAUAUCAA 3003 795 AUAAUUGUAACUAGCAAAUAU 3004 796 UUCAGAGCUCAGAGACUGGGA 3005 797 UUAUCCCACUACAUCUGACUC 3006 798 AAUAAAUAGAUAUAUGGUGAA 3007 799 UCUCAGUUCCCGCAUUUGCAG 3008 800 UUACAAAUGCUGAAUUUCAGU 3009 801 UGUAAAUGAAUUGGAAGGCUG 3010 802 UAGGUUCACUCUUAGCAGUCU 3011 803 UUACCCUCUUUCCAGCAGUGU 3012 804 UGUUGAAGGUUCAUCUGCUUU 3013 805 UUUCAGUCCUCUUGUUCAGAG 3014 806 UCUUUGGAAUCAUAGAAUUUG 3015 807 UAACUCCCAGUUUACCCUCUU 3016 808 UCUCCUUCUUCUUAUUGGUUU 3017 809 UAGGCUAGUAUUUAUCCCACU 3018 810 UUAUCUCAGGGCACACUAGCA 3019 811 AAAUACUUGAGUUAAAUCUUC 3020 812 AGUUAUAUUCUAGCAAGUGUG 3021 813 UAAACCCAUUGAGCAAAGGAA 3022 814 UACUAUCGCUGUUGAUUUCCU 3023 815 AAUACAGCUGACAGUCUCUCA 3024 816 UCUUUCUCCUUCUUCUUAUUG 3025 817 UCAACUUUCGGACCAUAAGCU 3026 818 UUGAGCAAAGGAAUAUAAUUA 3027 819 UUGAAAGAUGUGCCCUCGUUA 3028 820 AUUUCUCUCUGCAACUUGUAA 3029 821 UGAAAGAAAUCUGAAUAACAU 3030 822 UCUUUCUAAUACUUAUUAGAA 3031 823 AACUGCAACAUAAGAGACUCA 3032 824 UUAAUUUAGGUAUCAUUAUCU 3033 825 AGAAAUAUCAUUUAUAGACAA 3034 826 CAUAUAAGGAAUUCUGUCGGA 3035 827 AAGUGUUUAGGUUCACUCUUA 3036 828 UGAUCUGAAGGGUCACUGCUC 3037 829 UGACCUCUUUAUUUGGUACUG 3038 830 UACUCGAAGGAUGGGCUGCUA 3039 831 AUUAACAACCUGGUUUACUCA 3040 832 UGAGUUAAAUCUUCUUACAUG 3041 833 AUUCCUUCUUGGGUUGCUGUU 3042 834 AAUGCAUUAGUAGCUACAGGA 3043 835 ACUAGCAAAUAUCUCUGCCCU 3044 836 UGUGACAGGAUUUCACCGUUU 3045 837 AACACAUUCCCAAUGCAUGUU 3046 838 AAUAAUUUGUAUCAUAAGUAA 3047 839 AUUAUUAUGAACUUCAUUUGC 3048 840 UAUGCUGAACUGAAAGCAUAA 3049 841 AUAAACACGUACACUAUAUAG 3050 842 UUACUGCUGGUAUUAUGGGAU 3051 843 AUCUAGUCCAAUACACUUAUU 3052 844 UCUUAGCUUCUCUAAGAUCUC 3053 845 UGCUGAAUUUCAGUCCUCUUG 3054 846 ACUAUCGCUGUUGAUUUCCUC 3055 847 ACACAUAUUCCUCUCCACUUU 3056 848 UUCUUUCUAAUACUUAUUAGA 3057 849 UGGAAUGUGCUUCACCGGGGA 3058 850 UCAUUGAUGUUUGUCAUUUUU 3059 851 AAAUGAUGAUUAAUGUAUCUA 3060 852 AAUUUGUCAACAUUUCUCAAU 3061 853 UUCAGUAUUCUACAUUUAUCU 3062 854 UCUAGUCCAAUACACUUAUUU 3063 855 ACAACUUUCUGUAAUUUACAA 3064 856 UUCUGGUUGUUGACUGUUUCU 3065 857 UUCUGUGAAGAUCUUAUCAUC 3066 858 UUAAUUCCUUCUUGGGUUGCU 3067 859 AUCUCUGCCCUGCAUGCUCUG 3068 860 UGUGGUUUCUCCUAUGAGGAU 3069 861 AUGUAACUGAUCUCUUUCCCC 3070 862 UACAGAAGAAUUUCACUACAC 3071 863 UUAAGAAGCCUUCUAUAACAC 3072 864 AAAUGCUAUCUUUGGUUCCCA 3073 865 UAAGAAGCCUUCUAUAACACA 3074 866 UUUGGAGUAAUCGUGCCCAUU 3075 867 AUUAAGGCCUCUCUCUCUCAU 3076 868 AUUUGAAAGGUAAAGAACCCC 3077 869 UUUGUUUAAAUGUGGUUUCUC 3078 870 UAUCAGAUACAAUGCCCUGAG 3079 871 UUUGGUACUGCUGGUGAAGCA 3080 872 AACACAACACUAUGAAGAGGG 3081 873 UUUCAAGACAUUUAUGAAUAU 3082 874 UGGAUCCUUCUCAACUUGUUU 3083 875 UAUAAACAGUACCUGAUGCCC 3084 876 UAGCAGGAUGUCACAGUUUCA 3085 877 AAAUCUGUUGAACAUGUUGCC 3086 878 UUCAACCACAGAACGAGUAUA 3087 879 AUGUACAUAAGUUCUGUUUAG 3088 880 UCUGAAGGAAGAGAGAUCUCU 3089 881 UGUCAUCAGAAAUGCUAUCUU 3090 882 AUCGUAUGCUCAAAGUCUGAA 3091 883 UUCUUCUUCUUCCUCUUCAUC 3092 884 UCUCUCUCAUUAGAGCAGUGU 3093 885 CACACAAGCACACACAUUGAA 3094 886 AUGGGAAGUGGUUUGGAGCUG 3095 887 UAUAGAUAAUAGUCUCCUAAG 3096 888 GAAUAAACUGUUAACAAUCUG 3097 889 UGCAUGUUGGGUUAUAUUCAU 3098 890 UCUAAGAUCUCCUCAUCUGUC 3099 891 UGGAAGUGACCACUUUAUGGU 3100 892 UCUCUAGGUAUAGGGUCUGCU 3101 893 UCUGCAACUUGUAAGUGUUUA 3102 894 UAUUGUAAAGCAAUAUUAUAA 3103 895 AUAUGCUGAACUGAAAGCAUA 3104 896 AAAUCUGAAUAACAUAAAGAA 3105 897 UUCAUCACCCACCAAGUAGCU 3106 898 AGUAGCUACAGGAUUCUGUGA 3107 899 ACAGUUAUACAGACAACAGGA 3108 900 AGAGGUUAAGUGACUUGCCUA 3109 901 UAGACAUUGUUUAAUAUUAAA 3110 902 UGAACACACAUAUUCCUCUCC 3111 903 UUCACUUCAAAUCCCAGGCCC 3112 904 UAUUCCAUGACUACCCAUAGU 3113 905 UGGGAGAUACUUGCACUACUG 3114 906 AACAAGGAUUUCAGUAUUCUA 3115 907 ACAGGUGUGCACAUGGAGGUG 3116 908 UCCAAUCUAAAGCAACCACAA 3117 909 AAUUCCACCACCCUAACACAA 3118 910 UCUUGGGUUGCUGUUGAAGGU 3119 911 AAAGUCUGAAGGAAGAGAGAU 3120 912 UAUUUACAAUGACACACACAC 3121 913 GUAUUCUACAUUUAUCUGGUU 3122 914 UGUUACUAUUCAUCCUCAGUG 3123 915 AAUACCUUUAAUCCAAAGUUA 3124 916 UAAAGAAAGUGCUUUCAUUUU 3125 917 AGAUAUCAACUUUCGGACCAU 3126 918 AACAAAUUAAUUUGUCAACAU 3127 919 UGGUUUGGAGCUGUGGUUGAG 3128 920 ACACAUUGAACUUGAAUUUUG 3129 921 UCAAAGAUUUGGAUAGACUCA 3130 922 UGGAAUCAUAGAAUUUGAGAA 3131 923 AGCACACACAUUGAACUUGAA 3132 924 UUGCAGCGAUAAUCAGAGGAG 3133 925 AUAAUUUGUAUCAUAAGUAAA 3134 926 AGAGGGACUACUCUCUAACUU 3135 927 CUAGCAAAUAUCUCUGCCCUG 3136 928 AAUUUCACUACACAUGGUUUA 3137 929 UUCUAGCAAGUGUGACAGUGU 3138 930 UUUACUUAAUGUCCAACAAGG 3139 931 AAUCAGAGGAGUCAGGCUGGA 3140 932 AAGCACACACAUUGAACUUGA 3141 933 UUGGGAUAUGAUUGUAAGUUA 3142 934 UCACUUCAACAUUGCUGCCCU 3143 935 GAACAUCUAGAACAGCUUGUG 3144 936 UAGUGAAACUAAGCAGCAUAU 3145 937 AAGUACAGUUAUAUUCUAGCA 3146 938 UGAAUUUCCCGGCACUAUGAG 3147 939 AAGUUUGGAGUAAUCGUGCCC 3148 940 UAUGAGUAUAAUCCCAGUAGA 3149 941 AACAUGGACACACAAAUAUUU 3150 942 UUCUUCCUAGGCUAGUAUUUA 3151 943 AAGCCCUUCCUGAACACACAU 3152 944 ACAUUUAUGAAUAUGCUUUUG 3153 945 ACUGUCAGUUUACAAAUGCUG 3154 946 UAUUAUGGGAUAGCAUUUGCC 3155 947 AUUUAUUUCCUUCCCAGUCCA 3156 948 ACACACACACGAGAUCAGCAA 3157 949 UGUCCAACAAGGAUUUCAGUA 3158 950 UGUAUUGAGAAUGACCAAUAA 3159 951 UUUCUGGUUGUUGACUGUUUC 3160 952 ACACAGUCACUAAUGUACUGA 3161 953 UUCCCGCAUUUGCAGAUUCAG 3162 954 UUCUUACAGAGUUGAAUGUUU 3163 955 AAUGCUACAAGUUGUAUAGAA 3164 956 AAUCCUUCAGCAUCACUGUGG 3165 957 AGUUUCACUCUUGUUGCCGAG 3166 958 UCAUCUUCUUCUUCAGACACA 3167 959 UUGCAAUACUUUAGGUCCAAG 3168 960 UAUGUUGGUCAGGCUGGUCUC 3169 961 UUUACCCUCUUUCCAGCAGUG 3170 962 UCUACACAGACACUCCGCAGA 3171 963 ACAGCUUCUUUCUAAUACUUA 3172 964 CAACUUUCGGACCAUAAGCUU 3173 965 AAAGCCUAUGGAAUAAUUGUA 3174 966 AUGAUUUCAAAGUCAGCUUUU 3175 967 UUCCUUCCCAGUCCACAUGCA 3176 968 AUGUUGGUCAGGCUGGUCUCG 3177 969 UAUCUGUCCUUCAUCCAUACA 3178 970 UUGCAACUCUAUUAGGGCAUG 3179 971 AUGCUAACUAAUGAAUAGGGC 3180 972 UGUUCUUAAUUGCUUCCUUUG 3181 973 AUCUGAAGGGUCACUGCUCCA 3182 974 UACUAAAUCUGUUGAACAUGU 3183 975 ACUUAUAGAUAAUAGUCUCCU 3184 976 AUCUUCUUCUUCAGACACAGG 3185 977 AACUACUGCAAACAACCUAUA 3186 978 UCUCUAUGGAUCACCUGGUUU 3187 979 AUUGUACCAAAUGUGAAUCCU 3188 980 UUCUCAAUGCUAAUAGCAUGU 3189 981 AUUUCUUACAGAGUUGAAUGU 3190 982 UAUAUCACCUUUCUCUAGAUC 3191 983 AAUUAAUUUGUCAACAUUUCU 3192 984 UGUUUACUUAAUGUCCAACAA 3193 985 UCAGUUACAACUAAUUUCACA 3194 986 UCUAAUACUUAUUAGAAAUAU 3195 987 ACGUACACUAUAUAGUUUGCU 3196 988 UGCAACAGAUGUUAUCAAGGG 3197 989 UUCUGGAGCUCUGGAGUUCCA 3198 990 UUACAUGAAUACAAAUUUAUA 3199 991 UUAUGGUCACUUCAACAUUGC 3200 992 AAGUCAUAUAAGGAAUUCUGU 3201 993 UAACUGCAAGUAGCUUAGAUA 3202 994 ACAGUUAUAUUCUAGCAAGUG 3203 995 AAGUGGUUUGGAGCUGUGGUU 3204 996 UCUGAGGUGACUACCUCAUUA 3205 997 AACACUCACAAUGCUUCUUAG 3206 998 UAUAACAAUAUCAAAUAAAAU 3207 999 ACACACAUUGAACUUGAAUUU 3208 1000 AAUAGCAUGUAAUUACUUUUU 3209 1001 UUAUUAUCAAAUCUUGGUACA 3210 1002 AAAGAAUAAAUACUUGAGUUA 3211 1003 CUGAAUUUCAGUCCUCUUGUU 3212 1004 AUGAACUUCAUUUGCUUGAGU 3213 1005 ACAUCCAUCUCAAGACAGCGA 3214 1006 UAUUUGGUACUGCUGGUGAAG 3215 1007 AGGAUUUCAUUGAAUUUCCCG 3216 1008 UUAGAUAAAGACCAAGAGAUU 3217 1009 AAGAGACCAGAUAUCAACUUU 3218 1010 AUCAUCUUACAUAGUUCUUUU 3219 1011 AUAACACAAAUUGUUAGUUUU 3220 1012 CACUUCAACAUUGCUGCCCUG 3221 1013 AGACAGUCCUACAUAUUUGUU 3222 1014 UAGUGCUGUAUAAACAGUACC 3223 1015 UAUACUGCAAAUUAAGAAGCC 3224 1016 AUUUAGGUAUCAUUAUCUUUG 3225 1017 AAACAGAAAUAGGUGAUACAU 3226 1018 UCUUCUUCCUCUUCAUCUUCU 3227 1019 UCAUUUCUCUCUGCAACUUGU 3228 1020 AAUAAUUGUAACUAGCAAAUA 3229 1021 AACUUCAUUUGCUUGAGUUUU 3230 1022 UGUUCACACAGUACUUGCUCU 3231 1023 UAUCCAGACCGUCAGACAUUU 3232 1024 AAAGCUCAUGUAUUUCUGGUU 3233 1025 UCACGGAAUACAGCUGACAGU 3234 1026 UGGAACCAUACCAUCAGCAGG 3235 1027 UUGGAAUCAUAGAAUUUGAGA 3236 1028 UAAACACGUACACUAUAUAGU 3237 1029 CACAACACUAUGAAGAGGGAG 3238 1030 CACACUAGCAACAUCAAAGAU 3239 1031 UCCAUCUUUCCUGCAGCAGAG 3240 1032 AUAUAAGGAAUUCUGUCGGAC 3241 1033 CAACAUUAACGUUCUUUCCUU 3242 1034 UGGUGUGACCUCUUUAUUUGG 3243 1035 AUAAAGAAUAAAUACUUGAGU 3244 1036 UAUACAUAACUCUCCAAUACA 3245 1037 UGUUGGGUUAUAUUCAUUUGG 3246 1038 UCCUAUGAGGAUUUCCUAGGU 3247 1039 UUCUAAAGGAGACUCCGAUGG 3248 1040 UCCUGAUGUAAAGCUCAUGUA 3249 1041 AUUUCAUUGAAUUUCCCGGCA 3250 1042 AAUCUCUACUGUGCUUCUCAC 3251 1043 AUCUGUCCUUCAUCCAUACAG 3252 1044 AUCUCCUGAUGUAAAGCUCAU 3253 1045 UCCAGCAGUGUACUCAUCAUA 3254 1046 UGCAUGGGCUCUGCUAUCUUG 3255 1047 AAUGCUAUCUUUGGUUCCCAA 3256 1048 AUGCUGAAUUUCAGUCCUCUU 3257 1049 UCUCCUGAUGUAAAGCUCAUG 3258 1050 UACCCAUAGUUCAUCACCCAC 3259 1051 UACAUAUUUGUUUAAUGAUUU 3260 1052 AUGGAAUGUGCUUCACCGGGG 3261 1053 UCUGCCUACAGUGAUCUGAAG 3262 1054 CAAGUCAUAACUUCUAUUGAA 3263 1055 CUUUCUUAUUCUUCUCUUCAG 3264 1056 ACACACAAGCACACACAUUGA 3265 1057 UGCAAAUUAAGAAGCCUUCUA 3266 1058 UCAUUAUCUUUGUUUACUUAA 3267 1059 AAUCUGAAUAACAUAAAGAAU 3268 1060 UAAAUGUGGUUUCUCCUAUGA 3269 1061 UCCUCUUUCAGGUAUUAAGGA 3270 1062 AACACUAUGAAGAGGGAGUGU 3271 1063 UAAUAUUACCGUUUCAUUUUC 3272 1064 UCAUCAGAAAUGCUAUCUUUG 3273 1065 UUAUUUCCAAGUUCCCAUUUA 3274 1066 UAUCCUUCUAGUCCUCCAAAA 3275 1067 UUCCCAACAAAUUAAUUUGUC 3276 1068 AUCCUCGCCUAUCCACAUCCA 3277 1069 UUAUAUCUCUAUGGAUCACCU 3278 1070 CUUUGUUUACUUAAUGUCCAA 3279 1071 AUUGAAAGAUGUGCCCUCGUU 3280 1072 UAUUCCUAACUCAGGACAUUU 3281 1073 CUUCUCUAGGUAUAGGGUCUG 3282 1074 UCACCUUUCUCUAGAUCUUUA 3283 1075 AACUUAUAGAUAAUAGUCUCC 3284 1076 UGGACACACAAAUAUUUACAA 3285 1077 UUCUUCAGACACAGGAGGGGC 3286 1078 UCUCGAACUCCUGACCUCAGG 3287 1079 UUGCAAGUUCAACCCAAUUAA 3288 1080 UGUGAAGAUCUUAUCAUCAAU 3289 1081 UCAUUAUUAAAGUUCUCACCU 3290 1082 AUUAUGGGAUAGCAUUUGCCU 3291 1083 AAAUACACGUUCAGAAUUGUG 3292 1084 AGCUUGUGGGUUCUUCUUCUG 3293 1085 UAUUUACACGAUCUUUGAGCU 3294 1086 UGAAUUUCAGUCCUCUUGUUC 3295 1087 UCUCUGUGACCACAUCAGUCA 3296 1088 UAAAUGAAUUGGAAGGCUGCC 3297 1089 UCAGAUACAAUGCCCUGAGUG 3298 1090 CAAGCACACACAUUGAACUUG 3299 1091 UGCUGUUGAAGGUUCAUCUGC 3300 1092 UUCCCACCAUAGUGCUUCGUU 3301 1093 UGUUAUGUUGGAAGUUUGGAG 3302 1094 AUUAUCCAGACCGUCAGACAU 3303 1095 UUGAAUGUUUACUAUAUCACC 3304 1096 AUGAAUAGGGCUUCCUAACCA 3305 1097 AGCAACAUCAAAGAUUUGGAU 3306 1098 UGAAAUUAGUGGGACUUGCCC 3307 1099 UAACCAGGUAUUGGGCUCUCU 3308 1100 UCAAUAAUGAAUAUGGUAUUU 3309 1101 AAGAAGUUUCUAUUCAUUUGA 3310 1102 UGGAGACGAAGUUUCACUCUU 3311 1103 CAACAUAAGAGACUCAGGCUU 3312 1104 UAAAUAAUUUGUAUCAUAAGU 3313 1105 UAAUAUCCUGUUGGACAAGAA 3314 1106 GAAUCCUUCAGCAUCACUGUG 3315 1107 UGCAGAUUCAGUUAGACAUUG 3316 1108 UAUUAUAGAAUCUCUCAGAAC 3317 1109 AUUGGGACCAUCCACUAACUC 3318 1110 AAAUAUUCCAUUAUUUCCAAG 3319 1111 AGAAAUAGGUGAUACAUAGGA 3320 1112 UCUAUUGCUUCAACCACAAUU 3321 1113 UUUAUUUAUUGUAAAGCAAUA 3322 1114 UUUAAUCCAAAGUUACAGAAG 3323 1115 CAAGUUACUCGAUUGUACCAA 3324 1116 AUAAGCACAAGAGAGGAUUAA 3325 1117 UCAGCCUCCCAAGUAGCUGGG 3326 1118 AUUUCUCAAUGCUAAUAGCAU 3327 1119 AAGACCCUAAGGAUCAUCUAG 3328 1120 GAGAAGAAUAUUGUCACUCUU 3329 1121 UCUAUAACACAAAUUGUUAGU 3330 1122 UCACUGCUCCAAGGUCUCCAA 3331 1123 AUUUGGUCACUUAAAGGAGUG 3332 1124 UCCUUCAUCCAUACAGGUCUC 3333 1125 CUACAUCUGACUCAUUCUCUA 3334 1126 UCUUCCAUCUUUCCUGCAGCA 3335 1127 ACUGCAACAUAAGAGACUCAG 3336 1128 AAGCAAUGGAUUCAACCACAG 3337 1129 CUCUGUGACCACAUCAGUCAG 3338 1130 AUCCCGGUUGUUACUAUUCAU 3339 1131 AGAAGAUUCAGGAAGUGCCAA 3340 1132 AAGCCCAGCACUACUUCACAG 3341 1133 AAAUGUGGUUUCUCCUAUGAG 3342 1134 AUCUAAAUAAUUAACAAUAUU 3343 1135 UAUCUCUGCCCUGCAUGCUCU 3344 1136 AUUAAACACAUUCCCAAUGCA 3345 1137 UAGUAUGCUUCAAAUUAAUAU 3346 1138 UCCUAAGAAAGCGUGUGCCAU 3347 1139 AGAAGGAUGGAACCAUACCAU 3348 1140 UUAGGGCAUGGACUUCCACAU 3349 1141 AAACUCUAGAAAGCCCAGCAC 3350 1142 AACAUGGUGACUGAUUUGAGG 3351 1143 AAAUAAUUUGUAUCAUAAGUA 3352 1144 CUUAACUGAAUAUUAACUGCA 3353 1145 AGAAAUAAACCCAUUGAGCAA 3354 1146 UAGAAAGCCCAGCACUACUUC 3355 1147 UCCUGUUGCAAUGUCUAGUGC 3356 1148 AAGAAGCCUUCUAUAACACAA 3357 1149 CACAUGUUCACACAGUACUUG 3358 1150 CAUUAUUAAAGUUCUCACCUA 3359 1151 UUGUUACUAUUCAUCCUCAGU 3360 1152 UGGGAAGAUAGAGCGAAGCCU 3361 1153 AGAAUACUCGUACACACAGGU 3362 1154 UCUUCCUCUUCAUCUUCUUCU 3363 1155 UCAUGCACAAUCCAUAUUUCA 3364 1156 AACUAGCAAAUAUCUCUGCCC 3365 1157 UUUCUCUUCAUUAUCCAGACC 3366 1158 AAUGCUAAUAGCAUGUAAUUA 3367 1159 UCAGAGCUCAGAGACUGGGAG 3368 1160 UUUGGAGUUCUAAUAGUGACA 3369 1161 UCACUGACCUCCCAUUUCUUA 3370 1162 UAAUGUCCAACAAGGAUUUCA 3371 1163 UCCUUCUUCUUAUUGGUUUUA 3372 1164 UGCAAGUCAUAACUUCUAUUG 3373 1165 UAAGAUGUGGAUAUAUGGAUG 3374 1166 ACGUGGAUCCUUCUCAACUUG 3375 1167 AAUACUUGAGUUAAAUCUUCU 3376 1168 AGUGUACUCAUCAUACAACUG 3377 1169 UCUCAGGAUUCUGGAGCUCUG 3378 1170 UCCUACCUGAAUGAUAUACAG 3379 1171 AUAGGGCUUCCUAACCAGGUA 3380 1172 AUAUAUGGUGAAAUAGUAGUC 3381 1173 AGUGAUAUUAUAGAAUCUCUC 3382 1174 AUGUAUCUAUUUCCUCCUGGU 3383 1175 AAAGUCAGUCAAUUUAACAGA 3384 1176 UUUGGGCUGCGAUUCAGGCUU 3385 1177 UCUUUGUCCAUAUGCAUUUCU 3386 1178 UUUGAAUGCAAGAGGGACUAC 3387 1179 AUUUAUUGUAAAGCAAUAUUA 3388 1180 UUUCUGCUGUUUAUUUAUUGU 3389 1181 AAUAUCUCUGCCCUGCAUGCU 3390 1182 UUUGUUUACUUAAUGUCCAAC 3391 1183 AUAUGGUAUUUGCGGGUCCAU 3392 1184 AUUAUUAUCAAAUCUUGGUAC 3393 1185 UAAAUGCUACAAGUUGUAUAG 3394 1186 AUAGUUUGCUGAAACUCUAAA 3395 1187 UGCUAACUAAUGAAUAGGGCU 3396 1188 UUCCAGAAAGGCAAUAUCUGC 3397 1189 AGAACCUGAACUCACCUAGCA 3398 1190 UGAUGAUUAAUGUAUCUAUUU 3399 1191 UCCGAAACAGAAAUAGGUGAU 3400 1192 UUGUCAUCAGAAAUGCUAUCU 3401 1193 UUUGAAAGGUAAAGAACCCCC 3402 1194 CUUAGAGAAACAACUUUCUGU 3403 1195 AUAUCAUUUAUAGACAAAUAU 3404 1196 AGGAUUUCACCGUUUGAGCUU 3405 1197 UAGUGGGACUUGCCCUAUUGG 3406 1198 AUAUUUGUUUAAUGAUUUCAA 3407 1199 UCACAUAGCAAUUUAGUAAUA 3408 1200 GAAUACUCGUACACACAGGUG 3409 1201 UUCCACAUGUUCACACAGUAC 3410 1202 AACCUGAACUCACCUAGCAGG 3411 1203 UCUUACAGAGUUGAAUGUUUA 3412 1204 UACUUCACAGGAAAGGAGAAG 3413 1205 CAACUUGUAAGUGUUUAGGUU 3414 1206 GCUAACAACAUUAACGUUCUU 3415 1207 AUUCAGUUAGACAUUGUUUAA 3416 1208 UACAAAGUGGUAGUAAAGAAG 3417 1209 UACAUAAGUUCUGUUUAGAUU 3418 1210 AAAUAUACAUAACUCUCCAAU 3419 1211 UGUCCUUCAUCCAUACAGGUC 3420 1212 AUGCUCUGGUCUUGGUGCGAU 3421 1213 AGUAUUCUACAUUUAUCUGGU 3422 1214 AUAAACAGUACCUGAUGCCCC 3423 1215 UCAUCUCCUGAACAUAAACAC 3424 1216 UAGUAUUUAUCCCACUACAUC 3425 1217 AUCCCACUACAUCUGACUCAU 3426 1218 CAUAGAAUUUGAGAACAUCUA 3427 1219 UACACACAGGUGUGCACAUGG 3428 1220 AACGAAGUCAUUACCCAACAU 3429 1221 UUGAGUGCAGGAAAUCCAAAG 3430 1222 UAGGCAGGGCAUUGGGACCAU 3431 1223 AUGUGAAUCCUUCAGCAUCAC 3432 1224 ACACACAGGUGUGCACAUGGA 3433 1225 UCAUAGGAGAAAUAUUCCAUU 3434 1226 UCUGCUGUUUAUUUAUUGUAA 3435 1227 CUUCAAAUUAAUAUUACCGUU 3436 1228 UCUCUGGGCGCUCUUUCUCCU 3437 1229 UCCUAGGCUAGUAUUUAUCCC 3438 1230 UUUCUCUGCCUACAGUGAUCU 3439 1231 CAACAUUGAAAGAUGUGCCCU 3440 1232 UUCUUAGCUUCUCUAAGAUCU 3441 1233 ACAGUCUCUCAGGAUUCUGGA 3442 1234 UGGUUUACUCAAUUAUCUUUU 3443 1235 AGUUCUAAUAGUGACAUCUCC 3444 1236 ACCACACACAAGCACACACAU 3445 1237 UCUCUAUGUUGGUCAGGCUGG 3446 1238 UCAAAGUCUGAAGGAAGAGAG 3447 1239 AGACCAAGAGAUUCAACCGGG 3448 1240 UUCACCUUCCACCAUUUCAAU 3449 1241 CAAAGUAUAACAUAGUAUGCU 3450 1242 UAGCUACAGGAUUCUGUGAAG 3451 1243 AAUAUCUGCAACAGAUGUUAU 3452 1244 ACAAUGACACACACACGAGAU 3453 1245 AAGUUUCACUCUUGUUGCCGA 3454 1246 AACAUUGAAAGAUGUGCCCUC 3455 1247 UCUGCAACAGAUGUUAUCAAG 3456 1248 GUGGUAGUAAAGAAGUACCUG 3457 1249 AUGCUUCUUAGCUUCUCUAAG 3458 1250 UGCUGAAGAAUCCCGGUUGUU 3459 1251 ACUACAUCUGACUCAUUCUCU 3460 1252 UUCGCUUCACGGUGGAAGUGA 3461 1253 AAGCUCAUGUAUUUCUGGUUG 3462 1254 UCUCCUCAUCUGUCAUCUUGG 3463 1255 AUUACAUAAUCUGAGGGAGUA 3464 1256 AUUCUCUACUAUCGCUGUUGA 3465 1257 AUCACAUUGGGUAAGGAGUUU 3466 1258 UUUCUUUGGUGAGUUAGAAGG 3467 1259 CAAUUUAGUAAUAAAGCUCAU 3468 1260 AUUGCUGCCCUGUUUGGGCUG 3469 1261 AUCUUUGUUUAAAUGUGGUUU 3470 1262 ACAGGAAGCAAUUUCGUGUUU 3471 1263 UUCAAGCGAUUCUCCCACCUC 3472 1264 AUACAGGUCUCUGUGACCACA 3473 1265 AAACAACUGUAAAUGAAUUGG 3474 1266 UAACAACCUGGUUUACUCAAU 3475 1267 AUAGUUGUAAUCCCUGUUUAU 3476 1268 GAACCUGAACUCACCUAGCAG 3477 1269 AUGAUGAUUAAUGUAUCUAUU 3478 1270 AAGAGAGGAUUAAUUUAGGUA 3479 1271 GUUUACAGAUAACACAUUCUG 3480 1272 UAUCUAUUUCCUCCUGGUAUG 3481 1273 AUAGAUAAUAGUCUCCUAAGA 3482 1274 UAUCCCACUGUGGACAUUUUC 3483 1275 UUGAAUUUCCCGGCACUAUGA 3484 1276 AAUUUAGUAAUAAAGCUCAUA 3485 1277 UUGCAUCCCAGGAUUUCAUUG 3486 1278 UCUUUCCAGCAGUGUACUCAU 3487 1279 UACCAUCAGCAGGUCUACAAA 3488 1280 UCAUCUUCUUCUUCUUCUUCC 3489 1281 AUCCAUACAGGUCUCUGUGAC 3490 1282 UAGCAAAUAUCUCUGCCCUGC 3491 1283 UCAGGUGAUCCGCCUGCCUUG 3492 1284 AGAGACUCAGGCUUAAACGUG 3493 1285 UCUGUGAAGAUCUUAUCAUCA 3494 1286 UUAUUAGAAAUAUACAUAACU 3495 1287 AGCUUCUCUAAGAUCUCCUCA 3496 1288 AACCACAGAACGAGUAUAGAU 3497 1289 UCAGGAUUCUGGAGCUCUGGA 3498 1290 UACAAAUAAAUUACAUAAUCU 3499 1291 UCAUUAAUAAUUAAUUCCUUC 3500 1292 UAAUUGUAACUAGCAAAUAUC 3501 1293 UUAAGGCCUCUCUCUCUCAUU 3502 1294 CAUUUCUCUCUGCAACUUGUA 3503 1295 UCUAAAUAAUUAACAAUAUUA 3504 1296 ACAACCUAUAAAUAGGCAGAA 3505 1297 UUGGGCUGCGAUUCAGGCUUA 3506 1298 AAGAGAAUAAACUGUUAACAA 3507 1299 AUUUGUAUCAUAAGUAAAUGA 3508 1300 UGCAACAUAAGAGACUCAGGC 3509 1301 UUAGUGGGACUUGCCCUAUUG 3510 1302 AUGGAACCAUACCAUCAGCAG 3511 1303 CCAGUAGACAUCACUACCCUG 3512 1304 UCCCAUUUAUUUCCUUCCCAG 3513 1305 GAACUAAGCAUGAACACACCA 3514 1306 CUUUAUUUGGUACUGCUGGUG 3515 1307 AAUAAAUUACAUAAUCUGAGG 3516 1308 UUCCAUUAUUUCCAAGUUCCC 3517 1309 AUCAGCAAGAACGAAGUCAUU 3518 1310 CUAACAACAUUAACGUUCUUU 3519 1311 AACAGAACUAUAACUGAAUGC 3520 1312 ACAAAUUAAUUUGUCAACAUU 3521 1313 UCGUACACACAGGUGUGCACA 3522 1314 GUUCACACAGUACUUGCUCUG 3523 1315 ACACGUACACUAUAUAGUUUG 3524 1316 AAAGACCCUAAGGAUCAUCUA 3525 1317 UUACAGGCCCAGAUUCGUUUU 3526 1318 CUCAAGUACAGUUAUAUUCUA 3527 1319 UGGAAAGACCCUAAGGAUCAU 3528 1320 AAAGGCAAUAUCUGCAACAGA 3529 1321 CAUGAACACACCAUAUUCCGA 3530 1322 ACUUAAAGGAGUGUGGAUCAG 3531 1323 UUGCAGGCACUCUCUGCAGAC 3532 1324 UGUUUGGAGUUCUAAUAGUGA 3533 1325 UGACAUUUCUUGGGAUAUGAU 3534 1326 UUCACUCUUAGCAGUCUCAGC 3535 1327 UACAAAUGCUGAAUUUCAGUC 3536 1328 AAAUAAUCUCUACUGUGCUUC 3537 1329 AAGAAUAAAUACUUGAGUUAA 3538 1330 UCACAGUUUCAGUUUCAGUGU 3539 1331 ACUACUGCAAACAACCUAUAA 3540 1332 AUUGGGAUGUAGCCUUCACUG 3541 1333 AAGUAGCUUAGAUAAAGACCA 3542 1334 AAUGAUGAUUAAUGUAUCUAU 3543 1335 ACAGGAUUCUGUGAAGAUCUU 3544 1336 UAGGUCCAAGUUUCAAACUGC 3545 1337 AGCUUCUAAAGGAGACUCCGA 3546 1338 AAUCACUGUGGGAGUUGUCAU 3547 1339 UAAACUCUAGAAAGCCCAGCA 3548 1340 UCAGGCUGGUCUCGAACUCCU 3549 1341 AUGUCCAACAAGGAUUUCAGU 3550 1342 UUUGGAGCUGUGGUUGAGUGC 3551 1343 CAGGCUGGUCUCGAACUCCUG 3552 1344 UGAAUCGUAUGCUCAAAGUCU 3553 1345 UCACCGUUUGAGCUUUAUUUA 3554 1346 AAUCGUGCCCAUUGCUCUGGA 3555 1347 GAAUGUUUACUAUAUCACCUU 3556 1348 UGUAUCAUAAGUAAAUGAUGA 3557 1349 UAACAAUAUUAGGGUUCUUAU 3558 1350 CUGAAUUUGCAAGGCAACCUA 3559 1351 UUGUAAAGCAAUAUUAUAACA 3560 1352 UACCCUCUUUCCAGCAGUGUA 3561 1353 AACAAUAUUAGGGUUCUUAUU 3562 1354 AAUUAAUUCCUUCUUGGGUUG 3563 1355 UCAGAGACUGGGAGAUACUUG 3564 1356 CAAGUUGUAUAGAAUACUCGU 3565 1357 UUCUCUCUGCAACUUGUAAGU 3566 1358 UCACAAUGCUUCUUAGCUUCU 3567 1359 UGUCCAUAUGCAUUUCUUUUU 3568 1360 AACAUAAGAGACUCAGGCUUA 3569 1361 UUGAAAUUAGUGGGACUUGCC 3570 1362 UCCUUCCCAGUCCACAUGCAA 3571 1363 AAUAUUAAACACAUUCCCAAU 3572 1364 UGUAUAGAAUACUCGUACACA 3573 1365 CUGUUGAAGGUUCAUCUGCUU 3574 1366 UAGGAGAAAUAUUCCAUUAUU 3575 1367 CACACAUUGAACUUGAAUUUU 3576 1368 GUUGUUACUAUUCAUCCUCAG 3577 1369 ACAGAGUUGAAUGUUUACUAU 3578 1370 UUCACCGUUUGAGCUUUAUUU 3579 1371 CAAUGGAAUGUGCUUCACCGG 3580 1372 UGUUGGUCAGGCUGGUCUCGA 3581 1373 UGUCCUGUUGCAAUGUCUAGU 3582 1374 CUUCUAUUGAAAUUAGUGGGA 3583 1375 UAUAUUCUAGCAAGUGUGACA 3584 1376 UAAAGGAGUGUGGAUCAGAAA 3585 1377 UUGCUGAAACUCUAAAGAAAG 3586 1378 UUUCUAAUACUUAUUAGAAAU 3587 1379 UUUGCUUAACUGAAUAUUAAC 3588 1380 UUCACGGUGGAAGUGACCACU 3589 1381 AGGUCUCUGUGACCACAUCAG 3590 1382 UGACAACGCACUGGAUCCUUG 3591 1383 UCCUCUUCAUCUUCUUCUUCA 3592 1384 AUACAGACAACAGGAAGCAAU 3593 1385 GAUGUUAUGAGUAUAAUCCCA 3594 1386 AUUUAUCCCACUACAUCUGAC 3595 1387 AUAUAUGGAUGGUUAGAUGGA 3596 1388 UAAGUAAAUGAUGAUUAAUGU 3597 1389 AUUAUCUUUGUUUACUUAAUG 3598 1390 CAGAACUAUAACUGAAUGCCA 3599 1391 AAAGCAUAAGAGAGAAGCCAU 3600 1392 AGAAGUUUCUAUUCAUUUGAA 3601 1393 AAUUAUUUACACGAUCUUUGA 3602 1394 UGCUGAGGUCAGAAGGAUGGA 3603 1395 AAAUUAAUAUUACCGUUUCAU 3604 1396 UCAUUGAAUUUCCCGGCACUA 3605 1397 UUAUUUACACGAUCUUUGAGC 3606 1398 UUGGAUGCUGAGGUCAGAAGG 3607 1399 UUUAAUGAUUUCAAAGUCAGC 3608 1400 AAGUUCAACCCAAUUAAGUGG 3609 1401 AAAUGAGAUACAAUUCUGAUA 3610 1402 GUAGCCUUCACUGACCUCCCA 3611 1403 AGGAUGGAACCAUACCAUCAG 3612 1404 AUCCUUGCUAACAACAUUAAC 3613 1405 UUCAGGCUUACAAAUAAAUUA 3614 1406 UCUUGUCCUGUUGCAAUGUCU 3615 1407 ACAGACAACAGGAAGCAAUUU 3616 1408 UUACAGAGUUGAAUGUUUACU 3617 1409 AACAACAUUAACGUUCUUUCC 3618 1410 AUCUGAGGUGACUACCUCAUU 3619 1411 AAUCCCAGUAGACAUCACUAC 3620 1412 AAGUAUUUCUGUAUUGAGAAU 3621 1413 AUUAAUAUUACCGUUUCAUUU 3622 1414 UAUCCUUUGGUUAGAUGGUCU 3623 1415 AGAAGAAUAUUGUCACUCUUU 3624 1416 CUUCUUCUUCUUCUUCCUCUU 3625 1417 UCAUUAGAAAUAAACCCAUUG 3626 1418 UUAUAGACAAAUAUCUCAAAC 3627 1419 AACUGAAAGCAUAAGAGAGAA 3628 1420 AUUUCAGUAUUCUACAUUUAU 3629 1421 AUCAUUUAUAGACAAAUAUCU 3630 1422 UCAUAACUUCUAUUGAAAUUA 3631 1423 CAUAACUCUCCAAUACAGGGA 3632 1424 AAAUAGGUGAUACAUAGGAAA 3633 1425 AUCACAACUACUGCAAACAAC 3634 1426 AUGAAUCGUAUGCUCAAAGUC 3635 1427 UGGAGUUCUAAUAGUGACAUC 3636 1428 UAUUUAUUGUAAAGCAAUAUU 3637 1429 CAAAUGUGAAUCCUUCAGCAU 3638 1430 AUUGCUCUGGAAUUCCAGUGA 3639 1431 AUUUCUGGUUGUUGACUGUUU 3640 1432 GUAUUUAUCCCACUACAUCUG 3641 1433 UUCCCAGUCUUUGUCCAUAUG 3642 1434 CUAAUAGUGACAUCUCCCUAG 3643 1435 UGUUUAAAUGUGGUUUCUCCU 3644 1436 UUCCUCUUGGGUACUAAAUCU 3645 1437 AGCAGUGUACUCAUCAUACAA 3646 1438 UCGUUAUCUCAGGGCACACUA 3647 1439 CUCUACUGUGCUUCUCACCCU 3648 1440 GUAACUAGCAAAUAUCUCUGC 3649 1441 UGGUGAGUUAGAAGGAAGUUA 3650 1442 CAAUGCUUCUUAGCUUCUCUA 3651 1443 AUAAAUAAUUUGUAUCAUAAG 3652 1444 AAGUUCUGUUUAGAUUCUUUU 3653 1445 CAACGCACUGGAUCCUUGCUA 3654 1446 UGAUUUCAAAGUCAGCUUUUA 3655 1447 UAAAGCACACCACACACAAGC 3656 1448 UUGCGGGUCCAUAAAGCACAC 3657 1449 UUUGAGCUUUAUUUAGAUAUA 3658 1450 AUGGAAUAAUUGUAACUAGCA 3659 1451 UUGCUUAACUGAAUAUUAACU 3660 1452 CACAGUUUCAGUUUCAGUGUG 3661 1453 AUCGUGCCCAUUGCUCUGGAA 3662 1454 UCACGGUGGAAGUGACCACUU 3663 1455 CUAAAUCUGUUGAACAUGUUG 3664 1456 AGCAAUUUAGUAAUAAAGCUC 3665 1457 UGGGAUAUGAUUGUAAGUUAA 3666 1458 UAGCAGGCUGAAUUUGCAAGG 3667 1459 UACAGUGCAUAUGUUUCAUAA 3668 1460 UUCAAAUCCCAGGCCCAUCAA 3669 1461 UUCUCCCACCUCAGCCUCCCA 3670 1462 UUAAAGGAGUGUGGAUCAGAA 3671 1463 UAGAUAAAGACCAAGAGAUUC 3672 1464 UCAACAUUGCUGCCCUGUUUG 3673 1465 UCCAUAAAGCACACCACACAC 3674 1466 UGCAACUCUAUUAGGGCAUGG 3675 1467 AUGUUUACUAUAUCACCUUUC 3676 1468 UGAAGGUUCAUCUGCUUUAUG 3677 1469 UAGUUGUAAUCCCUGUUUAUG 3678 1470 GAUCUUAUCAUCAAUAAUGAA 3679 1471 AUGGAGAGGUUAAGUGACUUG 3680 1472 UAUGGAAUAAUUGUAACUAGC 3681 1473 AUGCAUGGGCUCUGCUAUCUU 3682 1474 UCGAUUGUACCAAAUGUGAAU 3683 1475 CAUAUCUGAGGUGACUACCUC 3684 1476 AAGAACUAAGCAUGAACACAC 3685 1477 UUUAUCCCACUACAUCUGACU 3686 1478 AUUCCAUGACUACCCAUAGUU 3687 1479 UAAACACAUUCCCAAUGCAUG 3688 1480 AUUCAUUUGAAAGGUAAAGAA 3689 1481 AUAGGAGAAAUAUUCCAUUAU 3690 1482 UCUUAGCGGCUGCUGUUCUUA 3691 1483 UAUGCUUCAAAUUAAUAUUAC 3692 1484 UGGAUGGUUAGAUGGAUGGAU 3693 1485 AAAGAACUAAGCAUGAACACA 3694 1486 AAGGAGGUUUGAAUGCAAGAG 3695 1487 UCUAUGGAUCACCUGGUUUGA 3696 1488 AUGGAUGGUUAGAUGGAUGGA 3697 1489 ACACACCAUAUUCCGAAACAG 3698 1490 AUGGUUAGAUGGAUGGAUGUA 3699 1491 AGAUACAAUUCUGAUAAACAA 3700 1492 AGUAGCUAUCUAAAUAAUUAA 3701 1493 UCCACAUGCAAAUACACGUUC 3702 1494 AGUUACAGAAGAAUUUCACUA 3703 1495 UUGAAUGCAAGAGGGACUACU 3704 1496 CAGGAUUCUGUGAAGAUCUUA 3705 1497 CUGAACACACAUAUUCCUCUC 3706 1498 ACUCAAGACACAGUCAUGCAC 3707 1499 AUUAUAACAAUAUCAAAUAAA 3708 1500 UCUUUCAGGUAUUAAGGAGAU 3709 1501 UCCCAUCUUUGUUUAAAUGUG 3710 1502 AAUUGUAACUAGCAAAUAUCU 3711 1503 AACUAAGCAGCAUAUCUGAGG 3712 1504 AGAUGUAAGGAUCAGGUGGUU 3713 1505 AAUUAGUGGGACUUGCCCUAU 3714 1506 AGUUUGGAGUAAUCGUGCCCA 3715 1507 CAAAUCUUGGUACAAAGUGGU 3716 1508 ACUUUGCUCAGGAGUGAUCUG 3717 1509 UCUUCAAAGUGAAUGCACAAA 3718 1510 AUUAUUUCCAAGUUCCCAUUU 3719 1511 UCAACAUUUCUCAAUGCUAAU 3720 1512 AGGAGGUCAAGCCUCUCCCAA 3721 1513 AGUAGACAUCACUACCCUGUG 3722 1514 UGACAGGAUUUCACCGUUUGA 3723 1515 UCUUCCUAGGCUAGUAUUUAU 3724 1516 UCAACAUGUAAGGGAUGCUAA 3725 1517 CAUCUUCUUCUUCUUCUUCCU 3726 1518 UAAUAGUGACAUCUCCCUAGC 3727 1519 GCUUAGAGAAACAACUUUCUG 3728 1520 CAUCUAGAACAGCUUGUGGGU 3729 1521 UCUUCAUCUUCUUCUUCAGAC 3730 1522 AAAUGCUACAAGUUGUAUAGA 3731 1523 UUUGGUUCCCAACAAAUUAAU 3732 1524 UAUCAACUUUCGGACCAUAAG 3733 1525 AAGCUUGCAGGCACUCUCUGC 3734 1526 CUAUGUAUCCAUGUGCACUUU 3735 1527 AUGGGAUAGCAUUUGCCUGAU 3736 1528 UAAAGCCUAUGGAAUAAUUGU 3737 1529 UAGCUGGGAUUACAGGCGCCC 3738 1530 UCAGGAGUGAUCUGGGCACAG 3739 1531 AGUGCUUCGUUUACUUUGCUC 3740 1532 UCGUUUACUUUGCUCAGGAGU 3741 1533 UCACUCUUAGCAGUCUCAGCC 3742 1534 UAUGAGGAUUUCCUAGGUUCA 3743 1535 UAAUUUGUAUCAUAAGUAAAU 3744 1536 AUUAAUGUAUCUAUUUCCUCC 3745 1537 ACACAACACUAUGAAGAGGGA 3746 1538 AAAUGAAUUGGAAGGCUGCCA 3747 1539 AAGUAGCUGGGAUUACAGGCG 3748 1540 CAUCUAAUGACAAUGCAAGUG 3749 1541 UCUAUGUUGGUCAGGCUGGUC 3750 1542 CUGAGUUCACUUCAAAUCCCA 3751 1543 UCAGAGAAAGUCCCAUCUUUG 3752 1544 AUCCUCAGUGGAGGAGCCGGG 3753 1545 AAGCAAUUUCGUGUUUCUUUU 3754 1546 AUGAGAUACAAUUCUGAUAAA 3755 1547 UACAUAAUCUGAGGGAGUAGG 3756 1548 UCUUUGGUUCCCAACAAAUUA 3757 1549 UGAAGAUCUUAUCAUCAAUAA 3758 1550 AUAUUGUCACUCUUUAUAUCU 3759 1551 UGGUUUACAGAUAACACAUUC 3760 1552 UCUUCUUCUUCCUCUUCAUCU 3761 1553 CUGUCGGACUGACAUUUCUUG 3762 1554 CUCCUCAUUGUUAAUAUGCUG 3763 1555 AAAGAAAUCUGAAUAACAUAA 3764 1556 GACACAGUCACUAAUGUACUG 3765 1557 UGGGUUCAAGCGAUUCUCCCA 3766 1558 AACCAUACCAUCAGCAGGUCU 3767 1559 GUAUAACAUAGUAUGCUUCAA 3768 1560 AUACUUUAGGUCCAAGUUUCA 3769 1561 ACAUGGUGACUGAUUUGAGGG 3770 1562 UGUUUAGGUUCACUCUUAGCA 3771 1563 AGAAGGAAGUUAUCCUUUGGU 3772 1564 ACUAAUGAAUAGGGCUUCCUA 3773 1565 UCCAUGACUACCCAUAGUUCA 3774 1566 AAGGAAGAGAGAUCUCUGGGC 3775 1567 UCUAAAGAAAGUGCUUUCAUU 3776 1568 CUGAAUGUACAUAAGUUCUGU 3777 1569 UGUACAAAGUACUGGAAUUGG 3778 1570 GUGUACUCAUCAUACAACUGG 3779 1571 UCCAGAAAGGCAAUAUCUGCA 3780 1572 AAUAUGGUAUUUGCGGGUCCA 3781 1573 AAUAGAUAUAUGGUGAAAUAG 3782 1574 AUUUCCUUCCCAGUCCACAUG 3783 1575 CAGACUUUACAUACAGACUGU 3784 1576 CUUACUGCUGGUAUUAUGGGA 3785 1577 UCAUAAGUAAAUGAUGAUUAA 3786 1578 UCUGUCCUUCAUCCAUACAGG 3787 1579 UGACUUGCCUAGCGUCACAUA 3788 1580 CAUCUGACUCAUUCUCUACUA 3789 1581 AUGAGGGAGAUGGUGAGGUGU 3790 1582 GUACACUAUAUAGUUUGCUGA 3791 1583 UUUCACUCUUGUUGCCGAGGC 3792 1584 UACUGCAAACAACCUAUAAAU 3793 1585 CAACUGAUUUCAAUUAUCUGU 3794 1586 ACAUUGUUUAAUAUUAAACAC 3795 1587 CAGUUAUACAGACAACAGGAA 3796 1588 UUUGCAUCCCAGGAUUUCAUU 3797 1589 UAUCAUUUAUAGACAAAUAUC 3798 1590 UCCCACUACAUCUGACUCAUU 3799 1591 UACAGGCCCAGAUUCGUUUUU 3800 1592 UCUACUCUCAGAAGAUUCAGG 3801 1593 AUUUCAGUCUUACUCAUGAGG 3802 1594 GAAACUAAGCAGCAUAUCUGA 3803 1595 AAGGAAGUUAUCCUUUGGUUA 3804 1596 CUUCUUCAGACACAGGAGGGG 3805 1597 UUAGCGGCUGCUGUUCUUAAU 3806 1598 UUUCACUACACAUGGUUUACA 3807 1599 UGGAACAUGGACACACAAAUA 3808 1600 AUGUCACAGUUUCAGUUUCAG 3809 1601 UUAAUCCAAAGUUACAGAAGA 3810 1602 UCUCCCACCUCAGCCUCCCAA 3811 1603 AAUAGGGCUUCCUAACCAGGU 3812 1604 AGCACAUGGAGACCAUCCCAA 3813 1605 UGCAACUUGUAAGUGUUUAGG 3814 1606 AAGAGACUCAGGCUUAAACGU 3815 1607 AAUAAAGCUCAUAUUAGACUC 3816 1608 UAGCUAUCUAAAUAAUUAACA 3817 1609 AUGCUGAACUGAAAGCAUAAG 3818 1610 AUGAGUAUAAUCCCAGUAGAC 3819 1611 ACUAAGCAUGAACACACCAUA 3820 1612 AGUGCAGGAAAUCCAAAGCUU 3821 1613 UGAUAUCUCAGUUCCCGCAUU 3822 1614 AAUAUUAUAACAAUAUCAAAU 3823 1615 AGUAAUAUCCUGUUGGACAAG 3824 1616 AAUGCUGAAUUUCAGUCCUCU 3825 1617 UCCUCAUUGUUAAUAUGCUGA 3826 1618 UGCAAAGUAUAACAUAGUAUG 3827 1619 CAGACAGCUGCUAUCUGUCCU 3828 1620 AUAGUUCCCUUUCUGCUGUUU 3829 1621 CAGGACACAGUCACUAAUGUA 3830 1622 ACAUAACUCUCCAAUACAGGG 3831 1623 UAUUCAUUUGGUCACUUAAAG 3832 1624 UAUCUGCAACAGAUGUUAUCA 3833 1625 AGAAAUAUUCCAUUAUUUCCA 3834 1626 UGAGGUGUAAGGCUUGCAGUC 3835 1627 UGCCCUAUUCCUAACUCAGGA 3836 1628 UUUCCAGCAGUGUACUCAUCA 3837 1629 AAAGAAAGUGCUUUCAUUUUA 3838 1630 AUCUAAUGACAAUGCAAGUGA 3839 1631 AACUAAUGAAUAGGGCUUCCU 3840 1632 CCUUCUAUAACACAAAUUGUU 3841 1633 UCCAUCUCAAGACAGCGAUUU 3842 1634 AUAUUCCAUUAUUUCCAAGUU 3843 1635 UCACAUUGGGUAAGGAGUUUU 3844 1636 ACCAUAAAUACCUUUAAUCCA 3845 1637 GUGAUCUGGGCACAGAACCCA 3846 1638 AAAGUGCUGGGAUUACAGGUA 3847 1639 AAGAAAUCUGAAUAACAUAAA 3848 1640 AUUGAUUGGGAUGUAGCCUUC 3849 1641 ACUCGUACACACAGGUGUGCA 3850 1642 AUGUGGUUUCUCCUAUGAGGA 3851 1643 UACAUACAGACUGUAUGGAAA 3852 1644 UAUUUCCUUCCCAGUCCACAU 3853 1645 AACUGUCAGUUUACAAAUGCU 3854 1646 AGGUGUAAGGCUUGCAGUCUU 3855 1647 GACACAGUCAUGCACAAUCCA 3856 1648 AGGAGAUUAACAACCUGGUUU 3857 1649 AGAAACAACUUUCUGUAAUUU 3858 1650 UGCUGUAGGCAGGGCAUUGGG 3859 1651 UGUGCCCUCGUUAUCUCAGGG 3860 1652 ACAUAGUUGUAAUCCCUGUUU 3861 1653 UCAGCAAGAACGAAGUCAUUA 3862 1654 AGACAUUUAUGAAUAUGCUUU 3863 1655 UCCAACAAGGAUUUCAGUAUU 3864 1656 AGCAAUUUCGUGUUUCUUUUU 3865 1657 UUCCAUCUUUCCUGCAGCAGA 3866 1658 AAUUUCAAGACAUUUAUGAAU 3867 1659 UUCUAAUACUUAUUAGAAAUA 3868 1660 CUUCUUCCUCUUCAUCUUCUU 3869 1661 UCACUACACAUGGUUUACAGA 3870 1662 UCAACCUGAGAGUCUGUUAAA 3871 1663 UUCCAUGACUACCCAUAGUUC 3872 1664 UGGAUGCUGAGGUCAGAAGGA 3873 1665 ACACAGUACUUGCUCUGGUAU 3874 1666 UUAUCAAAUCUUGGUACAAAG 3875 1667 AUAAAUAGAUAUAUGGUGAAA 3876 1668 CUUCUUCUUCCUCUUCAUCUU 3877 1669 UGCUUCAAAUUAAUAUUACCG 3878 1670 AUAUACAUAACUCUCCAAUAC 3879 1671 UAAUUCCACCACCCUAACACA 3880 1672 AAGGCAAUAUCUGCAACAGAU 3881 1673 UGUUUAAUGAUUUCAAAGUCA 3882 1674 UGAUGUAAAGCUCAUGUAUUU 3883 1675 AUACCAUCAGCAGGUCUACAA 3884 1676 UGACACACACACGAGAUCAGC 3885 1677 CUUCUUUCUAAUACUUAUUAG 3886 1678 AAUUUGAGAACAUCUAGAACA 3887 1679 AGCAGGAUGUCACAGUUUCAG 3888 1680 CACGAGAUCAGCAAGAACGAA 3889 1681 UCUUGUUCAGAGCUCAGAGAC 3890 1682 UUCUCACCCUUCCCUGACUUU 3891 1683 CUGAAUAUUAACUGCAAGUAG 3892 1684 AAUGUACAUAAGUUCUGUUUA 3893 1685 UACUUUGCUCAGGAGUGAUCU 3894 1686 UGGGCGCUCUUUCUCCUUCUU 3895 1687 UCCCAGUUUACCCUCUUUCCA 3896 1688 CACAACUACUGCAAACAACCU 3897 1689 UGCAGUCUUAGCGGCUGCUGU 3898 1690 ACUGAAUAUUAACUGCAAGUA 3899 1691 UCACUUCAAAUCCCAGGCCCA 3900 1692 AGGGAUAGAUGUAAGGAUCAG 3901 1693 UUGGAGUAAUCGUGCCCAUUG 3902 1694 UCUGAAUAACAUAAAGAAUAA 3903 1695 UGAGCAAAGGAAUAUAAUUAU 3904 1696 UGAGGUGACUACCUCAUUAUU 3905 1697 AGAGACAGUCCUACAUAUUUG 3906 1698 UUUCUCCUAUGAGGAUUUCCU 3907 1699 UGUUCAGAGCUCAGAGACUGG 3908 1700 UGUAUAAACAGUACCUGAUGC 3909 1701 UGUUAUGAGUAUAAUCCCAGU 3910 1702 UGACUACCCAUAGUUCAUCAC 3911 1703 UCUCAGCUCACCACAACCUCC 3912 1704 UUUAGGUCCAAGUUUCAAACU 3913 1705 AGAGAAAGUCCCAUCUUUGUU 3914 1706 AAAGUUACAGAAGAAUUUCAC 3915 1707 UCCUCAGUGGAGGAGCCGGGG 3916 1708 AUAAAGCUCAUAUUAGACUCC 3917 1709 UAUCAAAUCUUGGUACAAAGU 3918 1710 UUAUUAAAGUUCUCACCUAAA 3919 1711 UCAGUCCUCUUGUUCAGAGCU 3920 1712 UCACCUGGUUUGAGUGCAGGA 3921 1713 CAUCUUCUUCUUCAGACACAG 3922 1714 UUCCCUGACUUUCCCACUGCC 3923 1715 GAAUCGUAUGCUCAAAGUCUG 3924 1716 UCAAGCGAUUCUCCCACCUCA 3925 1717 ACAGUCACUAAUGUACUGAUU 3926 1718 UAACCAACAGAAAGAUUAUAU 3927 1719 GUUCACUCUUAGCAGUCUCAG 3928 1720 AACAUAGUAUGCUUCAAAUUA 3929 1721 AAGCCUUCUAUAACACAAAUU 3930 1722 AUGUUGGGUUAUAUUCAUUUG 3931 1723 AAAGGAGAAGCUCAAGUACAG 3932 1724 CUUCUUCUUCAGACACAGGAG 3933 1725 CUUCCUCUUCAUCUUCUUCUU 3934 1726 AACAGAAAUAGGUGAUACAUA 3935 1727 UCACAGGAAAGGAGAAGCUCA 3936 1728 UAACUAAUGAAUAGGGCUUCC 3937 1729 AUCCUUUGGUUAGAUGGUCUC 3938 1730 UCCCAUUUCUUACAGAGUUGA 3939 1731 AGUGGUAGUAAAGAAGUACCU 3940 1732 AUUUCAGUCCUCUUGUUCAGA 3941 1733 UGGGAUGUAGCCUUCACUGAC 3942 1734 AUACCUUUGCUUAACUGAAUA 3943 1735 CACUCUUAGCAGUCUCAGCCA 3944 1736 CUUCAUUAUCCAGACCGUCAG 3945 1737 AUAUUAAACACAUUCCCAAUG 3946 1738 ACUCUUGUUGCCGAGGCUGGA 3947 1739 GACUCAUUCUCUACUAUCGCU 3948 1740 CUAUGGAAUAAUUGUAACUAG 3949 1741 UCGUAUGCUCAAAGUCUGAAG 3950 1742 AUCUUUCCUGCAGCAGAGUUU 3951 1743 AUGCAAGAGGGACUACUCUCU 3952 1744 CUUCUUCUUCUUCCUCUUCAU 3953 1745 UAAUAAAGCUCAUAUUAGACU 3954 1746 UGAGAAUUAAACUCUAGAAAG 3955 1747 AAGAGGGAGUGUGCAUCUUUG 3956 1748 AUGAUUAAUGUAUCUAUUUCC 3957 1749 UAUUUGCGGGUCCAUAAAGCA 3958 1750 AACUUGUAAGUGUUUAGGUUC 3959 1751 UUGUAAGUGUUUAGGUUCACU 3960 1752 CUCUUGGGUACUAAAUCUGUU 3961 1753 GUUAAGUGACUUGCCUAGCGU 3962 1754 AAGGAGAAGCUCAAGUACAGU 3963 1755 AUACAAUUCUGAUAAACAAUG 3964 1756 AAAGCACACCACACACAAGCA 3965 1757 ACCACUUUAUGGUCACUUCAA 3966 1758 AGUCUCCUAAGAAAGCGUGUG 3967 1759 AAGUGCUGGGAUUACAGGUAU 3968 1760 CAGUCAAUUUAACAGAGCCAU 3969 1761 UAUCCACAUCCAUCUCAAGAC 3970 1762 AGUCAUAUAAGGAAUUCUGUC 3971 1763 ACAAGCCUGAAAGAAAUCUGA 3972 1764 ACAUAUUCCUCUCCACUUUUG 3973 1765 ACUGCUGGUGAAGCAAUGGAU 3974 1766 GUGUCUAUAGUUCCCUUUCUG 3975 1767 UUCUUGGGAUAUGAUUGUAAG 3976 1768 ACUAAGCAGCAUAUCUGAGGU 3977 1769 AAUGCAAGAGGGACUACUCUC 3978 1770 UUCUUUCAUAGGAGAAAUAUU 3979 1771 GACAACAGGAAGCAAUUUCGU 3980 1772 UUUCAGUAUUCUACAUUUAUC 3981 1773 UUUGCAAGGCAACCUAUAAUG 3982 1774 UCAGGCUUAAACGUGAUAUUU 3983 1775 GUAAUCGUGCCCAUUGCUCUG 3984 1776 AGUUAUACAGACAACAGGAAG 3985 1777 ACAGAACCCAAAGUCAGUCAA 3986 1778 GAAACUCUAAAGAAAGUGCUU 3987 1779 UCCUGUACAAAGUACUGGAAU 3988 1780 UCAUAGAAUUUGAGAACAUCU 3989 1781 AUUAUCAAAUCUUGGUACAAA 3990 1782 UUACAAAUAAAUUACAUAAUC 3991 1783 UGAAUAUGGUAUUUGCGGGUC 3992 1784 ACUUAUUAGAAAUAUACAUAA 3993 1785 CAUUUAUAGACAAAUAUCUCA 3994 1786 AAUAUUGUCACUCUUUAUAUC 3995 1787 UGGACUUCCACAUGUUCACAC 3996 1788 ACAUAAAGAAUAAAUACUUGA 3997 1789 AGCUAUCUAAAUAAUUAACAA 3998 1790 ACAAAUAUUUACAAUGACACA 3999 1791 GUUGUUGACUGUUUCUUUGGA 4000 1792 AGGCUGGUCUCGAACUCCUGA 4001 1793 CUGUUGCAAUGUCUAGUGCUG 4002 1794 UUGCUUCAACCACAAUUUAAA 4003 1795 AUUCACAUAAUUCCACCACCC 4004 1796 UUGGGACCAUCCACUAACUCC 4005 1797 UCCUCUUGUUCAGAGCUCAGA 4006 1798 AGACGAAGUUUCACUCUUGUU 4007 1799 CAAUACUUUAGGUCCAAGUUU 4008 1800 UGCUCAGGAGUGAUCUGGGCA 4009 1801 CAAGAGACCAGAUAUCAACUU 4010 1802 CUGUCCUUCAUCCAUACAGGU 4011 1803 UAAUACUUAUUAGAAAUAUAC 4012 1804 UAAUUCCAAGAGACCAGAUAU 4013 1805 UUUCCUUCCCAGUCCACAUGC 4014 1806 UAAUCUGAGGGAGUAGGAAAA 4015 1807 UUGGGUUGCUGUUGAAGGUUC 4016 1808 AGAUAUAUGGUGAAAUAGUAG 4017 1809 AGGAUUUCAGUAUUCUACAUU 4018 1810 CAAUAUUAUAACAAUAUCAAA 4019 1811 GUUUAGGUUCACUCUUAGCAG 4020 1812 UCUAGAACAGCUUGUGGGUUC 4021 1813 UAUAAGGAAUUCUGUCGGACU 4022 1814 AUGGAGGUGAUAUCUCAGUUC 4023 1815 ACUAUGAAGAGGGAGUGUGCA 4024 1816 UGUGGUUGAGUGCUGAAGAAU 4025 1817 AAACACAUUCCCAAUGCAUGU 4026 1818 UAUCUUUGGUUCCCAACAAAU 4027 1819 AAGCCUAUGGAAUAAUUGUAA 4028 1820 AAUGACACACACACGAGAUCA 4029 1821 CUUCCAUCUUUCCUGCAGCAG 4030 1822 AUAAAUACUUGAGUUAAAUCU 4031 1823 UCCUUCUUCCUAGGCUAGUAU 4032 1824 UCAUUAUCCAGACCGUCAGAC 4033 1825 UGGGAUAGCAUUUGCCUGAUG 4034 1826 UCCUUUGCAGCGAUAAUCAGA 4035 1827 UUUAUAUCUCUAUGGAUCACC 4036 1828 GAAGUUUCACUCUUGUUGCCG 4037 1829 CAUCUUUGUUUAAAUGUGGUU 4038 1830 ACACUAUGAAGAGGGAGUGUG 4039 1831 AUGCACAAUCCAUAUUUCAAU 4040 1832 CUGUUCUUAAUUGCUUCCUUU 4041 1833 CUUUGCUCAGGAGUGAUCUGG 4042 1834 UACAGGAUUCUGUGAAGAUCU 4043 1835 AAAUACCUUUAAUCCAAAGUU 4044 1836 AGCUCAUAUUAGACUCCGGGG 4045 1837 AACUGCAAGUAGCUUAGAUAA 4046 1838 AACAACUUUCUGUAAUUUACA 4047 1839 UAACAACAUUAACGUUCUUUC 4048 1840 CAUGGUGACUGAUUUGAGGGG 4049 1841 UUUGCGGGUCCAUAAAGCACA 4050 1842 AGUGCUGUAUAAACAGUACCU 4051 1843 UGAAGGAGGUUUGAAUGCAAG 4052 1844 UUGCUUCCUUUGCAGCGAUAA 4053 1845 UCUCUACUAUCGCUGUUGAUU 4054 1846 AUAGGUGAUACAUAGGAAAAA 4055 1847 AUUCAACCUGAGAGUCUGUUA 4056 1848 AUUCUGUCGGACUGACAUUUC 4057 1849 GUAGACAUCACUACCCUGUGA 4058 1850 AGAUGGUCUCCCUUGCUCUUU 4059 1851 UCCCACCAUAGUGCUUCGUUU 4060 1852 UGUACCAAAUGUGAAUCCUUC 4061 1853 UGGUAUUAUGGGAUAGCAUUU 4062 1854 AAUAUUAGGGUUCUUAUUUUC 4063 1855 UCAGGCUGGAGAGAGGCUUGG 4064 1856 GUAGCUACAGGAUUCUGUGAA 4065 1857 UCUCCUAAGAAAGCGUGUGCC 4066 1858 CACUCUUUAUAUCUCUAUGGA 4067 1859 ACAACCUCCGCCUCCUGGGUU 4068 1860 UGACCUCCCAUUUCUUACAGA 4069 1861 ACAACGCACUGGAUCCUUGCU 4070 1862 UAUGGUAUUUGCGGGUCCAUA 4071 1863 CUUGGUGCGAUAACUGGUGGU 4072 1864 CUCUUCAUUAUCCAGACCGUC 4073 1865 CUCCUCAUCUGUCAUCUUGGA 4074 1866 UCUUUCCUGCAGCAGAGUUUU 4075 1867 UAUCAUCAAUAAUGAAUAUGG 4076 1868 ACACUAGCAACAUCAAAGAUU 4077 1869 CACACAGUACUUGCUCUGGUA 4078 1870 AUUCCUAACUCAGGACAUUUU 4079 1871 UCCUGACCUCAGGUGAUCCGC 4080 1872 UCAACCACAGAACGAGUAUAG 4081 1873 ACAAACACAACACUAUGAAGA 4082 1874 AGAUUCAGUUAGACAUUGUUU 4083 1875 UCCACUGGAGAGAAUUUCAAG 4084 1876 ACUAACUCCCAGUUUACCCUC 4085 1877 CACACAGGUGUGCACAUGGAG 4086 1878 CCAGACUUUACAUACAGACUG 4087 1879 AUCACCUGGUUUGAGUGCAGG 4088 1880 AAAGACCAAGAGAUUCAACCG 4089 1881 CUGCAGACAGCUGCUAUCUGU 4090 1882 AUUUCCUCCUGGUAUGCCUAU 4091 1883 AUGUUUCAUAAGCACAAGAGA 4092 1884 UUCCCAAUGCAUGUUGGGUUA 4093 1885 ACAUGGACACACAAAUAUUUA 4094 1886 GAACACACAUAUUCCUCUCCA 4095 1887 UCUUUGAGCUGAGAAAUAUCA 4096 1888 AGAAGAAUUUCACUACACAUG 4097 1889 UAUCCUGUUGGACAAGAAAAU 4098 1890 AGGAAGAGAGAUCUCUGGGCG 4099 1891 CAGCUGACAGUCUCUCAGGAU 4100 1892 CCUAAGGAUCAUCUAGUCCAA 4101 1893 UGUUAAUAUGCUGAACUGAAA 4102 1894 UCACCCACCAAGUAGCUAUCU 4103 1895 UCCCAGUAGACAUCACUACCC 4104 1896 AUAAGAAGUUUCUAUUCAUUU 4105 1897 ACAGAACGAGUAUAGAUUGAU 4106 1898 AUGGGCUCUGCUAUCUUGUGC 4107 1899 CUAAGGAUCAUCUAGUCCAAU 4108 1900 UAUUUCCAAGUUCCCAUUUAU 4109 1901 AUCCAGACCGUCAGACAUUUU 4110 1902 CAUCCAUCUCAAGACAGCGAU 4111 1903 AUUUGCAUCCCAGGAUUUCAU 4112 1904 AUCAAUAAUGAAUAUGGUAUU 4113 1905 UUCAUUUGAAAGGUAAAGAAC 4114 1906 AUCAGAGGAGUCAGGCUGGAG 4115 1907 AUGGUCUCCCUUGCUCUUUAA 4116 1908 UGGUGCGAUAACUGGUGGUGG 4117 1909 ACAAUGCUUCUUAGCUUCUCU 4118 1910 AAGCAUGAACACACCAUAUUC 4119 1911 UAAGGCCUCUCUCUCUCAUUA 4120 1912 UGCAAGGCAACCUAUAAUGCC 4121 1913 UUCAUUGAAUUUCCCGGCACU 4122 1914 AGGCUUGCAGUCUUAGCGGCU 4123 1915 AGGAAUAUAAUUAUUUACACG 4124 1916 AUUCAACCACAGAACGAGUAU 4125 1917 ACAGCUUGUGGGUUCUUCUUC 4126 1918 CUGCUAUCUGUCCUUCAUCCA 4127 1919 CUGAACAUAAACACGUACACU 4128 1920 AAUUCCUUCUUGGGUUGCUGU 4129 1921 UGAACACACCAUAUUCCGAAA 4130 1922 AAGUCAUAACUUCUAUUGAAA 4131 1923 AUCAACAUUGAAAGAUGUGCC 4132 1924 AUCAUAGAAUUUGAGAACAUC 4133 1925 GAACAUAAACACGUACACUAU 4134 1926 UACUGCUGGUAUUAUGGGAUA 4135 1927 UGGUGAGGUGUAAGGCUUGCA 4136 1928 GAAUAUAAUUAUUUACACGAU 4137 1929 AUAGCAGGCUGAAUUUGCAAG 4138 1930 GUCGGACUGACAUUUCUUGGG 4139 1931 CUUGAGAAUUAAACUCUAGAA 4140 1932 AGAUGGUGAGGUGUAAGGCUU 4141 1933 AUAACAUAAAGAAUAAAUACU 4142 1934 CACAUGGAGGUGAUAUCUCAG 4143 1935 CCAUAGUUCAUCACCCACCAA 4144 1936 AAGAUGUGGAUAUAUGGAUGG 4145 1937 UUAGAAAUAAACCCAUUGAGC 4146 1938 CAGUCUCUCAGGAUUCUGGAG 4147 1939 CAUAGUGCUUCGUUUACUUUG 4148 1940 ACACUAUAUAGUUUGCUGAAA 4149 1941 UUUCAGGUAUUAAGGAGAUUA 4150 1942 AAUGAGAUACAAUUCUGAUAA 4151 1943 GUGACUUCUCUAGGUAUAGGG 4152 1944 CUGGUCUCGAACUCCUGACCU 4153 1945 AGUUCUGUUUAGAUUCUUUUA 4154 1946 UGCACAUGGAGGUGAUAUCUC 4155 1947 UGCUUCUUAGCUUCUCUAAGA 4156 1948 UUCAGGUAUUAAGGAGAUUAA 4157 1949 UCUCCCUAGCUUUAACUUAUA 4158 1950 AUUCUACAUUUAUCUGGUUUU 4159 1951 GUCCACAUGCAAAUACACGUU 4160 1952 AACAUUUCUCAAUGCUAAUAG 4161 1953 AUCCACAUCCAUCUCAAGACA 4162 1954 UGAUUUCCUCUUGGGUACUAA 4163 1955 AUAAUCCCAGUAGACAUCACU 4164 1956 AUAUGUUUCAUAAGCACAAGA 4165 1957 AGUGUUUAGGUUCACUCUUAG 4166 1958 UAUUAAACACAUUCCCAAUGC 4167 1959 GAUUAUGACAACGCACUGGAU 4168 1960 UCUGGACAUCUAAUGACAAUG 4169 1961 CUAUAACACAAAUUGUUAGUU 4170 1962 UGGAGCUCUGGAGUUCCAUUA 4171 1963 UGAACUCACCUAGCAGGAUGU 4172 1964 AUGGACUUCCACAUGUUCACA 4173 1965 UGCCUACAGUGAUCUGAAGGG 4174 1966 UGUACAUAAGUUCUGUUUAGA 4175 1967 AAAUAUUUACAAUGACACACA 4176 1968 AGCAAUAUUAUAACAAUAUCA 4177 1969 CACUACAUCUGACUCAUUCUC 4178 1970 UUCAAAGUGAAUGCACAAAAU 4179 1971 UCUAUUGAAAUUAGUGGGACU 4180 1972 ACAUCUCCCUAGCUUUAACUU 4181 1973 AUUAAUUUAGGUAUCAUUAUC 4182 1974 CUCUCUCUCUCAUUAGAGCAG 4183 1975 UCAGUUCCCGCAUUUGCAGAU 4184 1976 UGCAAUGUCUAGUGCUGUAUA 4185 1977 CUUUGAGCUGAGAAAUAUCAU 4186 1978 AAUAAAUAAUCUCUACUGUGC 4187 1979 AGUAGCUGGGAUUACAGGCGC 4188 1980 AAUGUCCAACAAGGAUUUCAG 4189 1981 AUUUCUUUGGUGAGUUAGAAG 4190 1982 UCUUUAUAUCUCUAUGGAUCA 4191 1983 UAUUUGCAAUACUUUAGGUCC 4192 1984 AGAUACAAUGCCCUGAGUGGA 4193 1985 AUUUGCGGGUCCAUAAAGCAC 4194 1986 CAAAUAAAUUACAUAAUCUGA 4195 1987 UUGCAAGGCAACCUAUAAUGC 4196 1988 CUGUGAAGAUCUUAUCAUCAA 4197 1989 UCCCUUUCUGCUGUUUAUUUA 4198 1990 AGAGACUGGGAGAUACUUGCA 4199 1991 UGGGCUGCUAUGUAUCCAUGU 4200 1992 UCAUGUAUUUCUGGUUGUUGA 4201 1993 AAGUGACUUGCCUAGCGUCAC 4202 1994 GAAAGCAUAAGAGAGAAGCCA 4203 1995 GAAAUUAGUGGGACUUGCCCU 4204 1996 GAGAGGUUAAGUGACUUGCCU 4205 1997 CUAAUAGCAUGUAAUUACUUU 4206 1998 UCUUGGGAUAUGAUUGUAAGU 4207 1999 UGUCUAUAGUUCCCUUUCUGC 4208 2000 UCAAACUGUCAGUUUACAAAU 4209 2001 AUAAUUCCAAGAGACCAGAUA 4210 2002 AGGUUCACUCUUAGCAGUCUC 4211 2003 CUACCCAUAGUUCAUCACCCA 4212 2004 CUUGGGUUGCUGUUGAAGGUU 4213 2005 GACCAGAUAUCAACUUUCGGA 4214 2006 AAUAAUCUCUACUGUGCUUCU 4215 2007 GUUACAACUAAUUUCACAGCU 4216 2008 GUCACUUCAACAUUGCUGCCC 4217 2009 CUCAUUCUCUACUAUCGCUGU 4218 2010 AGUGACAUCUCCCUAGCUUUA 4219 2011 UUUGGUGAGUUAGAAGGAAGU 4220 2012 CUUUAUUUAGAUAUACAGUUU 4221 2013 UACUGUGCUUCUCACCCUUCC 4222 2014 UAAGGAUCAUCUAGUCCAAUA 4223 2015 CAUUCUCUACUAUCGCUGUUG 4224 2016 UGCAGACAGCUGCUAUCUGUC 4225 2017 CAUCACUACCCUGUGAUCUGG 4226 2018 CUCUUUAUUUGGUACUGCUGG 4227 2019 ACAUUCCCAAUGCAUGUUGGG 4228 2020 UGCUGGGAUUACAGGUAUGAG 4229 2021 ACAUGGUUUACAGAUAACACA 4230 2022 UUAAUAUGCUGAACUGAAAGC 4231 2023 GUACUAAAUCUGUUGAACAUG 4232 2024 AAGGAAUUCUGUCGGACUGAC 4233 2025 ACAGCUGCUAUCUGUCCUUCA 4234 2026 GUCAUCAGAAAUGCUAUCUUU 4235 2027 CUGGUUUACUCAAUUAUCUUU 4236 2028 AAAUUAAUUUGUCAACAUUUC 4237 2029 ACAUAGUAUGCUUCAAAUUAA 4238 2030 CAUUGUUAAUAUGCUGAACUG 4239 2031 AUGGAGGCUCAGAUGCUGUUU 4240 2032 CAAAGUGGUAGUAAAGAAGUA 4241 2033 UUUCCUCCUGGUAUGCCUAUU 4242 2034 AACUCUAGAAAGCCCAGCACU 4243 2035 UCACCACAACCUCCGCCUCCU 4244 2036 AUUUAACUGCAACAUAAGAGA 4245 2037 UUAUUUCCUUCCCAGUCCACA 4246 2038 GUGAUCUGAAGGGUCACUGCU 4247 2039 UCACUAUAGCAGGCUGAAUUU 4248 2040 AUGUAUUUCUGGUUGUUGACU 4249 2041 AAUACUUUAGGUCCAAGUUUC 4250 2042 CUAAGCAUGAACACACCAUAU 4251 2043 AUGGAUCACCUGGUUUGAGUG 4252 2044 UUUGUUUAAUGAUUUCAAAGU 4253 2045 AUCUCUACUGUGCUUCUCACC 4254 2046 AAGAUCUCCUCAUCUGUCAUC 4255 2047 CAAACAACCUAUAAAUAGGCA 4256 2048 AUUAUGACAACGCACUGGAUC 4257 2049 ACAUGUAAGGGAUGCUAACUA 4258 2050 GAAAUAUUCCAUUAUUUCCAA 4259 2051 AUUCUUUCAUAGGAGAAAUAU 4260 2052 CCAGUCUUUGUCCAUAUGCAU 4261 2053 UCUGACUCAUUCUCUACUAUC 4262 2054 AACAUCAAAGAUUUGGAUAGA 4263 2055 CACAAUGCUUCUUAGCUUCUC 4264 2056 CAGAUAUCAACUUUCGGACCA 4265 2057 AUAUCUGCAACAGAUGUUAUC 4266 2058 AGGCCUAUGUAACUGAUCUCU 4267 2059 UCCUUUGGUUAGAUGGUCUCC 4268 2060 AAUCCCAGGCCCAUCAAACUG 4269 2061 UCCAAAGUUACAGAAGAAUUU 4270 2062 AGAGAAUAAACUGUUAACAAU 4271 2063 UAGUUCCCUUUCUGCUGUUUA 4272 2064 AUGAUCUCAGCUCACCACAAC 4273 2065 UGAGAAAUAUCAUUUAUAGAC 4274 2066 ACUUUAUGGUCACUUCAACAU 4275 2067 AUGUAUCCAUGUGCACUUUUA 4276 2068 AUUGCUUCCUUUGCAGCGAUA 4277 2069 AGUAUUUCUGUAUUGAGAAUG 4278 2070 CAUAAAGCACACCACACACAA 4279 2071 UGGUCACUUCAACAUUGCUGC 4280 2072 CUUGUGGGUUCUUCUUCUGUU 4281 2073 AUCUCCCUAGCUUUAACUUAU 4282 2074 UUGCCGAGGCUGGAGUGCAAU 4283 2075 AGUAUAACAUAGUAUGCUUCA 4284 2076 AGGGACUACUCUCUAACUUAA 4285 2077 AGAACGAGUAUAGAUUGAUUU 4286 2078 AAUAUAAUUAUUUACACGAUC 4287 2079 UUGGUUCCCAACAAAUUAAUU 4288 2080 AAGGCCUCUCUCUCUCAUUAG 4289 2081 GAUAGAUGUAAGGAUCAGGUG 4290 2082 AUCCAUCUCAAGACAGCGAUU 4291 2083 AUCUGAAUAACAUAAAGAAUA 4292 2084 UGUUUAAUAUUAAACACAUUC 4293 2085 CUUCUAUAACACAAAUUGUUA 4294 2086 AAUAACAUAAAGAAUAAAUAC 4295 2087 CAAUGCAUUAGUAGCUACAGG 4296 2088 AAGCCUGAAAGAAAUCUGAAU 4297 2089 UGAAGGGUCACUGCUCCAAGG 4298 2090 UAUAGACAAAUAUCUCAAACU 4299 2091 GUUGAGUGCUGAAGAAUCCCG 4300 2092 ACCAAGAGAUUCAACCGGGGA 4301 2093 CUUUAUAUCUCUAUGGAUCAC 4302 2094 AUAAAUACCUUUAAUCCAAAG 4303 2095 AAAGUGGUAGUAAAGAAGUAC 4304 2096 AAGGAAUAUAAUUAUUUACAC 4305 2097 AGGCUUACAAAUAAAUUACAU 4306 2098 UCUCAACAUGUAAGGGAUGCU 4307 2099 GAUUAAUGUAUCUAUUUCCUC 4308 2100 ACCUGAACUCACCUAGCAGGA 4309 2101 AGUAAAUGCUACAAGUUGUAU 4310 2102 AGUUGUAUAGAAUACUCGUAC 4311 2103 UCAUAAGCACAAGAGAGGAUU 4312 2104 UGCUAUGUAUCCAUGUGCACU 4313 2105 CAGAAGAAUUUCACUACACAU 4314 2106 AUAUCUCUGCCCUGCAUGCUC 4315 2107 ACCUUUAAUCCAAAGUUACAG 4316 2108 AUCCUCAUGGGAUUAUGACAA 4317 2109 AAUUUGUAUCAUAAGUAAAUG 4318 2110 AGUCACUAAUGUACUGAUUUU 4319 2111 UCAAAUUAAUAUUACCGUUUC 4320 2112 GAUUUGGAUAGACUCACCUGU 4321 2113 UUGUUGCCGAGGCUGGAGUGC 4322 2114 CUACACAGACACUCCGCAGAU 4323 2115 AAAUCCAAAGCUUGCAGGCAC 4324 2116 AUAUCUCAGUUCCCGCAUUUG 4325 2117 AGUCUUUGUCCAUAUGCAUUU 4326 2118 AUUAAUUCCUUCUUGGGUUGC 4327 2119 UGUGGAUAUAUGGAUGGUUAG 4328 2120 UUGUUUAAAUGUGGUUUCUCC 4329 2121 AGACACUCCGCAGAUAUUUUU 4330 2122 UGUGAAUCCUUCAGCAUCACU 4331 2123 CAUCUAGUCCAAUACACUUAU 4332 2124 CUCGAUUGUACCAAAUGUGAA 4333 2125 AUCUUUGUUUACUUAAUGUCC 4334 2126 UAAUCCCUGUUUAUGUUAUUU 4335 2127 AUUACCCAACAUGGUGACUGA 4336 2128 CAUAAUCUGAGGGAGUAGGAA 4337 2129 AUAAACCCAUUGAGCAAAGGA 4338 2130 AGAUGUGGAUAUAUGGAUGGU 4339 2131 AGCUUAGAUAAAGACCAAGAG 4340 2132 UGGAGAGAAUUUCAAGACAUU 4341 2133 ACACAUUCCCAAUGCAUGUUG 4342 2134 CAAGUUCCCAUUUAUUUCCUU 4343 2135 CAACACUCACAAUGCUUCUUA 4344 2136 AUGAAUACAAAUUUAUAAAAG 4345 2137 UGAAUAUUAACUGCAAGUAGC 4346 2138 AGAGGGUGGUGUGACCUCUUU 4347 2139 UGCAGCGAUAAUCAGAGGAGU 4348 2140 AUAUUCAUUUGGUCACUUAAA 4349 2141 UGCAAGUUCAACCCAAUUAAG 4350 2142 GAAUCAACAUUGAAAGAUGUG 4351 2143 UAAAUAGAUAUAUGGUGAAAU 4352 2144 AGAUGUUAUGAGUAUAAUCCC 4353 2145 GUAGCUUAGAUAAAGACCAAG 4354 2146 AGUCAGGCUGGAGAGAGGCUU 4355 2147 AUCUUAUCAUCAAUAAUGAAU 4356 2148 CAACAUGGUGACUGAUUUGAG 4357 2149 UGGGAAGUGGUUUGGAGCUGU 4358 2150 AAGAUCUUAUCAUCAAUAAUG 4359 2151 CAUUGCUCUGGAAUUCCAGUG 4360 2152 AGAAAUCUGAAUAACAUAAAG 4361 2153 ACAUUAACGUUCUUUCCUUUU 4362 2154 AGGGAAAGAGAAUAAACUGUU 4363 2155 CAGGAUUCUGGAGCUCUGGAG 4364 2156 CAAAUGCUGAAUUUCAGUCCU 4365 2157 CAACACUAUGAAGAGGGAGUG 4366 2158 AGGGCACACUAGCAACAUCAA 4367 2159 GAAGUCAUUACCCAACAUGGU 4368 2160 CAACUUUCUGUAAUUUACAAA 4369 2161 CAUCUCCCUAGCUUUAACUUA 4370 2162 GAAAUAGGUGAUACAUAGGAA 4371 2163 AACAACCUAUAAAUAGGCAGA 4372 2164 UGUGACCACAUCAGUCAGAGA 4373 2165 UACAAUGCCCUGAGUGGAUUU 4374 2166 AGUCCACAUGCAAAUACACGU 4375 2167 AGUCUUACUCAUGAGGGAGAU 4376 2168 UAGCUUAGAUAAAGACCAAGA 4377 2169 AUUUGCAAGGCAACCUAUAAU 4378 2170 AUUUGUCAACAUUUCUCAAUG 4379 2171 GUAUGCUCUGGUCUUGGUGCG 4380 2172 CACUAUAGCAGGCUGAAUUUG 4381 2173 CAGAUUCAGUUAGACAUUGUU 4382 2174 UAUGGAUGGUUAGAUGGAUGG 4383 2175 CUUAGCUUCUCUAAGAUCUCC 4384 2176 UCCUCCUGGGAAGAUAGAGCG 4385 2177 AGGUCAGAAGGAUGGAACCAU 4386 2178 CAACAGAUGUUAUCAAGGGGG 4387 2179 CAACUACUGCAAACAACCUAU 4388 2180 UCACCUUCCACCAUUUCAAUU 4389 2181 AAUGGAGGCUCAGAUGCUGUU 4390 2182 CUAGUAUUUAUCCCACUACAU 4391 2183 CAUGUUCACACAGUACUUGCU 4392 2184 GUACACACAGGUGUGCACAUG 4393 2185 ACACGAGAUCAGCAAGAACGA 4394 2186 ACUUCAACAUUGCUGCCCUGU 4395 2187 GUUCCCACCAUAGUGCUUCGU 4396 2188 AAUUCUGAUAAACAAUGAAAA 4397 2189 AACAGGCAGAGACAGUCCUAC 4398 2190 CUGUGCUUCUCACCCUUCCCU 4399 2191 AAUUACAUAAUCUGAGGGAGU 4400 2192 AGCGAUAAUCAGAGGAGUCAG 4401 2193 UGAUUGGGAUGUAGCCUUCAC 4402 2194 UGGGACUUGCCCUAUUGGUUA 4403 2195 UGGAUCACCUGGUUUGAGUGC 4404 2196 UUGGUCAGGCUGGUCUCGAAC 4405 2197 UCCUACAUAUUUGUUUAAUGA 4406 2198 ACCACAUCAGUCAGAGAGCCA 4407 2199 AGAGAAACAACUUUCUGUAAU 4408 2200 UCCUUCUUGGGUUGCUGUUGA 4409 2201 UACAGACAACAGGAAGCAAUU 4410 2202 UGGAAUCAACAUUGAAAGAUG 4411 2203 AUAAUCUGAGGGAGUAGGAAA 4412 2204 AGUGGUUUGGAGCUGUGGUUG 4413 2205 UGCCUAGCGUCACAUAGCAAU 4414 2206 AUCCCGAGAAGAAUAUUGUCA 4415 2207 UAUUAAAGUUCUCACCUAAAA 4416 2208 AAAGCAAUAUUAUAACAAUAU 4417 2209 AUUCCCAAUGCAUGUUGGGUU 4418 2210 CUAGCUUUAACUUAUAGAUAA 4419 2211 CAUCCAUACAGGUCUCUGUGA 4420 2212 UGUACUCGAAGGAUGGGCUGC 4421 2213 UCCAAAGCUUGCAGGCACUCU 4422 2214 AGGUGGUUAAACUCAAACAUU 4423 2215 AUUUGUUUAAUGAUUUCAAAG 4424 2216 UUGGUACAAAGUGGUAGUAAA 4425 2217 UAUGAAGAGGGAGUGUGCAUC 4426 2218 CAAAUAUUUACAAUGACACAC 4427 2219 CUGAAGGAAGAGAGAUCUCUG 4428 2220 UGCUCUGGAAUUCCAGUGAAU 4429 2221 AGAGAGGCCUAUGUAACUGAU 4430 2222 GAAUACAGCUGACAGUCUCUC 4431 2223 AAGUUUCAAACUGCAAUAUUU 4432 2224 CUGACCUCAGGUGAUCCGCCU 4433 2225 ACUGGGAACAGUCAACAGAAA 4434 2226 GUUAUGAGUAUAAUCCCAGUA 4435 2227 UUGUUUACUUAAUGUCCAACA 4436 2228 CUAUAUAGUUUGCUGAAACUC 4437 2229 AUUCAUUUGGUCACUUAAAGG 4438 2230 CUUAAACGUGAUAUUUGCCAU 4439 2231 CACCACAACCUCCGCCUCCUG 4440 2232 AAUGUGGUUUCUCCUAUGAGG 4441 2233 UGAGGGAGAUGGUGAGGUGUA 4442 2234 UGGGUUAUAUUCAUUUGGUCA 4443 2235 AACGCACUGGAUCCUUGCUAA 4444 2236 UUACUUUGCUCAGGAGUGAUC 4445 2237 CUCUGCAACUUGUAAGUGUUU 4446 2238 CUCUAAGAUCUCCUCAUCUGU 4447 2239 AGGAUGUCACAGUUUCAGUUU 4448 2240 UCUCUACUGUGCUUCUCACCC 4449 2241 AGAAUUUCAAGACAUUUAUGA 4450 2242 UCACUGUGGGAGUUGUCAUCA 4451 2243 AAUACUUAUUAGAAAUAUACA 4452 2244 AGUCCUCUUGUUCAGAGCUCA 4453 2245 CAAACACAACACUAUGAAGAG 4454 2246 CAGCUUCUAAAGGAGACUCCG 4455 2247 UGGGACCAUCCACUAACUCCC 4456 2248 AUCAAAGAUUUGGAUAGACUC 4457 2249 UGGGAUUACAGGCGCCCGCCA 4458 2250 CUAACCAACAGAAAGAUUAUA 4459 2251 AAGUAGCUAUCUAAAUAAUUA 4460 2252 CUUUAUGGUCACUUCAACAUU 4461 2253 AGGUAUUAAGGAGAUUAACAA 4462 2254 AAAUUAAGAAGCCUUCUAUAA 4463 2255 ACAGUCAUGCACAAUCCAUAU 4464 2256 UCAGGGCACACUAGCAACAUC 4465 2257 AGACUCAGGCUUAAACGUGAU 4466 2258 GGACCAUCCACUAACUCCCAG 4467 2259 CUGAAUAACAUAAAGAAUAAA 4468 2260 UGGGUUGCUGUUGAAGGUUCA 4469 2261 UGCUACAAGUUGUAUAGAAUA 4470 2262 CUAUAGUUCCCUUUCUGCUGU 4471 2263 GUGUGCAUCUUUGAGAAACCU 4472 2264 CUAGGUAUAGGGUCUGCUUUU 4473 2265 UCUAUUUCCUCCUGGUAUGCC 4474 2266 AAUAUACAUAACUCUCCAAUA 4475 2267 GUAAAGCUCAUGUAUUUCUGG 4476 2268 UUCCCUUUCUGCUGUUUAUUU 4477 2269 CACAUGCAAAUACACGUUCAG 4478 2270 UCGAGUCACCACCUCAGGUGC 4479 2271 GAGGUGAUAUCUCAGUUCCCG 4480 2272 GUCUUGGUGCGAUAACUGGUG 4481 2273 GUUUACUAUAUCACCUUUCUC 4482 2274 CUCUCUGCAACUUGUAAGUGU 4483 2275 ACUUUCGGACCAUAAGCUUUU 4484 2276 AAUAUUGAUUGGGAUGUAGCC 4485 2277 GUUUGAGUGCAGGAAAUCCAA 4486 2278 CAGAAUUUCAUUAAUAAUUAA 4487 2279 AGUACUUGCUCUGGUAUUUUU 4488 2280 UUUCCAAGUUCCCAUUUAUUU 4489 2281 AAACAGCUUCUUUCUAAUACU 4490 2282 UGCUAACAACAUUAACGUUCU 4491 2283 AGGUCCAAGUUUCAAACUGCA 4492 2284 UUCAGUCCUCUUGUUCAGAGC 4493 2285 UUCUCAACAUGUAAGGGAUGC 4494 2286 GAAGGAAGAGAGAUCUCUGGG 4495 2287 UGUAGAUGUUAUGAGUAUAAU 4496 2288 AGGCACUCUCUGCAGACAGCU 4497 2289 ACAUCUGACUCAUUCUCUACU 4498 2290 CCUCUUUAUUUGGUACUGCUG 4499 2291 UCAAGCCUCUCCCAACUUUUA 4500 2292 UCAUGAGGGAGAUGGUGAGGU 4501 2293 ACAUUGAAAGAUGUGCCCUCG 4502 2294 UCUGCCCUGCAUGCUCUGCGC 4503 2295 CUCUGGGCGCUCUUUCUCCUU 4504 2296 CACCACCCUAACACAACUGAU 4505 2297 ACAUAAUCUGAGGGAGUAGGA 4506 2298 CAAUAUCUGCAACAGAUGUUA 4507 2299 UCAAUGCUAAUAGCAUGUAAU 4508 2300 CAUGGUUUACAGAUAACACAU 4509 2301 UGUAAGUGUUUAGGUUCACUC 4510 2302 AUAUUAUAACAAUAUCAAAUA 4511 2303 UCUAUUCAUUUGAAAGGUAAA 4512 2304 AUGGGCUGCUAUGUAUCCAUG 4513 2305 GAUAUAUUAUUAUCAAAUCUU 4514 2306 CUCAGGAUUCUGGAGCUCUGG 4515 2307 AUGUAAGGGAUGCUAACUAAU 4516 2308 AAACUGUCAGUUUACAAAUGC 4517 2309 GAAUUCUGUCGGACUGACAUU 4518 2310 AUAGUGCUUCGUUUACUUUGC 4519 2311 AUCUCAGUUCCCGCAUUUGCA 4520 2312 UAUUGAGAAUGACCAAUAAAA 4521 2313 UGGUCACUUAAAGGAGUGUGG 4522 2314 GAGUGCUGAAGAAUCCCGGUU 4523 2315 UACCUUUAAUCCAAAGUUACA 4524 2316 ACAUCUAAUGACAAUGCAAGU 4525 2317 CCACACACAAGCACACACAUU 4526 2318 CAGGUGGUUAAACUCAAACAU 4527 2319 UCCACAUGUUCACACAGUACU 4528 2320 UUAUAACAAUAUCAAAUAAAA 4529 2321 UCUUGCAAGUUCAACCCAAUU 4530 2322 CAGUAAAUGCUACAAGUUGUA 4531 2323 UGCAUAUGUUUCAUAAGCACA 4532 2324 CAGCUCACCACAACCUCCGCC 4533 2325 ACUUCCACAUGUUCACACAGU 4534 2326 GUUUACUUAAUGUCCAACAAG 4535 2327 UAAAUACCUUUAAUCCAAAGU 4536 2328 CUAGCAACAUCAAAGAUUUGG 4537 2329 ACUCUAGAAAGCCCAGCACUA 4538 2330 AUACCUUUAAUCCAAAGUUAC 4539 2331 AGAAAGUCCCAUCUUUGUUUA 4540 2332 CAAGGCAACCUAUAAUGCCAU 4541 2333 CCUCAUUAGAAAUAAACCCAU 4542 2334 AGGAAAUCCAAAGCUUGCAGG 4543 2335 UCUUCAUUAUCCAGACCGUCA 4544 2336 ACAUAAACACGUACACUAUAU 4545 2337 GUGUUUGGAGUUCUAAUAGUG 4546 2338 ACAGACACUCCGCAGAUAUUU 4547 2339 CUAAAUAAUUAACAAUAUUAG 4548 2340 CUGUUGAUUUCCUCUUGGGUA 4549 2341 AGCUCUGGAGUUCCAUUAGUG 4550 2342 GUGAUAUUAUAGAAUCUCUCA 4551 2343 ACCUAGCAGGAUGUCACAGUU 4552 2344 UUUCACCGUUUGAGCUUUAUU 4553 2345 UGUCACAGUUUCAGUUUCAGU 4554 2346 CCUUGCUAACAACAUUAACGU 4555 2347 AGCUUUAUUUAGAUAUACAGU 4556 2348 UAUUUGCAUCCCAGGAUUUCA 4557 2349 AUUGAAAUUAGUGGGACUUGC 4558 2350 UGUAUGCUCUGGUCUUGGUGC 4559 2351 UCACCCUUCCCUGACUUUCCC 4560 2352 GUGAUAUCUCAGUUCCCGCAU 4561 2353 CAACAGGAAGCAAUUUCGUGU 4562 2354 CUACCUGAAUGAUAUACAGUA 4563 2355 CUCUUCAUCUUCUUCUUCAGA 4564 2356 CACUGUGGGAGUUGUCAUCAG 4565 2357 AAGGAUGGAACCAUACCAUCA 4566 2358 UGUUCCCAGUCUUUGUCCAUA 4567 2359 AUUACAGGCCCAGAUUCGUUU 4568 2360 GUUUGGAGUAAUCGUGCCCAU 4569 2361 UGAAAGAUGUGCCCUCGUUAU 4570 2362 AAUGUGAAUCCUUCAGCAUCA 4571 2363 CUCUAGGUAUAGGGUCUGCUU 4572 2364 GUUUCUAUUCAUUUGAAAGGU 4573 2365 ACUCAUGAGGGAGAUGGUGAG 4574 2366 CUCAGCUCACCACAACCUCCG 4575 2367 ACACCAUAUUCCGAAACAGAA 4576 2368 AAUUUCAUUAAUAAUUAAUUC 4577 2369 ACACCACACACAAGCACACAC 4578 2370 AGAGGGAGUGUGCAUCUUUGA 4579 2371 AAACGUUAUAAAUUGUCAAAA 4580 2372 AGUCAUGCACAAUCCAUAUUU 4581 2373 GUAUUUCUGGUUGUUGACUGU 4582 2374 UAUCUCAGUUCCCGCAUUUGC 4583 2375 AGUGCUGAAGAAUCCCGGUUG 4584 2376 GAGUUGUCAUCAGAAAUGCUA 4585 2377 CACUACUUCACAGGAAAGGAG 4586 2378 CUCUAUGUUGGUCAGGCUGGU 4587 2379 UCGAAGGAUGGGCUGCUAUGU 4588 2380 AGAAUUAAACUCUAGAAAGCC 4589 2381 AUCACUGUGGGAGUUGUCAUC 4590 2382 CUAUAUCACCUUUCUCUAGAU 4591 2383 AAAUGUGAAUCCUUCAGCAUC 4592 2384 ACACACAAAUAUUUACAAUGA 4593 2385 ACUCGAUUGUACCAAAUGUGA 4594 2386 AAGAAUCCUACCUGAAUGAUA 4595 2387 CAUAAAGAAUAAAUACUUGAG 4596 2388 AUCAGAUACAAUGCCCUGAGU 4597 2389 ACAUCACUACCCUGUGAUCUG 4598 2390 UGCAAACAACCUAUAAAUAGG 4599 2391 CAUAGUUGUAAUCCCUGUUUA 4600 2392 ACAGUCCUACAUAUUUGUUUA 4601 2393 GGGAUUAUGACAACGCACUGG 4602 2394 UCCUUGCUAACAACAUUAACG 4603 2395 ACGAAGUCAUUACCCAACAUG 4604 2396 UACUCAUGAGGGAGAUGGUGA 4605 2397 AGAACUAAGCAUGAACACACC 4606 2398 AAUCAACAUUGAAAGAUGUGC 4607 2399 UCUUUGUUUAAAUGUGGUUUC 4608 2400 CUUUGGUUAGAUGGUCUCCCU 4609 2401 AGAUCAGCAAGAACGAAGUCA 4610 2402 GUUUGCUGAAACUCUAAAGAA 4611 2403 AGAAGCCUUCUAUAACACAAA 4612 2404 CUUUGCUUAACUGAAUAUUAA 4613 2405 AUAUCAACUUUCGGACCAUAA 4614 2406 ACACACAUAUUCCUCUCCACU 4615 2407 AUAACAUAGUAUGCUUCAAAU 4616 2408 CAAGACACAGUCAUGCACAAU 4617 2409 CAGAUAACACAUUCUGACAAA 4618 2410 GUUUAAAUGUGGUUUCUCCUA 4619 2411 AAGCAGCAUAUCUGAGGUGAC 4620 2412 UGGAGUAAUCGUGCCCAUUGC 4621 2413 ACGGUGGAAGUGACCACUUUA 4622 2414 ACCACAACCUCCGCCUCCUGG 4623 2415 AGCAAUGGAUUCAACCACAGA 4624 2416 AUUAGUGGGACUUGCCCUAUU 4625 2417 AGUUUACCCUCUUUCCAGCAG 4626 2418 CCUCUUCAUCUUCUUCUUCAG 4627 2419 AGUGGGACUUGCCCUAUUGGU 4628 2420 GUGUUCCCAGUCUUUGUCCAU 4629 2421 AGGUUCAGAACCUGAACUCAC 4630 2422 GAGGAGGUCAAGCCUCUCCCA 4631 2423 CUGGUUGUUGACUGUUUCUUU 4632 2424 CCUAUGAGGAUUUCCUAGGUU 4633 2425 AAGGGUCACUGCUCCAAGGUC 4634 2426 CUAUUGAAAUUAGUGGGACUU 4635 2427 AAGAGAGAUCUCUGGGCGCUC 4636 2428 AACCCAAAGUCAGUCAAUUUA 4637 2429 CUAAUGAAUAGGGCUUCCUAA 4638 2430 UGGAUAUAUGGAUGGUUAGAU 4639 2431 UCCUAACCAGGUAUUGGGCUC 4640 2432 UCAUGACCAGAAUUUCAUUAA 4641 2433 AUAAAGCCUAUGGAAUAAUUG 4642 2434 CAUCUCCUGAACAUAAACACG 4643 2435 UGAGAUACAAUUCUGAUAAAC 4644 2436 GAUCUCCUCAUCUGUCAUCUU 4645 2437 GUGACUUGCCUAGCGUCACAU 4646 2438 UAGAUGUUAUGAGUAUAAUCC 4647 2439 GUCACUAAUGUACUGAUUUUU 4648 2440 UCCAAGUUUCAAACUGCAAUA 4649 2441 AGCUUCUUUCUAAUACUUAUU 4650 2442 UCCUGGGUUCAAGCGAUUCUC 4651 2443 CGGACUGACAUUUCUUGGGAU 4652 2444 GGAAGAGGUACUUAGAGCCAA 4653 2445 CUUAUCAUCAAUAAUGAAUAU 4654 2446 GACUUCUCUAGGUAUAGGGUC 4655 2447 AGGCUAGUAUUUAUCCCACUA 4656 2448 AGAUGUGCCCUCGUUAUCUCA 4657 2449 UGUAGCCUUCACUGACCUCCC 4658 2450 UAUUCAUUUGAAAGGUAAAGA 4659 2451 AAUGAAUUGGAAGGCUGCCAC 4660 2452 CAAGCCUGAAAGAAAUCUGAA 4661 2453 CUGUGGUUGAGUGCUGAAGAA 4662 2454 AACUGAAUAUUAACUGCAAGU 4663 2455 GUAUGCUCAAAGUCUGAAGGA 4664 2456 AAAUAUCUCAAACUAUCAAAA 4665 2457 CUUGUCCUGUUGCAAUGUCUA 4666 2458 UGAAAGCCCUUCCUGAACACA 4667 2459 AAUAUCCUGUUGGACAAGAAA 4668 2460 UGAGGAUUUCCUAGGUUCAGA 4669 2461 ACAGAAAUAGGUGAUACAUAG 4670 2462 AGAAGCUCAAGUACAGUUAUA 4671 2463 UCUGCUGUAGGCAGGGCAUUG 4672 2464 CUAACUAAUGAAUAGGGCUUC 4673 2465 UACCCAACAUGGUGACUGAUU 4674 2466 AGUCAUUACCCAACAUGGUGA 4675 2467 GAUUUCAGUAUUCUACAUUUA 4676 2468 CUCAACAUGUAAGGGAUGCUA 4677 2469 GGACAUCUAAUGACAAUGCAA 4678 2470 UCUUUCAUAGGAGAAAUAUUC 4679 2471 AUGUAGCCUUCACUGACCUCC 4680 2472 CUUCAUCCAUACAGGUCUCUG 4681 2473 AGGCUUAUAAGAAGUUUCUAU 4682 2474 GCAACAGAUGUUAUCAAGGGG 4683 2475 CAGUAGACAUCACUACCCUGU 4684 2476 CUGCUAUGUAUCCAUGUGCAC 4685 2477 CAAGAGAGGAUUAAUUUAGGU 4686 2478 UGUUUACUAUAUCACCUUUCU 4687 2479 AUCCAAAGCUUGCAGGCACUC 4688 2480 AUGCAUGUUGGGUUAUAUUCA 4689 2481 AUGGACACACAAAUAUUUACA 4690 2482 AUUUCAUUAAUAAUUAAUUCC 4691 2483 CAGUCCUACAUAUUUGUUUAA 4692 2484 UGGUACUGCUGGUGAAGCAAU 4693 2485 ACCAGAUAUCAACUUUCGGAC 4694 2486 AGAAACAGCUUCUUUCUAAUA 4695 2487 GAGGUUUGAAUGCAAGAGGGA 4696 2488 ACCAUAGUGCUUCGUUUACUU 4697 2489 AACUCCCAGUUUACCCUCUUU 4698 2490 AAGAAUCCCGGUUGUUACUAU 4699 2491 CACACAAAUAUUUACAAUGAC 4700 2492 CUGUAUAAACAGUACCUGAUG 4701 2493 UUCCCAGUCCACAUGCAAAUA 4702 2494 GCAAUAUCUGCAACAGAUGUU 4703 2495 CAAAGAACUAAGCAUGAACAC 4704 2496 ACACGAUCUUUGAGCUGAGAA 4705 2497 UCCCAACAAAUUAAUUUGUCA 4706 2498 UGCCCUGCAUGCUCUGCGCUC 4707 2499 UUCUUGGGUUGCUGUUGAAGG 4708 2500 AGGCUUAGAGAAACAACUUUC 4709 2501 CUCAAUGCUAAUAGCAUGUAA 4710 2502 ACAUGGAGGUGAUAUCUCAGU 4711 2503 CAAGUCAUAUAAGGAAUUCUG 4712 2504 ACAUAAGAGACUCAGGCUUAA 4713 2505 AAGUGACCACUUUAUGGUCAC 4714 2506 AGAAGGAGAGAGGCCUAUGUA 4715 2507 UCCUGAACAUAAACACGUACA 4716 2508 GCUGAAUGUACAUAAGUUCUG 4717 2509 ACUGUGGGAGUUGUCAUCAGA 4718 2510 CAUGGGAUUAUGACAACGCAC 4719 2511 CAGCUGCUAUCUGUCCUUCAU 4720 2512 AGAGAAUUUCAAGACAUUUAU 4721 2513 CUGACCUCCCAUUUCUUACAG 4722 2514 UCAGUUUACAAAUGCUGAAUU 4723 2515 AGAUCUUAUCAUCAAUAAUGA 4724 2516 ACUAUAUCACCUUUCUCUAGA 4725 2517 CAUAACUUCUAUUGAAAUUAG 4726 2518 GACUUCCACAUGUUCACACAG 4727 2519 AGCAGAGGGCAGACAACCUGU 4728 2520 ACUCAAUGCAUUAGUAGCUAC 4729 2521 CAUACAGGUCUCUGUGACCAC 4730 2522 CCCAGUAGACAUCACUACCCU 4731 2523 UGUGGGAGUUGUCAUCAGAAA 4732 2524 AUCAAACUGUCAGUUUACAAA 4733 2525 CUAUCAGAUACAAUGCCCUGA 4734 2526 CUUUACAUACAGACUGUAUGG 4735 2527 AGGCCCAUCAAACUGUCAGUU 4736 2528 AGAAUAUUGUCACUCUUUAUA 4737 2529 GAUCCUUCUCAACUUGUUUUG 4738 2530 CAGGAAAUCCAAAGCUUGCAG 4739 2531 CUUUAAUCCAAAGUUACAGAA 4740 2532 ACUCUAUUAGGGCAUGGACUU 4741 2533 UCUCUGCCCUGCAUGCUCUGC 4742 2534 CUAUCUUUGGUUCCCAACAAA 4743 2535 GUUACUAUUCAUCCUCAGUGG 4744 2536 UUCAAGUUACUCGAUUGUACC 4745 2537 UCAUUACCCAACAUGGUGACU 4746 2538 ACAAUAUUAGGGUUCUUAUUU 4747 2539 CAAAUUAAUUUGUCAACAUUU 4748 2540 UUCCACCACCCUAACACAACU 4749 2541 GUUCAGAGCUCAGAGACUGGG 4750 2542 ACUUCUCUAGGUAUAGGGUCU 4751 2543 CAUAUGUUUCAUAAGCACAAG 4752 2544 AACUGUAAAUGAAUUGGAAGG 4753 2545 CAAAGUGCUGGGAUUACAGGU 4754 2546 ACCAAGUAGCUAUCUAAAUAA 4755 2547 GUUAGAAGGAAGUUAUCCUUU 4756 2548 CAGAAGAUUCAGGAAGUGCCA 4757 2549 CACACAUAUUCCUCUCCACUU 4758 2550 GAAACAACUGUAAAUGAAUUG 4759 2551 GAUAUUAUAGAAUCUCUCAGA 4760 2552 GUCUAGUGCUGUAUAAACAGU 4761 2553 AUGCUGAGGUCAGAAGGAUGG 4762 2554 ACCUUUGCUUAACUGAAUAUU 4763 2555 AAGCAAUAUUAUAACAAUAUC 4764 2556 AGGAUCAGGUGGUUAAACUCA 4765 2557 CUAUGGAUCACCUGGUUUGAG 4766 2558 UUCCCACUGCCCUAUUCCUAA 4767 2559 UACACAUGGUUUACAGAUAAC 4768 2560 ACUGCCCUAUUCCUAACUCAG 4769 2561 UGCACAAUCCAUAUUUCAAUU 4770 2562 CAGGAUGUCACAGUUUCAGUU 4771 2563 AACUCACCUAGCAGGAUGUCA 4772 2564 GAUCCUUGCUAACAACAUUAA 4773 2565 CACACCACACACAAGCACACA 4774 2566 AGGAGAAGCUCAAGUACAGUU 4775 2567 CCUGUUGCAAUGUCUAGUGCU 4776 2568 GUUGCAAUGUCUAGUGCUGUA 4777 2569 ACUUGAGUUAAAUCUUCUUAC 4778 2570 GCUAAUAGCAUGUAAUUACUU 4779 2571 UCCUCCUGGUAUGCCUAUUUU 4780 2572 CUGGAUCCUUGCUAACAACAU 4781 2573 UCCCUGACUUUCCCACUGCCC 4782 2574 CAAAUAUCUCAAACUAUCAAA 4783 2575 GUGACCACAUCAGUCAGAGAG 4784 2576 AAUAGGUGAUACAUAGGAAAA 4785 2577 UGCAAAUACACGUUCAGAAUU 4786 2578 GUAUUGGGCUCUCUCCACUGG 4787 2579 AUGUCUAGUGCUGUAUAAACA 4788 2580 GUCUCGAACUCCUGACCUCAG 4789 2581 AAACAACUUUCUGUAAUUUAC 4790 2582 UGGUGAAAUAGUAGUCAAAUU 4791 2583 ACUUUACAUACAGACUGUAUG 4792 2584 UCCCGAGAAGAAUAUUGUCAC 4793 2585 ACAACCUGGUUUACUCAAUUA 4794 2586 UGUUGAUUUCCUCUUGGGUAC 4795 2587 AUAAUUCCACCACCCUAACAC 4796 2588 CCACAUGUUCACACAGUACUU 4797 2589 UGGAGAGGUUAAGUGACUUGC 4798 2590 GAAAGAAAUCUGAAUAACAUA 4799 2591 AUCAUAAGUAAAUGAUGAUUA 4800 2592 GAGCUUUAUUUAGAUAUACAG 4801 2593 AGUUGUCAUCAGAAAUGCUAU 4802 2594 CCGGUUGUUACUAUUCAUCCU 4803 2595 GACAGUCCUACAUAUUUGUUU 4804 2596 CUCCUGGGAAGAUAGAGCGAA 4805 2597 AUGUGCCCUCGUUAUCUCAGG 4806 2598 AGUGACUUCUCUAGGUAUAGG 4807 2599 UGCUGUUUAUUUAUUGUAAAG 4808 2600 GUGGGUUCUUCUUCUGUUCCA 4809 2601 CUUGCCUAGCGUCACAUAGCA 4810 2602 ACCCAGGCAAGCAUAAAGCCU 4811 2603 ACAUAUUUGUUUAAUGAUUUC 4812 2604 GUUAAACUCAAACAUUGGGGU 4813 2605 GCAUCUUUGAGAAACCUUUUU 4814 2606 UGUAAGGGAUGCUAACUAAUG 4815 2607 UUCCAAGUUCCCAUUUAUUUC 4816 2608 GUGCAUCUUUGAGAAACCUUU 4817 2609 CAAGAACGAAGUCAUUACCCA 4818 2610 AGGUCAAGCCUCUCCCAACUU 4819 2611 GUUCAGAACCUGAACUCACCU 4820 2612 CACGGUGGAAGUGACCACUUU 4821 2613 AUCUUGCAAGUUCAACCCAAU 4822 2614 UGGGCUCUGCUAUCUUGUGCC 4823 2615 CUAGGUUCAGAACCUGAACUC 4824 2616 CUAGCGUCACAUAGCAAUUUA 4825 2617 CACAUAUUCCUCUCCACUUUU 4826 2618 CUGAAUGAUAUACAGUAAUAU 4827 2619 AUGACCAGAAUUUCAUUAAUA 4828 2620 CACAGAACGAGUAUAGAUUGA 4829 2621 AAACCCAUUGAGCAAAGGAAU 4830 2622 UGGUACAAAGUGGUAGUAAAG 4831 2623 AACUCUAAAGAAAGUGCUUUC 4832 2624 AACAGAAAGAUUAUAUCAAAA 4833 2625 CUGAACUGAAAGCAUAAGAGA 4834 2626 AAGAUGUGCCCUCGUUAUCUC 4835 2627 UCCCUAGCUUUAACUUAUAGA 4836 2628 CAUUUCUCAAUGCUAAUAGCA 4837 2629 CAAAUUAAUAUUACCGUUUCA 4838 2630 AGCCCUUCCUGAACACACAUA 4839 2631 UAUGGAUCACCUGGUUUGAGU 4840 2632 UGUGGGUUCUUCUUCUGUUCC 4841 2633 AGCUUGCAGGCACUCUCUGCA 4842 2634 AAUAUCAUUUAUAGACAAAUA 4843 2635 CUCCUGAACAUAAACACGUAC 4844 2636 AAUGGAUUCAACCACAGAACG 4845 2637 AAUUUCCCGGCACUAUGAGUG 4846 2638 AGUAUUUAUCCCACUACAUCU 4847 2639 AUUUCACCGUUUGAGCUUUAU 4848 2640 AUUUAGUAAUAAAGCUCAUAU 4849 2641 ACUUGUAAGUGUUUAGGUUCA 4850 2642 CUCUCCAAUACAGGGAAGGGG 4851 2643 CUUUCUAAUACUUAUUAGAAA 4852 2644 UGCCCUCGUUAUCUCAGGGCA 4853 2645 ACUCUAAAGAAAGUGCUUUCA 4854 2646 AUAUUCCGAAACAGAAAUAGG 4855 2647 UCACAAGCCUGAAAGAAAUCU 4856 2648 AGGAUCAUCUAGUCCAAUACA 4857 2649 ACCUCUUUAUUUGGUACUGCU 4858 2650 AUCCCUGUUUAUGUUAUUUAA 4859 2651 AGUUUCAAACUGCAAUAUUUU 4860 2652 AGAUUGGAUGCUGAGGUCAGA 4861 2653 ACACUCAAGACACAGUCAUGC 4862 2654 GUGGAUCCUUCUCAACUUGUU 4863 2655 AUGACUACCCAUAGUUCAUCA 4864 2656 AUAUCACCUUUCUCUAGAUCU 4865 2657 GUUAUAUUCUAGCAAGUGUGA 4866 2658 AAAGCAGAGGGCAGACAACCU 4867 2659 ACAAGGAUUUCAGUAUUCUAC 4868 2660 GAAUGUACAUAAGUUCUGUUU 4869 2661 ACAGAACUAUAACUGAAUGCC 4870 2662 AAUCCUACCUGAAUGAUAUAC 4871 2663 UGAGUUAGAAGGAAGUUAUCC 4872 2664 ACUUAAUGUCCAACAAGGAUU 4873 2665 AAUUUGCAAGGCAACCUAUAA 4874 2666 UCUCUGCAGACAGCUGCUAUC 4875 2667 ACUUGAGAAUUAAACUCUAGA 4876 2668 ACUGCAAGUAGCUUAGAUAAA 4877 2669 CUCUCUCUCAUUAGAGCAGUG 4878 2670 CACAUGAAUCGUAUGCUCAAA 4879 2671 AUCUUGGUACAAAGUGGUAGU 4880 2672 GAGACUGGGAGAUACUUGCAC 4881 2673 UGUAAGGAUCAGGUGGUUAAA 4882 2674 CUUAUUCUUCUCUUCAGGGGC 4883 2675 UCUUACUCAUGAGGGAGAUGG 4884 2676 AAGUUACUCGAUUGUACCAAA 4885 2677 CGGAAUACAGCUGACAGUCUC 4886 2678 UGUGACCUCUUUAUUUGGUAC 4887 2679 GUAUAGAAUACUCGUACACAC 4888 2680 CAUUGUUUAAUAUUAAACACA 4889 2681 UAAGCACAAGAGAGGAUUAAU 4890 2682 CACAUCCAUCUCAAGACAGCG 4891 2683 GAUGUAGCCUUCACUGACCUC 4892 2684 CUUUGUCCAUAUGCAUUUCUU 4893 2685 CAGGGAAAGAGAAUAAACUGU 4894 2686 UAAUGACAAUGCAAGUGAAAA 4895 2687 ACUUCAUUUGCUUGAGUUUUU 4896 2688 CUCAGAGAAAGUCCCAUCUUU 4897 2689 AUCUAUUUCCUCCUGGUAUGC 4898 2690 AGGUAUCAUUAUCUUUGUUUA 4899 2691 CAAAGAUUUGGAUAGACUCAC 4900 2692 UGCUUCUCACCCUUCCCUGAC 4901 2693 UCUGGAAUUCCAGUGAAUUCC 4902 2694 UGCUGAACUGAAAGCAUAAGA 4903 2695 GUAUCAUAAGUAAAUGAUGAU 4904 2696 GUUAUAUUCAUUUGGUCACUU 4905 2697 CAAAGUCAGUCAAUUUAACAG 4906 2698 CACCUUUCUCUAGAUCUUUAA 4907 2699 GUGCAGGAAAUCCAAAGCUUG 4908 2700 GUCAACAUUUCUCAAUGCUAA 4909 2701 CACACACAAGCACACACAUUG 4910 2702 GCUAUCAGAUACAAUGCCCUG 4911 2703 UGUAAUCCCUGUUUAUGUUAU 4912 2704 CUAAGUAUUUCUGUAUUGAGA 4913 2705 ACAGUACUUGCUCUGGUAUUU 4914 2706 ACCAUCCACUAACUCCCAGUU 4915 2707 CAGAAGGAUGGAACCAUACCA 4916 2708 UGGUAUUUGCGGGUCCAUAAA 4917 2709 UGAAUGAUAUACAGUAAUAUC 4918 2710 UGCUUCAACCACAAUUUAAAA 4919 2711 CAUGAUCUCAGCUCACCACAA 4920 2712 CAGUCCUCUUGUUCAGAGCUC 4921 2713 AAUCCCGGUUGUUACUAUUCA 4922 2714 AUAUAAUUAUUUACACGAUCU 4923 2715 GCUGUUCUUAAUUGCUUCCUU 4924 2716 UUGCUGCCCUGUUUGGGCUGC 4925 2717 UCAGGUAUUAAGGAGAUUAAC 4926 2718 UCUCAGGGCACACUAGCAACA 4927 2719 ACUGUUUCUUUGGAAUCAUAG 4928 2720 CUCAGGGCACACUAGCAACAU 4929 2721 CUGUAAAUGAAUUGGAAGGCU 4930 2722 AAGUUACAGAAGAAUUUCACU 4931 2723 AGAGAGGAUUAAUUUAGGUAU 4932 2724 UCUAUUAGGGCAUGGACUUCC 4933 2725 UGGUUCCCAACAAAUUAAUUU 4934 2726 GACAUUUAUGAAUAUGCUUUU 4935 2727 ACCAACAGAAAGAUUAUAUCA 4936 2728 GUUCCUGUACAAAGUACUGGA 4937 2729 ACAUGUUCACACAGUACUUGC 4938 2730 UGCUAAUAGCAUGUAAUUACU 4939 2731 AUAGAUAUAUGGUGAAAUAGU 4940 2732 GUACAGUUAUAUUCUAGCAAG 4941 2733 UAGCGGCUGCUGUUCUUAAUU 4942 2734 CACCGUUUGAGCUUUAUUUAG 4943 2735 ACCAUACCAUCAGCAGGUCUA 4944 2736 CAAGACAUUUAUGAAUAUGCU 4945 2737 GACUGGGAGAUACUUGCACUA 4946 2738 CUUGUAAGUGUUUAGGUUCAC 4947 2739 AGUAAUCGUGCCCAUUGCUCU 4948 2740 UAAGAGACUCAGGCUUAAACG 4949 2741 ACAUGCAAAUACACGUUCAGA 4950 2742 AAUCCAAAGUUACAGAAGAAU 4951 2743 UCUUUCGCUUCACGGUGGAAG 4952 2744 AUGCUCAAAGUCUGAAGGAAG 4953 2745 AUGGAACAUGGACACACAAAU 4954 2746 AUCAACUUUCGGACCAUAAGC 4955 2747 AGUUACAACUAAUUUCACAGC 4956 2748 AGAUAACACAUUCUGACAAAA 4957 2749 UCCAAUACAAAUGCAGAAAAA 4958 2750 AGCUCAUGUAUUUCUGGUUGU 4959 2751 UCCCAGGAUUUCAUUGAAUUU 4960 2752 CGCUCUUUCUCCUUCUUCUUA 4961 2753 ACAGGAAAGGAGAAGCUCAAG 4962 2754 AGAAUAAACUGUUAACAAUCU 4963 2755 CACAGGAAAGGAGAAGCUCAA 4964 2756 UUCCUCCUGGUAUGCCUAUUU 4965 2757 CAUCUUUCCUGCAGCAGAGUU 4966 2758 CUAGGCUAGUAUUUAUCCCAC 4967 2759 AGAAGAAUCCUACCUGAAUGA 4968 2760 ACCCUAACACAACUGAUUUCA 4969 2761 ACUCUCAGAAGAUUCAGGAAG 4970 2762 AGAGAUCUCUGGGCGCUCUUU 4971 2763 AAAUAUCAUUUAUAGACAAAU 4972 2764 UCCCAAUGCAUGUUGGGUUAU 4973 2765 GUUCUAAUAGUGACAUCUCCC 4974 2766 AUAUCCUGUUGGACAAGAAAA 4975 2767 AUUAUAGAAUCUCUCAGAACU 4976 2768 UCAGGCUUACAAAUAAAUUAC 4977 2769 AUCUCUGGGCGCUCUUUCUCC 4978 2770 CUCUCUCAUUAGAGCAGUGUG 4979 2771 CUCAGGUGAUCCGCCUGCCUU 4980 2772 AGGAGUGAUCUGGGCACAGAA 4981 2773 AUUUCCCGGCACUAUGAGUGA 4982 2774 CCAAUCUAAAGCAACCACAAA 4983 2775 CUAAGAUCUCCUCAUCUGUCA 4984 2776 UGGAGGUGAUAUCUCAGUUCC 4985 2777 CUUCCACAUGUUCACACAGUA 4986 2778 AGAUGGAUGGAUGUACCUUGG 4987 2779 ACUGCUGGUAUUAUGGGAUAG 4988 2780 UGCUCUGGUCUUGGUGCGAUA 4989 2781 AAUAUCUCAAACUAUCAAAAC 4990 2782 AACUCUAUUAGGGCAUGGACU 4991 2783 GAAUAUUAACUGCAAGUAGCU 4992 2784 CCAUAAAUACCUUUAAUCCAA 4993 2785 AAGGAUCAGGUGGUUAAACUC 4994 2786 CUCUCUGCAGACAGCUGCUAU 4995 2787 GAGGGAGUGUGCAUCUUUGAG 4996 2788 UCUUAUCAUCAAUAAUGAAUA 4997 2789 UAAUGAAUAGGGCUUCCUAAC 4998 2790 CCUAGGCUAGUAUUUAUCCCA 4999 2791 AACUUUCUGUAAUUUACAAAA 5000 2792 AUUGAGCAAAGGAAUAUAAUU 5001 2793 AUUCUGAUAAACAAUGAAAAC 5002 2794 AGGCAGAGACAGUCCUACAUA 5003 2795 ACACAGGUGUGCACAUGGAGG 5004 2796 AUUAGGGCAUGGACUUCCACA 5005 2797 GACCAAGAGAUUCAACCGGGG 5006 2798 AGAAAUGCUAUCUUUGGUUCC 5007 2799 GUAAGUGUUUAGGUUCACUCU 5008 2800 AGCAUGAACACACCAUAUUCC 5009 2801 CCAACAGAAAGAUUAUAUCAA 5010 2802 ACCUGAAUGAUAUACAGUAAU 5011 2803 AAGGGAUGCUAACUAAUGAAU 5012 2804 CACAGGUGUGCACAUGGAGGU 5013 2805 CUUCUCAACAUGUAAGGGAUG 5014 2806 UGCUGGUAUUAUGGGAUAGCA 5015 2807 CUGGAGAGAAUUUCAAGACAU 5016 2808 GAAGAAUCCUACCUGAAUGAU 5017 2809 AUGUAAAGCUCAUGUAUUUCU 5018 2810 AUAGUAUGCUUCAAAUUAAUA 5019 2811 AUGGUGAAAUAGUAGUCAAAU 5020 2812 GUCUCUGUGACCACAUCAGUC 5021 2813 GCAUGAACACACCAUAUUCCG 5022 2814 CUUGGUACAAAGUGGUAGUAA 5023 2815 CAUGGGCUCUGCUAUCUUGUG 5024 2816 GCCUAUGUAACUGAUCUCUUU 5025 2817 AAAGAGAAUAAACUGUUAACA 5026 2818 AGUUAGACAUUGUUUAAUAUU 5027 2819 ACCCACCAAGUAGCUAUCUAA 5028 2820 GAUGCUAACUAAUGAAUAGGG 5029 2821 CUAUUCCUAACUCAGGACAUU 5030 2822 AGGAAGUUAUCCUUUGGUUAG 5031 2823 AUGGUGAGGUGUAAGGCUUGC 5032 2824 UCUGGGCGCUCUUUCUCCUUC 5033 2825 AGCUCACCACAACCUCCGCCU 5034 2826 UCAGUUAGACAUUGUUUAAUA 5035 2827 CAGUCUUUGUCCAUAUGCAUU 5036 2828 UUCAUCCUCAGUGGAGGAGCC 5037 2829 ACUGUAAAUGAAUUGGAAGGC 5038 2830 AGUAAAUGAUGAUUAAUGUAU 5039 2831 AGUAAUAAAGCUCAUAUUAGA 5040 2832 UCCUAGGUUCAGAACCUGAAC 5041 2833 AUGCUACAAGUUGUAUAGAAU 5042 2834 GAUACAAUUCUGAUAAACAAU 5043 2835 CAGAGGGCAGACAACCUGUUU 5044 2836 GCUUGCAGGCACUCUCUGCAG 5045 2837 AGUCACCACCUCAGGUGCCAU 5046 2838 CUGCCCUGCAUGCUCUGCGCU 5047 2839 GGGACCAUCCACUAACUCCCA 5048 2840 CAUUAGUAGCUACAGGAUUCU 5049 2841 AGGCAAUAUCUGCAACAGAUG 5050 2842 AGGAUUAAUUUAGGUAUCAUU 5051 2843 GAUUCAACCACAGAACGAGUA 5052 2844 CAUCACAUUGGGUAAGGAGUU 5053 2845 UGUUGACUGUUUCUUUGGAAU 5054 2846 ACAAAUGCUGAAUUUCAGUCC 5055 2847 UGAGUAUAAUCCCAGUAGACA 5056 2848 UGUGCUGAGUUCACUUCAAAU 5057 2849 ACCACCCUAACACAACUGAUU 5058 2850 CUACUCUCAGAAGAUUCAGGA 5059 2851 CAAAGCUUGCAGGCACUCUCU 5060 2852 GAAACAACUUUCUGUAAUUUA

TABLE 7 Results for TRNP1. Score threshold: 70.  Design: siRNA 21 nt. SEQ ID siRNA guide strand/ NO siRNA_id AS Sequence 5061   1 UUUAAUGAGGAAGACUUCCUG 5062   2 UCAAUUCUCAACGUCUUCCUG 5063   3 UUGUUUAAGAAUGAUGACGAU 5064   4 UAAUCUGAUUGCAUCUCAGGG 5065   5 UUAGACUUGAAGCAAUGACAU 5066   6 UUAAUGAGGAAGACUUCCUGA 5067   7 UAAUUCAAUAUACAUUCACUA 5068   8 UAUGGAAAUUUAUUCCUCCUG 5069   9 AACGAAACUAAAUACAAGCUG 5070  10 UAGAGUGGAGGUUCUGAGGAG 5071  11 AUGCUUGCUACGCUUAAUCUG 5072  12 UGUAGCAACAUCUCCAAUUGU 5073  13 UAGGAGUCAAGGUCGGAGUUG 5074  14 UUAAUCUGAUUGCAUCUCAGG 5075  15 UAAUGAGGAAGACUUCCUGAG 5076  16 UAAGGCAGGAGACUAAUUCAA 5077  17 AUCCGUAGUCCUUCCAGCCGG 5078  18 UAGACUUGAAGCAAUGACAUC 5079  19 UGUAAGGUCAAUUCUCAACGU 5080  20 AACAUCUCCAAUUGUACAGUG 5081  21 UAUAUGAAGAAAUUCAGAGCA 5082  22 AAUCUGAUUGCAUCUCAGGGA 5083  23 UCAAUAUACAUUCACUAUGCA 5084  24 ACUAAAUACAAGCUGCUCCAG 5085  25 AAUUCUACAAGUUCUGGGCUA 5086  26 UUGGUCUGCAAAUCAAAGUCA 5087  27 UGCAGAAUUCUACAAGUUCUG 5088  28 UGAAGCAAUGACAUCUAUUAA 5089  29 UGGUCUGCAAAUCAAAGUCAA 5090  30 UUAUGGAAAUUUAUUCCUCCU 5091  31 UAUACAUUCACUAUGCAGAAU 5092  32 UCACUAUGCAGAAUUCUACAA 5093  33 UUGCAUCUCAGGGACCUGUAG 5094  34 AGGAUGACCACAGCACACCCG 5095  35 UAAAGUGAAAGGCUCCUGUGA 5096  36 AAGAAUGAUGACGAUAUCUUG 5097  37 AUAGACACAGAGGAAAGGCAG 5098  38 UGAAGAAAUUCAGAGCAUCAG 5099  39 UGAUUGCAUCUCAGGGACCUG 5100  40 UUAUCAGGAUGUUUAAAUGUG 5101  41 ACUUGAAGCAAUGACAUCUAU 5102  42 AUAUGAAGAAAUUCAGAGCAU 5103  43 UCGGUCGGUCGGCACCUCGGC 5104  44 AUCCAUAGAGUGGAGGUUCUG 5105  45 AAUCCAGAGGUCCAGAUCCAU 5106  46 UGCAAAUCAAAGUCAACAGGG 5107  47 UCUUCCUGAAGGCAGUGCCCA 5108  48 UACAAGCUGCUCCAGGAACCG 5109  49 UUGAAGCAAUGACAUCUAUUA 5110  50 AAGGUCAAUUCUCAACGUCUU 5111  51 AUAUACAUUCACUAUGCAGAA 5112  52 UCAACGUCUUCCUGAAGGCAG 5113  53 AAGCCGAAUCCAGAGGUCCAG 5114  54 AUGAGGAAGACUUCCUGAGGA 5115  55 AUCACAUCCUUUAAUGAGGAA 5116  56 UCCUGCGGAUCCGUAGUCCUU 5117  57 UUGGAAGGAGCUCAGCCUCCU 5118  58 AUAGAGUGGAGGUUCUGAGGA 5119  59 AAUCAAAGUCAACAGGGCCAG 5120  60 AAAUACAAGCUGCUCCAGGAA 5121  61 UCAGUCGGUCGGUCGGCACCU 5122  62 ACAAGCUGCUCCAGGAACCGU 5123  63 UGAGGAAGACUUCCUGAGGAG 5124  64 AAAGUGAACCUCAGAACCCCA 5125  65 CAAUUGUACAGUGUAAGCCAA 5126  66 ACCUCGGCGAAGCUUGUCGGG 5127  67 UGGAAAUUUAUUCCUCCUGAA 5128  68 UAAGAAUGAUGACGAUAUCUU 5129  69 UUAAGAAUGAUGACGAUAUCU 5130  70 UAAAUACAAGCUGCUCCAGGA 5131  71 AAUUUAUUCCUCCUGAAUGUA 5132  72 ACUAAUUCAAUAUACAUUCAC 5133  73 AACGUCUUCCUGAAGGCAGUG 5134  74 AACUAAAUACAAGCUGCUCCA 5135  75 UCCUCCUGAAUGUAUAAGGCA 5136  76 AUUCAAUAUACAUUCACUAUG 5137  77 AAUUCAAUAUACAUUCACUAU 5138  78 UAAUAGACACAGAGGAAAGGC 5139  79 UAUGCAGAAUUCUACAAGUUC 5140  80 AUCUCCAAUUGUACAGUGUAA 5141  81 CAAUAUACAUUCACUAUGCAG 5142  82 UUGCUACGCUUAAUCUGAUUG 5143  83 CUUAAUCUGAUUGCAUCUCAG 5144  84 UUCACUAUGCAGAAUUCUACA 5145  85 ACCGUCAACUUAAAGAGCCAU 5146  86 UUCCUGCGGAUCCGUAGUCCU 5147  87 AUUCUCAACGUCUUCCUGAAG 5148  88 UCAAGGGAGAAUUGGUCUGCA 5149  89 UGCGGAUCCGUAGUCCUUCCA 5150  90 UCUGCAAAUCAAAGUCAACAG 5151  91 UUGCCUUACAUUAUGGAAAUU 5152  92 AGCUGCUCCAGGAACCGUCAA 5153  93 AACCGUCAACUUAAAGAGCCA 5154  94 UGCUCCAGGAACCGUCAACUU 5155  95 UGCCUCUUCCUGCGGAUCCGU 5156  96 ACCUGUAGCAACAUCUCCAAU 5157  97 UCCAGCUCCGACACCAGGCGC 5158  98 UCUGCGGCUGUAGGUGCGCAG 5159  99 AAUUCUCAACGUCUUCCUGAA 5160 100 AGAAAUUCAGAGCAUCAGCCA 5161 101 UAUUCCUCCUGAAUGUAUAAG 5162 102 UGGAGAACAAGGGCAGUGGAU 5163 103 UUAAGAAUGUUGUUUAAGAAU 5164 104 UAAGGUCAAUUCUCAACGUCU 5165 105 GACCUGUAGCAACAUCUCCAA 5166 106 UGCAGCUGCAGCACGCGGCUC 5167 107 CAGAAUUCUACAAGUUCUGGG 5168 108 AUGUUGUUUAAGAAUGAUGAC 5169 109 UGCUUGCUACGCUUAAUCUGA 5170 110 UUCAAUAUACAUUCACUAUGC 5171 111 UAGCAACAUCUCCAAUUGUAC 5172 112 UCCAAUUGUACAGUGUAAGCC 5173 113 UUAUUCCUCCUGAAUGUAUAA 5174 114 UUCUUGAGGCGCGACCCGUGA 5175 115 UGUUGUUUAAGAAUGAUGACG 5176 116 AAAGUGAAAGGCUCCUGUGAG 5177 117 AAAUCAAAGUCAACAGGGCCA 5178 118 AGAAUGUUGUUUAAGAAUGAU 5179 119 UGGAGGUUCUGAGGAGUUGGA 5180 120 ACAUUAUGGAAAUUUAUUCCU 5181 121 AUCUGAUUGCAUCUCAGGGAC 5182 122 UAUGAAGAAAUUCAGAGCAUC 5183 123 UUACAUUAUGGAAAUUUAUUC 5184 124 AAUGAUGACGAUAUCUUGAAA 5185 125 ACAUCUCCAAUUGUACAGUGU 5186 126 UGGAGGUCAGCGCUGCGGGGA 5187 127 GAAAUUCAGAGCAUCAGCCAG 5188 128 UCCACCUCCAGCAGCCGCCGC 5189 129 UCUUGAGGCGCGACCCGUGAG 5190 130 UGCAUUUGCCUUACAUUAUGG 5191 131 AUGCAUUUGCCUUACAUUAUG 5192 132 UACAUUAUGGAAAUUUAUUCC 5193 133 UGUAAAGUGAAAGGCUCCUGU 5194 134 UCCGUAGUCCUUCCAGCCGGC 5195 135 AAACGAAACUAAAUACAAGCU 5196 136 UCUCCAAUUGUACAGUGUAAG 5197 137 UCCGCGAUCAGUCGGUCGGUC 5198 138 UGGAAGGAGCUCAGCCUCCUC 5199 139 AUAAUAGACACAGAGGAAAGG 5200 140 AUGGAAAUUUAUUCCUCCUGA 5201 141 UCUUCCUGCGGAUCCGUAGUC 5202 142 AUUGCAUCUCAGGGACCUGUA 5203 143 UCCUGAAUGUAUAAGGCAGGA 5204 144 UUCUCAACGUCUUCCUGAAGG 5205 145 AGAAUGAUGACGAUAUCUUGA 5206 146 AUUAUCAGGAUGUUUAAAUGU 5207 147 UCCGUCAUCACAUCCUUUAAU 5208 148 CACCCGAACAGCUAGACACGG 5209 149 AAUAGACACAGAGGAAAGGCA 5210 150 UCCUUUAAUGAGGAAGACUUC 5211 151 GUAAGGUCAAUUCUCAACGUC 5212 152 UUCUACAAGUUCUGGGCUAUG 5213 153 AUGCAGAAUUCUACAAGUUCU 5214 154 UCCCUCAAACAGGCCUCCCGG 5215 155 UUCCUGAAGGCAGUGCCCAGG 5216 156 GUAGCAACAUCUCCAAUUGUA 5217 157 UUUAUUCCUCCUGAAUGUAUA 5218 158 AUUCACUAUGCAGAAUUCUAC 5219 159 ACAUUCACUAUGCAGAAUUCU 5220 160 UACGCUUAAUCUGAUUGCAUC 5221 161 CAAUUCUCAACGUCUUCCUGA 5222 162 UCCGACACCAGGCGCCGGCGG 5223 163 CACAGCACACCCGAACAGCUA 5224 164 UCCCACGUGGAGAACAAGGGC 5225 165 AAUGAGGAAGACUUCCUGAGG 5226 166 ACAAGCACACUCCCACGUGGA 5227 167 UCCAGAUCCAUAGAGUGGAGG 5228 168 AAGAAUGUUGUUUAAGAAUGA 5229 169 CUAUGCAGAAUUCUACAAGUU 5230 170 UUCCUCCUGAAUGUAUAAGGC 5231 171 UGAGGAGUUGGAAGGAGCUCA 5232 172 UCCAUAGAGUGGAGGUUCUGA 5233 173 UGUUUAAGAAUGAUGACGAUA 5234 174 UUUAAGAAUGAUGACGAUAUC 5235 175 AUGUAUAAGGCAGGAGACUAA 5236 176 CUACGCUUAAUCUGAUUGCAU 5237 177 UCCUGGUCCUCGGCCGCGCCU 5238 178 ACUUGCAAAGUGAACCUCAGA 5239 179 AUUGGUCUGCAAAUCAAAGUC 5240 180 CAUCUCAGGGACCUGUAGCAA 5241 181 UGAGGCGCGACCCGUGAGCCG 5242 182 UAGGUGCGCAGGGAGGAUGAC 5243 183 AGUCGGUCGGUCGGCACCUCG 5244 184 AAACUAAAUACAAGCUGCUCC 5245 185 CAGAGGUCCAGAUCCAUAGAG 5246 186 UCCAUUAUCAGGAUGUUUAAA 5247 187 ACAGCACACCCGAACAGCUAG 5248 188 UAAGAAUGUUGUUUAAGAAUG 5249 189 AGUUGGAAGGAGCUCAGCCUC 5250 190 UCAGGUCAAGGGAGAAUUGGU 5251 191 UGCGGCUGUAGGUGCGCAGGG 5252 192 UCCUGUGAGGAGGGCGCUGGG 5253 193 UCACAUCCUUUAAUGAGGAAG 5254 194 AUUCUACAAGUUCUGGGCUAU 5255 195 AUUUAUUCCUCCUGAAUGUAU 5256 196 UCGGUCGGCACCUCGGCGAAG 5257 197 GAAACUAAAUACAAGCUGCUC 5258 198 GUCCGCGAUCAGUCGGUCGGU 5259 199 UCUGAGGAGUUGGAAGGAGCU 5260 200 UGAAUGUAUAAGGCAGGAGAC 5261 201 UCCAGGAACCGUCAACUUAAA 5262 202 UAGACACAGAGGAAAGGCAGC 5263 203 AGCUCCGACACCAGGCGCCGG 5264 204 AAAUUUAUUCCUCCUGAAUGU 5265 205 ACCUCUGCUCUGCCGUCCCCU 5266 206 UUGCAAAGUGAACCUCAGAAC 5267 207 UGCAGCUCCUGGUCCUCGGCC 5268 208 CUGUAAAGUGAAAGGCUCCUG 5269 209 UGAAAGGCUCCUGUGAGGAGG 5270 210 AUGAUGACGAUAUCUUGAAAA 5271 211 AUCCUUUAAUGAGGAAGACUU 5272 212 AUUAUGGAAAUUUAUUCCUCC 5273 213 AAUGUAUAAGGCAGGAGACUA 5274 214 AGACUUGAAGCAAUGACAUCU 5275 215 UAUAAGGCAGGAGACUAAUUC 5276 216 AGGUCAAUUCUCAACGUCUUC 5277 217 GAAUUCUACAAGUUCUGGGCU 5278 218 AGAAUUGGUCUGCAAAUCAAA 5279 219 CAAAGUGAACCUCAGAACCCC 5280 220 GAGAAUUGGUCUGCAAAUCAA 5281 221 AGGAACCGUCAACUUAAAGAG 5282 222 ACAGAGGAAAGGCAGCAAGGG 5283 223 CUGCAAAUCAAAGUCAACAGG 5284 224 UCAGGGACCUGUAGCAACAUC 5285 225 UCAUCACAUCCUUUAAUGAGG 5286 226 CAGACUAUCUUUCUGAGGGGC 5287 227 UUUGCCUUACAUUAUGGAAAU 5288 228 AGAAUUCUACAAGUUCUGGGC 5289 229 GAUCCGUAGUCCUUCCAGCCG 5290 230 UACAUUCACUAUGCAGAAUUC 5291 231 AGCAGACUAUCUUUCUGAGGG 5292 232 CUGUGAGUCAGGUCAAGGGAG 5293 233 ACUGUAAAGUGAAAGGCUCCU 5294 234 GACUUGAAGCAAUGACAUCUA 5295 235 CACUUGCAAAGUGAACCUCAG 5296 236 CAGAUCCAUAGAGUGGAGGUU 5297 237 CUCAACGUCUUCCUGAAGGCA 5298 238 AGGUCCAGAUCCAUAGAGUGG 5299 239 GUCAUCACAUCCUUUAAUGAG 5300 240 AGCUCAGCCUCCUCUACUGGG 5301 241 AGAACAAGGGCAGUGGAUGAA 5302 242 GCAGACUAUCUUUCUGAGGGG 5303 243 UCAGCCUCCUCUACUGGGCCC 5304 244 CAUCUCCAAUUGUACAGUGUA 5305 245 CAGUCGGUCGGUCGGCACCUC 5306 246 GUAGGAGUCAAGGUCGGAGUU 5307 247 AAGGCAGCAAGGGCACUUGCA 5308 248 AAUAUACAUUCACUAUGCAGA 5309 249 UAGUCCUUCCAGCCGGCGUCC 5310 250 AGCAAGGGCACUUGCAAAGUG 5311 251 AAAGGCUCCUGUGAGGAGGGC 5312 252 UCUCCAGCUCCGACACCAGGC 5313 253 UCCUCGGCCGCGCCUGCUGAA 5314 254 GUAAAGUGAAAGGCUCCUGUG 5315 255 UGGUCCUCGGCCGCGCCUGCU 5316 256 UCUCAACGUCUUCCUGAAGGC 5317 257 UCCCUCCAUUAUCAGGAUGUU 5318 258 CAUUAUGGAAAUUUAUUCCUC 5319 259 AUAAGGCAGGAGACUAAUUCA 5320 260 UGCUACGCUUAAUCUGAUUGC 5321 261 ACAUCCUUUAAUGAGGAAGAC 5322 262 AAUUGGUCUGCAAAUCAAAGU 5323 263 GAUGACCACAGCACACCCGAA 5324 264 ACCUCCAGCAGCCGCCGCCGU 5325 265 CAAGGGAGAAUUGGUCUGCAA 5326 266 UGCGGCGGAAGGGCGAGUCGG 5327 267 AGUUCUCCAGAACCAGCCCCU 5328 268 UCAGGCUCUCCGCGCGGUGCG 5329 269 UGUAUAAGGCAGGAGACUAAU 5330 270 UGUGAGUCAGGUCAAGGGAGA 5331 271 CAACAUCUCCAAUUGUACAGU 5332 272 UCCUUCCAGCCGGCGUCCGCG 5333 273 AAGAAAUUCAGAGCAUCAGCC 5334 274 GACCACAGCACACCCGAACAG 5335 275 AAAGCCGAAUCCAGAGGUCCA 5336 276 UCUGAUUGCAUCUCAGGGACC 5337 277 GCAACAUCUCCAAUUGUACAG 5338 278 GUCAAUUCUCAACGUCUUCCU 5339 279 AGCUCCUGGUCCUCGGCCGCG 5340 280 ACAAGGGCAGUGGAUGAAGGG 5341 281 AAUGUUGUUUAAGAAUGAUGA 5342 282 AGGGACCUGUAGCAACAUCUC 5343 283 UGUAGGUGCGCAGGGAGGAUG 5344 284 GUUCUGAGGAGUUGGAAGGAG 5345 285 AUACAUUCACUAUGCAGAAUU 5346 286 ACACCCGAACAGCUAGACACG 5347 287 CUGAGGAGUUGGAAGGAGCUC 5348 288 AGACACAGAGGAAAGGCAGCA 5349 289 AGUCAAGGUCGGAGUUGGGGG 5350 290 CUAAAUACAAGCUGCUCCAGG 5351 291 AGCGCUGCAGCUCCUGGUCCU 5352 292 UCCAGAGGUCCAGAUCCAUAG 5353 293 ACGUGGAGAACAAGGGCAGUG 5354 294 CAUCACAUCCUUUAAUGAGGA 5355 295 CGAAACUAAAUACAAGCUGCU 5356 296 AGUCCUUCCAGCCGGCGUCCG 5357 297 AAGUGAAAGGCUCCUGUGAGG 5358 298 AAGGAGCUCAGCCUCCUCUAC 5359 299 AGUGGAGGUUCUGAGGAGUUG 5360 300 GGACCUGUAGCAACAUCUCCA 5361 301 ACGCUUAAUCUGAUUGCAUCU 5362 302 CUCAGGGACCUGUAGCAACAU 5363 303 GGCACUUGCAAAGUGAACCUC 5364 304 CACCUCGGCGAAGCUUGUCGG 5365 305 AAGGCUCCUGUGAGGAGGGCG 5366 306 UCUACAAGUUCUGGGCUAUGU 5367 307 AGCUGCGUCCGGCAGCGGCGG 5368 308 AAGCUGCUCCAGGAACCGUCA 5369 309 AAUGCUUGCUACGCUUAAUCU 5370 310 CUUGCUACGCUUAAUCUGAUU 5371 311 AGGAAGACUUCCUGAGGAGGG 5372 312 CCAAUUGUACAGUGUAAGCCA 5373 313 CACUAUGCAGAAUUCUACAAG 5374 314 CUUGAAGCAAUGACAUCUAUU 5375 315 GUGGAGGUCAGCGCUGCGGGG 5376 316 AGCAACAUCUCCAAUUGUACA 5377 317 ACGAAACUAAAUACAAGCUGC 5378 318 AAGGGCGAGUCGGGCUCGGGG 5379 319 UAAGAGCAGGCGGCUGUGAGU 5380 320 UCCAGCAGCCGCCGCCGUGCU 5381 321 AAGGGCAGUGGAUGAAGGGAA 5382 322 AGUGGAUGAAGGGAACGGGGA 5383 323 CUGAUUGCAUCUCAGGGACCU 5384 324 AUUUGCCUUACAUUAUGGAAA 5385 325 AAACAGGCCUCCCGGCGCCGU 5386 326 UCAAACAGGCCUCCCGGCGCC 5387 327 AAGCACACUCCCACGUGGAGA 5388 328 AAGGGAGAAUUGGUCUGCAAA 5389 329 GAAUGAUGACGAUAUCUUGAA

TABLE 8 Results for APLN. Score threshold: 70.  Design: siRNA 21 nt. SEQ ID siRNA guide strand/ NO siRNA_id AS Sequence 5390   1 UUACAAACAUUGAACACAGGG 5391   2 UUUACAAACAUUGAACACAGG 5392   3 UUUCUUAAUGAACAGGGCCUU 5393   4 AUAUUUACACAGAACAAUCUU 5394   5 UAUUUACACAGAACAAUCUUU 5395   6 UAGUAUAAGAAUCAUAAACAA 5396   7 UAUAAAGACAUAUUUACACAG 5397   8 UACAAACAUUGAACACAGGGG 5398   9 UUCAUCAAGCAACUCUACUUU 5399  10 UAGGUCUCCAAAGUCAGUCCA 5400  11 UAUCUUUGUAUAAAUUAGUAU 5401  12 UUAUAUUGAACUCUUUGCAUU 5402  13 UUGACCUAGAACCGAUUUGGG 5403  14 AUAAGAAUCAUAAACAACCAC 5404  15 UCUUGUCUUCUCUUUCUCCCU 5405  16 UAACUAGAGUCUCUCCUUGCU 5406  17 UAUUAGAGUACCCUGGGUCUG 5407  18 UAUCAAAUGUAUUUAUUGCUG 5408  19 UCUUAACUAGAGUCUCUCCUU 5409  20 ACAAUCUUUACAAACAUUGAA 5410  21 UUCUUCAAAUGACACUGCCAA 5411  22 UAUAAGAAUCAUAAACAACCA 5412  23 AACUAGAGUCUCUCCUUGCUU 5413  24 AUGUUCUUAAAUAAACUGCUU 5414  25 UUUAAGCAGCAGCAGCAGCAG 5415  26 AACAGGACAGUUCACAGCCAG 5416  27 UUAUGGAACCUUCCAGCCCAG 5417  28 UGGAGGAGACAUAACCGCCGG 5418  29 AAUCAUCCAAACUACAGCCAG 5419  30 UUUAUUAUAAAGACAUAUUUA 5420  31 AUAAAUUAGUAUAAGAAUCAU 5421  32 UAUAUUGAACUCUUUGCAUUU 5422  33 UUCUGUUCCUUUGCUUUCUUU 5423  34 UUAACUGAGCAAACGCUGAUG 5424  35 UACACAGAACAAUCUUUACAA 5425  36 UAAAGACAUAUUUACACAGAA 5426  37 ACAAACAUUGAACACAGGGGA 5427  38 UCUAACAUUCUGUGAUUCUUG 5428  39 UGAGCCUUUAAGCAGCAGCAG 5429  40 UUAUCAAAUGUAUUUAUUGCU 5430  41 UAUGUUCUUAAAUAAACUGCU 5431  42 UACAAACAAAGUCAUUAUCAA 5432  43 UAAAUUAGUAUAAGAAUCAUA 5433  44 UCAUCAAGCAACUCUACUUUG 5434  45 UGUUCUUAAAUAAACUGCUUU 5435  46 UUGAGCGGUAGUCUCAGUGCC 5436  47 UAAGUGACCUUCAAGGGUCCU 5437  48 UCUUCUGUUCCCUAUCUCCCA 5438  49 UUACACAGAACAAUCUUUACA 5439  50 UUAACUAGAGUCUCUCCUUGC 5440  51 UUCUCUUUCUCCCUCCUGGGA 5441  52 AACAAUUUCUUAAUGAACAGG 5442  53 UAUUGAACUCUUUGCAUUUUA 5443  54 UCAGCUCUAACAUUCUGUGAU 5444  55 AGAAUCAUAAACAACCACUUU 5445  56 UGACCUAGAACCGAUUUGGGA 5446  57 UUGUGAGAGAACGGGAAUCAU 5447  58 UUCCCUUCCUUCUUCUCCCCU 5448  59 UCAAGCAACUCUACUUUGUGA 5449  60 UUCCUGCUGCACUUCCUCCCA 5450  61 AUCUUUACAAACAUUGAACAC 5451  62 UUGGGAGGCACACUAAGGCAA 5452  63 UUGUAUAAAUUAGUAUAAGAA 5453  64 UUCCAGCCCAUUCCCAUCGGG 5454  65 UCUUUCUUUCCUUCCUUCUGU 5455  66 AUAGCAGAAGACACCCACCAA 5456  67 UCAGGCUCUUGUCUUCUCUUU 5457  68 UAAACAACCACUUUAAAUAAG 5458  69 UGUCAGCUCUAACAUUCUGUG 5459  70 UUCUUAAAUAAACUGCUUUAA 5460  71 UAAUAUCUUUGUAUAAAUUAG 5461  72 AUGGAGGAGACAUAACCGCCG 5462  73 UUAAGCAUAGGGAUUCAUUUU 5463  74 UUAAUAUCUUUGUAUAAAUUA 5464  75 AUAUUGAACUCUUUGCAUUUU 5465  76 UCUACCUCUCCCUUAACUGAG 5466  77 AUAUCUUUGUAUAAAUUAGUA 5467  78 AUCAAGCAACUCUACUUUGUG 5468  79 UCAAAUGUAUUUAUUGCUGAA 5469  80 UAGCAGAAGACACCCACCAAG 5470  81 UCCUGCUGCACUUCCUCCCAU 5471  82 UCUCCCAGCUUUCUUAGCCAU 5472  83 AAGAAUCAUAAACAACCACUU 5473  84 AUCUUUCUUUCCUUCCUUCUG 5474  85 AUUCUUGUGAGAGAACGGGAA 5475  86 AUUUACACAGAACAAUCUUUA 5476  87 AUUCUUCAAAUGACACUGCCA 5477  88 UUGUCUUCUCUUUCUCCCUCC 5478  89 UCAGGCUAUCUCAUUCAUCAA 5479  90 UUCUUAAUGAACAGGGCCUUA 5480  91 UUAGAGUACCCUGGGUCUGGG 5481  92 UGGAGCUUGGGCUAGCUGGGG 5482  93 UAGAGUACCCUGGGUCUGGGA 5483  94 UGGACUGGACGGAUUCUUGUG 5484  95 UUGAAGGCUACCUCGGACUCC 5485  96 UCUGCAAUGACUCUGAGCAGG 5486  97 UCAAGGGUCCUGUCAGCUCUA 5487  98 UAAGCAUAGGGAUUCAUUUUG 5488  99 UUGCCUAAGAAGGCUAAGUGA 5489 100 UUUCCUUCCUUCUGUUCCUUU 5490 101 UGAGCGGUAGUCUCAGUGCCU 5491 102 CUUAACUAGAGUCUCUCCUUG 5492 103 UUUACACAGAACAAUCUUUAC 5493 104 UAGUCUCAGUGCCUGAGCCGC 5494 105 UCUAUGGAGGAGACAUAACCG 5495 106 UUCAAGGGUCCUGUCAGCUCU 5496 107 UAUGGAGGAGACAUAACCGCC 5497 108 UGUGACCUGGUCAUUAAGCAU 5498 109 UUCUGCAGCCUCCUCUCCCGC 5499 110 UUUCUUUCCUUCCUUCUGUUC 5500 111 UAAGGGCGAACUGUCAGCUUU 5501 112 UGAGAGAACGGGAAUCAUCCA 5502 113 AUGCAGGCACUUACCUCCCUG 5503 114 UGACCCUCUGGGCUGCACCAG 5504 115 UCAUUCAUCAAGCAACUCUAC 5505 116 UAACUGUUUAUUAUAAAGACA 5506 117 AUUCAUCAAGCAACUCUACUU 5507 118 UUCCUUCUGUUCCUUUGCUUU 5508 119 AUCAAAUGUAUUUAUUGCUGA 5509 120 UAGAACCGAUUUGGGAUGCAG 5510 121 AAGUAGGAGAUGGGAGACCUG 5511 122 UAAGAAUCAUAAACAACCACU 5512 123 UAGCCCACCCACUACCCUCUU 5513 124 AUCAGGCUCUUGUCUUCUCUU 5514 125 UUUCCUCCGACCUCCCUGCCA 5515 126 UUGGGCAUCAGGCUCUUGUCU 5516 127 AACAAUCUUUACAAACAUUGA 5517 128 UCUUUACAAACAUUGAACACA 5518 129 UGUCUUCUCUUUCUCCCUCCU 5519 130 UCAUUAAGCAUAGGGAUUCAU 5520 131 UUAAUCAGUAUGUUCUUAAAU 5521 132 UACCUCUCCCUUAACUGAGCA 5522 133 AUUUCUUAAUGAACAGGGCCU 5523 134 UCCCUUAACUGAGCAAACGCU 5524 135 UUAAGCAGCAGCAGCAGCAGC 5525 136 UUAUAAAGACAUAUUUACACA 5526 137 UCUUUGUAUAAAUUAGUAUAA 5527 138 UUGGGAUGCAGGCACUUACCU 5528 139 UGAGCAAACGCUGAUGCUCCA 5529 140 UAGAGUCUCUCCUUGCUUUUC 5530 141 AAGCAGCAGCAGCAGCAGCAG 5531 142 AGUGACAAAGGACUUCACGGG 5532 143 AAGAGAAGUGACAAAGGACUU 5533 144 UUCAUGCUGCUCCUUGGGCCG 5534 145 UGCUGCACUUCCUCCCAUCUU 5535 146 UCUCAUUCAUCAAGCAACUCU 5536 147 AUCUCAUUCAUCAAGCAACUC 5537 148 AAUUUCUUAAUGAACAGGGCC 5538 149 AGUAUGUUCUUAAAUAAACUG 5539 150 UAAGCAGCAGCAGCAGCAGCA 5540 151 AGACAUAUUUACACAGAACAA 5541 152 UUAGAUGAGACAGGCAGGGAC 5542 153 UGAACAGGGCCUUAAUAUCUU 5543 154 AUAAAGACAUAUUUACACAGA 5544 155 ACACAGAACAAUCUUUACAAA 5545 156 UAGGACACCCAAACAGAUGCC 5546 157 UCCUCCCAUCUUUCUUUCCUU 5547 158 UAGGAGAUGGGAGACCUGGUC 5548 159 UGAACAUGACCUCCAAGAGUA 5549 160 UGCAAUGACUCUGAGCAGGUC 5550 161 UCUCCAAAGUCAGUCCAGGGA 5551 162 AGCAGCAGCAGCAGCAGCGUU 5552 163 UUCAGAAAGGCAUGGGUCCCU 5553 164 UCUUUCCUUCCUUCUGUUCCU 5554 165 AGUGAUUGAAGGCUACCUCGG 5555 166 AUUCCUUGACCCUCUGGGCUG 5556 167 UAAGGCAAGAGAAGUGACAAA 5557 168 UUCCCUCCUUCCUUCUGCCCU 5558 169 UGGAACCUUCCAGCCCAGCUG 5559 170 AGAACAAUCUUUACAAACAUU 5560 171 UCUUCUCUUUCUCCCUCCUGG 5561 172 UUCCUUCCUUCUGUUCCUUUG 5562 173 UUAUUAUAAAGACAUAUUUAC 5563 174 UCUACUUUGUGAAACAUAAAA 5564 175 UGCACGUGCAAUAUGUGGGCA 5565 176 UUCCUCCCAUCUUUCUUUCCU 5566 177 AACUCUACUUUGUGAAACAUA 5567 178 UUCUUGUGAGAGAACGGGAAU 5568 179 UCUCUGCAUUCUUCCCUGGAG 5569 180 ACAAUUUCUUAAUGAACAGGG 5570 181 AUAAACAACCACUUUAAAUAA 5571 182 AGGUCUCCAAAGUCAGUCCAG 5572 183 AGAAGCAGACCAAUCUAUGGA 5573 184 AACAAAGUCAUUAUCAAAUGU 5574 185 AUGCUCCACCCACUUCACCAG 5575 186 AAUCAUAAACAACCACUUUAA 5576 187 UGAUUGAAGGCUACCUCGGAC 5577 188 UAAGAAGGCUAAGUGACCUUC 5578 189 CAGAACAAUCUUUACAAACAU 5579 190 AACUGAGCAAACGCUGAUGCU 5580 191 CUCUUAACUAGAGUCUCUCCU 5581 192 ACAACCACUUUAAAUAAGGCA 5582 193 UAUAAAUUAGUAUAAGAAUCA 5583 194 UUUCUCCCUCCUGGGAACCCU 5584 195 UCUCUUUCUCCCUCCUGGGAA 5585 196 UUUGCCUAAGAAGGCUAAGUG 5586 197 UAUUCCUGCUGCACUUCCUCC 5587 198 ACUAGAGUCUCUCCUUGCUUU 5588 199 AAGAAGGGAGGCUUUCUGGGG 5589 200 AUUGGGAGGCACACUAAGGCA 5590 201 UUCUCCCUCCUGGGAACCCUG 5591 202 UGGGUCUGGGAAUGCUGCCAG 5592 203 UCAGGGACCCUCCACACACCG 5593 204 UGAGUGUGCGCGCUGAGCCCC 5594 205 AAGUGACAAAGGACUUCACGG 5595 206 AAUAUCUUUGUAUAAAUUAGU 5596 207 CUCUGCAAUGACUCUGAGCAG 5597 208 CUUUCCUUCCUUCUGUUCCUU 5598 209 AGAUUCAUGCUGCUCCUUGGG 5599 210 CAACAGGACAGUUCACAGCCA 5600 211 UUAGCAGCAGCAUAGGUAAAG 5601 212 AACUGUUUAUUAUAAAGACAU 5602 213 AAGUGACCUUCAAGGGUCCUG 5603 214 UUCCUCCGACCUCCCUGCCAG 5604 215 GUCUUCUCUUUCUCCCUCCUG 5605 216 CUUAACUGAGCAAACGCUGAU 5606 217 UAUUAUAAAGACAUAUUUACA 5607 218 AUUCCCAUCGGGAAGCGGCAU 5608 219 AUCAUAAACAACCACUUUAAA 5609 220 UAUUGGGAGGCACACUAAGGC 5610 221 AAGGCUACCUCGGACUCCUGA 5611 222 GUGAUUGAAGGCUACCUCGGA 5612 223 UCCCAUCUUUCUUUCCUUCCU 5613 224 UCAUAAAGUAGGAGAUGGGAG 5614 225 ACAAAGUCAUUAUCAAAUGUA 5615 226 UGACCUUCAAGGGUCCUGUCA 5616 227 AAAGUUGGGCAUCAGGCUCUU 5617 228 ACUCUGAGCAGGUCACUCCCC 5618 229 AUCUUUGUAUAAAUUAGUAUA 5619 230 UGAUACAAACAAAGUCAUUAU 5620 231 CUUCCUUCUGUUCCUUUGCUU 5621 232 UCCUGGGAGGGUAUAUAGCCA 5622 233 CAACUCUACUUUGUGAAACAU 5623 234 UUUGUAUAAAUUAGUAUAAGA 5624 235 CUUGUCUUCUCUUUCUCCCUC 5625 236 UGGGAUGCAGGCACUUACCUC 5626 237 UCUUCUGCAGCCUCCUCUCCC 5627 238 AUGACCUCCAAGAGUAAGGGC 5628 239 AAUUAGUAUAAGAAUCAUAAA 5629 240 UGGGCAUCAGGCUCUUGUCUU 5630 241 UCUCUACCUCUCCCUUAACUG 5631 242 AUUAUAAAGACAUAUUUACAC 5632 243 UAACUGAGCAAACGCUGAUGC 5633 244 UCAUCAAGAGGGAAGAGGGCG 5634 245 UCUGUUCCUUUGCUUUCUUUU 5635 246 AUCUCCCAGCUUUCUUAGCCA 5636 247 UGCUGGAGCCCACAGAAGGGA 5637 248 UUCUGGGCACCGACCAGUCCC 5638 249 UGGAUAGGCAAACAUUGGGGC 5639 250 UCCGCUCUUCUGCAGCCUCCU 5640 251 UGACCUCCAAGAGUAAGGGCG 5641 252 UAGGUCAGGGAGGUGGGAGCA 5642 253 AAGUUGGGCAUCAGGCUCUUG 5643 254 AUUAGGACACCCAAACAGAUG 5644 255 UUUAAUCAGUAUGUUCUUAAA 5645 256 UUAAUGAACAGGGCCUUAAUA 5646 257 GUCAGCUCUAACAUUCUGUGA 5647 258 CCUGUCAGCUCUAACAUUCUG 5648 259 ACCUCUUAACUAGAGUCUCUC 5649 260 UCAACACGAAGGGAAGGCCAU 5650 261 CUAUGGAGGAGACAUAACCGC 5651 262 UCCAAGAGUAAGGGCGAACUG 5652 263 CUUCUGUUCCCUAUCUCCCAG 5653 264 AAUGACUCUGAGCAGGUCACU 5654 265 ACAAACAAAGUCAUUAUCAAA 5655 266 AUUCCUGCUGCACUUCCUCCC 5656 267 ACCGCGGUCAAGGAGAGCCAG 5657 268 GAAUCAUCCAAACUACAGCCA 5658 269 UACAGCAGGUGCGAGGUGAGA 5659 270 AGGAAGGUCCGGUCAACACGA 5660 271 AUGAUACAAACAAAGUCAUUA 5661 272 CUUUACAAACAUUGAACACAG 5662 273 UCAUGCUGCUCCUUGGGCCGC 5663 274 AGCCCUGGAAGGAAGGUCCGG 5664 275 UGAGAGCUGAAUGGACGUGAG 5665 276 UUAAAUAAACUGCUUUAAAAA 5666 277 ACAUUGCCGUCUUCCAGCCCA 5667 278 AAUCUUUACAAACAUUGAACA 5668 279 AUGACUCUGAGCAGGUCACUC 5669 280 AUUAGAGUACCCUGGGUCUGG 5670 281 AAACGCUGAUGCUCCACCCAC 5671 282 AAGCAGACCAAUCUAUGGAGG 5672 283 UCCUUCCUUCUGCCCUUCCCU 5673 284 CUUUCUUUCCUUCCUUCUGUU 5674 285 UUGACCCUCUGGGCUGCACCA 5675 286 UUCCUUGACCCUCUGGGCUGC 5676 287 AACAGGGCCUUAAUAUCUUUG 5677 288 UUCCCUAUCUCCCAGCUUUCU 5678 289 AUCAUCAAGAGGGAAGAGGGC 5679 290 AUCGGGAAGCGGCAUCAGGGA 5680 291 UGAAUGGACGUGAGGCCUCCA 5681 292 CAUUUAAUCAGUAUGUUCUUA 5682 293 AAGAGACUUUCUGGGCACCGA 5683 294 UGAGACAGGCAGGGACUAGGG 5684 295 AUGGACUGGACGGAUUCUUGU 5685 296 AGAAGGCUAAGUGACCUUCAA 5686 297 AAAGUCAUUAUCAAAUGUAUU 5687 298 UGACCUGGUCAUUAAGCAUAG 5688 299 AGCGUUAGCAGCAGCAUAGGU 5689 300 UAGUAGCGAUCCUGCAUUUAA 5690 301 GAACAAUUUCUUAAUGAACAG 5691 302 AACAUGACCUCCAAGAGUAAG 5692 303 UGAAGGCUACCUCGGACUCCU 5693 304 CUGUCAGCUCUAACAUUCUGU 5694 305 UGUAUAAAUUAGUAUAAGAAU 5695 306 ACACACAAAGUUGGGCAUCAG 5696 307 GAGAGAACGGGAAUCAUCCAA 5697 308 UCCAGUGAUUGAAGGCUACCU 5698 309 UAUCUCAUUCAUCAAGCAACU 5699 310 AGAGUAAGGGCGAACUGUCAG 5700 311 UCCCUCCUUCCUUCUGCCCUU 5701 312 UCCUGCUUCAGAAAGGCAUGG 5702 313 UUUCUGGGCACCGACCAGUCC 5703 314 AGGCACUUCAUUUGCUUUGAA 5704 315 UCUGCCCUUCCCUUCCUUCUU 5705 316 CUAACAUUCUGUGAUUCUUGG 5706 317 UAUCUCCCAGCUUUCUUAGCC 5707 318 CAAGCAACUCUACUUUGUGAA 5708 319 AACCGAUUUGGGAUGCAGGCA 5709 320 AUACAAACAAAGUCAUUAUCA 5710 321 UCCUUCUGCCCUUCCCUUCCU 5711 322 ACAUGAGGAAGGAAGGCCCAA 5712 323 GAAGGGAGCACUUCCACCCCG 5713 324 GUAGUCUCAGUGCCUGAGCCG 5714 325 UCCUGUCAGCUCUAACAUUCU 5715 326 UCCCUAUCUCCCAGCUUUCUU 5716 327 CUAAGAAGGCUAAGUGACCUU 5717 328 AGGACACCCAAACAGAUGCCA 5718 329 AAUCAGUAUGUUCUUAAAUAA 5719 330 AGUUGACCUAGAACCGAUUUG 5720 331 CAAACGCUGAUGCUCCACCCA 5721 332 AGCAGCAGCAUAGGUAAAGGG 5722 333 AACCUUCCAGCCCAGCUGGGG 5723 334 CUGGUCAUUAAGCAUAGGGAU 5724 335 UCAUAAACAACCACUUUAAAU 5725 336 AGAGAAGUGACAAAGGACUUC 5726 337 CAGAGCCGCAGAUUCAUGCUG 5727 338 AAGGGAACAAUUUCUUAAUGA 5728 339 CUAGAGUCUCUCCUUGCUUUU 5729 340 UCAGAAAGGCAUGGGUCCCUU 5730 341 UAGCGAUCCUGCAUUUAAUCA 5731 342 UUCUGUUCCCUAUCUCCCAGC 5732 343 UGGAGUCCAGUGAUUGAAGGC 5733 344 AGUCAUUAUCAAAUGUAUUUA 5734 345 GAAUCAUAAACAACCACUUUA 5735 346 AGGUCCGGUCAACACGAAGGG 5736 347 AGUUAUGGAACCUUCCAGCCC 5737 348 GAGAGGGUGCUAUUCCUGCUG 5738 349 AGGAAGAAGGGAGUAUUGGGA 5739 350 CUCUAACAUUCUGUGAUUCUU 5740 351 AGAAGUGACAAAGGACUUCAC 5741 352 UCAGGGAGGUGGGAGCAGCUC 5742 353 AGGAGACACAGAAAGGAAGGG 5743 354 UGCACUUCCUCCCAUCUUUCU 5744 355 AUUGAAGGCUACCUCGGACUC 5745 356 AGAAGGGAGCACUUCCACCCC 5746 357 UCCCUUAUGGGAGAGGCGGGG 5747 358 UGACAAAGGACUUCACGGGCC 5748 359 UGCAAUAUGUGGGCAUGGGGA 5749 360 ACAGGCAGGGACUAGGGCGGA 5750 361 ACUGAGCAAACGCUGAUGCUC 5751 362 UGCGAGGUGAGAGCUGAAUGG 5752 363 ACCUCUCCCUUAACUGAGCAA 5753 364 UGCUCCACCCACUUCACCAGA 5754 365 CUUCUGUUCCUUUGCUUUCUU 5755 366 UCAUUAUCAAAUGUAUUUAUU 5756 367 UGACUCUGAGCAGGUCACUCC 5757 368 AAGGAAGGUCCGGUCAACACG 5758 369 AGUAGGAGAUGGGAGACCUGG 5759 370 UGGUCAUUAAGCAUAGGGAUU 5760 371 GAGCGGUAGUCUCAGUGCCUG 5761 372 UAAUGAACAGGGCCUUAAUAU 5762 373 UCCCUGCACGUGCAAUAUGUG 5763 374 AGCACCUCUUAACUAGAGUCU 5764 375 ACAAAGUUGGGCAUCAGGCUC 5765 376 CAGAGAAGCAGACCAAUCUAU 5766 377 AUGGACGUGAGGCCUCCAGAG 5767 378 AUCAGUAUGUUCUUAAAUAAA 5768 379 AGCGAUCCUGCAUUUAAUCAG 5769 380 UGAGGCAGGAGACACAGAAAG 5770 381 AAGAGUAAGGGCGAACUGUCA 5771 382 UUGCCUCUCCCUUCCCUUCCC 5772 383 CUUCUCUUUCUCCCUCCUGGG 5773 384 CUCAUUCAUCAAGCAACUCUA 5774 385 AGGCAGGAGACACAGAAAGGA 5775 386 UUAGUAUAAGAAUCAUAAACA 5776 387 UUACCUCCCUGCACGUGCAAU 5777 388 AAGCAACUCUACUUUGUGAAA 5778 389 ACCUCCAAGAGUAAGGGCGAA 5779 390 UAAUCAGUAUGUUCUUAAAUA 5780 391 AGUCCUGCUUCAGAAAGGCAU 5781 392 AGGCAGGUGAGAAGAGCUGGG 5782 393 GUGGAUAGGCAAACAUUGGGG 5783 394 GGAUUCUUGUGAGAGAACGGG 5784 395 UCUCAGUGCCUGAGCCGCCCC 5785 396 ACUGUUUAUUAUAAAGACAUA 5786 397 UCCUGCAUUUAAUCAGUAUGU 5787 398 UUCAGUCCUGCUUCAGAAAGG 5788 399 AUUUAAUCAGUAUGUUCUUAA 5789 400 AUUAGUAUAAGAAUCAUAAAC 5790 401 AUAAAGUAGGAGAUGGGAGAC 5791 402 CAAGCAUGAGCCUUUAAGCAG 5792 403 GACAUAUUUACACAGAACAAU 5793 404 UAGAUGAGACAGGCAGGGACU 5794 405 UGUUCCCUAUCUCCCAGCUUU 5795 406 AGCAGGAGCGCCUGCACGCAG 5796 407 UUAGGACACCCAAACAGAUGC 5797 408 UCUUAAAUAAACUGCUUUAAA 5798 409 UCCUUCUGUUCCUUUGCUUUC 5799 410 CCCAUCUUUCUUUCCUUCCUU 5800 411 AAGUCAUUAUCAAAUGUAUUU 5801 412 UUCUUUCCUUCCUUCUGUUCC 5802 413 AUGGAGUCCAGUGAUUGAAGG 5803 414 ACGGAAGCUAGGGCCUCCCGG 5804 415 UACCCUGGGUCUGGGAAUGCU 5805 416 ACAAGGGAUCUGCUGGAGCCC 5806 417 AGAUGGACUGGACGGAUUCUU 5807 418 AUCAAGAGGGAAGAGGGCGUC 5808 419 ACCUGGAGCUUGGGCUAGCUG 5809 420 UCUUAAUGAACAGGGCCUUAA 5810 421 GAUUCUUGUGAGAGAACGGGA 5811 422 AUUGCCGUCUUCCAGCCCAUU 5812 423 AUUAUCAAAUGUAUUUAUUGC 5813 424 AGACAGGCAGGGACUAGGGCG 5814 425 UGCAUUUAAUCAGUAUGUUCU 5815 426 CGCAGAUUCAUGCUGCUCCUU 5816 427 AUUAAGCAUAGGGAUUCAUUU 5817 428 AUUCAUGCUGCUCCUUGGGCC 5818 429 CACCUCUUAACUAGAGUCUCU 5819 430 AACAACCACUUUAAAUAAGGC 5820 431 UCCAAAGUCAGUCCAGGGAGG 5821 432 AGAUGAGACAGGCAGGGACUA 5822 433 GCUAUCUCAUUCAUCAAGCAA 5823 434 AACGGGAAUCAUCCAAACUAC 5824 435 ACUACCCUCUUCUGUUCCCUA 5825 436 AAGAAGGCUAAGUGACCUUCA 5826 437 UCUGUUCCCUAUCUCCCAGCU 5827 438 AGGUGAGAGCUGAAUGGACGU 5828 439 AGGGACCCUCCACACACCGCG 5829 440 CUGAACAUGACCUCCAAGAGU 5830 441 AGUAUUGGGAGGCACACUAAG 5831 442 AGGCUCUUGUCUUCUCUUUCU 5832 443 UGCAUUCUUCCCUGGAGGCCA 5833 444 CACUUCACCAGAGCUCCUGAA 5834 445 CAUCAGGCUCUUGUCUUCUCU 5835 446 GUUAUGGAACCUUCCAGCCCA 5836 447 CAGCAGCAGCAGCAGCAGCAG 5837 448 CUUACCUCCCUGCACGUGCAA 5838 449 GGAGGAGACAUAACCGCCGGG 5839 450 GUAAGGGCGAACUGUCAGCUU 5840 451 CUGACCUGGAGCUUGGGCUAG 5841 452 AGGUGGAUAGGCAAACAUUGG 5842 453 CUCUUGUCUUCUCUUUCUCCC 5843 454 CAUAUUUACACAGAACAAUCU 5844 455 AAGGGCGAACUGUCAGCUUUU 5845 456 AGACUUUCUGGGCACCGACCA 5846 457 AAACAAAGUCAUUAUCAAAUG 5847 458 ACACUAAGGCAAGAGAAGUGA 5848 459 UCCUUGACCCUCUGGGCUGCA 5849 460 CAAUUUCUUAAUGAACAGGGC 5850 461 CAUCAAGCAACUCUACUUUGU 5851 462 AGAAGAAGGGAGGCUUUCUGG 5852 463 CAGCAGCAGCAGCAGCAGCGU 5853 464 GAACAAUCUUUACAAACAUUG 5854 465 AGGCUAAGUGACCUUCAAGGG 5855 466 UCGGGAAGCGGCAUCAGGGAC 5856 467 UAGCAGCAGCAUAGGUAAAGG 5857 468 AAGGCAUGGGUCCCUUAUGGG 5858 469 UCUGCAGCCUCCUCUCCCGCC 5859 470 GAAGCAGACCAAUCUAUGGAG 5860 471 AUGAGCCUUUAAGCAGCAGCA 5861 472 AGCUGAAUGGACGUGAGGCCU 5862 473 GAAGGCUACCUCGGACUCCUG 5863 474 CUGUUCCCUAUCUCCCAGCUU 5864 475 AGCUCUAACAUUCUGUGAUUC 5865 476 AGCAGCGUUAGCAGCAGCAUA 5866 477 UCUGGGCACCGACCAGUCCCC 5867 478 AGGAAGAUGGACUGGACGGAU 5868 479 ACCUGGUCAUUAAGCAUAGGG 5869 480 GAUGCAGGCACUUACCUCCCU 5870 481 AUCUGCUGGAGCCCACAGAAG 5871 482 CUAUUCCUGCUGCACUUCCUC 5872 483 AUCCUGCAUUUAAUCAGUAUG 5873 484 CAGAAGACACCCACCAAGGAU 5874 485 ACAACAGGACAGUUCACAGCC 5875 486 UGCAGCCUCCUCUCCCGCCGC 5876 487 UCAGUCCUGCUUCAGAAAGGC 5877 488 ACGCUGAUGCUCCACCCACUU 5878 489 CAGCAGCAGCGUUAGCAGCAG 5879 490 GAACCUUCCAGCCCAGCUGGG 5880 491 UAUGGAACCUUCCAGCCCAGC 5881 492 AAAUUAGUAUAAGAAUCAUAA 5882 493 CUCCUGAACAUGACCUCCAAG 5883 494 UCCUGACCUGGAGCUUGGGCU 5884 495 CUGUUUAUUAUAAAGACAUAU 5885 496 GCGGACAUUGCCGUCUUCCAG 5886 497 CUCUGAGCAGGUCACUCCCCU 5887 498 CACACACACAAAGUUGGGCAU 5888 499 CCAGAGAAGCAGACCAAUCUA 5889 500 AUGUGACCUGGUCAUUAAGCA 5890 501 AGGAAGGCCCAAAUGAAGGUU 5891 502 UCUCCCUUAACUGAGCAAACG 5892 503 AGCGGUAGUCUCAGUGCCUGA 5893 504 UCUGCAUUCUUCCCUGGAGGC 5894 505 UCCACCCACUUCACCAGAGCU 5895 506 UACUCCUGGGAGGGUAUAUAG 5896 507 CAGUGAUUGAAGGCUACCUCG 5897 508 GACUUUCUGGGCACCGACCAG 5898 509 CUUUGUAUAAAUUAGUAUAAG 5899 510 AUGAACAGGGCCUUAAUAUCU 5900 511 ACCCACUUCACCAGAGCUCCU 5901 512 CUUCUGCAGCCUCCUCUCCCG 5902 513 AAGAUGGACUGGACGGAUUCU 5903 514 UGUGCCCUGUCUGGAUCCCCG 5904 515 AGGCACACUAAGGCAAGAGAA 5905 516 AGUAUAAGAAUCAUAAACAAC 5906 517 UGCGGGCGCAGAGCUCGGGAG 5907 518 AUGUGCCCUGUCUGGAUCCCC 5908 519 AAGAGCUGGGCCCACUGGUGG 5909 520 AGCGCCUGCACGCAGAGCCGC 5910 521 UAAAGUAGGAGAUGGGAGACC 5911 522 AUUUCCUCCGACCUCCCUGCC 5912 523 GACAUUGCCGUCUUCCAGCCC 5913 524 AAAGAAGGCCCAAUCCCUGAU 5914 525 AUGCUGCUCCUUGGGCCGCCG 5915 526 AGGAGACAUAACCGCCGGGGG 5916 527 AAGACAUAUUUACACAGAACA 5917 528 UCCGGGAGCGGCAGCGGCGAG 5918 529 AGAUGGGAGACCUGGUCCCCA 5919 530 UGCCUCUCCCUUCCCUUCCCC 5920 531 AAGAAGGGAGUAUUGGGAGGC 5921 532 CUGGAAGGAAGGUCCGGUCAA 5922 533 GAACAGGGCCUUAAUAUCUUU 5923 534 CCCACUUCACCAGAGCUCCUG 5924 535 AAAGACAUAUUUACACAGAAC 5925 536 GAAUUUCCUCCGACCUCCCUG 5926 537 UGGACGGAUUCUUGUGAGAGA 5927 538 AGGGCAGACAUGAGGAAGGAA 5928 539 GAGGAGACAUAACCGCCGGGG 5929 540 UGCUUCAGAAAGGCAUGGGUC 5930 541 CAAGGGUCCUGUCAGCUCUAA 5931 542 UCUUGUGAGAGAACGGGAAUC 5932 543 AGCAGACCAAUCUAUGGAGGA 5933 544 GAGUCCAGUGAUUGAAGGCUA 5934 545 AGGUGAGAAGAGCUGGGCCCA 5935 546 UCCAGCCCAUUCCCAUCGGGA 5936 547 AGGCGUUUGCCUAAGAAGGCU 5937 548 CCCUUAACUGAGCAAACGCUG 5938 549 CGGCUCUGCAAUGACUCUGAG 5939 550 AGGGAACAAUUUCUUAAUGAA 5940 551 UCCCGGCUCUGCAAUGACUCU 5941 552 CUGGGAACCCUGCUCAAGCAA 5942 553 AGGGCCUUAAUAUCUUUGUAU 5943 554 AGCAUGAGCCUUUAAGCAGCA 5944 555 UGAGAAGAGCUGGGCCCACUG 5945 556 AGUAAGGGCGAACUGUCAGCU 5946 557 AACCACUUUAAAUAAGGCAGC 5947 558 AGGUCAGGGAGGUGGGAGCAG 5948 559 UGCCUAAGAAGGCUAAGUGAC 5949 560 CCACACACCGCGGUCAAGGAG 5950 561 CAGCUCUAACAUUCUGUGAUU 5951 562 UGGGAGGCACACUAAGGCAAG 5952 563 GGUGAGAGCUGAAUGGACGUG 5953 564 GAGGGCGUCAUAAAGUAGGAG 5954 565 AGCUUGCCUCUCCCUUCCCUU 5955 566 UCUUCCCUCCUUCCUUCUGCC 5956 567 AGAAGAGCUGGGCCCACUGGU 5957 568 GGAAGGUCCGGUCAACACGAA 5958 569 CAUUCCUUGACCCUCUGGGCU 5959 570 AUGAGGCAGGAGACACAGAAA 5960 571 GCAUUUAAUCAGUAUGUUCUU 5961 572 CUUCCCUUCCUUCUUCUCCCC 5962 573 CACUACCCUCUUCUGUUCCCU 5963 574 GACAUGAGGAAGGAAGGCCCA 5964 575 UGAUGCUCCACCCACUUCACC 5965 576 AAAGUAGGAGAUGGGAGACCU 5966 577 CACAGAAGGGAGCACUUCCAC

TABLE 9 Results for KIF20A. Score threshold: 70. Design: siRNA 21 nt. SEQ ID siRNA_ NO id AS Sequence 5967 1 UAAUUUAGCUUUAACCUCCUG 5968 2 UUCACAUUGACAAUCAUGCAG 5969 3 UUUGAGUACAUCCUUUACCAU 5970 4 UUCUUGUCCACAUCAAUGGUG 5971 5 UUGACAAUCAUGCAGGAACGG 5972 6 UAGCUCUGCUUUGCACUGCUG 5973 7 UAGGUCAUAAAGCAGUUCGUU 5974 8 AACUACGACAUCGUCAUCGGA 5975 9 UACCUGAAGACUAUGUUCCUU 5976 10 UUGAUGGUACCUUGAAUCGUG 5977 11 UUUCCUGCUUCCUUCAACCGU 5978 12 UAAGAUGUCAUCACAAGUGGU 5979 13 UUACUCACACCUAGUCGCCGA 5980 14 UUGCACAUGAAUCCAGUUGAG 5981 15 UUCGAUGUAGACACUCCUCUU 5982 16 UCUGAUAGCAGGUUCUUGCGU 5983 17 UUCACCACUCUUCUGAUCUUU 5984 18 UCGAUGACUUGUUUCAUCCAG 5985 19 UUUAACCUCCUGAAGCUGCUG 5986 20 UUGUAGAUCUCAAAGAAUGAG 5987 21 UUGAGAUCUUUCACAUAGGGA 5988 22 AAUAUCUUUAAUAUAACUGUU 5989 23 UACGACAUCGUCAUCGGACAG 5990 24 UUCUAAUAGGUCAUAAAGCAG 5991 25 UUUCAACACAGUAUGAUACUG 5992 26 AUGACUUGUUUCAUCCAGCUG 5993 27 UGGAACACUCGAGUCAACUUG 5994 28 UACAUCCUUUACCAUCUCCUU 5995 29 AUCUGCUUGCUGUCUAGCCAG 5996 30 AACACUCGAGUCAACUUGCUG 5997 31 UUCACUGCACCACUGUUCCCG 5998 32 UUAUGCAACUCUUCAGUGGUA 5999 33 UUGGAGGCUAUUGAAGAUCAG 6000 34 UUCAGGAGAGUAGCUGACCCA 6001 35 UAUAAUUCCUGAUAUAUGGUA 6002 36 UUGAUUAAGAUGUCAUCACAA 6003 37 UCACAGAGUGACAGCUCGCUG 6004 38 UUCCACAACUUGUAGGAGCUC 6005 39 UUGUAGAACAAGGGUCUCCAC 6006 40 UUUCACUAGCACCAUGUUGUU 6007 41 UUUACCAUCUCCUUCACAGUU 6008 42 UGUUCUACCAUCUCAUUGCAA 6009 43 UAAUAUCUUUAAUAUAACUGU 6010 44 UUGUCCUCUAGGGAGGUAGAG 6011 45 UUUCUGAAGCUCUGUCCGCAA 6012 46 UUCUUCAUUUCCUCCUGUCGG 6013 47 AUCUCGGAGAUGCAUCUCCAG 6014 48 UACUUAUGCAACUCUUCAGUG 6015 49 UAGCACCAUGUUGUUCUGCAG 6016 50 AUACAUGCUGCCUUCUUCCGA 6017 51 UUAGGUUGAAGAAGGAUGCCU 6018 52 UCUGAUACUUAUGCAACUCUU 6019 53 UUAAGAUGUCAUCACAAGUGG 6020 54 UGCACUGCUGUAAUUUAGCUU 6021 55 UAUACUUUCACCUUCUCCAUA 6022 56 UUUCGAUGUAGACACUCCUCU 6023 57 UUUAGCUCUGCUUUGCACUGC 6024 58 UCGGAGAUGCAUCUCCAGCUG 6025 59 UACUGCUGGUACACUGACUGA 6026 60 UUCGUUGUAGAUCUCAAAGAA 6027 61 UAGAACAAGGGUCUCCACAUU 6028 62 UUCAUCUCGGAGAUGCAUCUC 6029 63 UAACUUCUUGUCCACAUCAAU 6030 64 UUCAGUGGUAGAGUUUAGCUC 6031 65 UCUCAAUACGGACACAACCCU 6032 66 UAGCAGGGACAGCUUCUUCAU 6033 67 UGUCUGAGUAUUGCAUCCUGG 6034 68 AUUUCUUCAGGAGAGUAGCUG 6035 69 AUCCUGAUUGAGAAGAUGCUG 6036 70 UUCUGGUUGAGGUGGGUGCUG 6037 71 UUGUCAGUGACUCCUUGAGGA 6038 72 UUCCUGUCGUUCCAACUCUGA 6039 73 UGACAGCUCGCUGAUCUUGGG 6040 74 UCUGAAGGUAACAAGGGCCUA 6041 75 UAUCUUUAAUAUAACUGUUUU 6042 76 UUAACCUCCUGAAGCUGCUGG 6043 77 UGUCGUUCCAACUCUGAAGGU 6044 78 UAGACACUCCUCUUCAAGGAA 6045 79 UUCCUUGAUGAACGAGUGCAG 6046 80 AUAUCUUUAAUAUAACUGUUU 6047 81 AUCUCAAAGAAUGAGAUCCAG 6048 82 UUUAGCUUUAACCUCCUGAAG 6049 83 UAACCUCCUGAAGCUGCUGGG 6050 84 UACUCACACCUAGUCGCCGAA 6051 85 UUGCAUCUGUUCUACCAUCUC 6052 86 UUCCUGCUUCCUUCAACCGUU 6053 87 UGACUGAUAGAAGAGAGCCCA 6054 88 UCUUCAUUUCCUCCUGUCGGA 6055 89 UAGUCGCCGAAGCUGGACUUU 6056 90 UUGAUGAACGAGUGCAGGGAU 6057 91 UUUCAUCAUAGGUAGAUGCAC 6058 92 UAGGUUGAAGAAGGAUGCCUG 6059 93 UGACUUGUUUCAUCCAGCUGG 6060 94 UUCACUAGCACCAUGUUGUUC 6061 95 UCUUCUGAUCUUUGCAGCGCU 6062 96 UGGUAGAGUUUAGCUCUGCUU 6063 97 UCUGAGUAUUGCAUCCUGGAU 6064 98 AUAAUAUCUUUAAUAUAACUG 6065 99 UAGCAGGUUCUUGCGUACCAC 6066 100 UUCCUCCUGUCGGAUCUGCUU 6067 101 UUAGCUCUGCUUUGCACUGCU 6068 102 AACCCUGAUCUUCCUGUCGUU 6069 103 UAGGCGGUUCUAAUAGGUCAU 6070 104 UCAUCGGACAGCAAGCCCGCU 6071 105 AUUCACAUUGACAAUCAUGCA 6072 106 UAAAUUUCGAAGGAAUGGUUU 6073 107 UCUUGCACAUGAAUCCAGUUG 6074 108 UUGGAGGCCUCCAUUUAGCAG 6075 109 UCCUGUCGGAUCUGCUUGCUG 6076 110 UUGGAGAGACUCACCAAGUUU 6077 111 UCGAUGUAGACACUCCUCUUC 6078 112 UUGCACUGCUGUAAUUUAGCU 6079 113 AAGCUCUCUCUGCUGAUUGGA 6080 114 UACAUGCUGCCUUCUUCCGAA 6081 115 UACUGCUCAGCAAUACAUGCU 6082 116 AUUGAGAAGAUGCUGUGACUG 6083 117 AACUUGUAGGAGCUCCUCUUU 6084 118 UAGAGACGACAGAGCAGUCUG 6085 119 UAAUAGGUCAUAAAGCAGUUC 6086 120 UUGGAGUUUCAACACAGUAUG 6087 121 UUACCAUCUCCUUCACAGUUA 6088 122 UCCAUAUGUAUAGAUGAGCCA 6089 123 UGCAUCUGUUCUACCAUCUCA 6090 124 AUCACAGAGUGACAGCUCGCU 6091 125 UGCUUGUAGAACAAGGGUCUC 6092 126 UUCUUGCGUACCACAGACCCC 6093 127 UAGCCGCAAAGUCUGCCUCUU 6094 128 UUUGUGACCGCCGUAGGGCCA 6095 129 AUGCAUCUCCAGCUGUAGCUU 6096 130 AGCUCUGUCCGCAACAGCCUU 6097 131 UUUGCCGGGACAGGUAGUGGG 6098 132 UACGGACACAACCCUGAUCUU 6099 133 UCUUCCUGUCGUUCCAACUCU 6100 134 UGUUGUUCUGCAGUUCAGCCA 6101 135 UACACUGACUGAUAGAAGAGA 6102 136 AAGAAUGAGAUCCAGAUGGAG 6103 137 AACAGCCUUAUAUUCUUCUGG 6104 138 UCAUAGGUAGAUGCACAGGGA 6105 139 UCUUGCGUACCACAGACCCCA 6106 140 AUCUUUAAUAUAACUGUUUUU 6107 141 UUCUGAUCUUUGCAGCGCUCU 6108 142 AGAAACCUUGGAACACUCGAG 6109 143 UUGGAACACUCGAGUCAACUU 6110 144 AUUGCAAAUUUCAUCUCGGAG 6111 145 UGUAGGAGCUCCUCUUUGCCA 6112 146 UGCAUCUCCAGCUGUAGCUUU 6113 147 UUCUUCAGGAGAGUAGCUGAC 6114 148 UCACCUUCUCCAUACUGUCCU 6115 149 UUAGUGACUCCAUAUGUAUAG 6116 150 UGAAGAAGGAUGCCUGUCCCA 6117 151 AAUUUCAUCUCGGAGAUGCAU 6118 152 AAGCUCUGUCCGCAACAGCCU 6119 153 UCUCAUUGCAAAUUUCAUCUC 6120 154 UCAUUGCAAAUUUCAUCUCGG 6121 155 UUGCCGGGACAGGUAGUGGGG 6122 156 UCGGAUCUGCUUGCUGUCUAG 6123 157 ACAUUGACAAUCAUGCAGGAA 6124 158 UAUGCAACUCUUCAGUGGUAG 6125 159 UACCUCAUUGGAGAGCAAGGG 6126 160 AAGUUUCUGAAGCUCUGUCCG 6127 161 AAGAAACCUUGGAACACUCGA 6128 162 UAUUUCUUCAGGAGAGUAGCU 6129 163 AUGUGAACAAUAAUAUCUUUA 6130 164 UGAUAGAAGAGAGCCCAGCAA 6131 165 UCUAACUUCUUGUCCACAUCA 6132 166 AAUAUCAUCAUCAAGGCCUGU 6133 167 UCUGAUCUUUGCAGCGCUCUG 6134 168 UCUUCUAACUUCUUGUCCACA 6135 169 UGGUACCUUGAAUCGUGUGGG 6136 170 UUUCUUCAGGAGAGUAGCUGA 6137 171 ACACAGUAUGAUACUGCUCAG 6138 172 UUUAGCAGGGACAGCUUCUUC 6139 173 UAGCUUUAACCUCCUGAAGCU 6140 174 AUCUGUUCUACCAUCUCAUUG 6141 175 AUCGAUGACUUGUUUCAUCCA 6142 176 UGAUCUUUGCAGCGCUCUGAG 6143 177 UCCUCCUGUCGGAUCUGCUUG 6144 178 UUUGAUUAAGAUGUCAUCACA 6145 179 AUGAAUCCAGUUGAGAUCUUU 6146 180 AGCUUCUAGCUCUUCAAUCUU 6147 181 UUGUAGGAGCUCCUCUUUGCC 6148 182 AUCUCCUUCACAGUUAGGUUG 6149 183 UGUCAGUGACUCCUUGAGGAU 6150 184 UUCUCCAUACUGUCCUCAGAU 6151 185 AUCUUGCACAUGAAUCCAGUU 6152 186 AGCAUCUUGCACAUGAAUCCA 6153 187 UUCACAGUUAGGUUGAAGAAG 6154 188 AGUGACAGCUCGCUGAUCUUG 6155 189 UAACAAGGGCCUAACCCUCAA 6156 190 UAGAGUUUAGCUCUGCUUUGC 6157 191 AUGAAGAGUUUCAUCAUAGGU 6158 192 ACUGCUGGUACACUGACUGAU 6159 193 UGCUGCUUGUCCUCUAGGGAG 6160 194 UCAUCAUAGGUAGAUGCACAG 6161 195 UUGAGUACAUCCUUUACCAUC 6162 196 UGGACUUUCGCAGCCGCAGAG 6163 197 AACUCUGAAGGUAACAAGGGC 6164 198 UGAGAAGAUGCUGUGACUGCG 6165 199 UGCAACUCUUCAGUGGUAGAG 6166 200 UUGUCCACAUCAAUGGUGAAG 6167 201 ACCAGGUUCUGCUUUGACCGG 6168 202 AUAGGUCAUAAAGCAGUUCGU 6169 203 UUAGCAGGGACAGCUUCUUCA 6170 204 UUCAACACAGUAUGAUACUGC 6171 205 AAGUGGUCAAGGCUUGACGAA 6172 206 CUAACUUCUUGUCCACAUCAA 6173 207 AGCUUUAACCUCCUGAAGCUG 6174 208 UAGAUGCACAGGGAUUCACAU 6175 209 AUUAAGAUGUCAUCACAAGUG 6176 210 UGGUUGUUGGUUUGGUUGCUG 6177 211 UAAGGGCUGCAGUCUGUUGAG 6178 212 AUACCUGAAGACUAUGUUCCU 6179 213 UGAAGAGUUUCAUCAUAGGUA 6180 214 AAGACUAUGUUCCUUGAUGAA 6181 215 UGCUUUGACCGGUUCUGCUGG 6182 216 UGGAGUUUCAACACAGUAUGA 6183 217 UCAUAAAGCAGUUCGUUGUAG 6184 218 ACUUUCGAUGUAGACACUCCU 6185 219 AUCAUAGGUAGAUGCACAGGG 6186 220 UCCAGUUUCACUAGCACCAUG 6187 221 AAACAUGGGAGAAACUACGAC 6188 222 AACCUUGGAACACUCGAGUCA 6189 223 AACAACAUGAGAUUACAUAGG 6190 224 UGCCUUCUUCCGAAGGUCCAG 6191 225 UUUCGCAGCCGCAGAGCACAA 6192 226 AUACUUAUGCAACUCUUCAGU 6193 227 UCCUGAUAUAUGGUAAAGCAU 6194 228 AAUGUUUCCUGCUUCCUUCAA 6195 229 UGGAACCUGCUGCUUGUCCUC 6196 230 AAACCUUGGAACACUCGAGUC 6197 231 AACAUGAGAUUACAUAGGUGG 6198 232 AUGACUGCUCUUCUCUUUCCC 6199 233 AGGUGUAGGAUCCUGAUUGAG 6200 234 UCAAGGAAGUGGACAGCUCCU 6201 235 UUAAUGUUUCCUGCUUCCUUC 6202 236 CAACAUGAGAUUACAUAGGUG 6203 237 AAGCAGUUCGUUGUAGAUCUC 6204 238 UGAGAUCUUUCACAUAGGGAU 6205 239 UGAAGGUGUAGGAUCCUGAUU 6206 240 AACAAUAAUAUCUUUAAUAUA 6207 241 AUUUAGCAGGGACAGCUUCUU 6208 242 UUGAAGAAGGAUGCCUGUCCC 6209 243 UACAUGGAGAUGUCAGCUUCA 6210 244 AUAUAAUUCCUGAUAUAUGGU 6211 245 UGCAAGAGAGCUUCUAGCUCU 6212 246 UAACCCUCAAGUAUACUUUCA 6213 247 CUGAUCUUCCUGUCGUUCCAA 6214 248 UGCAGCUGUGGACUCAAACAU 6215 249 UAGGGAGGUAGAGACGACAGA 6216 250 AAAUGUUCACUGCACCACUGU 6217 251 UUGUGACCGCCGUAGGGCCAA 6218 252 UCCAUUUAGCAGGGACAGCUU 6219 253 UCCAGUUGAGAUCUUUCACAU 6220 254 UGAUGGUACCUUGAAUCGUGU 6221 255 UUGACCGGUUCUGCUGGUUUU 6222 256 ACAACAUGAGAUUACAUAGGU 6223 257 UGGACAGCUCCUCCUCUUGGA 6224 258 AGUGUCUGAGUAUUGCAUCCU 6225 259 UCCUGUCGUUCCAACUCUGAA 6226 260 UGUCGGAUCUGCUUGCUGUCU 6227 261 UACCAUCUCCUUCACAGUUAG 6228 262 UGCCCUUUGAGUACAUCCUUU 6229 263 AAUACAUGCUGCCUUCUUCCG 6230 264 UCUUUGCAGCGCUCUGAGCCA 6231 265 UCACAUUGACAAUCAUGCAGG 6232 266 UCAACACAGUAUGAUACUGCU 6233 267 AAGUGGACAGCUCCUCCUCUU 6234 268 UUUCACCUUCUCCAUACUGUC 6235 269 UGCUGGUACCUAUCCGACUUU 6236 270 UCGGCCUGUGAAGAAACCUUG 6237 271 UAAUGUUUCCUGCUUCCUUCA 6238 272 AACAAGGGUCUCCACAUUCUC 6239 273 AUCCUGGAUAUAAUUCCUGAU 6240 274 AAUCCCUCCAUCCUUGAUGGU 6241 275 CUUGAUGGUACCUUGAAUCGU 6242 276 AAAGUCUGCCUCUUGCGCUGU 6243 277 UCAGAUGGAACCUGCUGCUUG 6244 278 AACCGUUCACCACUCUUCUGA 6245 279 UUUCCUCCAAUAGUUCCUUUU 6246 280 UGCACCACUGUUCCCGCUGUU 6247 281 AAUGUUCACUGCACCACUGUU 6248 282 UGCAGGAACGGCCUCGGCCUG 6249 283 AAUUUAGCUUUAACCUCCUGA 6250 284 CUUACUCACACCUAGUCGCCG 6251 285 CUAUGUUCCUUGAUGAACGAG 6252 286 UUGUUGGUUUGGUUGCUGAUU 6253 287 AGUUUCACUAGCACCAUGUUG 6254 288 UCGUCAUCGGACAGCAAGCCC 6255 289 UUCUAACUUCUUGUCCACAUC 6256 290 UCUGCUUUGACCGGUUCUGCU 6257 291 UGAUUGGAGAGACUCACCAAG 6258 292 UCAGUGGUAGAGUUUAGCUCU 6259 293 UCAAUAUCAUCAUCAAGGCCU 6260 294 CUCAAUACGGACACAACCCUG 6261 295 UGAGUUAGUGACUCCAUAUGU 6262 296 UGGAGUUCUGGUUGAGGUGGG 6263 297 ACAACUUGUAGGAGCUCCUCU 6264 298 UACUGUCCUCAGAUGGAACCU 6265 299 AAAUCUGCAGCUGUGGACUCA 6266 300 CUUCUUGUCCACAUCAAUGGU 6267 301 UGCUUGUCCUCUAGGGAGGUA 6268 302 UCUAAUAGGUCAUAAAGCAGU 6269 303 UGCAUAGAAAUCAUAUAAGUA 6270 304 AGUUUCUGAAGCUCUGUCCGC 6271 305 ACAGAGUGACAGCUCGCUGAU 6272 306 UGAUACUGCUCAGCAAUACAU 6273 307 ACACUCGAGUCAACUUGCUGU 6274 308 UGAUACUUAUGCAACUCUUCA 6275 309 CAACCGUUCACCACUCUUCUG 6276 310 UCCUUGAGGAUAUUUAGUUUU 6277 311 UUCUAGCUCUUCAAUCUUUUC 6278 312 GUGUCUGAGUAUUGCAUCCUG 6279 313 ACUUAUGCAACUCUUCAGUGG 6280 314 CUUCCUGUCGUUCCAACUCUG 6281 315 ACUUGUAGGAGCUCCUCUUUG 6282 316 UAUCCGACUUUCGAUGUAGAC 6283 317 AAACUACGACAUCGUCAUCGG 6284 318 ACUGCUCAGCAAUACAUGCUG 6285 319 AUUCAGACCCUGAUUGCUGAU 6286 320 UGUAAUUUAGCUUUAACCUCC 6287 321 UCCUGUUUGAUUAAGAUGUCA 6288 322 UCGCAUAGCCGCAAAGUCUGC 6289 323 UGGGUGCUUGUAGAACAAGGG 6290 324 AACUCUUCAGUGGUAGAGUUU 6291 325 AUUGGAGAGACUCACCAAGUU 6292 326 AUUUCCUCCAAUAGUUCCUUU 6293 327 UUCUGCUUUGACCGGUUCUGC 6294 328 UCCAACUCUGAAGGUAACAAG 6295 329 UGACUGCUCUUCUCUUUCCCC 6296 330 UUUCCUCCUGUCGGAUCUGCU 6297 331 GACACAACCCUGAUCUUCCUG 6298 332 UUGCAAAUUUCAUCUCGGAGA 6299 333 AUGUAGACACUCCUCUUCAAG 6300 334 AAGGGAACCAGGUUCUGCUUU 6301 335 UUCAUUGCUCUUCAGGGCAAA 6302 336 AAGUCUGCCUCUUGCGCUGUU 6303 337 AAUCCCAGUUGCAUAGGUGGG 6304 338 ACUAUGUUCCUUGAUGAACGA 6305 339 ACAGUUAGGUUGAAGAAGGAU 6306 340 UUCCUGCAAGAGAGCUUCUAG 6307 341 UGUAGGAUCCUGAUUGAGAAG 6308 342 UUCCAACUCUGAAGGUAACAA 6309 343 UAGGAUCCUGAUUGAGAAGAU 6310 344 AUCAGGUGUUGGAUGAAGUUG 6311 345 AACACAGUAUGAUACUGCUCA 6312 346 UCCUUGAUGAACGAGUGCAGG 6313 347 UAGAUCUCAAAGAAUGAGAUC 6314 348 ACUGUCCUCAGAUGGAACCUG 6315 349 ACCUUGGAACACUCGAGUCAA 6316 350 AACCUCCUGAAGCUGCUGGGU 6317 351 UCUGGUUCUUACGACCCACUU 6318 352 UCAAUACGGACACAACCCUGA 6319 353 UACCUUGAAUCGUGUGGGUUU 6320 354 GAUACUUAUGCAACUCUUCAG 6321 355 UAGUGUCUGAGUAUUGCAUCC 6322 356 UCGUUGUAGAUCUCAAAGAAU 6323 357 AACCUGCUGCUUGUCCUCUAG 6324 358 AUCCCAGUUGCAUAGGUGGGG 6325 359 AGAGCAGUCUGAUAGCAGGUU 6326 360 UGUAGAGAGGUGUUAAUGUUU 6327 361 UCUCCACAUUCUCAAUACGGA 6328 362 UCCCUGAGUUAGUGACUCCAU 6329 363 AUCACAAGUGGUCAAGGCUUG 6330 364 ACUUUCACCUUCUCCAUACUG 6331 365 CUUUGCAGCGCUCUGAGCCAG 6332 366 AAGAUGCUGUGACUGCGGCUG 6333 367 AUGGUACCUUGAAUCGUGUGG 6334 368 CAACACAGUAUGAUACUGCUC 6335 369 AUCCUUUACCAUCUCCUUCAC 6336 370 UCUUCAUACAUUUCCUCCAAU 6337 371 UUCAAGGAAGUGGACAGCUCC 6338 372 UACCUAUCCGACUUUCGAUGU 6339 373 CUGCCCUUUGAGUACAUCCUU 6340 374 UUGAGAAGAUGCUGUGACUGC 6341 375 UCAAAGAAUGAGAUCCAGAUG 6342 376 UUGGUUUGGUUGCUGAUUUUC 6343 377 AUAGCCGCAAAGUCUGCCUCU 6344 378 UGCAAAUUUCAUCUCGGAGAU 6345 379 UCAGGAGAGUAGCUGACCCAC 6346 380 UGUAGAACAAGGGUCUCCACA 6347 381 CUGAUUGGAGAGACUCACCAA 6348 382 UCUUUCACAUAGGGAUUGCCA 6349 383 UCAAGUAUACUUUCACCUUCU 6350 384 AUUUAGCUUUAACCUCCUGAA 6351 385 AUCCCUUGCGACAUGACGGCA 6352 386 UGCUGGUACACUGACUGAUAG 6353 387 AAUCCAGUUGAGAUCUUUCAC 6354 388 CUGAAGACUAUGUUCCUUGAU 6355 389 AGCAGUUCGUUGUAGAUCUCA 6356 390 UUGGGUGCUUGUAGAACAAGG 6357 391 UACAUUUGGAAUUCAAUAAAA 6358 392 UCCUGAAUCUCUUCUUGGUAA 6359 393 UGAACGAGUGCAGGGAUGGGA 6360 394 UGCAUCCUGGAUAUAAUUCCU 6361 395 AUUUCGAAGGAAUGGUUUCUU 6362 396 UGUUAAUGUUUCCUGCUUCCU 6363 397 ACUCUUCUGAUCUUUGCAGCG 6364 398 UGUUCCUUGAUGAACGAGUGC 6365 399 CUGUAAUUUAGCUUUAACCUC 6366 400 GAACACUCGAGUCAACUUGCU 6367 401 UGGUACCUAUCCGACUUUCGA 6368 402 UCAACCGUUCACCACUCUUCU 6369 403 UCCACAUCAAUGGUGAAGGGC 6370 404 UCGAGUCAACUUGCUGUCACG 6371 405 UUCUCAAUACGGACACAACCC 6372 406 ACAGCUUCUUCAUUUCCUCCU 6373 407 CAACUUGUAGGAGCUCCUCUU 6374 408 UGAAGCUGCUGGGUGGAGGCA 6375 409 UGGGAGAAACUACGACAUCGU 6376 410 UAGGUGGUUAUAAUACAAAAG 6377 411 GACAGCUCGCUGAUCUUGGGG 6378 412 ACCAAGUUUCUGAAGCUCUGU 6379 413 UAAAGCAGUUCGUUGUAGAUC 6380 414 ACUUGUCAGUGACUCCUUGAG 6381 415 UUCACCUUCUCCAUACUGUCC 6382 416 GUAUACUUUCACCUUCUCCAU 6383 417 CAGUGGUAGAGUUUAGCUCUG 6384 418 UCCAAAUGUUCACUGCACCAC 6385 419 AUGGUUUCUUCCCUGGUGGUU 6386 420 AGAGACGACAGAGCAGUCUGA 6387 421 UGUGAAGAAACCUUGGAACAC 6388 422 UUCAACCGUUCACCACUCUUC 6389 423 UGCACAGGGAUUCACAUUGAC 6390 424 UGACAAUCAUGCAGGAACGGC 6391 425 AUACAUGGAGAUGUCAGCUUC 6392 426 AUAAAGCAGUUCGUUGUAGAU 6393 427 CAUGAGAUUACAUAGGUGGUU 6394 428 CUCUUCUAACUUCUUGUCCAC 6395 429 CACACCUAGUCGCCGAAGCUG 6396 430 GACAUCGUCAUCGGACAGCAA 6397 431 ACUAGCACCAUGUUGUUCUGC 6398 432 UAGCUGACCCACCUCAGGGCC 6399 433 ACUCGAGUCAACUUGCUGUCA 6400 434 AAGGGCUUCAGAUCAGGUGUU 6401 435 AACCAGGUUCUGCUUUGACCG 6402 436 UGAACAAUAAUAUCUUUAAUA 6403 437 UUCAUCAUAGGUAGAUGCACA 6404 438 UGAGGGUGGUGGUUCUAACAU 6405 439 UCAGAUCAGGUGUUGGAUGAA 6406 440 UUCCUCCAAUAGUUCCUUUUG 6407 441 AGCUUCUUCAUUUCCUCCUGU 6408 442 ACAUCGUCAUCGGACAGCAAG 6409 443 AGAGAGCUUCUAGCUCUUCAA 6410 444 CAUUGCAAAUUUCAUCUCGGA 6411 445 AAGAGUUUCAUCAUAGGUAGA 6412 446 AAGCUGGACUUUCGCAGCCGC 6413 447 AUCGUCAUCGGACAGCAAGCC 6414 448 UUUCGAAGGAAUGGUUUCUUC 6415 449 UCCUUUACCAUCUCCUUCACA 6416 450 CAGCUUCUUCAUUUCCUCCUG 6417 451 CAACUCUGAAGGUAACAAGGG 6418 452 UGGGUGUCCAAAUGUUCACUG 6419 453 UAGGAUCCGGGCAUAAGGGCU 6420 454 ACAUGAGAUUACAUAGGUGGU 6421 455 ACCACUCUUCUGAUCUUUGCA 6422 456 UACCAUCUCAUUGCAAAUUUC 6423 457 ACAUCCUUUACCAUCUCCUUC 6424 458 UGAAGAAACCUUGGAACACUC 6425 459 UCUUGUCCACAUCAAUGGUGA 6426 460 UAGUGACUCCAUAUGUAUAGA 6427 461 UCAUCACAAGUGGUCAAGGCU 6428 462 CACAACUUGUAGGAGCUCCUC 6429 463 AAGAUGUCAUCACAAGUGGUC 6430 464 AAUCUGCAGCUGUGGACUCAA 6431 465 UCCAUCCUUGAUGGUACCUUG 6432 466 UGGAGAAGCGAAUGUUUGCCG 6433 467 UACAUUUCCUCCAAUAGUUCC 6434 468 UCGAAGCUGGUGCUGGUACCU 6435 469 AUGAACGAGUGCAGGGAUGGG 6436 470 AGCUGUGGACUCAAACAUGGG 6437 471 UCUGCUGAUUGGAGAGACUCA 6438 472 ACCUUUGUGACCGCCGUAGGG 6439 473 CACAUUGACAAUCAUGCAGGA 6440 474 CAGUAUGAUACUGCUCAGCAA 6441 475 UGACCGGUUCUGCUGGUUUUG 6442 476 UGAGAUUACAUAGGUGGUUAU 6443 477 AAAGAAUGAGAUCCAGAUGGA 6444 478 AUGUUCCUUGAUGAACGAGUG 6445 479 UCUCCUUCACAGUUAGGUUGA 6446 480 UCUCUCUGCUGAUUGGAGAGA 6447 481 UCACAAGUGGUCAAGGCUUGA 6448 482 CUGUUGCAUCUGUUCUACCAU 6449 483 UUUCAUCUCGGAGAUGCAUCU 6450 484 UAUUGCAUCCUGGAUAUAAUU 6451 485 CUGCUUUGACCGGUUCUGCUG 6452 486 AGCUCUGGUUCUUACGACCCA 6453 487 AAGUAUACUUUCACCUUCUCC 6454 488 ACACUGACUGAUAGAAGAGAG 6455 489 ACAUAGGUGGUUAUAAUACAA 6456 490 GCAUCUUGCACAUGAAUCCAG 6457 491 UCUGCCCUUUGAGUACAUCCU 6458 492 UUGGAGAGCAAGGGCUUCAGA 6459 493 AGGUGUUAAUGUUUCCUGCUU 6460 494 CUCCUGAAUCUCUUCUUGGUA 6461 495 UGAAGCUCUGUCCGCAACAGC 6462 496 UCCUGAUUGAGAAGAUGCUGU 6463 497 UUCUGAAGCUCUGUCCGCAAC 6464 498 AUGGAACCUGCUGCUUGUCCU 6465 499 AGGAAGUGGACAGCUCCUCCU 6466 500 CUGAUCUUUGCAGCGCUCUGA 6467 501 UAUGAUACUGCUCAGCAAUAC 6468 502 CAUAGGUAGAUGCACAGGGAU 6469 503 ACCUAUCCGACUUUCGAUGUA 6470 504 AAGGUGUAGGAUCCUGAUUGA 6471 505 UGUCCUCAGAUGGAACCUGCU 6472 506 AUAUCAUCAUCAAGGCCUGUG 6473 507 UCUUCAAGGAAGUGGACAGCU 6474 508 UGUUUGAUUAAGAUGUCAUCA 6475 509 UGAUUAAGAUGUCAUCACAAG 6476 510 UCUGGUUGAGGUGGGUGCUGG 6477 511 UUUGACCGGUUCUGCUGGUUU 6478 512 UAAUUCCUGAUAUAUGGUAAA 6479 513 UGACUCCUUGAGGAUAUUUAG 6480 514 AGCUAGUGUCUGAGUAUUGCA 6481 515 UCGCCGAAGCUGGACUUUCGC 6482 516 UCACACCUAGUCGCCGAAGCU 6483 517 CUUUCGAUGUAGACACUCCUC 6484 518 UGUUGCAUCUGUUCUACCAUC 6485 519 UCCCUUGCGACAUGACGGCAG 6486 520 UGUCACGGAAGGGAACCAGGU 6487 521 ACAUGGAGAUGUCAGCUUCAU 6488 522 ACUGCUGUAAUUUAGCUUUAA 6489 523 AAUGGUUUCUUCCCUGGUGGU 6490 524 ACAACAACAUGAGAUUACAUA 6491 525 UCAUGCAGGAACGGCCUCGGC 6492 526 UUGCUCCUCCUGGGAUACUGG 6493 527 UGGUGCUGGUACCUAUCCGAC 6494 528 UGUGAACAAUAAUAUCUUUAA 6495 529 ACCUUCUCCAUACUGUCCUCA 6496 530 ACUUCUUGUCCACAUCAAUGG 6497 531 UGCACAUGAAUCCAGUUGAGA 6498 532 UAGGAGCUUCCAGGCCUCCUC 6499 533 CUUCCUGCAAGAGAGCUUCUA 6500 534 UCUUCCCUGGUGGUUGUUGGU 6501 535 AUAAUUCCUGAUAUAUGGUAA 6502 536 GUACCUUGAAUCGUGUGGGUU 6503 537 AUGUCAUCACAAGUGGUCAAG 6504 538 ACAGCUCGCUGAUCUUGGGGA 6505 539 UACAUAGGUGGUUAUAAUACA 6506 540 UGAUAUAUGGUAAAGCAUAAA 6507 541 AGAGUAGCUGACCCACCUCAG 6508 542 UCAUUGGAGAGCAAGGGCUUC 6509 543 UGGAGAUGUCAGCUUCAUUUU 6510 544 UGACUCCAUAUGUAUAGAUGA 6511 545 CUGAUAGCAGGUUCUUGCGUA 6512 546 AUAAGGGCUGCAGUCUGUUGA 6513 547 AGAUCUUUCACAUAGGGAUUG 6514 548 UGAUUGAGAAGAUGCUGUGAC 6515 549 UGUUUGCCGGGACAGGUAGUG 6516 550 UCAACUUGCUGUCACGGAAGG 6517 551 AGCUCUGCUUUGCACUGCUGU 6518 552 UAGAAAUCAUAUAAGUAAAUA 6519 553 ACAUUCUCAAUACGGACACAA 6520 554 AUGCACAGGGAUUCACAUUGA 6521 555 GUCCAGUUUCACUAGCACCAU 6522 556 CUCAUUGCAAAUUUCAUCUCG 6523 557 GUUGAGAUCUUUCACAUAGGG 6524 558 CAGUCUGAUAGCAGGUUCUUG 6525 559 AGUCAACUUGCUGUCACGGAA 6526 560 UUUCUUCCCUGGUGGUUGUUG 6527 561 ACACCUAGUCGCCGAAGCUGG 6528 562 AUACAUUUCCUCCAAUAGUUC 6529 563 AUCCAGUUGAGAUCUUUCACA 6530 564 GAUGGUACCUUGAAUCGUGUG 6531 565 AACAAGCUCUCUCUGCUGAUU 6532 566 UUAGCUUUAACCUCCUGAAGC 6533 567 ACAAUCAUGCAGGAACGGCCU 6534 568 CAAAUGUUCACUGCACCACUG 6535 569 ACAAGGGUCUCCACAUUCUCA 6536 570 AUCUUCCUGUCGUUCCAACUC 6537 571 AACUUCUUGUCCACAUCAAUG 6538 572 AUGAGAUUACAUAGGUGGUUA 6539 573 AAUCAUGCAGGAACGGCCUCG 6540 574 UUCAGAUCAGGUGUUGGAUGA 6541 575 CUGAUUGAGAAGAUGCUGUGA 6542 576 CAACUUGCUGUCACGGAAGGG 6543 577 AUUACCUCAUUGGAGAGCAAG 6544 578 GUAAUUUAGCUUUAACCUCCU 6545 579 UCAAACAUGGGAGAAACUACG 6546 580 UCCACAACUUGUAGGAGCUCC 6547 581 UGGUCAAGGCUUGACGAAGUU 6548 582 CUGUUCUACCAUCUCAUUGCA 6549 583 UGCUUUGCACUGCUGUAAUUU 6550 584 UGGUACACUGACUGAUAGAAG 6551 585 UGAUCCUCGCAUAGCCGCAAA 6552 586 CUCAGCAAUACAUGCUGCCUU 6553 587 AGAUCACAGAGUGACAGCUCG 6554 588 CCACUCUUCUGAUCUUUGCAG 6555 589 UUCAUACAUUUCCUCCAAUAG 6556 590 AGUGACUCCAUAUGUAUAGAU 6557 591 UCUACCAUCUCAUUGCAAAUU 6558 592 CAACAAGCUCUCUCUGCUGAU 6559 593 CAACAGCCUUAUAUUCUUCUG 6560 594 CAAAGUCUGCCUCUUGCGCUG 6561 595 UGGUCCUGUUUGAUUAAGAUG 6562 596 CACAGAGUGACAGCUCGCUGA 6563 597 UGGUGGUUGUUGGUUUGGUUG 6564 598 UUCCUUCAACCGUUCACCACU 6565 599 AUCCUUGAUGGUACCUUGAAU 6566 600 ACAACCCUGAUCUUCCUGUCG 6567 601 UCAUACAUUUCCUCCAAUAGU 6568 602 CUCAGAUGGAACCUGCUGCUU 6569 603 AGAAACUACGACAUCGUCAUC 6570 604 UCGAAGGAAUGGUUUCUUCCC 6571 605 AAUGUUUGCCGGGACAGGUAG 6572 606 UCAUCUCGGAGAUGCAUCUCC 6573 607 AUAGCAGGUUCUUGCGUACCA 6574 608 GAUGUAGACACUCCUCUUCAA 6575 609 UGGUUCUUACGACCCACUUUU 6576 610 UUCCUGAUAUAUGGUAAAGCA 6577 611 AUGCUGUGACUGCGGCUGGAG 6578 612 AACUUGCUGUCACGGAAGGGA 6579 613 UCCAUACUGUCCUCAGAUGGA 6580 614 AGUCCUUGGGUGCUUGUAGAA 6581 615 UGACGAAGGGCAGCAAUACAG 6582 616 AUGUUCACUGCACCACUGUUC 6583 617 ACUACGACAUCGUCAUCGGAC 6584 618 UGACUGCGGCUGGAGUUCUGG 6585 619 ACGGAAGGGAACCAGGUUCUG 6586 620 ACAUCAAUGGUGAAGGGCUUG 6587 621 GUAGAGUUUAGCUCUGCUUUG 6588 622 UUCAGACCCUGAUUGCUGAUG 6589 623 UCACCACUCUUCUGAUCUUUG 6590 624 UAGAGAGGUGUUAAUGUUUCC 6591 625 AGAGUUUCAUCAUAGGUAGAU 6592 626 CCAGGUUCUGCUUUGACCGGU 6593 627 AAGAGAGCUUCUAGCUCUUCA 6594 628 UCAGGUGUUGGAUGAAGUUGG 6595 629 UUCUACCAUCUCAUUGCAAAU 6596 630 UUCGCAGCCGCAGAGCACAAC 6597 631 CUGGUUGGUACCAAGGCGCUU 6598 632 AUCCCUCCAUCCUUGAUGGUA 6599 633 UGUGCAUAGAAAUCAUAUAAG 6600 634 ACUCCUUGAGGAUAUUUAGUU 6601 635 AGCAAUACAUGCUGCCUUCUU 6602 636 UUCUUCCGAAGGUCCAGUUUC 6603 637 GUUUCUGAAGCUCUGUCCGCA 6604 638 GAUCUGCUUGCUGUCUAGCCA 6605 639 GUCGUUCCAACUCUGAAGGUA 6606 640 AAGGAAUGGUUUCUUCCCUGG 6607 641 GAAGCUGGACUUUCGCAGCCG 6608 642 AAUUCAGACCCUGAUUGCUGA 6609 643 UCCAGGCCUCCUCAGCAUCUU 6610 644 CAGAGCAGUCUGAUAGCAGGU 6611 645 ACAUUUCCUCCAAUAGUUCCU 6612 646 AGCUGGACUUUCGCAGCCGCA 6613 647 AUUUCCUCCUGUCGGAUCUGC 6614 648 ACGGACACAACCCUGAUCUUC 6615 649 AUUGGAGAGCAAGGGCUUCAG 6616 650 UCCUUCAACCGUUCACCACUC 6617 651 UACUUUCACCUUCUCCAUACU 6618 652 UCACCAAGUUUCUGAAGCUCU 6619 653 AGUAGCUGACCCACCUCAGGG 6620 654 UCCUGAAGCUGCUGGGUGGAG 6621 655 UUGCAUCCUGGAUAUAAUUCC 6622 656 AGAGUUUAGCUCUGCUUUGCA 6623 657 CUUCAUUUCCUCCUGUCGGAU 6624 658 ACUGUCGAAGCUGGUGCUGGU 6625 659 AAGUAAAUUUCGAAGGAAUGG 6626 660 UCAGCAAUACAUGCUGCCUUC 6627 661 UUCCCUGGUGGUUGUUGGUUU 6628 662 CUGUCGAAGCUGGUGCUGGUA 6629 663 AGUAAAUUUCGAAGGAAUGGU 6630 664 CUGCAAGAGAGCUUCUAGCUC 6631 665 UCCUGGUUGGUACCAAGGCGC 6632 666 AAGGUCCAGUUUCACUAGCAC 6633 667 UUACAUAGGUGGUUAUAAUAC 6634 668 AUAGGUAGAUGCACAGGGAUU 6635 669 CUUGAUGAACGAGUGCAGGGA 6636 670 CCAUAUGUAUAGAUGAGCCAG 6637 671 CUGCUGCUUGUCCUCUAGGGA 6638 672 UCUCCAUACUGUCCUCAGAUG 6639 673 CUGGUGCUGGUACCUAUCCGA 6640 674 UGCUCAGCAAUACAUGCUGCC 6641 675 ACAUGGGAGAAACUACGACAU 6642 676 CUACUGCUGGUACACUGACUG 6643 677 AGUGGUAGAGUUUAGCUCUGC 6644 678 UCCGAAGGUCCAGUUUCACUA 6645 679 UGUUCCCGCUGUUGCAUCUGU 6646 680 ACAGGGAUUCACAUUGACAAU 6647 681 UGAUGAACGAGUGCAGGGAUG 6648 682 AGGAAUGGUUUCUUCCCUGGU 6649 683 CUCUUCUGAUCUUUGCAGCGC 6650 684 ACACUCCUCUUCAAGGAAGUG 6651 685 UGUGCCCAUCGAUGACUUGUU 6652 686 UCUGUCCGCAACAGCCUUAUA 6653 687 AAUAGGUCAUAAAGCAGUUCG 6654 688 CUCCUCAGCAUCUUGCACAUG 6655 689 CUUAUGCAACUCUUCAGUGGU 6656 690 GUACACUGACUGAUAGAAGAG 6657 691 UGAAGACUAUGUUCCUUGAUG 6658 692 GAGGUAGAGACGACAGAGCAG 6659 693 CUUGUCCACAUCAAUGGUGAA 6660 694 UGAGUAUUGCAUCCUGGAUAU 6661 695 CUUCUGAUCUUUGCAGCGCUC 6662 696 UCUAGGGAGGUAGAGACGACA 6663 697 UCCCGCUCCUGAAUCUCUUCU 6664 698 UAGGUAGAUGCACAGGGAUUC 6665 699 CAUUUCCUCCAAUAGUUCCUU 6666 700 AGCAGGGACAGCUUCUUCAUU 6667 701 UCUGCUUUGCACUGCUGUAAU 6668 702 UGUAGAUCUCAAAGAAUGAGA 6669 703 GCUAGUGUCUGAGUAUUGCAU 6670 704 ACUGCACCACUGUUCCCGCUG 6671 705 AAUAAUAUCUUUAAUAUAACU 6672 706 AUCGGACAGCAAGCCCGCUGG 6673 707 UCCUGCUUCCUUCAACCGUUC 6674 708 UAUGUUCCUUGAUGAACGAGU 6675 709 AGGUUGAAGAAGGAUGCCUGU 6676 710 CAAUAUCAUCAUCAAGGCCUG 6677 711 AGACCUAUUUCUUCAGGAGAG 6678 712 GUUGUUCUGCAGUUCAGCCAG 6679 713 CUGCAGUCUGUUGAGCUUUGG 6680 714 AGUACAUCCUUUACCAUCUCC 6681 715 CAUGAAUCCAGUUGAGAUCUU 6682 716 CAUCGGACAGCAAGCCCGCUG 6683 717 CUCCUGUCGGAUCUGCUUGCU 6684 718 AUCUUUGCAGCGCUCUGAGCC 6685 719 AAGGGUCUCCACAUUCUCAAU 6686 720 AAUACGGACACAACCCUGAUC 6687 721 CAUUUCCUCCUGUCGGAUCUG 6688 722 UCACUGCACCACUGUUCCCGC 6689 723 AGUUAGUGACUCCAUAUGUAU 6690 724 AUCUUUCACAUAGGGAUUGCC 6691 725 AGAUGGAACCUGCUGCUUGUC 6692 726 AUAGAAAUCAUAUAAGUAAAU 6693 727 AGAGACCUAUUUCUUCAGGAG 6694 728 UGAGCGUAGGAUCCGGGCAUA 6695 729 UCGUUCCAACUCUGAAGGUAA 6696 730 CAAGGGUCUCCACAUUCUCAA 6697 731 GAACCUGCUGCUUGUCCUCUA 6698 732 AGGCUAUUGAAGAUCAGCGCC 6699 733 CUAGUCGCCGAAGCUGGACUU 6700 734 AUGGGAGAAACUACGACAUCG 6701 735 CUUCCUUCAACCGUUCACCAC 6702 736 AUGCUGCCUUCUUCCGAAGGU 6703 737 CUUCUAACUUCUUGUCCACAU 6704 738 AGAAGAUGCUGUGACUGCGGC 6705 739 UUCCCGCUGUUGCAUCUGUUC 6706 740 CAACCCUGAUCUUCCUGUCGU 6707 741 AAUUUCGAAGGAAUGGUUUCU 6708 742 AGAGAGGUGUUAAUGUUUCCU 6709 743 GAUGUCAUCACAAGUGGUCAA 6710 744 AAGGGCAGCAAUACAGCGGCC 6711 745 AUCAUGCAGGAACGGCCUCGG 6712 746 GCAUCCUGGAUAUAAUUCCUG 6713 747 CAACUCUUCAGUGGUAGAGUU 6714 748 UCUGUUCUACCAUCUCAUUGC 6715 749 ACGCCGUGAGCGUAGGAUCCG 6716 750 AAUGAGAUCCAGAUGGAGAAG 6717 751 ACAAGCUCUCUCUGCUGAUUG 6718 752 UCUCAAAGAAUGAGAUCCAGA 6719 753 UGGUUGGUACCAAGGCGCUUU 6720 754 AGUAUACUUUCACCUUCUCCA 6721 755 AAAUUUCAUCUCGGAGAUGCA 6722 756 UCUCGGAGAUGCAUCUCCAGC 6723 757 CUGAAGCUCUGUCCGCAACAG 6724 758 GUUAAUGUUUCCUGCUUCCUU 6725 759 UUCGAAGGAAUGGUUUCUUCC 6726 760 CUGAAGGUGUAGGAUCCUGAU 6727 761 AAUACAGCGGCCCAGGGUGUG 6728 762 GUAGGAGCUCCUCUUUGCCAU 6729 763 ACGAAGGGCAGCAAUACAGCG 6730 764 AGAAGCGAAUGUUUGCCGGGA 6731 765 CACUAGCACCAUGUUGUUCUG 6732 766 GAGAAGAUGCUGUGACUGCGG 6733 767 AGACUCACCAAGUUUCUGAAG 6734 768 AGUAUGAUACUGCUCAGCAAU 6735 769 CAGCCUAGGUCCGAAGACGUG 6736 770 CAUCAUAGGUAGAUGCACAGG 6737 771 CUGCUUGUCCUCUAGGGAGGU 6738 772 ACAGAGCAGUCUGAUAGCAGG 6739 773 UCCGACUUUCGAUGUAGACAC 6740 774 AGGGAGGUAGAGACGACAGAG 6741 775 AGAGCAAGGGCUUCAGAUCAG 6742 776 CAAACAUGGGAGAAACUACGA 6743 777 AUACUGCUCAGCAAUACAUGC 6744 778 ACUCUGAAGGUAACAAGGGCC 6745 779 ACACAACCCUGAUCUUCCUGU 6746 780 CAUCCUUGAUGGUACCUUGAA 6747 781 CACUGCACCACUGUUCCCGCU 6748 782 UGGAGAGCAAGGGCUUCAGAU 6749 783 GUAGACACUCCUCUUCAAGGA 6750 784 CUUGGGUGCUUGUAGAACAAG 6751 785 GUCGGAUCUGCUUGCUGUCUA 6752 786 UAGAAGAGAGCCCAGCAAUGC 6753 787 UCCUUCACAGUUAGGUUGAAG 6754 788 UCUUCCGAAGGUCCAGUUUCA 6755 789 CUCGCAUAGCCGCAAAGUCUG 6756 790 CUAAUAGGUCAUAAAGCAGUU 6757 791 ACUGCGGCUGGAGUUCUGGUU 6758 792 CAUCACAAGUGGUCAAGGCUU 6759 793 CCUCUUCUAACUUCUUGUCCA 6760 794 ACUCAAACAUGGGAGAAACUA 6761 795 AUGCAGGAACGGCCUCGGCCU 6762 796 GGCAACAAGCUCUCUCUGCUG 6763 797 GUCAUAAAGCAGUUCGUUGUA 6764 798 GUCCUCAGAUGGAACCUGCUG 6765 799 GAAGGAAUGGUUUCUUCCCUG 6766 800 CUUCUAGCUCUUCAAUCUUUU 6767 801 UCCUGGAUAUAAUUCCUGAUA 6768 802 UCCCGCUGUUGCAUCUGUUCU 6769 803 CAAUACGGACACAACCCUGAU 6770 804 AGUCUGGUCCUGUUUGAUUAA 6771 805 UCACGGAAGGGAACCAGGUUC 6772 806 UGCCGGGACAGGUAGUGGGGC 6773 807 CACUGCUGUAAUUUAGCUUUA 6774 808 UGGAUAUAAUUCCUGAUAUAU 6775 809 AGGAUGCCUGUCCCACUUCUG 6776 810 UGAUAGCAGGUUCUUGCGUAC 6777 811 ACUUUCGCAGCCGCAGAGCAC 6778 812 UUCAUUUCCUCCUGUCGGAUC 6779 813 GAAGGGAACCAGGUUCUGCUU 6780 814 UCCUCAGCAUCUUGCACAUGA 6781 815 GAGUACAUCCUUUACCAUCUC 6782 816 CAUCUCGGAGAUGCAUCUCCA 6783 817 GUGAACAAUAAUAUCUUUAAU 6784 818 CUGUCGGAUCUGCUUGCUGUC 6785 819 UCCUCUAGGGAGGUAGAGACG 6786 820 AGAAGGAUGCCUGUCCCACUU 6787 821 GAGUCAACUUGCUGUCACGGA 6788 822 UGUUGGUUUGGUUGCUGAUUU 6789 823 AGAUGCUGUGACUGCGGCUGG 6790 824 AGUGGACAGCUCCUCCUCUUG 6791 825 UGCUGCCUUCUUCCGAAGGUC 6792 826 CAAGGAAGUGGACAGCUCCUC 6793 827 GACAGAGCAGUCUGAUAGCAG 6794 828 CUGUGGACUCAAACAUGGGAG 6795 829 UGAAUCUCUUCUUGGUAAAAA 6796 830 ACCUCCUGAAGCUGCUGGGUG 6797 831 CUCAAGUAUACUUUCACCUUC 6798 832 GCUAUUGAAGAUCAGCGCCAG 6799 833 ACCGUUCACCACUCUUCUGAU 6800 834 UCCUCCUCUUGGAGGCCUCCA 6801 835 UCCUCAGAUGGAACCUGCUGC 6802 836 AUAGGUGGUUAUAAUACAAAA 6803 837 CACAUCAAUGGUGAAGGGCUU 6804 838 CAAGAGAGCUUCUAGCUCUUC 6805 839 GCUUCUAGCUCUUCAAUCUUU 6806 840 UCCGCAACAGCCUUAUAUUCU 6807 841 UCCCUGGUGGUUGUUGGUUUG 6808 842 CACUCGAGUCAACUUGCUGUC 6809 843 GACUGCUCUUCUCUUUCCCCA 6810 844 GAGAGACUCACCAAGUUUCUG 6811 845 GAGACGACAGAGCAGUCUGAU 6812 846 UUCUUCCCUGGUGGUUGUUGG 6813 847 UCAGUGACUCCUUGAGGAUAU 6814 848 AGGAGAGUAGCUGACCCACCU 6815 849 CUGACUGAUAGAAGAGAGCCC 6816 850 AUCCCGCUCCUGAAUCUCUUC 6817 851 GUAAAUUUCGAAGGAAUGGUU 6818 852 CUUUGCACUGCUGUAAUUUAG 6819 853 AACAAGGGCCUAACCCUCAAG 6820 854 CUCUGCUUUGCACUGCUGUAA 6821 855 CUUGUCAGUGACUCCUUGAGG 6822 856 AUGGAGAUGUCAGCUUCAUUU 6823 857 GAAACUACGACAUCGUCAUCG 6824 858 AGUCUGCCUCUUGCGCUGUUG 6825 859 GAGUUAGUGACUCCAUAUGUA 6826 860 ACAAUAAUAUCUUUAAUAUAA 6827 861 UCCUCUUCAAGGAAGUGGACA 6828 862 GUGUAGAGAGGUGUUAAUGUU 6829 863 CACCAAGUUUCUGAAGCUCUG 6830 864 ACUCACACCUAGUCGCCGAAG 6831 865 GUUCACCACUCUUCUGAUCUU 6832 866 ACCUAUUUCUUCAGGAGAGUA 6833 867 CGAGUCAACUUGCUGUCACGG 6834 868 AGAGACUCACCAAGUUUCUGA 6835 869 ACCUUGAAUCGUGUGGGUUUU 6836 870 CACAGUUAGGUUGAAGAAGGA 6837 871 AGGUCAUAAAGCAGUUCGUUG 6838 872 UCCUCUUGGAGGCCUCCAUUU 6839 873 AACAUGGGAGAAACUACGACA 6840 874 GUCUGAGUAUUGCAUCCUGGA 6841 875 CUUCAACCGUUCACCACUCUU 6842 876 CAGUUUCACUAGCACCAUGUU 6843 877 CACCUUCUCCAUACUGUCCUC 6844 878 AACCUUUGUGACCGCCGUAGG 6845 879 CAUAGCCGCAAAGUCUGCCUC 6846 880 CUUUCACAUAGGGAUUGCCAU 6847 881 AACCCUCAAGUAUACUUUCAC 6848 882 CAUCUGUUCUACCAUCUCAUU 6849 883 GUCUGAUAGCAGGUUCUUGCG 6850 884 AUGGAGAAGCGAAUGUUUGCC 6851 885 GUCUCCACAUUCUCAAUACGG 6852 886 AUUACAUAGGUGGUUAUAAUA 6853 887 UGCGGCUGGAGUUCUGGUUGA 6854 888 CAAGUGGUCAAGGCUUGACGA 6855 889 UGAUCUUCCUGUCGUUCCAAC 6856 890 ACCUAGUCGCCGAAGCUGGAC 6857 891 CUCCUUCACAGUUAGGUUGAA 6858 892 AGGAUCCUGAUUGAGAAGAUG 6859 893 CGUCAUCGGACAGCAAGCCCG 6860 894 AUCUGCAGCUGUGGACUCAAA 6861 895 UCACUAGCACCAUGUUGUUCU 6862 896 UCAUCCCGCUCCUGAAUCUCU 6863 897 UCUGAAGCUCUGUCCGCAACA 6864 898 GCAUCUGUUCUACCAUCUCAU 6865 899 AGAUGCACAGGGAUUCACAUU 6866 900 AGCUCUCUCUGCUGAUUGGAG 6867 901 GUUUAGCUCUGCUUUGCACUG 6868 902 GAGUGACAGCUCGCUGAUCUU 6869 903 AGGUAACAAGGGCCUAACCCU 6870 904 GAAGAAACCUUGGAACACUCG 6871 905 AUAUAUGGUAAAGCAUAAAAG 6872 906 GAGAUCCAGAUGGAGAAGCGA 6873 907 CAUACAUUUCCUCCAAUAGUU 6874 908 ACCACUGUUCCCGCUGUUGCA 6875 909 CUCACCAAGUUUCUGAAGCUC 6876 910 AUCUCAUUGCAAAUUUCAUCU 6877 911 CUGUUCCCGCUGUUGCAUCUG 6878 912 GAGAAACUACGACAUCGUCAU 6879 913 AGCACCAUGUUGUUCUGCAGU 6880 914 AUACGGACACAACCCUGAUCU 6881 915 AAGAGAGCCCAGCAAUGCCAC 6882 916 CUCGAGUCAACUUGCUGUCAC 6883 917 AAGGAUGCCUGUCCCACUUCU 6884 918 UUGCGACAUGACGGCAGGGGC 6885 919 GAGAGGUGUUAAUGUUUCCUG 6886 920 AAUCAUAUAAGUAAAUAAAAA 6887 921 CAAUCAUGCAGGAACGGCCUC 6888 922 GGGAUUCACAUUGACAAUCAU 6889 923 AGGUUCUUGCGUACCACAGAC 6890 924 UCAUUUCCUCCUGUCGGAUCU 6891 925 CAUCCCGCUCCUGAAUCUCUU 6892 926 GUUCUGCUUUGACCGGUUCUG 6893 927 UGCUACAUUUGGAAUUCAAUA 6894 928 CUUGUAGAACAAGGGUCUCCA 6895 929 AGGUAGAGACGACAGAGCAGU 6896 930 UGCUGUCACGGAAGGGAACCA 6897 931 CUUUGACCGGUUCUGCUGGUU 6898 932 GAAGAUGCUGUGACUGCGGCU 6899 933 CAAGUAUACUUUCACCUUCUC 6900 934 GGGUGCUUGUAGAACAAGGGU 6901 935 CACCUAGUCGCCGAAGCUGGA 6902 936 AGCCGCAAAGUCUGCCUCUUG 6903 937 GGUACCUAUCCGACUUUCGAU 6904 938 CGACUUUCGAUGUAGACACUC 6905 939 GAUGCUGUGACUGCGGCUGGA 6906 940 CAGACCCUGAUUGCUGAUGGG 6907 941 AUACUUUCACCUUCUCCAUAC 6908 942 AGGGCUUCAGAUCAGGUGUUG 6909 943 AGAUCCAGAUGGAGAAGCGAA 6910 944 ACUUGCUGUCACGGAAGGGAA 6911 945 AGAGGUGUUAAUGUUUCCUGC 6912 946 GAAACCUUGGAACACUCGAGU 6913 947 CAAAGCUCUGGUUCUUACGAC 6914 948 CUCAUUGGAGAGCAAGGGCUU 6915 949 CAUCUUGCACAUGAAUCCAGU 6916 950 UGAGUACAUCCUUUACCAUCU 6917 951 UGUGGACUCAAACAUGGGAGA 6918 952 CUGCUGAUUGGAGAGACUCAC 6919 953 ACGACAUCGUCAUCGGACAGC 6920 954 CAGUUCGUUGUAGAUCUCAAA 6921 955 CUCCUUGAGGAUAUUUAGUUU 6922 956 GAGAAGCGAAUGUUUGCCGGG 6923 957 AGAAAGGAUCCCUUGCGACAU 6924 958 CGACAGAGCAGUCUGAUAGCA 6925 959 UGUAGACACUCCUCUUCAAGG 6926 960 CGAAGGAAUGGUUUCUUCCCU 6927 961 UGGAGGCCUCCAUUUAGCAGG 6928 962 AUGUUUGCCGGGACAGGUAGU 6929 963 GAUCACAGAGUGACAGCUCGC 6930 964 CCGCUCCUGAAUCUCUUCUUG 6931 965 AGCAAUACAGCGGCCCAGGGU 6932 966 AAAGGAUCCCUUGCGACAUGA 6933 967 UCACAGUUAGGUUGAAGAAGG 6934 968 AGUUGAGAUCUUUCACAUAGG 6935 969 AUUGACAAUCAUGCAGGAACG 6936 970 CUGAUACUUAUGCAACUCUUC 6937 971 ACUCUUCAGUGGUAGAGUUUA 6938 972 CCUGAUUGAGAAGAUGCUGUG 6939 973 UGAAUCCAGUUGAGAUCUUUC 6940 974 GCAAGAGAGCUUCUAGCUCUU 6941 975 CCUCAAGUAUACUUUCACCUU 6942 976 AAGCUCUGGUUCUUACGACCC 6943 977 GACUGAUAGAAGAGAGCCCAG 6944 978 AAAUCAUAUAAGUAAAUAAAA 6945 979 CUGGUUCUUACGACCCACUUU 6946 980 CGAAGGGCAGCAAUACAGCGG 6947 981 CUUCACAGUUAGGUUGAAGAA 6948 982 AGCAGUCUGAUAGCAGGUUCU 6949 983 GUAGAGACGACAGAGCAGUCU 6950 984 GGAGUUUCAACACAGUAUGAU 6951 985 UGCCCAUCGAUGACUUGUUUC 6952 986 UCCACAUUCUCAAUACGGACA 6953 987 ACCUGAAGACUAUGUUCCUUG 6954 988 UGUCAUCACAAGUGGUCAAGG 6955 989 CCUUGGAGUUUCAACACAGUA 6956 990 CUGAGUAUUGCAUCCUGGAUA 6957 991 CUUUGAGUACAUCCUUUACCA 6958 992 GUGAGCGUAGGAUCCGGGCAU 6959 993 GUACAUCCUUUACCAUCUCCU 6960 994 CUUCUUCCGAAGGUCCAGUUU 6961 995 GGUACCUUGAAUCGUGUGGGU 6962 996 AUCCGGGCAUAAGGGCUGCAG 6963 997 CUUGGAGUUUCAACACAGUAU 6964 998 AAGGUAACAAGGGCCUAACCC 6965 999 GUGCUGGUACCUAUCCGACUU 6966 1000 UUACCUCAUUGGAGAGCAAGG 6967 1001 UGAGAUCCAGAUGGAGAAGCG 6968 1002 CUGGAGUUCUGGUUGAGGUGG 6969 1003 CAGCUGUGGACUCAAACAUGG 6970 1004 CUGAGUUAGUGACUCCAUAUG 6971 1005 ACCAUCUCCUUCACAGUUAGG 6972 1006 GACUCCAUAUGUAUAGAUGAG 6973 1007 GUUGUUGGUUUGGUUGCUGAU 6974 1008 GCAACAAGCUCUCUCUGCUGA

TABLE 10 Results for LTB. Score threshold: 70. Design: siRNA 21 nt. SEQ ID siRNA_ siRNA guide strand/ NO id AS Sequence 6975 1 UUAUCGGCAGCACUGAAGCUU 6976 2 UGUUCCUUCGUCGUCUCCCAG 6977 3 UCAAUUUCCAAACAGUCUCCU 6978 4 UUUCCAAACAGUCUCCUACAU 6979 5 UUGACGUACACCCUCUCGCCC 6980 6 UUUAUCGGCAGCACUGAAGCU 6981 7 UUCUGAAACCCAGUCCUCCCU 6982 8 UAAUAGAGGCCGUCCUGCGGG 6983 9 UCGUGUACCAGAGAGGCCCGU 6984 10 UACAGAGAGCUGCGCAGCGUG 6985 11 UCCUUCGUCGUCUCCCAGCCU 6986 12 UCGAGCAGCAGCUCGGGAGUG 6987 13 UCUGAAACCCAGUCCUCCCUG 6988 14 UUCACGCACUCGCACCACGCA 6989 15 UUCCAAACAGUCUCCUACAUU 6990 16 AAGAAGGUCUUCCCUCUCGCG 6991 17 AUAUUCACGCACUCGCACCAC 6992 18 UCCAGCACUGGAGUCACCGUC 6993 19 ACUGAUGUUGACGUACACCCU 6994 20 UCGCGAAGUCCACCAUAUCGG 6995 21 UAGCCGACGAGACAGUAGAGG 6996 22 UCACGCACUCGCACCACGCAC 6997 23 AAGCUUUCCAUUCUUUAUUUU 6998 24 UAUCGGCAGCACUGAAGCUUU 6999 25 AUGUUGACGUACACCCUCUCG 7000 26 AGAAGGUCUUCCCUCUCGCGA 7001 27 AACAAGGUCACCAGAGAAGUG 7002 28 AACGCCUGUUCCUUCGUCGUC 7003 29 UCGUCUCCCAGCCUAGCCCCU 7004 30 UCGGCGUCCGAGAACUGCGUC 7005 31 AAUAUUCACGCACUCGCACCA 7006 32 UCGUCAGAAACGCCUGUUCCU 7007 33 UACCAGAGAGGCCCGUACCCU 7008 34 ACUGGAGUCACCGUCUCGGCG 7009 35 UAUGAGGUGGGCAGCUGGGAG 7010 36 UGAUGUUGACGUACACCCUCU 7011 37 AUCAAUUUCCAAACAGUCUCC 7012 38 UGACGUACACCCUCUCGCCCC 7013 39 AGUAGAGGUAAUAGAGGCCGU 7014 40 UGAAGCUUUCCAUUCUUUAUU 7015 41 CUGAUGUUGACGUACACCCUC 7016 42 UCCCGCUCGUCAGAAACGCCU 7017 43 AGCACUGGAGUCACCGUCUCG 7018 44 CAAUUUCCAAACAGUCUCCUA 7019 45 AAACGCCUGUUCCUUCGUCGU 7020 46 UAUUCACGCACUCGCACCACG 7021 47 AUAGAGGCCGUCCUGCGGGAG 7022 48 GACAGUGAUAGGCACCGCCAG 7023 49 AGCUUCUGAAACCCAGUCCUC 7024 50 AGCAACAAGGUCACCAGAGAA 7025 51 UUCCUUCGUCGUCUCCCAGCC 7026 52 UCCGAGAACUGCGUCCCGCUC 7027 53 AGAGCUGCGCAGCGUGACCGA 7028 54 CUGCGCAGCGUGACCGAGCGG 7029 55 AAUAGAGGCCGUCCUGCGGGA 7030 56 UGAAACCCAGUCCUCCCUGAU 7031 57 UGUUGACGUACACCCUCUCGC 7032 58 ACCCAGUCCUCCCUGAUCCUG 7033 59 ACAAGGUCACCAGAGAAGUGG 7034 60 UGGAGUCACCGUCUCGGCGCC 7035 61 AUCGGCAGCACUGAAGCUUUC 7036 62 AAUUUCCAAACAGUCUCCUAC 7037 63 AGAAACGCCUGUUCCUUCGUC 7038 64 UUCAGCGGAGCGCCUAUGAGG 7039 65 UCACCGUCUCGGCGCCCUCGA 7040 66 AACUGCGUCCCGCUCGUCAGA 7041 67 AUUCACGCACUCGCACCACGC 7042 68 AAAGAAGGUCUUCCCUCUCGC 7043 69 GUACAGAGAGCUGCGCAGCGU 7044 70 AGACAGUAGAGGUAAUAGAGG 7045 71 CAGUAGAGGUAAUAGAGGCCG 7046 72 UCCAAACAGUCUCCUACAUUU 7047 73 CAAACAGUCUCCUACAUUUUU 7048 74 GUAAUAGAGGCCGUCCUGCGG 7049 75 UUCGUCGUCUCCCAGCCUAGC 7050 76 AAGGUCUUCCCUCUCGCGAAG 7051 77 CUGUUCCUUCGUCGUCUCCCA 7052 78 CCUUCGUCGUCUCCCAGCCUA 7053 79 UGACUGAUGUUGACGUACACC 7054 80 UGCACCAGGCCGCCGAACCCC 7055 81 GAGGUAAUAGAGGCCGUCCUG 7056 82 UCUUCCCUCUCGCGAAGUCCA 7057 83 AGAGGUAAUAGAGGCCGUCCU 7058 84 AUUUCCAAACAGUCUCCUACA 7059 85 ACAGUAGAGGUAAUAGAGGCC 7060 86 CAGCUUCUGAAACCCAGUCCU 7061 87 AACCCAGUCCUCCCUGAUCCU 7062 88 UCCGGAGCUGCACCAGGCCGC 7063 89 UCAGAAACGCCUGUUCCUUCG 7064 90 UCGUCGUCUCCCAGCCUAGCC 7065 91 CAGCACUGGAGUCACCGUCUC 7066 92 CAGUCCUCCCUGAUCCUGGGG 7067 93 ACUGAAGCUUUCCAUUCUUUA 7068 94 UGCGCAGCGUGACCGAGCGGC 7069 95 UCAGCGGAGCGCCUAUGAGGU 7070 96 UCCCUCUCGCGAAGUCCACCA 7071 97 AGCACUGAAGCUUUCCAUUCU 7072 98 UAGAGGUAAUAGAGGCCGUCC 7073 99 ACUCGCACCACGCACUCAUAU 7074 100 CUCGGCGUCCGAGAACUGCGU 7075 101 AGGACAGUGAUAGGCACCGCC 7076 102 GCGAAGUCCACCAUAUCGGGG 7077 103 GAGCUGCGCAGCGUGACCGAG 7078 104 GAGAACUGCGUCCCGCUCGUC 7079 105 ACGCACUCGCACCACGCACUC 7080 106 GCACUGAAGCUUUCCAUUCUU 7081 107 ACAGCUAGCAGGAGGGAACCC 7082 108 ACGCCUGUUCCUUCGUCGUCU 7083 109 CACCACGCACUCAUAUUCCCU 7084 110 GUAGAGGUAAUAGAGGCCGUC 7085 111 ACAGAGAGCUGCGCAGCGUGA 7086 112 GAGACAGUAGAGGUAAUAGAG 7087 113 ACUGCGUCCCGCUCGUCAGAA 7088 114 CGCGAAGUCCACCAUAUCGGG 7089 115 GUAGCCGACGAGACAGUAGAG 7090 116 CACUGAAGCUUUCCAUUCUUU 7091 117 UCGGCAGCACUGAAGCUUUCC

TABLE 11 GalNAC-siRNA conjugates. SEQ Passenger SEQ guide ID strand ID strand NO siRNA_id (sense) NO (antisense) 7092 Mfap4.1356 GCUACUGCUC 7141 UUCAGAGUUG AACUCUGAA AGCAGUAGCC G 7093 Mfap4.760 GCUUCUAUUA 7142 UUGAGGGAGU CUCCCUCAA AAUAGAAGCC U 7094 Grhpr.361 GACAGAUGCC 7143 UUCUGCAGUG ACUGCAGAA GCAUCUGUCA G 7095 lftg1.698 CGACAUUGAC 7144 UUAGAGGCAG UGCCUCUAA UCAAUGUCGU G 7096 ltfg1.680 CACUGAUUAU 7145 UUGAAGUCCA GGACUUCAA UAAUCAGUGG U 7146 Mfap4.1356 5′-cscsaGf 7151 5′-UfsUfsc modified cUfaCfuGfc AfgAfgUfuG UfcAfaCfuC faGfcAfgUf fuGfaAfs aGfcsdTsdT (NHC6)(Gal -3′ NAc3)-3′ 7147 Mfap4.760 5′-cscsaGf 7152 5′-UfsUfsg modified cUfuCfuAfu AfgGfgAfgU UfaCfuCfcC faAfuAfgAf fuCfaAfs aGfcsdTsdT (NHC6)(Gal -3′ NAc3)-3′ 7148 Grhpr.361 5′-cscsaGf 7153 5′-UfsUfsc modified aCfaGfaUfg UfgCfaGfuG CfcAfcUfgC fgCfaUfcUf faGfaAfs gUfcsdTsdT (NHC6)(Gal -3′ NAc3)-3′ 7149 Iftg1.698 5′-cscsaCf 7154 5′-UfsUfsa modified gAfcAfuUfg GfaGfgCfaG AfcUfgCfcU fuCfaAfuGf fcUfaAfs uCfgsdTsdT (NHC6)(Gal -3′ NAc3)-3′ 7150 Itfg1.680 5′-cscsaCf 7155 5′-UfsUfsg modified aCfuGfaUfu AfaGfuCfcA AfuGfgAfcU fuAfaUfcAf fuCfaAfs gUfgsdTsdT (NHC6)(Gal -3′ NAc3)-3′ n: 2′-O-methyl residues Nf: 2′-Fluoro residues s: phosphorothioate backbone modification dN: DNA residue (NHC6): Aminohexyl linker (GalNAc3): Trinatennary GalNAc cluster

TABLE 12 Human shRNAs sequences (sense-loop-antisense sequences) SEQ ID shRNA- NO: id Nucleic acid sequence 7097 huMfap4.1602 TGCTGTTGACAGTGAGCGATAGGGA CTGAAGGTCTCAATATAGTGAAGCC ACAGATGTATATTGAGACCTTCAGT CCCTACTGCCTACTGCCTCGGA 7098 huMfap4.1603 TGCTGTTGACAGTGAGCGCAGGGAC TGAAGGTCTCAATAATAGTGAAGCC ACAGATGTATTATTGAGACCTTCAG TCCCTATGCCTACTGCCTCGGA 7099 huMfap4.1642 TGCTGTTGACAGTGAGCGAAACTGG CTTCATACACACAAATAGTGAAGCC ACAGATGTATTTGTGTGTATGAAGC CAGTTCTGCCTACTGCCTCGGA 7100 huMfap4.1812 TGCTGTTGACAGTGAGCGCCAGTGT AATAATAACATAATATAGTGAAGCC ACAGATGTATATTATGTTATTATTA CACTGTTGCCTACTGCCTCGGA 7101 huMfap4.318 TGCTGTTGACAGTGAGCGACAGAAG AGATTCAATGGCTCATAGTGAAGCC ACAGATGTATGAGCCATTGAATCTC TTCTGGTGCCTACTGCCTCGGA 7102 huMfap4.350 TGCTGTTGACAGTGAGCGCCCGCGG CTGGAATGACTACAATAGTGAAGC CACAGATGTATTGTAGTCATTCCAG CCGCGGATGCCTACTGCCTCGGA 7103 huGrhpr.1125 TGCTGTTGACAGTGAGCGAAAGGTG TGATTCTCTGAGGAATAGTGAAGCC ACAGATGTATTCCTCAGAGAATCAC ACCTTCTGCCTACTGCCTCGGA 7104 huGrhpr.1172 TGCTGTTGACAGTGAGCGCCACATT GGTGTTGGACACATTTAGTGAAGCC ACAGATGTAAATGTGTCCAACACCA ATGTGATGCCTACTGCCTCGGA 7105 huGrhpr.626 TGCTGTTGACAGTGAGCGCTCCAGG CAGAGTTTGTGTCTATAGTGAAGCC ACAGATGTATAGACACAAACTCTGC CTGGAATGCCTACTGCCTCGGA 7106 huGrhpr.750 TGCTGTTGACAGTGAGCGCAACAGC TGTGTTCATCAACATTAGTGAAGCC ACAGATGTAATGTTGATGAACACAG CTGTTTTGCCTACTGCCTCGGA 7107 huGrhpr.752 TGCTGTTGACAGTGAGCGCCAGCTG TGTTCATCAACATCATAGTGAAGCC ACAGATGTATGATGTTGATGAACAC AGCTGTTGCCTACTGCCTCGGA 7108 huGrhpr.954 TGCTGTTGACAGTGAGCGACATGTC CTTGTTGGCAGCTAATAGTGAAGCC ACAGATGTATTAGCTGCCAACAAGG ACATGGTGCCTACTGCCTCGGA 7109 hultfg1.1364 TGCTGTTGACAGTGAGCGAAAGCAG ATGCTTATTTTGTTATAGTGAAGCC ACAGATGTATAACAAAATAAGCATC TGCTTCTGCCTACTGCCTCGGA 7110 hultfg1.1683 TGCTGTTGACAGTGAGCGACCAGCT AATTGTCATTCCATATAGTGAAGCC ACAGATGTATATGGAATGACAATTA GCTGGGTGCCTACTGCCTCGGA 7111 hultfg1.2162 TGCTGTTGACAGTGAGCGATCCAGT GTTTGTGTATTTATATAGTGAAGCC A CAGATGTATATAAATACACAAACAC TGGAGTGCCTACTGCCTCGGA 7112 hultfg1.2163 TGCTGTTGACAGTGAGCGCCCAGTG TTTGTGTATTTATAATAGTGAAGCC ACAGATGTATTATAAATACACAAAC ACTGGATGCCTACTGCCTCGGA 7113 hultfg 1.641 TGCTGTTGACAGTGAGCGACAGCAT TGACCACTACAAGTATAGTGAAGCC ACAGATGTATACTTGTAGTGGTCAA TGCTGGTGCCTACTGCCTCGGA 7114 hultfg1.971 TGCTGTTGACAGTGAGCGATCCTAC AAGATTTCAGCAATATAGTGAAGCC ACAGATGTATATTGCTGAAATCTTG TAGGACTGCCTACTGCCTCGGA

TABLE 13 Mouse shRNA sequences (sense-loop- antisense sequences) SEQ ID NO shRNA_id Nucleic acid sequence 7115 Mfap4.1073 TGCTGTTGACAGTGAGCGAAAAGCC AGAAGCTACCTTCTATAGTGAAGCC ACAGATGTATAGAAGGTAGCTTCTG GCTTTCTGCCTACTGCCTCGGA 7116 Mfap4.1118 TGCTGTTGACAGTGAGCGCCAGCAG TTTCCTTACTGCAGATAGTGAAGCC ACAGATGTATCTGCAGTAAGGAAAC TGCTGATGCCTACTGCCTCGGA 7117 Mfap4.1321 TGCTGTTGACAGTGAGCGCTCCCTC AAAATTCACCACCAATAGTGAAGCC ACAGATGTATTGGTGGTGAATTTTG AGGGATTGCCTACTGCCTCGGA 7118 Mfap4.1356 TGCTGTTGACAGTGAGCGCCGGCTA CTGCTCAACTCTGAATAGTGAAGCC ACAGATGTATTCAGAGTTGAGCAGT AGCCGTTGCCTACTGCCTCGGA 7119 Mfap4.274 TGCTGTTGACAGTGAGCGACAAGTG GACGGTTTTCCAGAATAGTGAAGCC ACAGATGTATTCTGGAAAACCGTCC ACTTGCTGCCTACTGCCTCGGA 7120 Mfap4.760 TGCTGTTGACAGTGAGCGCAGGCTT CTATTACTCCCTCAATAGTGAAGCC ACAGATGTATTGAGGGAGTAATAGA AGCCTTTGCCTACTGCCTCGGA 7121 Grhpr.1009 TGCTGTTGACAGTGAGCGACCCAGC GAACTCAAGCTGTAATAGTGAAGCC ACAGATGTATTACAGCTTGAGTTCG CTGGGCTGCCTACTGCCTCGGA 7122 Grhpr.1187 TGCTGTTGACAGTGAGCGCTGCCAA AAGCCTGTAATTCTATAGTGAAGCC ACAGATGTATAGAATTACAGGCTTT TGGCAATGCCTACTGCCTCGGA 7123 Grhpr.1193 TGCTGTTGACAGTGAGCGCAAGCCT GTAATTCTAGCATTATAGTGAAGCC ACAGATGTATAATGCTAGAATTACA GGCTTTTGCCTACTGCCTCGGA 7124 Grhpr.720 TGCTGTTGACAGTGAGCGACAGCAA GGATTTCTTCCAGAATAGTGAAGCC ACAGATGTATTCTGGAAGAAATCCT TGCTGCTGCCTACTGCCTCGGA 7125 Grhpr.361 TGCTGTTGACAGTGAGCGACTGACA GATGCCACTGCAGAATAGTGAAGC CACAGATGTATTCTGCAGTGGCATC TGTCAGGTGCCTACTGCCTCGGA 7126 Grhpr.787 TGCTGTTGACAGTGAGCGCCAGCAG AGGAGATGTGGTAAATAGTGAAGC CACAGATGTATTTACCACATCTCCT CTGCTGATGCCTACTGCCTCGGA 7127 Grhpr.736 TGCTGTTGACAGTGAGCGACAGCAA GGATTTCTTCCAGAATAGTGAAGCC ACAGATGTATTCTGGAAGAAATCCT TGCTGCTGCCTACTGCCTCGGA 7128 Grhpr.1024 TGCTGTTGACAGTGAGCGCGCCCAG CGAACTCAAGCTGTATAGTGAAGC CACAGATGTATACAGCTTGAGTTCG CTGGGCATGCCTACTGCCTCGGA 7129 Grhpr.1025 TGCTGTTGACAGTGAGCGACCCAGC GAACTCAAGCTGTAATAGTGAAGCC ACAGATGTATTACAGCTTGAGTTCG CTGGGCTGCCTACTGCCTCGGA 7130 lftg1.698 TGCTGTTGACAGTGAGCGCCACGAC ATTGACTGCCTCTAATAGTGAAGCC ACAGATGTATTAGAGGCAGTCAATG TCGTGATGCCTACTGCCTCGGA 7131 Itfg1.376 TGCTGTTGACAGTGAGCGCGCCATC CATACACTCAAAAAATAGTGAAGCC ACAGATGTATTTTTTGAGTGTATGG ATGGCATGCCTACTGCCTCGGA 7132 Itfg1.448 TGCTGTTGACAGTGAGCGCGACGCC ATAGTTGCCACCTTATAGTGAAGCC ACAGATGTATAAGGTGGCAACTATG GCGTCTTGCCTACTGCCTCGGA 7133 Itfg1.694 TGCTGTTGACAGTGAGCGCGAGGCA GATGCTTACTTTGTATAGTGAAGCC ACAGATGTATACAAAGTAAGCATCT GCCTCATGCCTACTGCCTCGGA 7134 Itfg1.2450 TGCTGTTGACAGTGAGCGACCAGAT AAAGTTATTCAAGTATAGTGAAGCC ACAGATGTATACTTGAATAACTTTA TCTGGCTGCCTACTGCCTCGGA 7135 Itfg1.2451 TGCTGTTGACAGTGAGCGACAGATA AAGTTATTCAAGTAATAGTGAAGCC ACAGATGTATTACTTGAATAACTTT ATCTGGTGCCTACTGCCTCGGA 7136 Itfg1.2802 TGCTGTTGACAGTGAGCGCTGGATT GTCACCGAAGACATATAGTGAAGCC ACAGATGTATATGTCTTCGGTGACA ATCCATTGCCTACTGCCTCGGA 7137 Itfg1.2921 TGCTGTTGACAGTGAGCGCAAGCTG GTATTTGAATACTAATAGTGAAGCC ACAGATGTATTAGTATTCAAATACC AGCTTTTGCCTACTGCCTCGGA 7138 Itfg1.680 TGCTGTTGACAGTGAGCGCACCACT GATTATGGACTTCAATAGTGAAGCC ACAGATGTATTGAAGTCCATAATCA GTGGTTTGCCTACTGCCTCGGA 7139 Itfg1.875 TGCTGTTGACAGTGAGCGCCACGAC ATTGACTGCCTCTAATAGTGAAGCC ACAGATGTATTAGAGGCAGTCAATG TCGTGATGCCTACTGCCTCGGA 7140 Itfg1.503 TGCTGTTGACAGTGAGCGCACCACT GATTATGGACTTCAATAGTGAAGCC ACAGATGTATTGAAGTCCATAATCA GTGGTTTGCCTACTGCCTCGGA

TABLE 14 Target sequences. SEQ ID NO: Description Sequence 7156 Human MFAP4 MKALLALPLLLLLSTPPCAPQVSGIRGDALERFCLQQPLDCDDIYAQGYQSDGVYLIYPSGPSVPVPV isoform 1 FCDMTTEGGKWTVFQKRFNGSVSFFRGWNDYKLGFGRADGEYWLGLQNMHLLTLKQKYELRVDLEDFE (UniProtKB: NNTAYAKYADFSISPNAVSAEEDGYTLFVAGFEDGGAGDSLSYHSGQKFSTFDRDQDLFVQNCAALSS P55083-1, v2) GAFWFRSCHFANLNGFYLGGSHLSYANGINWAQWKGFYYSLKRTEMKIRRA 7157 Human MFAP4 MGELSPLQRPLATEGTMKAQGVLLKLALLALPLLLLLSTPPCAPQVSGIRGDALERFCLQQPLDCDDI isoform 2 YAQGYQSDGVYLIYPSGPSVPVPVFCDMTTEGGKWTVFQKRFNGSVSFFRGWNDYKLGFGRADGEYWL (UniProtKB: GLQNMHLLTLKQKYELRVDLEDFENNTAYAKYADFSISPNAVSAEEDGYTLFVAGFEDGGAGDSLSYH P55083-2) SGQKFSTFDRDQDLFVQNCAALSSGAFWFRSCHFANLNGFYLGGSHLSYANGINWAQWKGFYYSLKRT EMKIRRA 7158 Human GRHPR MRPVRLMKVFVTRRIPAEGRVALARAADCEVEQWDSDEPIPAKELERGVAGAHGLLCLLSDHVDKRIL isoform 1 DAAGANLKVISTMSVGIDHLALDEIKKRGIRVGYTPDVLTDTTAELAVSLLLTTCRRLPEAIEEVKNG (UniProtKB: GWTSWKPLWLCGYGLTQSTVGIIGLGRIGQAIARRLKPFGVQRFLYTGRQPRPEEAAEFQAEFVSTPE Q9UBQ7-1, v1) LAAQSDFIVVACSLTPATEGLCNKDFFQKMKETAVFINISRGDVVNQDDLYQALASGKIAAAGLDVTS PEPLPTNHPLLTLKNCVILPHIGSATHRTRNTMSLLAANNLLAGLRGEPMPSELKL 7159 Human GRHPR MLGGVPTLCGTGNETWTLLALGQAIARRLKPFGVQRFLYTGRQPRPEEAAEFQAEFVSTPELAAQSDF isoform 2 IVVACSLTPATEGLCNKDFFQKMKETAVFINISRYPRATLPSKPGEEPSPLLPSGDFLPRGLLVRPQA (UniProtKB: ELAGFHKPNNQLRNSWEYTRPPYREEEPSEWAWPVCFSAVAPTRRGLAHSSVASGSVPREPLQAHYPP Q9UBQ7-2) PQRAGLEDLKGPLEAASHTAEPGFVWLWFSDTLNLMLLGGQTLKLTWS 7160 Human ITFG1 MAAAGRLPSSWALFSPLLAGLALLGVGPVPARALHNVTAELFGAEAWGTLAAFGDLNSDKQTDLFVLR (UniProtKB ERNDLIVFLADQNAPYFKPKVKVSFKNHSALITSVVPGDYDGDSQMDVLLTYLPKNYAKSELGAVIFW Q8TB96-1, v1) GQNQTLDPNNMTILNRTFQDEPLIMDFNGDLIPDIFGITNESNQPQILLGGNLSWHPALTTTSKMRIP HSHAFIDLTEDFTADLFLTTLNATTSTFQFEIWENLDGNFSVSTILEKPQNMMVVGQSAFADFDGDGH MDHLLPGCEDKNCQKSTIYLVRSGMKQWVPVLQDFSNKGTLWGFVPFVDEQQPTEIPIPITLHIGDYN MDGYPDALVILKNTSGSNQQAFLLENVPCNNASCEEARRMFKVYWELTDLNQIKDAMVATFFDIYEDG ILDIWLSKGYTKNDFAIHTLKNNFEADAYFVKVIVLSGLCSNDCPRKITPFGVNQPGPYIMYTTVDA NGYLKNGSAGQLSQSAHLALQLPYNVLGLGRSANFLDHLYVGIPRPSGEKSIRKQEWTAIIPNSQLIV IPYPHNVPRSWSAKLYLTPSNIVLLTAIALIGVCVFILAIIGILHWQEKKADDREKRQEAHRFHFDAM 7161 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV isoform 1 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIQPIFLGKIINYFENYDPMDSVALNTAYA (UniProtKB: YATVLTFCTLILAILHHLYFYHVQCAGMRLRVAMCHMIYRKALRLSNMAMGKTTTGQIVNLLSNDVNK 015439-1, v3) FDQVTVFLHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDAR IRTMNEVITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYV LLGSVITASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKK MVHVQDFTAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIA YVSQQPWVFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVN LARAVYQDADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMV QKGTYTEFLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVWSQQSSRPSLKDGALESQDTE NVPVTLSEENRSEGKVGFQAYKNYFRAGAHWIVFIFLILLNTAAQVAYVLQDWWLSYWANKQSMLNVT VNGGGNVTEKLDLNWYLGIYSGLTVATVLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRN PIGRILNRFSKDIGHLDDLLPLTFLDFIQTLLQVVGVVSVAVAVIPWIAIPLVPLGIIFIFLRRYFLE TSRDVKRLESTTRSPVFSHLSSSLQGLWTIRAYKAEERCQELFDAHQDLHSEAWFLFLTTSRWFAVRL DAICAMFVIIVAFGSLILAKTLDAGQVGLALSYALTLMGMFQWCVRQSAEVENMMISVERVIEYTDLE KEAPWEYQKRPPPAWPHEGVIIFDNVNFMYSPGGPLVLKHLTALIKSQEKVGIVGRTGAGKSSLISAL FRLSEPEGKIWIDKILTTEIGLHDLRKKMSIIPQEPVLFTGTMRKNLDPFNEHTDEELWNALQEVQLK ETIEDLPGKMDTELAESGSNFSVGQRQLVCLARAILRKNQILIIDEATANVDPRTDELIQKKIREKFA HCTVLTIAHRLNTIIDSDKIMVLDSGRLKEYDEPYVLLQNKESLFYKMVQQLGKAEAAALTETAKQVY FKRNYPHIGHTDHMVTNTSNGQPSTLTIFETAL 7162 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV isoform 2 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIQPIFLGKIINYFENYDPMDSVALNTAYA (UniProtKB: YATVLTFCTLILAILHHLYFYHVQCAGMRLRVAMCHMIYRKALRLSNMAMGKTTTGQIVNLLSNDVNK O15439-2) FDQVTVFLHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDAR IRTMNEVITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYV LLGSVITASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKK MVHVQDFTAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIA YVSQQPWVFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVN LARAVYQDADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMV QKGTYTEFLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVW SQQSSRPSLKDGALESQDVAYVLQDWWLSYWANKQSMLNVTVNGGGNVTEKLDLNWYLGIYSGLTVAT VLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRNPIGRILNRFSKDIGHLDDLLPLTFLDF IQTLLQVVGVVSVAVAVIPWIAIPLVPLGIIFIFLRRYFLETSRDVKRLESTTRSPVFSHLSSSLQGL WTIRAYKAEERCQELFDAHQDLHSEAWFLFLTTSRWFAVRLDAICAMFVIIVAFGSLILAKTLDAGQV GLALSYALTLMGMFQWCVRQSAEVENMMISVERVIEYTDLEKEAPWEYQKRPPPAWPHEGVIIFDNVN FMYSPGGPLVLKHLTALIKSQEKVGIVGRTGAGKSSLISALFRLSEPEGKIWIDKILTTEIGLHDLRK KMSIIPQEPVLFTGTMRKNLDPFNEHTDEELWNALQEVQLKETIEDLPGKMDTELAESGSNFSVGQRQ LVCLARAILRKNQILIIDEATANVDPRTDELIQKKIREKFAHCTVLTIAHRLNTIIDSDKIMVLDSGR LKEYDEPYVLLQNKESLFYKMVQQLGKAEAAALTETAKQVYFKRNYPHIGHTDHMVTNTSNGQPSTLT IFETAL 7163 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV isoform 3 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIQPIFLGKIINYFENYDPMDSVALNTAYA (UniProtKB: YATVLTFCTLILAILHHLYFYHVQCAGMRLRVAMCHMIYRKALRLSNMAMGKTTTGQIVNLLSNDVNK O15439-3) FDQVTVFLHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDAR IRTMNEVITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYV LLGSVITASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKK MVHVQDFTAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIA YVSQQPWVFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVN LARAVYQDADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMV QKGTYTEFLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVWSQQSSRPSLKDGALESQDTE NVPVTLSEENRSEGKVGFQAYKNYFRAGAHWIVFIFLILLNTAAQVAYVLQDWWLSYWANKQSMLNVT VNGGGNVTEKLDLNWYLGIYSGLTVATVLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRN PIGRILNRFSKDIGHLDDLLPLTFLDFIQRWDLAVLSWLVSNS 7164 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV isoform 4 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEALRLSNMAMGKTTTGQIVNLLSNDVNKFDQVTVF (UniProtKB: LHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDARIRTMNEV O15439-4) ITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYVLLGSVIT ASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKKMVHVQDF TAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIAYVSQQPW VFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVNLARAVYQ DADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMVQKGTYTE FLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVWSQQSSRPSLKDGALESQDTENVPVTLS EENRSEGKVGFQAYKNYFRAGAHWIVFIFLILLNTAAQVAYVLQDWWLSYWANKQSMLNVTVNGGGNV TEKLDLNWYLGIYSGLTVATVLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRNPIGRILN RFSKDIGHLDDLLPLTFLDFIQRWDLAVLSWLVSNS 7165 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP isoform 1 EISLPSDFEHTIHVGFDAVTGEFTPDLYGSQMCPGKLPEGIPEQWARLLQTSNITKLEQKKNPQAVLD (UniProtKB: VLKFYDSKETVNNQKYMSFTSGDKSAHGYIAAHPSSTKTASEPPLAPPVSEEEDEEEEEEEDENEPPP 075914-1, v2) VIAPRPEHTKSIYTRSWESIASPAVPNKEVTPPSAENANSSTLYRNTDRQRKKSKMTDEEILEKLRS IVSVGDPKKKYTRFEKIGQGASGTVYTALDIATGQEVAIKQMNLQQQPKKELIINEILVMRENKNPNI VNYLDSYLVGDELWVVMEYLAGGSLTDVVTETCMDEGQIAAVCRECLQALDFLHSNQVIHRDIKSDNI LLGMDGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPP YLNENPLRALYLIATNGTPELQNPERLSAVFRDFLNRCLEMDVDRRGSAKELLQHPFLKLAKPLSSLT PLIIAAKEAIKNSSR 7166 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP isoform 2 EISLPSDFEHTIHVGFDAVTGEFTGIPEQWARLLQTSNITKLEQKKNPQAVLDVLKFYDSKETVNNQK (UniProtKB: YMSFTSGDKSAHGYIAAHPSSTKTASEPPLAPPVSEEEDEEEEEEEDENEPPPVIAPRPEHTKSIYTR 075914-2) SVVESIASPAVPNKEVTPPSAENANSSTLYRNTDRQRKKSKMTDEEILEKLRSIVSVGDPKKKYTRFE KIGQGASGTVYTALDIATGQEVAIKQMNLQQQPKKELIINEILVMRENKNPNIVNYLDSYLVGDELWV VMEYLAGGSLTDVVTETCMDEGQIAAVCRECLQALDFLHSNQVIHRDIKSDNILLGMDGSVKLTDFGF CAQITPEQSKRSTMVGTPYWMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPPYLNENPLRALYLIAT NGTPELQNPERLSAVFRDFLNRCLEMDVDRRGSAKELLQHPFLKLAKPLSSLTPLIIAAKEAIKNSSR 7167 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP isoform 3 EISLPSDFEHTIHVGFDAVTGEFTNSPFQTSRPVTVASSQSEGKMPDLYGSQMCPGKLPEGIPEQWAR (UniProtKB: LLQTSNITKLEQKKNPQAVLDVLKFYDSKETVNNQKYMSFTSGDKSAHGYIAAHPSSTKTASEPPLAP 075914-3) PVSEEEDEEEEEEEDENEPPPVIAPRPEHTKSIYTRSVVESIASPAVPNKEVTPPSAENANSSTLYRN TDRQRKKSKMTDEEILEKLRSIVSVGDPKKKYTRFEKIGQGASGTVYTALDIATGQEVAIKQMNLQQQ PKKELIINEILVMRENKNPNIVNYLDSYLVGDELWVVMEYLAGGSLTDVVTETCMDEGQIAAVCRECL QALDFLHSNQVIHRDIKSDNILLGMDGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEVVTRKAYG PKVDIWSLGIMAIEMVEGEPPYLNENPLRALYLIATNGTPELQNPERLSAVFRDFLNRCLEMDVDRRG SAKELLQHPFLKLAKPLSSLTPLIIAAKEAIKNSSR 7168 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP isoform 4 EISLPSDFEHTIHVGFDAVTGEFTNSPFQTSRPVTVASSQSEGKMGIPEQWARLLQTSNITKLEQKKN (UniProtKB: PQAVLDVLKFYDSKETVNNQKYMSFTSGDKSAHGYIAAHPSSTKTASEPPLAPPVSEEEDEEEEEEED 075914-4) ENEPPPVIAPRPEHTKSIYTRSVVESIASPAVPNKEVTPPSAENANSSTLYRNTDRQRKKSKMTDEEI LEKLRSIVSVGDPKKKYTRFEKIGQGASGTVYTALDIATGQEVAIKQMNLQQQPKKELIINEILVMRE NKNPNIVNYLDSYLVGDELWVVMEYLAGGSLTDVVTETCMDEGQIAAVCRECLQALDFLHSNQVIHRD IKSDNILLGMDGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEWTRKAYGPKVDIWSLGIMAIEM VEGEPPYLNENPLRALYLIATNGTPELQNPERLSAVFRDFLNRCLEMDVDRRGSAKELLQHPFLKLAK PLSSLTPLIIAAKEAIKNSSR 7169 Human TRNP1 MPGCRISACGPGAQEGTAEQRSPPPPWDPMPSSQPPPPTPTLTPTPTPGQSPPLPDAAGASAGAAEDQ (UniProtKB: ELQRWRQGASGIAGLAGPGGGSGAAAGAGGRALELAEARRRLLEVEGRRRLVSELESRVLQLHRVFLA Q6NT89-1, v2) AELRLAHRAESLSRLSGGVAQAELYLAAHGSRLKKGPRRGRRGRPPALLASALGLGGCVPWGAGRLRR GHGPEPDSPFRRSPPRGPASPQR 7170 Human APLN MNLRLCVQALLLLWLSLTAVCGGSLMPLPDGNGLEDGNVRHLVQPRGSRNGPGPWQGGRRKFRRQRPR (UniProtKB: LSHKGPMPF Q9ULZ1-1, v1) 7171 Apelin-36 LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF (UniProtKB: Q9ULZ1-1, v1 positions 42-77) 7172 Apelin-31 GSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF (UniProtKB: Q9ULZ1-1, v1 positions 47-77) 7173 Apelin-28 NGPGPWQGGRRKFRRQRPRLSHKGPMPF (UniProtKB: Q9ULZ1-1, v1 positions 50-77) 7174 Apelin-13 QRPRLSHKGPMPF (UniProtKB: Q9ULZ1-1, v1 positions 65-77) 7175 Human KIF20A MSQGILSPPAGLLSDDDVVVSPMFESTAADLGSVVRKNLLSDCSVVSTSLEDKQQVPSEDSMEKVKVY isoform 1 LRVRPLLPSELERQEDQGCVRIENVETLVLQAPKDSFALKSNERGIGQATHRFTFSQIFGPEVGQASF (UniProtKB: FNLTVKEMVKDVLKGQNWLIYTYGVTNSGKTHTIQGTIKDGGILPRSLALIFNSLQGQLHPTPDLKPL 095235-1, v1) LSNEVIWLDSKQIRQEEMKKLSLLNGGLQEEELSTSLKRSVYIESRIGTSTSFDSGIAGLSSISQCTS SSQLDETSHRWAQPDTAPLPVPANIRFSIWISFFEIYNELLYDLLEPPSQQRKRQTLRLCEDQNGNPY VKDLNWIHVQDAEEAWKLLKVGRKNQSFASTHLNQNSSRSHSIFSIRILHLQGEGDIVPKISELSLCD LAGSERCKDQKSGERLKEAGNINTSLHTLGRCIAALRQNQQNRSKQNLVPFRDSKLTRVFQGFFTGRG RSCMIVNVNPCASTYDETLHVAKFSAIASQLVHAPPMQLGFPSLHSFIKEHSLQVSPSLEKGAKADTG LDDDIENEADISMYGKEELLQVVEAMKTLLLKERQEKLQLEMHLRDEICNEMVEQMQQREQWCSEHLD TQKELLEEMYEEKLNILKESLTSFYQEEIQERDEKIEELEALLQEARQQSVAHQQSGSELALRRSQRL AASASTQQLQEVKAKLQQCKAELNSTTEELHKYQKMLEPPPSAKPFTIDVDKKLEEGQKNIRLLRTEL QKLGESLQSAERACCHSTGAGKLRQALTTCDDILIKQDQTLAELQNNMVLVKLDLRKKAACIAEQYHT VLKLQGQVSAKKRLGTNQENQQPNQQPPGKKPFLRNLLPRTPTCQSSTDCSPYARILRSRRSPLLKSG PFGKKY 7176 Human KIF20A MSQGILSPPAGLLSDDDVVVSPMFESTAADLGSVVRKNLLSDCSVVSTSLEDKQQVPSEDSMEKEDQG isoform 2 CVRIENVETLVLQAPKDSFALKSNERGIGQATHRFTFSQIFGPEVGQASFFNLTVKEMVKDVLKGQNW (UniProtKB: LIYTYGVTNSGKTHTIQGTIKDGGILPRSLALIFNSLQGQLHPTPDLKPLLSNEVIWLDSKQIRQEEM 095235-2) KKLSLLNGGLQEEELSTSLKRSVYIESRIGTSTSFDSGIAGLSSISQCTSSSQLDETSHRWAQPDTAP LPVPANIRFSIWISFFEIYNELLYDLLEPPSQQRKRQTLRLCEDQNGNPYVKDLNWIHVQDAEEAWKL LKVGRKNQSFASTHLNQNSSRSHSIFSIRILHLQGEGDIVPKISELSLCDLAGSERCKDQKSGERLKE AGNINTSLHTLGRCIAALRQNQQNRSKQNLVPFRDSKLTRVFQGFFTGRGRSCMIVNVNPCASTYDET LHVAKFSAIASQLVHAPPMQLGFPSLHSFIKEHSLQVSPSLEKGAKADTGLDDDIENEADISMYGKEE LLQVVEAMKTLLLKERQEKLQLEMHLRDEICNEMVEQMQQREQWCSEHLDTQKELLEEMYEEKLNILK ESLTSFYQEEIQERDEKIEELEALLQEARQQSVAHQQSGSELALRRSQRLAASASTQQLQEVKAKLQQ CKAELNSTTEELHKYQKMLEPPPSAKPFTIDVDKKLEEGQKNIRLLRTELQKLGESLQSAERACCHST GAGKLRQALTTCDDILIKQDQTLAELQNNMVLVKLDLRKKAACIAEQYHTVLKLQGQVSAKKRLGTNQ ENQQPNQQPPGKKPFLRNLLPRTPTCQSSTDCSPYARILRSRRSPLLKSGPFGKKY 7177 Human LTB MGALGLEGRGGRLQGRGSLLLAVAGATSLVTLLLAVPITVLAVLALVPQDQGGLVTETADPGAQAQQG isoform 1 LGFQKLPEEEPETDLSPGLPAAHLIGAPLKGQGLGWETTKEQAFLTSGTQFSDAEGLALPQDGLYYLY (UniProtKB: CLVGYRGRAPPGGGDPQGRSVTLRSSLYRAGGAYGPGTPELLLEGAETVTPVLDPARRQGYGPLWYTS Q06643-1, v1) VGFGGLVQLRRGERVYVNISHPDMVDFARGKTFFGAVMVG 7178 Human LTB MGALGLEGRGGRLQGRGSLLLAVAGATSLVTLLLAVPITVLAVLALVPQDQGGLGFRSCQRRSQKQIS isoform 2 APGSQLPTS (UniProtKB: Q06643-2) 7179 Human MFAP4 GCAGACACCCAGCCACTCTGAGCAGAACTGACAGCATGAAGGTACGGGGCCCAGGGTCGGGGGACTCA transcript TAGCATGGGGGAACTGAGCCCACTCCAGAGGCCCCTGGCCACAGAGGGCACTATGAAGGCACAAGGAG variant 1 mRNA TTCTCTTGAAACTCGCACTCCTGGCCCTGCCGCTGCTGCTGCTTCTCTCCACGCCCCCGTGTGCCCCC NM_001198695. CAGGTCTCCGGGATCCGAGGAGATGCTCTGGAGAGGTTTTGCCTTCAGCAACCCCTGGACTGTGACGA 2 CATCTATGCCCAGGGCTACCAGTCAGACGGCGTGTACCTCATCTACCCCTCGGGCCCCAGTGTGCCTG (GI:1677501926 TGCCCGTCTTCTGTGACATGACCACCGAGGGCGGGAAGTGGACGGTTTTCCAGAAGAGATTCAATGGC version 2) TCAGTAAGTTTCTTCCGCGGCTGGAATGACTACAAGCTGGGCTTCGGCCGTGCTGATGGAGAGTACTG GCTGGGGCTGCAGAACATGCACCTCCTGACACTGAAGCAGAAGTATGAGCTGCGAGTGGACTTGGAGG ACTTTGAGAACAACACGGCCTATGCCAAGTACGCTGACTTCTCCATCTCCCCGAACGCGGTCAGCGCA GAGGAGGATGGCTACACCCTCTTTGTGGCAGGCTTTGAGGATGGCGGGGCAGGTGACTCCCTGTCCTA CCACAGTGGCCAGAAGTTCTCTACCTTCGACCGGGACCAGGACCTCTTTGTGCAGAACTGCGCAGCTC TCTCCTCAGGAGCCTTCTGGTTCCGCAGCTGCCACTTTGCCAACCTCAATGGCTTCTACCTAGGTGGC TCCCACCTCTCTTATGCCAATGGCATCAACTGGGCCCAGTGGAAGGGCTTCTACTACTCCCTCAAACG CACTGAGATGAAAATCCGCCGGGCCTGAAGGGCTGGCCCCCTCAGGCACCTTTCCTCCCCTGGACACC CATGGTCTCCATGAGTGCTCCCTCTGCTGCCCCTGATGCATGCTTCTGCTGATTCCCGAGCACCAACT CCTTACAAGGGGGCCTTGTGGCTCTCAGCCATGCCACATCCCTGTCACACACCCAGGGCATCCATTCC TAAGCCAGACCCGGCTCCCCTACACCTGAAGTTACACTGCCAGCAGTTCCCCAGGCCTCTTCCGAGAG GCACATGGTTCTAGCCTGGACCTGGCTGGGCTCCATGAGAATGAGTTGCCTCCAACCTGTCCCAACAG CTGACAGCCAGGAGCCACTCTCCCAGCTGCAGGCCTTTGTGGTCCATCTTGTCCTGCTTCCTCACTGT GGACCCCTGTCTGGGCCACCCTAGTGTGCTAAGCTGAGCAGTGCAGTGTGAACAGGGCCCATGGTGTA TTCTAGGCCACAGCCCAGCACTCCTCTGGGCTGCTCTCAAACCATGTCCCATCTTCAGCATCCCTCCC ACCAACTTACTCCCCTGTGGTGAGTACCGTGGAACCCCAGCCCACCTCACTATCATACTCAGCTTCCC CTGATGGCCCATCCCAGCCCCTGAAGCTCTATGCCAAGAACACAGCTACCGCACACCACCCTGAAACA GCCACAGCCAAGGTAGGCATGCATATGAGGTCTTCCCCATACCCTCTGGGTGTTGAGAGGTTTAGCCA CATGAGGGAGCAGAGGACAATCTCTGCAGGGCTGGGAGTGGGTAGGGACTGAAGGTCTCAATAAACCT TCAGAACCTGAATGAACTGGCTTCATACACACAAACATATTTGTTTATCCCCCAAATGTAGGCACCTG GCTCCTCCTTGCTCCCCTGCTGATGGTGTCCTACCCCGAACTCCAAAAATTACACCTGGAGTCAGGTG CAGAAGGGAACCTTGTATTTCACAGGCCTCATTTTGATGGCAAAAAGACAGTGTAATAATAACATAAT AATAATAAAAATATAATACTGAAAA 7180 Human MFAP4 GCAGACACCCAGCCACTCTGAGCAGAACTGACAGCATGAAGGCACTCCTGGCCCTGCCGCTGCTGCTG transcript CTTCTCTCCACGCCCCCGTGTGCCCCCCAGGTCTCCGGGATCCGAGGAGATGCTCTGGAGAGGTTTTG variant CCTTCAGCAACCCCTGGACTGTGACGACATCTATGCCCAGGGCTACCAGTCAGACGGCGTGTACCTCA 2 mRNA TCTACCCCTCGGGCCCCAGTGTGCCTGTGCCCGTCTTCTGTGACATGACCACCGAGGGCGGGAAGTGG NM_002404.3 ACGGTTTTCCAGAAGAGATTCAATGGCTCAGTAAGTTTCTTCCGCGGCTGGAATGACTACAAGCTGGG (GI:1677501522 CTTCGGCCGTGCTGATGGAGAGTACTGGCTGGGGCTGCAGAACATGCACCTCCTGACACTGAAGCAGA version 3) AGTATGAGCTGCGAGTGGACTTGGAGGACTTTGAGAACAACACGGCCTATGCCAAGTACGCTGACTTC TCCATCTCCCCGAACGCGGTCAGCGCAGAGGAGGATGGCTACACCCTCTTTGTGGCAGGCTTTGAGGA TGGCGGGGCAGGTGACTCCCTGTCCTACCACAGTGGCCAGAAGTTCTCTACCTTCGACCGGGACCAGG ACCTCTTTGTGCAGAACTGCGCAGCTCTCTCCTCAGGAGCCTTCTGGTTCCGCAGCTGCCACTTTGCC AACCTCAATGGCTTCTACCTAGGTGGCTCCCACCTCTCTTATGCCAATGGCATCAACTGGGCCCAGTG GAAGGGCTTCTACTACTCCCTCAAACGCACTGAGATGAAAATCCGCCGGGCCTGAAGGGCTGGCCCCC TCAGGCACCTTTCCTCCCCTGGACACCCATGGTCTCCATGAGTGCTCCCTCTGCTGCCCCTGATGCAT GCTTCTGCTGATTCCCGAGCACCAACTCCTTACAAGGGGGCCTTGTGGCTCTCAGCCATGCCACATCC CTGTCACACACCCAGGGCATCCATTCCTAAGCCAGACCCGGCTCCCCTACACCTGAAGTTACACTGCC AGCAGTTCCCCAGGCCTCTTCCGAGAGGCACATGGTTCTAGCCTGGACCTGGCTGGGCTCCATGAGAA TGAGTTGCCTCCAACCTGTCCCAACAGCTGACAGCCAGGAGCCACTCTCCCAGCTGCAGGCCTTTGTG GTCCATCTTGTCCTGCTTCCTCACTGTGGACCCCTGTCTGGGCCACCCTAGTGTGCTAAGCTGAGCAG TGCAGTGTGAACAGGGCCCATGGTGTATTCTAGGCCACAGCCCAGCACTCCTCTGGGCTGCTCTCAAA CCATGTCCCATCTTCAGCATCCCTCCCACCAACTTACTCCCCTGTGGTGAGTACCGTGGAACCCCAGC CCACCTCACTATCATACTCAGCTTCCCCTGATGGCCCATCCCAGCCCCTGAAGCTCTATGCCAAGAAC ACAGCTACCGCACACCACCCTGAAACAGCCACAGCCAAGGTAGGCATGCATATGAGGTCTTCCCCATA CCCTCTGGGTGTTGAGAGGTTTAGCCACATGAGGGAGCAGAGGACAATCTCTGCAGGGCTGGGAGTGG GTAGGGACTGAAGGTCTCAATAAACCTTCAGAACCTGAATGAACTGGCTTCATACACACAAACATATT TGTTTATCCCCCAAATGTAGGCACCTGGCTCCTCCTTGCTCCCCTGCTGATGGTGTCCTACCCCGAAC TCCAAAAATTACACCTGGAGTCAGGTGCAGAAGGGAACCTTGTATTTCACAGGCCTCATTTTGATGGC AAAAAGACAGTGTAATAATAACATAATAATAATAAAAATATAATACTGAAAA 7181 Human GRHPR ACATTCCCGGGCCAGCTTCTGTACTGCCAGGTCCGGGTCGGCGGCTGCACTGCGGATGAGACCGGTGC transcript GACTCATGAAGGTGTTCGTCACCCGCAGGATACCCGCCGAGGGTAGGGTCGCGCTCGCCCGGGCGGCA variant GACTGTGAGGTGGAGCAGTGGGACTCGGATGAGCCCATCCCTGCCAAGGAGCTAGAGCGAGGTGTGGC 1 mRNA GGGGGCCCACGGCCTGCTCTGCCTCCTCTCCGACCACGTGGACAAGAGGATCCTGGATGCTGCAGGGG NM_012203.2 CCAATCTCAAAGTCATCAGCACCATGTCTGTGGGCATCGACCACTTGGCTTTGGATGAAATCAAGAAG (GI:1519473711 CGTGGGATCCGAGTTGGCTACACCCCAGATGTCCTGACAGATACCACCGCCGAACTCGCAGTCTCCCT version 2) GCTACTTACCACCTGCCGCCGGTTGCCGGAGGCCATCGAGGAAGTGAAGAATGGTGGCTGGACCTCGT GGAAGCCCCTCTGGCTGTGTGGCTATGGACTCACGCAGAGCACTGTCGGCATCATCGGGCTGGGGCGC ATAGGCCAGGCCATTGCTCGGCGTCTGAAACCATTCGGTGTCCAGAGATTTCTGTACACAGGGCGCCA GCCCAGGCCTGAGGAAGCAGCAGAATTCCAGGCAGAGTTTGTGTCTACCCCTGAGCTGGCTGCCCAAT CTGATTTCATCGTCGTGGCCTGCTCCTTAACACCTGCAACCGAGGGACTCTGCAACAAGGACTTCTTC CAGAAGATGAAGGAAACAGCTGTGTTCATCAACATCAGCAGGGGCGACGTCGTAAACCAGGACGACCT GTACCAGGCCTTGGCCAGTGGTAAGATTGCAGCTGCTGGACTGGATGTGACGAGCCCAGAACCACTGC CTACAAACCACCCTCTCCTGACCCTGAAGAACTGTGTGATTCTGCCCCACATTGGCAGTGCCACCCAC AGAACCCGCAACACCATGTCCTTGTTGGCAGCTAACAACTTGCTGGCTGGCCTGAGAGGGGAGCCGAT GCCTAGTGAACTCAAGCTGTAGCCAAACAGTAGAGATGGAGGGCCGGGAAGCAAACCGTGCCCTGGTA TTGTCAGACACACCCAGGCTTGATTTGGATCCACAGGCAGAGCCAAGGGAAGGTGTGATTCTCTGAGG AAAGAGTGATTCTGATATATGTACTTGTCACATTGGTGTTGGACACATTTGCGCCAAAAGTATGGTAA TTCTATTATTAAATAATTCTCTGAGA 7182 Human ITFG1 GGGGGCTGAGGGGCTGCCATGGCGGCGGCGGGCCGGCTCCCGAGCTCCTGGGCCCTCTTCTCGCCGCT transcript  CCTCGCAGGGCTTGCACTACTGGGAGTCGGGCCGGTCCCAGCGCGGGCGCTGCACAACGTCACGGCCG variant AGCTCTTTGGGGCCGAGGCCTGGGGCACCCTTGCGGCTTTCGGGGACCTCAACTCCGACAAGCAGACG 1 mRNA GATCTCTTCGTGCTGCGGGAAAGAAATGACTTAATCGTCTTTTTGGCAGACCAGAATGCACCCTATTT NM_030790.5 TAAACCCAAAGTAAAGGTATCTTTCAAGAATCACAGTGCATTGATAACAAGTGTAGTCCCTGGGGATT (GI:1653961895 ATGATGGAGATTCTCAAATGGATGTCCTTCTGACATATCTTCCCAAAAATTATGCCAAGAGTGAATTA version 5) GGAGCTGTTATCTTCTGGGGACAAAATCAAACATTAGATCCTAACAATATGACCATACTCAATAGGAC TTTTCAAGATGAGCCACTAATTATGGATTTCAATGGTGATCTAATTCCTGATATTTTTGGTATCACAA ATGAATCCAACCAGCCACAGATACTATTAGGAGGGAATTTATCATGGCATCCAGCATTGACCACTACA AGTAAAATGCGAATTCCACATTCTCATGCATTTATTGATCTGACTGAAGATTTTACAGCAGATTTATT CCTGACGACATTGAATGCCACCACTAGTACCTTCCAGTTTGAAATATGGGAAAATTTGGATGGAAACT TCTCTGTCAGTACTATATTGGAAAAACCTCAAAATATGATGGTGGTTGGACAGTCAGCATTTGCAGAC TTTGATGGAGATGGACACATGGATCATTTACTGCCAGGCTGTGAAGATAAAAATTGCCAAAAGAGTAC CATCTACTTAGTGAGATCTGGGATGAAGCAGTGGGTTCCAGTCCTACAAGATTTCAGCAATAAGGGCA CACTCTGGGGCTTTGTGCCATTTGTGGATGAACAGCAACCAACTGAAATACCAATTCCAATTACCCTT CATATTGGAGACTACAATATGGATGGCTATCCAGACGCTCTGGTCATACTAAAGAACACATCTGGAAG CAACCAGCAGGCCTTTTTACTGGAGAACGTCCCTTGTAATAATGCAAGCTGTGAAGAGGCGCGTCGAA TGTTTAAAGTCTACTGGGAGCTGACAGACCTAAATCAAATTAAGGATGCCATGGTTGCCACCTTCTTT GACATTTACGAAGATGGAATCTTGGACATTGTAGTGCTAAGTAAAGGATATACAAAGAATGATTTTGC CATTCATACACTAAAAAATAACTTTGAAGCAGATGCTTATTTTGTTAAAGTTATTGTTCTTAGTGGTC TGTGTTCTAATGACTGTCCTCGTAAGATAACACCCTTTGGAGTGAATCAACCTGGACCTTATATCATG TATACAACTGTAGATGCAAATGGGTATCTGAAAAATGGATCAGCTGGCCAACTCAGCCAATCCGCACA TTTAGCTCTCCAACTACCATACAACGTGCTTGGTTTAGGTCGGAGCGCAAATTTTCTTGACCATCTCT ACGTTGGTATTCCCCGTCCATCTGGAGAAAAATCTATACGAAAACAAGAGTGGACTGCAATCATTCCA AATTCCCAGCTAATTGTCATTCCATACCCTCACAATGTCCCTCGAAGTTGGAGTGCCAAACTGTATCT TACACCAAGTAATATTGTTCTGCTTACTGCTATAGCTCTCATCGGTGTCTGTGTTTTCATCTTGGCAA TAATTGGCATTTTACATTGGCAGGAAAAGAAAGCAGATGATAGAGAAAAACGACAAGAAGCCCACCGG TTTCATTTTGATGCTATGTGACTTGCCTTTAATATTACATAATGGAATGGCTGTTCACTTGATTAGTT GAAACACAAATTCTGGCTTGAAAAAATAGGGGAGATTAAATATTATTTATAAATGATGTATCCCATGG TAATTATTGGAAAGTATTCAAATAAATATGGTTTGAATATGTCACAAGGTCTTTTTTTTTAAAGCACT TTGTATATAAAAATTTGGGTTCTCTATTCTGTAGTGCTGTACATTTTTGTTCCTTTGTGGAATGTGTT GCATGTACTCCAGTGTTTGTGTATTTATAATCTTATTTGCATCATGATGATGGAAAAAGTTGTGTAAA TAAAAATAATTAAATGAGCAGGAATTTTTGTGTCCACTTGACTTGGTCTTGCTTCTTATTCTAATGAT GCAAATTATACTTTTGTGAATATATCACGGAGTCATTAGGCATTCAGCTTCATCACAGCAGGTCAGGG GTCTCACTGATGGCATACAATATAGTGATCGGGTACTCTGACTTGGTAGCACAGTAAGACAGACTTGC CTTAAACTCCTAATTCAACCACTTACAAAGTCATTGTTTGAACTTGGCTCTTGTTTAACCTCTGTAAA CCTCAGTTTTCTTGTTTATTCAGTGGGGCTAATACTTGAGTTACTGTAAACATTAAATGGGATGATGT ATGTGAAGTGCTTAGCTTGGTGCCTAGCACAGAGTAAGTGGTCAATATGTGGTAGTTGTCATTATTAA TATTTTAGATGATCTTATTAGACTTATACATCTAATTATAGAAATACATAGACTTGATAGAATTTTAT TTTCAGGCATGAAGAAATATTCTTTGGAAAAGCTAAATTTTTGGTGATTGACATAAAGATTTACTTGC TCATATTAACTAAAAATTATAGTACTCTCCAAGAATTAATGTGCCCTAAAAATTTTCCTCCAAAAACT TATCCTTATCATGTGATAATGAAGAACATTTGATTTCTTGAAAGGAAACTGCTGTAGGCAGCATCTGG GAATGCAAATCTTCAATCACATTTCTATTCTCAAACACTTGGAGAAGTCTATAATTTACATTCAGACT TCAATGCAAATTTTGTATTGTGAACTTCACATTTCCAAAAAGTTACTTTAAAAAGACTTTAAGACTGA AAAAAAAAAGTTTATCAATGCTAATAATTTTCTAGTATGCAAATGGACATGTGATGCCTATAAAACAC AAAAATTTCTCTGAAAACAATTTTGTTCTTATTTTTTTCTTTATAGTTCACTGAGATTGGCATGTGTT TTTACTTTGTATCTAAGCATGTTAACATGTCTTCTTAATAAATATTCCTTATTGAAA 7183 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT 1 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT NM_005845.5 TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT (GI:1813751621 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT version 5) CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGAAAGTGCCAAAGTAATCCAGCCCATATTTTTG GGAAAAATTATTAATTATTTTGAAAATTATGATCCCATGGATTCTGTGGCTTTGAACACAGCGTACGC CTATGCCACGGTGCTGACTTTTTGCACGCTCATTTTGGCTATACTGCATCACTTATATTTTTATCACG TTCAGTGTGCTGGGATGAGGTTACGAGTAGCCATGTGCCATATGATTTATCGGAAGGCACTTCGTCTT AGTAACATGGCCATGGGGAAGACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAA GTTTGATCAGGTGACAGTGTTCTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTG CCCTACTCTGGATGGAGATAGGAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCC TTGCAAAGCTGTTTTGGGAAGTTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAG GATCAGGACCATGAATGAAGTTATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCAT TTTCAAATCTTATTACCAATTTGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGA GGGATGAATTTGGCTTCATTTTTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGT GCTCCTCGGCAGTGTGATCACAGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGC TGACGGTTACCCTCTTCTTCCCCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGA ATCCAGACCTTTTTGCTACTTGATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAA GATGGTGCATGTGCAGGATTTTACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCC TTTCCTTTACTGTCAGACCTGGCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCA CTGTTAAGTGCCGTGCTCGGGGAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGC CTATGTGTCTCAGCAGCCCTGGGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAAT ACGAAAAGGAACGATATGAAAAAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAG GATGGTGATCTGACTGTGATAGGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAA CCTTGCAAGAGCAGTGTATCAAGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATG CGGAAGTTAGCAGACACTTGTTCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTA GTGACTCATCAGTTGCAGTACCTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGT GCAGAAGGGGACTTACACTGAGTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATA ATGAGGAAAGTGAACAACCTCCAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCT TCGGTTTGGTCTCAACAATCTTCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATACAGA GAATGTCCCAGTTACACTATCAGAGGAGAACCGTTCTGAAGGAAAAGTTGGTTTTCAGGCCTATAAGA ATTACTTCAGAGCTGGTGCTCACTGGATTGTCTTCATTTTCCTTATTCTCCTAAACACTGCAGCTCAG GTTGCCTATGTGCTTCAAGATTGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTCAC TGTAAATGGAGGAGGAAATGTAACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGGTT TAACTGTAGCTACCGTTCTTTTTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACTCT TCACAAACTTTGCACAACAAAATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGAAA TCCAATAGGAAGAATTTTAAATCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCTGA CGTTTTTAGATTTCATCCAGACATTGCTACAAGTGGTTGGTGTGGTCTCTGTGGCTGTGGCCGTGATT CCTTGGATCGCAATACCCTTGGTTCCCCTTGGAATCATTTTCATTTTTCTTCGGCGATATTTTTTGGA AACGTCAAGAGATGTGAAGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTTATCATCTT CTCTCCAGGGGCTCTGGACCATCCGGGCATACAAAGCAGAAGAGAGGTGTCAGGAACTGTTTGATGCA CACCAGGATTTACATTCAGAGGCTTGGTTCTTGTTTTTGACAACGTCCCGCTGGTTTGCCGTCCGTCT GGATGCCATCTGTGCCATGTTTGTCATCATCGTTGCCTTTGGGTCCCTGATTCTGGCAAAAACTCTGG ATGCCGGGCAGGTTGGTTTGGCACTGTCCTATGCCCTCACGCTCATGGGGATGTTTCAGTGGTGTGTT CGACAAAGTGCTGAAGTTGAGAATATGATGATCTCAGTAGAAAGGGTCATTGAATACACAGACCTTGA AAAAGAAGCACCTTGGGAATATCAGAAACGCCCACCACCAGCCTGGCCCCATGAAGGAGTGATAATCT TTGACAATGTGAACTTCATGTACAGTCCAGGTGGGCCTCTGGTACTGAAGCATCTGACAGCACTCATT AAATCACAAGAAAAGGTTGGCATTGTGGGAAGAACCGGAGCTGGAAAAAGTTCCCTCATCTCAGCCCT TTTTAGATTGTCAGAACCCGAAGGTAAAATTTGGATTGATAAGATCTTGACAACTGAAATTGGACTTC ACGATTTAAGGAAGAAGATGTCAATCATACCTCAGGAACCTGTTTTGTTCACTGGAACAATGAGGAAA AACCTGGATCCCTTTAATGAGCACACGGATGAGGAACTGTGGAATGCCTTACAAGAGGTACAACTTAA AGAAACCATTGAAGATCTTCCTGGTAAAATGGATACTGAATTAGCAGAATCAGGATCCAATTTTAGTG TTGGACAAAGACAACTGGTGTGCCTTGCCAGGGCAATTCTCAGGAAAAATCAGATATTGATTATTGAT GAAGCGACGGCAAATGTGGATCCAAGAACTGATGAGTTAATACAAAAAAAAATCCGGGAGAAATTTGC CCACTGCACCGTGCTAACCATTGCACACAGATTGAACACCATTATTGACAGCGACAAGATAATGGTTT TAGATTCAGGAAGACTGAAAGAATATGATGAGCCGTATGTTTTGCTGCAAAATAAAGAGAGCCTATTT TACAAGATGGTGCAACAACTGGGCAAGGCAGAAGCCGCTGCCCTCACTGAAACAGCAAAACAGGTATA CTTCAAAAGAAATTATCCACATATTGGTCACACTGACCACATGGTTACAAACACTTCCAATGGACAGC CCTCGACCTTAACTATTTTCGAGACAGCACTGTGAATCCAACCAAAATGTCAAGTCCGTTCCGAAGGC ATTTTCCACTAGTTTTTGGACTATGTAAACCACATTGTACTTTTTTTTACTTTGGCAACAAATATTTA TACATACAAGATGCTAGTTCATTTGAATATTTCTCCCAACTTATCCAAGGATCTCCAGCTCTAACAAA ATGGTTTATTTTTATTTAAATGTCAATAGTTGTTTTTTAAAATCCAAATCAGAGGTGCAGGCCACCAG TTAAATGCCGTCTATCAGGTTTTGTGCCTTAAGAGACTACAGAGTCAAAGCTCATTTTTAAAGGAGTA GGACAAAGTTGTCACAGGTTTTTGTTGTTGTTTTTATTGCCCCCAAAATTACATGTTAATTTCCATTT ATATCAGGGATTCTATTTACTTGAAGACTGTGAAGTTGCCATTTTGTCTCATTGTTTTCTTTGACATA ACTAGGATCCATTATTTCCCCTGAAGGCTTCTTGTTAGAAAATAGTACAGTTACAACCAATAGG AACAACAAAAAGAAAAAGTTTGTGACATTGTAGTAGGGAGTGTGTACCCCTTACTCCCCATCAAAAAA AAAAATGGATACATGGTTAAAGGATAGAAGGGCAATATTTTATCATATGTTCTAAAAGAGAAGGAAGA GAAAATACTACTTTCTCAAAATGGAAGCCCTTAAAGGTGCTTTGATACTGAAGGACACAAATGTGACC GTCCATCCTCCTTTAGAGTTGCATGACTTGGACACGGTAACTGTTGCAGTTTTAGACTCAGCATTGTG ACACTTCCCAAGAAGGCCAAACCTCTAACCGACATTCCTGAAATACGTGGCATTATTCTTTTTTGGAT TTCTCATTTATGGAAGGCTAACCCTCTGTTGACTGTAAGCCTTTTGGTTTGGGCTGTATTGAAATCCT TTCTAAATTGCATGAATAGGCTCTGCTAACGTGATGAGACAAACTGAAAATTATTGCAAGCATTGACT ATAATTATGCAGTACGTTCTCAGGATGCATCCAGGGGTTCATTTTCATGAGCCTGTCCAGGTTAGTTT ACTCCTGACCACTAATAGCATTGTCATTTGGGCTTTCTGTTGAATGAATCAACAAACCACAATACTTC CTGGGACCTTTTGTACTTTATTTGAACTATGAGTCTTTAATTTTTCCTGATGATGGTGGCTGTAATAT GTTGAGTTCAGTTTACTAAAGGTTTTACTATTATGGTTTGAAGTGGAGTCTCATGACCTCTCAGAATA AGGTGTCACCTCCCTGAAATTGCATATATGTATATAGACATGCACACGTGTGCATTTGTTTGTATACA TATATTTGTCCTTCGTATAGCAAGTTTTTTGCTCATCAGCAGAGAGCAACAGATGTTTTATTGAGTGA AGCCTTAAAAAGCACACACCACACACAGCTAACTGCCAAAATACATTGACCGTAGTAGCTGTTCAACT CCTAGTACTTAGAAATACACGTATGGTTAATGTTCAGTCCAACAAACCACACACAGTAAATGTTTATT AATAGTCATGGTTCGTATTTTAGGTGACTGAAATTGCATCAGTGATCATAATGAGGTTTGTTAAAACG ATAGCTATATTCAAAATGTCTATATGTTTATTTGGACTTTTGAGGTTAAAGACAGTCATATAAACGTC CTGTTTCTGTTTTAATGTTATCATAGAATTTTTTAATGAAACTAAATTCAATTGAAATAAATGATAGT TTTCATCTCCA 7184 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT 2 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT NM_001105515. TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT 3 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT (GI:1677498821 CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGAAAGTGCCAAAGTAATCCAGCCCATATTTTTG version 3) GGAAAAATTATTAATTATTTTGAAAATTATGATCCCATGGATTCTGTGGCTTTGAACACAGCGTACGC CTATGCCACGGTGCTGACTTTTTGCACGCTCATTTTGGCTATACTGCATCACTTATATTTTTATCACG TTCAGTGTGCTGGGATGAGGTTACGAGTAGCCATGTGCCATATGATTTATCGGAAGGCACTTCGTCTT AGTAACATGGCCATGGGGAAGACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAA GTTTGATCAGGTGACAGTGTTCTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTG CCCTACTCTGGATGGAGATAGGAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCC TTGCAAAGCTGTTTTGGGAAGTTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAG GATCAGGACCATGAATGAAGTTATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCAT TTTCAAATCTTATTACCAATTTGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGA GGGATGAATTTGGCTTCATTTTTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGT GCTCCTCGGCAGTGTGATCACAGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGC TGACGGTTACCCTCTTCTTCCCCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGA ATCCAGACCTTTTTGCTACTTGATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAA GATGGTGCATGTGCAGGATTTTACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCC TTTCCTTTACTGTCAGACCTGGCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCA CTGTTAAGTGCCGTGCTCGGGGAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGC CTATGTGTCTCAGCAGCCCTGGGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAAT ACGAAAAGGAACGATATGAAAAAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAG GATGGTGATCTGACTGTGATAGGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAA CCTTGCAAGAGCAGTGTATCAAGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATG CGGAAGTTAGCAGACACTTGTTCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTA GTGACTCATCAGTTGCAGTACCTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGT GCAGAAGGGGACTTACACTGAGTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATA ATGAGGAAAGTGAACAACCTCCAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCT TCGGTTTGGTCTCAACAATCTTCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATACAGA GAATGTCCCAGTTACACTATCAGAGGAGAACCGTTCTGAAGGAAAAGTTGGTTTTCAGGCCTATAAGA ATTACTTCAGAGCTGGTGCTCACTGGATTGTCTTCATTTTCCTTATTCTCCTAAACACTGCAGCTC AGGTTGCCTATGTGCTTCAAGATTGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTC ACTGTAAATGGAGGAGGAAATGTAACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGG TTTAACTGTAGCTACCGTTCTTTTTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACT CTTCACAAACTTTGCACAACAAAATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGA AATCCAATAGGAAGAATTTTAAATCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCT GACGTTTTTAGATTTCATCCAGAGATGGGATCTCGCTGTGTTGTCCTGGCTGGTCTCAAACTCCTAGG CTCAAGCAATCCTCCTCCCTCCTCAAGCAAACCTCAGTGCTGGGATTATAGGCATGAGCCACTGTACC TGGCTAAATGTTGTTTTTTTGATATTCAATTTTTGTTTATAGAATTTTCATTTGTTTTGCTCTTATAC TTTTCATCTTTTTATGTTTATTGACCAATTAAATATCATTTGGGTAAGCACCTATTTAAGTGTCTTAA CAATTTTTCTATTGAGTACTCTGGGTTTTTGTTTTGTTTTTCTTACTGATTTGTAGAATTCTTTATGT ATTCTGAATTGCAGATACCTTCCTTCTGTACTAATGCTTATCTTTTTAGCCCTGTAATATTGTGTTTT CATAAACATACTTATCAATCTTT 7185 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT 3 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT NM_001301829. TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT 2 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT (GI:1677530022 CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGAAAGTGCCAAAGTAATCCAGCCCATATTTTTG version 2) GGAAAAATTATTAATTATTTTGAAAATTATGATCCCATGGATTCTGTGGCTTTGAACACAGCGTACGC CTATGCCACGGTGCTGACTTTTTGCACGCTCATTTTGGCTATACTGCATCACTTATATTTTTATCACG TTCAGTGTGCTGGGATGAGGTTACGAGTAGCCATGTGCCATATGATTTATCGGAAGGCACTTCGTCTT AGTAACATGGCCATGGGGAAGACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAA GTTTGATCAGGTGACAGTGTTCTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTG CCCTACTCTGGATGGAGATAGGAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCC TTGCAAAGCTGTTTTGGGAAGTTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAG GATCAGGACCATGAATGAAGTTATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCAT TTTCAAATCTTATTACCAATTTGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGA GGGATGAATTTGGCTTCATTTTTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGT GCTCCTCGGCAGTGTGATCACAGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGC TGACGGTTACCCTCTTCTTCCCCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGA ATCCAGACCTTTTTGCTACTTGATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAA GATGGTGCATGTGCAGGATTTTACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCC TTTCCTTTACTGTCAGACCTGGCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCA CTGTTAAGTGCCGTGCTCGGGGAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGC CTATGTGTCTCAGCAGCCCTGGGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAAT ACGAAAAGGAACGATATGAAAAAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAG GATGGTGATCTGACTGTGATAGGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAA CCTTGCAAGAGCAGTGTATCAAGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATG CGGAAGTTAGCAGACACTTGTTCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTA GTGACTCATCAGTTGCAGTACCTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGT GCAGAAGGGGACTTACACTGAGTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATA ATGAGGAAAGTGAACAACCTCCAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCT TCGGTTTGGTCTCAACAATCTTCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATGTTGC CTATGTGCTTCAAGATTGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTCACTGTAA ATGGAGGAGGAAATGTAACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGGTTTAACT GTAGCTACCGTTCTTTTTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACTCTTCACA AACTTTGCACAACAAAATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGAAATCCAA TAGGAAGAATTTTAAATCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCTGACGTTT TTAGATTTCATCCAGACATTGCTACAAGTGGTTGGTGTGGTCTCTGTGGCTGTGGCCGTGATTCCTTG GATCGCAATACCCTTGGTTCCCCTTGGAATCATTTTCATTTTTCTTCGGCGATATTTTTTGGAAACGT CAAGAGATGTGAAGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTTATCATCTTCTCTC CAGGGGCTCTGGACCATCCGGGCATACAAAGCAGAAGAGAGGTGTCAGGAACTGTTTGATGCACACCA GGATTTACATTCAGAGGCTTGGTTCTTGTTTTTGACAACGTCCCGCTGGTTTGCCGTCCGTCTGGATG CCATCTGTGCCATGTTTGTCATCATCGTTGCCTTTGGGTCCCTGATTCTGGCAAAAACTCTGGATGCC GGGCAGGTTGGTTTGGCACTGTCCTATGCCCTCACGCTCATGGGGATGTTTCAGTGGTGTGTTCGACA AAGTGCTGAAGTTGAGAATATGATGATCTCAGTAGAAAGGGTCATTGAATACACAGACCTTGAAAAAG AAGCACCTTGGGAATATCAGAAACGCCCACCACCAGCCTGGCCCCATGAAGGAGTGATAATCTTTGAC AATGTGAACTTCATGTACAGTCCAGGTGGGCCTCTGGTACTGAAGCATCTGACAGCACTCATTAAATC ACAAGAAAAGGTTGGCATTGTGGGAAGAACCGGAGCTGGAAAAAGTTCCCTCATCTCAGCCCTTTTTA GATTGTCAGAACCCGAAGGTAAAATTTGGATTGATAAGATCTTGACAACTGAAATTGGACTTCACGAT TTAAGGAAGAAGATGTCAATCATACCTCAGGAACCTGTTTTGTTCACTGGAACAATGAGGAAAAACCT GGATCCCTTTAATGAGCACACGGATGAGGAACTGTGGAATGCCTTACAAGAGGTACAACTTAAAGAAA CCATTGAAGATCTTCCTGGTAAAATGGATACTGAATTAGCAGAATCAGGATCCAATTTTAGTGTTGGA CAAAGACAACTGGTGTGCCTTGCCAGGGCAATTCTCAGGAAAAATCAGATATTGATTATTGATGAAGC GACGGCAAATGTGGATCCAAGAACTGATGAGTTAATACAAAAAAAAATCCGGGAGAAATTTGCCCACT GCACCGTGCTAACCATTGCACACAGATTGAACACCATTATTGACAGCGACAAGATAATGGTTTTAGAT TCAGGAAGACTGAAAGAATATGATGAGCCGTATGTTTTGCTGCAAAATAAAGAGAGCCTATTTTACAA GATGGTGCAACAACTGGGCAAGGCAGAAGCCGCTGCCCTCACTGAAACAGCAAAACAGGTATACTTCA AAAGAAATTATCCACATATTGGTCACACTGACCACATGGTTACAAACACTTCCAATGGACAGCCCTCG ACCTTAACTATTTTCGAGACAGCACTGTGAATCCAACCAAAATGTCAAGTCCGTTCCGAAGGCATTTT CCACTAGTTTTTGGACTATGTAAACCACATTGTACTTTTTTTTACTTTGGCAACAAATATTTATACAT ACAAGATGCTAGTTCATTTGAATATTTCTCCCAACTTATCCAAGGATCTCCAGCTCTAACAAAATGGT TTATTTTTATTTAAATGTCAATAGTTGTTTTTTAAAATCCAAATCAGAGGTGCAGGCCACCAGTTAAA TGCCGTCTATCAGGTTTTGTGCCTTAAGAGACTACAGAGTCAAAGCTCATTTTTAAAGGAGTAGGACA AAGTTGTCACAGGTTTTTGTTGTTGTTTTTATTGCCCCCAAAATTACATGTTAATTTCCATTTATATC AGGGATTCTATTTACTTGAAGACTGTGAAGTTGCCATTTTGTCTCATTGTTTTCTTTGACATAACTAG GATCCATTATTTCCCCTGAAGGCTTCTTGTTAGAAAATAGTACAGTTACAACCAATAGGAACAACAAA AAGAAAAAGTTTGTGACATTGTAGTAGGGAGTGTGTACCCCTTACTCCCCATCAAAAAAAAAAATGGA TACATGGTTAAAGGATAGAAGGGCAATATTTTATCATATGTTCTAAAAGAGAAGGAAGAGAAAATACT ACTTTCTCAAAATGGAAGCCCTTAAAGGTGCTTTGATACTGAAGGACACAAATGTGACCGTCCATCCT CCTTTAGAGTTGCATGACTTGGACACGGTAACTGTTGCAGTTTTAGACTCAGCATTGTGACACTTCCC AAGAAGGCCAAACCTCTAACCGACATTCCTGAAATACGTGGCATTATTCTTTTTTGGATTTCTCATTT ATGGAAGGCTAACCCTCTGTTGACTGTAAGCCTTTTGGTTTGGGCTGTATTGAAATCCTTTCTAAATT GCATGAATAGGCTCTGCTAACGTGATGAGACAAACTGAAAATTATTGCAAGCATTGACTATAATTATG CAGTACGTTCTCAGGATGCATCCAGGGGTTCATTTTCATGAGCCTGTCCAGGTTAGTTTACTCCTGAC CACTAATAGCATTGTCATTTGGGCTTTCTGTTGAATGAATCAACAAACCACAATACTTCCTGGGACCT TTTGTACTTTATTTGAACTATGAGTCTTTAATTTTTCCTGATGATGGTGGCTGTAATATGTTGAGTTC AGTTTACTAAAGGTTTTACTATTATGGTTTGAAGTGGAGTCTCATGACCTCTCAGAATAAGGTGTCAC CTCCCTGAAATTGCATATATGTATATAGACATGCACACGTGTGCATTTGTTTGTATACATATATTTGT CCTTCGTATAGCAAGTTTTTTGCTCATCAGCAGAGAGCAACAGATGTTTTATTGAGTGAAGCCTTAAA AAGCACACACCACACACAGCTAACTGCCAAAATACATTGACCGTAGTAGCTGTTCAACTCCTAGTACT TAGAAATACACGTATGGTTAATGTTCAGTCCAACAAACCACACACAGTAAATGTTTATTAATAGTCAT GGTTCGTATTTTAGGTGACTGAAATTGCATCAGTGATCATAATGAGGTTTGTTAAAACGATAGCTATA TTCAAAATGTCTATATGTTTATTTGGACTTTTGAGGTTAAAGACAGTCATATAAACGTCCTGTTTCTG TTTTAATGTTATCATAGAATTTTTTAATGAAACTAAATTCAATTGAAATAAATGATAGTTTTCATCTC CA 7186 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT 4 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT NM_001301830. TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT 2 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT (GI:1677498275 CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGCACTTCGTCTTAGTAACATGGCCATGGGGAAG version 2) ACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAAGTTTGATCAGGTGACAGTGTT CTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTGCCCTACTCTGGATGGAGATAG GAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCCTTGCAAAGCTGTTTTGGGAAG TTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAGGATCAGGACCATGAATGAAGT TATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCATTTTCAAATCTTATTACCAATT TGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGAGGGATGAATTTGGCTTCATTT TTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGTGCTCCTCGGCAGTGTGATCAC AGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGCTGACGGTTACCCTCTTCTTCC CCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGAATCCAGACCTTTTTGCTACTT GATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAAGATGGTGCATGTGCAGGATTT TACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCCTTTCCTTTACTGTCAGACCTG GCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCACTGTTAAGTGCCGTGCTCGGG GAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGCCTATGTGTCTCAGCAGCCCTG GGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAATACGAAAAGGAACGATATGAAA AAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAGGATGGTGATCTGACTGTGATA GGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAACCTTGCAAGAGCAGTGTATCA AGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATGCGGAAGTTAGCAGACACTTGT TCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTAGTGACTCATCAGTTGCAGTAC CTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGTGCAGAAGGGGACTTACACTGA GTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATAATGAGGAAAGTGAACAACCTC CAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCTTCGGTTTGGTCTCAACAATCT TCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATACAGAGAATGTCCCAGTTACACTATC AGAGGAGAACCGTTCTGAAGGAAAAGTTGGTTTTCAGGCCTATAAGAATTACTTCAGAGCTGGTGCTC ACTGGATTGTCTTCATTTTCCTTATTCTCCTAAACACTGCAGCTCAGGTTGCCTATGTGCTTCAAGAT TGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTCACTGTAAATGGAGGAGGAAATGT AACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGGTTTAACTGTAGCTACCGTTCTTT TTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACTCTTCACAAACTTTGCACAACAAA ATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGAAATCCAATAGGAAGAATTTTAAA TCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCTGACGTTTTTAGATTTCATCCAGA GATGGGATCTCGCTGTGTTGTCCTGGCTGGTCTCAAACTCCTAGGCTCAAGCAATCCTCCTCCCTCCT CAAGCAAACCTCAGTGCTGGGATTATAGGCATGAGCCACTGTACCTGGCTAAATGTTGTTTTTTTGAT ATTCAATTTTTGTTTATAGAATTTTCATTTGTTTTGCTCTTATACTTTTCATCTTTTTATGTTTATTG ACCAATTAAATATCATTTGGGTAAGCACCTATTTAAGTGTCTTAACAATTTTTCTATTGAGTACTCTG GGTTTTTGTTTTGTTTTTCTTACTGATTTGTAGAATTCTTTATGTATTCTGAATTGCAGATACCTTCC TTCTGTACTAATGCTTATCTTTTTAGCCCTGTAATATTGTGTTTTCATAAACATACTTATCAATCTTT 7187 Human PAK3 AGAGCATCCTCAGCAGCTGCCACCGAAGCAGCCTCCTCCTTCTCTCTTCCTCCTCCTCCTACCACGGC transcript CGCCGCCACCACCGCTGCGGCTGTGATCTCCTATCCCCTCTGGTCCTCCTTCCTCCCCCAGTTCCTGC variant TCCTCCTCCCATCCCCTGCTCCTCCTGCCCAGCAGCGAAGGGCAGAACCCTCGGCTGCCGCCCTCCTT 1 mRNA CGCTCTGACCAAGAAGAGGCTGGAACAGAATAACATACAGAGGACAGCTTTCTCTTCTGAGGAGTCAG NM_ AAGTTCAGTTCGCCCAACATGGAATGACTTGAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGA 001128166.3 CGGTCTGGATAATGAAGAGAAACCCCCGGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTT (GI:1889680926 CAGCACTCAACCACAGCTCCAAACCACTTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTT version 3) CGCTCTATCTTCCCAGGAGGAGGGGATAAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTC TCTTCCTTCAGACTTTGAGCATACGATTCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTGGAA TTCCAGAGCAATGGGCACGATTACTCCAAACTTCCAACATAACAAAATTGGAACAGAAGAAGAACCCA CAAGCTGTTCTAGATGTTCTCAAATTCTATGATTCCAAAGAAACAGTCAACAACCAGAAATACATGAG CTTTACATCAGGAGATAAAAGTGCACATGGATACATAGCAGCCCATCCTTCGAGTACAAAAACAGCAT CTGAGCCTCCATTGGCCCCTCCTGTGTCTGAAGAAGAAGATGAAGAGGAAGAAGAAGAAGAAGATGAA AATGAGCCACCACCAGTTATCGCACCAAGACCAGAGCATACAAAATCAATCTATACTCGTTCTGTGGT TGAATCCATTGCTTCACCAGCAGTACCAAATAAAGAGGTCACACCACCCTCTGCTGAAAATGCCAATT CCAGTACTTTGTACAGGAACACAGATCGGCAAAGAAAAAAATCCAAGATGACAGATGAGGAGATCTTA GAGAAGCTAAGAAGCATTGTGAGTGTTGGGGACCCAAAGAAAAAATACACAAGATTTGAAAAAATTGG TCAAGGGGCATCAGGTACTGTTTATACAGCACTAGACATTGCAACAGGACAAGAGGTGGCCATAAAGC AGATGAACCTTCAACAGCAACCCAAGAAGGAATTAATTATTAATGAAATTCTGGTCATGAGGGAAAAT AAGAACCCTAATATTGTTAATTATTTAGATAGCTACTTGGTGGGTGATGAACTATGGGTAGTCATGGA ATACTTGGCTGGTGGCTCTCTGACTGATGTGGTCACAGAGACCTGTATGGATGAAGGACAGATAGCAG CTGTCTGCAGAGAGTGCCTGCAAGCTTTGGATTTCCTGCACTCAAACCAGGTGATCCATAGAGATATA AAGAGTGACAATATTCTTCTCGGGATGGATGGCTCTGTTAAATTGACTGACTTTGGGTTCTGTGCCCA GATCACTCCTGAGCAAAGTAAACGAAGCACTATGGTGGGAACCCCATATTGGATGGCACCTGAGGTGG TGACTCGAAAAGCTTATGGTCCGAAAGTTGATATCTGGTCTCTTGGAATTATGGCAATTGAAATGGTG GAAGGTGAACCCCCTTACCTTAATGAAAATCCACTCAGGGCATTGTATCTGATAGCCACTAATGGAAC TCCAGAGCTCCAGAATCCTGAGAGACTGTCAGCTGTATTCCGTGACTTTTTAAATCGCTGTCTTGAGA TGGATGTGGATAGGCGAGGATCTGCCAAGGAGCTTTTGCAGCATCCATTTTTAAAATTAGCCAAGCCT CTCTCCAGCCTGACTCCTCTGATTATCGCTGCAAAGGAAGCAATTAAGAACAGCAGCCGCTAAGACTG CAAGCCTTACACCTCACCATCTCCCTCATGAGTAAGACTGAAATAAAACTCTGCTGCAGGAAAGATGG AAGAAAAGACAGTCAAATGGGGTGGGGGTTCTTTACCTTTCAAATGAATAGAAACTTCTTATAAGCCT TTTTCCTACTCCCTCAGATTATGTAATTTATTTGTAAGCCTGAATCGCAGCCCAAACAGGGCAGCAAT GTTGAAGTGACCATAAAGTGGTCACTTCCACCGTGAAGCGAAAGAGCCAGTAGTGAATCCCCTCATTT TGTGCATTCACTTTGAAGAAAAAGGTTTCTCAAAGATGCACACTCCCTCTTCATAGTGTTGTGTTTGT TTTTAAGTTAGAGAGTAGTCCCTCTTGCATTCAAACCTCCTTCAAAACTCCTTACCCAATGTGATGTT TTTCACTTGCATTGTCATTAGATGTCCAGAAAAAAAAAAGATGTCAAAATGTTTTTCTAAAAAAAGAA AGCAAAAAAAGCAAGGCAAAAAAAAAAAAAAAAACAAACAAAAACAAAAACAAAACAAAAACAAGCAA ACAAAAAATACCAGAGCAAGTACTGTGTGAACATGTGGAAGTCCATGCCCTAATAGAGTTGCAATTTT TTATTCTTCTTCTATAGTGGTGGCTTGGTTTGTGTACCTATTTTTCTGCATTTGTATTGGAAAAGGTT TCTTTTAAGACATTTTCCAAAAGTGGAGAGGAATATGTGTGTTCAGGAAGGGCTTTCAAAAAACTGTA TATCTAAATAAAGCTCAAACGGTGAAATCCTGTCACATTTTCACAATGATGCTTAAAAGATAATTGAG TAAACCAGGTTGTTAATCTCCTTAATACCTGAAAGAGGACACACTGAAACTGAAACTGTGACATCCTG CTAGGTGAGTTCAGGTTCTGAACCTAGGAAATCCTCATAGGAGAAACCACATTTAAACAAAGATGGGA CTTTCTCTGAGAGCCAAAACCAGATAAATGTAGAATACTGAAATCCTTGTTGGACATTAAGTAAACAA AGATAATGATACCTAAATTAATCCTCTCTTGTGCTTATGAAACATATGCACTGTAAAATAGGCATACC AGGAGGAAATAGATACATTAATCATCATTTACTTATGATACAAATTATTTATTTTGACAATTTATAAC GTTTAAAAAAGTTTTTTAAAGATCTAGAGAAAGGTGATATAGTAAACATTCAACTCTGTAAGAAATGG GAGGTCAGTGAAGGCTACATCCCAATCAATATTTGGCTCTAAGTACCTCTTCCCATTTTTCCTATGTA TCACCTATTTCTGTTTCGGAATATGGTGTGTTCATGCTTAGTTCTTTGGGCTTTTGAATATCAAAAGC ATATTCATAAATGTCTTGAAATTCTCTCCAGTGGAAAATAATTTTAACTTACAATCATATCCCAAGAA ATGTCAGTCCGACAGAATTCCTTATATGACTTGGGGAAAATAACAAAATTTGACTACTATTTCACCAT ATATCTATTTATTAAAAAATTCAACAGTTGGCACTTCCTGAATCTTCTGAGAGTAGAAAAATATCTGC GGAGTGTCTGTGTAGAAAAGGATATGCCTCTCTTTTGAGTGTATTGACAATTTTGTAAATTACAGAAA GTTGTTTCTCTAAGCCTTTGAAAAACTAACAATTTGTGTTATAGAAGGCTTCTTAATTTGCAGTATAA AAGAATCTAAACAGAACTTATGTACATTCAGCCAGAAGGGGAAAGAGATCAGTTACATAGGCCTCTCT CCTTCTTTGCCAAGGTACATCCATCCATCTAACCATCCATATATCCACATCTTAAAATGAAAGCACTT TCTTTAGAGTTTCAGCAAACTATATAGTGTACGTGTTTATGTTCAGGAGATGACCCCACTGGTGTATT TCCTATTTTCCCTATTGTTTTCTTTGACTGTAAAAGTTGGGAGAGGCTTGACCTCCTCCCCTTGAAAA TGTCCACAGTGGGATAAAACAACAAATGTGAAAAGAAAATGAAACGGTAATATTAATTTGAAGCATAC TATGTTATACTTTGCAAAAACGAATCTGGGCCTGTAATTTTTAATGCCACACTGCTCTAATGAGAGAG AGAGGCCTTAATTTTGATTTCATTTAAAAATAAGTACTTTAAAAAATTTTTCACTCATAGTGCCGGGA AATTCAATGAAATCCTGGGATGCAAATAAAAATCAGTACATTAGTGACTGTGTCCTGCCAGTGGAGAG AGCCCAATACCTGGTTAGGAAGCCCTATTCATTAGTTAGCATCCCTTACATGTTGAGAAGGCCTTTTT TTTGTTGTTATTTTGGAGACCTTGGAGCAGTGACCCTTCAGATCACTGTAGGCAGAGAAATGGCTTCT CTCTTATGCTTTCAGTTCAGCATATTAACAATGAGGAGCCAGGTACTTCTTTACTACCACTTTGTACC AAGATTTGATAATAATATATCCCAGGAGGCATTACTTTTATAAATTTGTATTCATGTAAATTTTCAAA TGAGAACAGCTTCTAAAGCCCCTTCCCTGTATTGGAGAGTTATGTATATTTCTAATAAGTATTAGAAA GAAGCTGTTTCTCATGCCACAGTGATGCTGAAGGATTCACATTTGGTACAATCGAGTAACTTGAACGC CAGATTGTTAACAGTTTATTCTCTTTCCCTGGATTTTTAAGCTCATCTTGACACAGGTGAGTCTATCC AAATCTTTGATGTTGCTAGTGTGCCCTGAGATAACGAGGGCACATCTTTCAATGTTGATTCCAAAATG TCCTGAGTTAGGAATAGGGCAGTGGGAAAGTCAGGGAAGGGTGAGAAGCACAGTAGAGATTATTTATT TAAAAAAGGAAAGAACGTTAATGTTGTTAGCAAGGATCCAGTGCGTTGTCATAATCCCATGAGGATTT TCAGATGACACAATCCCCTCAAATCAGTCACCATGTTGGGTAATGACTTCGTTCTTGCTGATCTCGTG TGTGTGTCATTGTAAATATTTGTGTGTCCATGTTCCATTTTGGCTACTGGATGGCCAAGCCATGTAAG AAGATTTAACTCAAGTATTTATTCTTTATGTTATTCAGATTTCTTTCAGGCTTGTGAACTGCACCCCA ATGTTTGAGTTTAACCACCTGATCCTTACATCTATCCCTCCCCGGTGAAGCACATTCCATTGCTAAAA GAAAAAGAAACACGAAATTGCTTCCTGTTGTCTGTATAACTGTTTTGATAGTTTGAGATATTTGTCTA TAAATGATATTTCTCAGCTCAAAGATCGTGTAAATAATTATATTCCTTTGCTCAATGGGTTTATTTCT AATGAGGCTGCCAGTTCTGAGAGATTCTATAATATCACTTTTAAATAACATAAACAGGGATTACAACT ATGTAAAAAGAAATGCATATGGACAAAGACTGGGAACACAGATAATTGAAATCAGTTGTGTTAGGGTG GTGGAATTATGTGAATTTTTTTTTCTTTTTAAAATTTTATTTGATATTGTTATAATATTGCTTTACAA TAAATAAACAGCAGAAAGGGAACTATAGACACATAGAAAAGATGCCAGAAGCAGATGCCTTCTGGCCA GAGCGCAGAGCATGCAGGGCAGAGATATTTGCTAGTTACAATTATTCCATAGGCTTTATGCTTGCCTG GGTGCTGAGGTTGGCACACGCTCGGGTATGGCACACGCTTTCTTAGGAGACTATTATCTATAAGTTAA AGCTAGGGAGATGTCACTATTAGAACTCCAAACACACTCTTCTGCTTTAAAACAGGTTGTCTGCCCTC TGCTTTGGTATGGCATTCGGGTGTCTGTTTTGTGGTTGCTTTAGATTGGAGGGGTGACCATTTTATTA GCCCCCTTGATAACATCTGTTGCAGATATTGCCTTTCTGGAACGTTTTAACAGACTCTCAGGTTGAAT TTTGGAGGACTAGAAGGATAAAATCCCCAGCTCCCACCATTTTCTTGTCCAACAGGATATTACTGTAT ATCATTCAGGTAGGATTCTTCTTTTAATAACCAATAGGGCAAGTCCCACTAATTTCAATAGAAGTTAT GACTTGCAATTAAAAGCTGACTTTGAAATCATTAAACAAATATGTAGGACTGTCTCTGCCTGTTGGCA TTCAGTTATAGTTCTGTTAATTTTGGCTTGGGATGGTCTCCATGTGCTTTTTTCTGCCTATTTATAGG TTGTTTGCAGTAGTTGTGATTTTTAAAGAGCAAGGGAGACCATCTAACCAAAGGATAACTTCCTTCTA ACTCACCAAAGAAATTTTAGGTGAGAACTTTAATAATGAGGTAGTCACCTCAGATATGCTGCTTAGTT TCACTAAAAGCAGACCCTATACCTAGAGAAGTCACTGGCTTTTTATTGGTCATTCTCAATACAGAAAT ACTTAGGGGAGTCTTAACCCTGCCATCCCCGGTTGAATCTCTTGGTCTTTATCTAAGCTACTTGCAGT TAATATTCAGTTAAGCAAAGGTATGGCCAGTAGTGCAAGTATCTCCCAGTCTCTGAGCTCTGAACAAG AGGACTGAAATTCAGCATTTGTAAACTGACAGTTTGATGGGCCTGGGATTTGAAGTGAACTCAGCACA CAATTCTGAACGTGTATTTGCATGTGGACTGGGAAGGAAATAAATGGGAACTTGGAAATAATGGAATA TTTCTCCTATGAAAGAATTTTTCGTAGAAGATTTGTTTTTGATATAATCTTTCTGTTGGTTAGCTTTT AGTGTTTTCATTCCTTTTCTGATCCACACTCCTTTAAGTGACCAAATGAATATAACCCAACATGCATT GGGAATGTGTTTAATATTAAACAATGTCTAACTGAATCTGCAAATGCGGGAACTGAGATATCACCTCC ATGTGCACACCTGTGTGTACGAGTATTCTATACAACTTGTAGCATTTACTGCCACTTAATTG GGTTGAACTTGCAAGATAAACTTTTGGAAACTGCTTAGTGCCATCGGAGTCTCCTTTAGAAGCTGCCA TCAGGCAAATGCTATCCCATAATACCAGCAGTAAGCCTGGCAACATGTTCAACAGATTTAGTACCCAA GAGGAAATCAACAGCGATAGTAGAGAATGAGTCAGATGTAGTGGGATAAATACTAGCCTAGGAAGAAG GAGCCCCGGAGTCTAATATGAGCTTTATTACTAAATTGCTATGTGACGCTAGGCAAGTCACTTAACCT CTCCATGGCTGTTTCCTCATCTGTAAAATAAGTGTATTGGACTAGATGATCCTTAGGGTCTTTCCAAA AGTCTAACATTCTATGGCATTATAGGTTGCCTTGCAAATTCAGCCTGCTATAGTGATGGCAAATATCA CGTTTAAGCCTGAGTCTCTTATGTTGCAGTTAAATAAAAGAACTATGTAAGATGATTTTTAAAATTCA AGCAAATGGGCCGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGA TCACCTGAGGTCAGGAGTTCGAGACCAGCCTGACCAACATAGAGAAACCCCATCTCTACTAAAAATAC AAAATTAGCCGGGTGTGGTGGCGGGCGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGTGGGAGAATC GCTTGAACCCAGGAGGCGGAGGTTGTGGTGAGCTGAGATCATGCCATTGCACTCCAGCCTCGGCAACA AGAGTGAAACTTCGTCTCCAAAAAAAAAAACTCAAGCAAATGAAGTTCATAATAATAGGGGATGTTGA TAAAACTTGTGGCAGCCTTCCAATTCATTTACAGTTGTTTCGTTTTGTTTTTGTTTTAATGTCCATTT TCTGTTGACTGTTCCCAGTTTTCATTTTCCATACAGTCTGTATGTAAAGTCTGGTTTTCATTAAGCTG TGGCCAGTATTTGCCACTACAACAGAAACACACTGTCACACTTGCTAGAATATAACTGTACTTGAGCT TCTCCTTTCCTGTGAAGTAGTGCTGGGCTTTCTAGAGTTTAATTCTCAAGTGGCACAAGATAGCAGAG CCCATGCATTTTAATGGCTGAGACTGCTAAGAGTGAACCTAAACACTTACAAGTTGCAGAGAGAAATG AAAAAGTAATTACATGCTATTAGCATTGAGAAATGTTGACAAATTAATTTGTTGGGAACCAAAGATAG CATTTCTGATGACAACTCCCACAGTGATTGGCCAGTTGTATGATGAGTACACTGCTGGAAAGAGGGTA AACTGGGAGTTAGTGGATGGTCCCAATGCCCTGCCTACAGCAGAGTGCCAACCAGCCCTGAGTGCAAA ATTCAAGTTCAATGTGTGTGCTTGTGTGTGGTGTGCTTTATGGACCCGCAAATACCATATTCATTATT GATGATAAGATCTTCACAGAATCCTGTAGCTACTAATGCATTGAGTTTTTAATCTCAGTACATCAGCC AGGAGGAGCCAGATCACAGGGTAGTGATGTCTACTGGGATTATACTCATAACATCTACACAAAACAAG TTGAGAAGGATCCACGTTTTCATTGTTTATCAGAATTGTATCTCATTTGGCTGAGCATTACTTTTGTC AGAATGTGTTATCTGTAAACCATGTGTAGTGAAATTCTTCTGTAACTTTGGATTAAAGGTATTTATGG TCTTTTTGTTTGTTTGATTTTTAAGTAAGTTATTTCTTTTGTAGACCTGCTGATGGTATGGTTCCATC CTTCTGACCTCAGCATCCAATCTTTTTAAGGATTTTTGTTTTCAATATTGTTATTTTAAATTGTGGTT GAAGCAATAGAAAATTGAAATATGGATTGTGCATGACTGTGTCTTGAGTGTAAAAATATTGCAGTTTG AAACTTGGACCTAAAGTATTGCAAATAAAAATGACAAACATCAATGA 7188 Human PAK3 ACCGCGGGCGGGCAGCTGTGCCAGCTAACCGTCTGGGATCTCGCACTGGGGGCTGCAGCTTTTCCCCG transcript CCTCGAGCCAGTGTGCGGGGGCGGGAGAAGAGCCAGGGGGAGCGGGCTGGGCCCGGGGCTGCGGCTGC variant GGCCGCGGGGCTGCGGCTCCCCAGCCCCGCCAGCTGGAGCGCTCGGAGGTAGAGGAAAGGTCTTGACG 2 mRNA GGGTGGCTGGATCCGTGGCAGAATCCAGTTCCAGATTCTAGACTTGAGGGTTCTGGGCTGTTGGTCTG NM_002578.5 TAGAAGCGAAGGAGAGAAGGACTCAAATCCAGGCCAAGTGTATGGCTGTCTGAGGTATTGGAACAGAA (GI:1519316149 GGAGGTCCATTCCTGTTGGTGACAACACCGTGGCCCTGTTCTGGGATGAGCAAGGTGTAAAGGTTTCC version 5) CCCAAGAAAGAGCAGCTGAGTCCTTGCATCTTGTGGCAGCTGGTGTGCCCAGCACTGAGTCTGTAGGA GCTGAAGCCAGCCCGGACCCTTCTCATGGGCAGTGCCCACCTGTGCTGAAGTCCTGCAGCGGTGGCGG TGTGAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGACGGTCTGGATAATGAAGAGAAACCCCC GGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTTCAGCACTCAACCACAGCTCCAAACCAC TTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTTCGCTCTATCTTCCCAGGAGGAGGGGAT AAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTCTCTTCCTTCAGACTTTGAGCATACGAT TCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTGGAATTCCAGAGCAATGGGCACGATTACTCC AAACTTCCAACATAACAAAATTGGAACAGAAGAAGAACCCACAAGCTGTTCTAGATGTTCTCAAATTC TATGATTCCAAAGAAACAGTCAACAACCAGAAATACATGAGCTTTACATCAGGAGATAAAAGTGCACA TGGATACATAGCAGCCCATCCTTCGAGTACAAAAACAGCATCTGAGCCTCCATTGGCCCCTCCTGTGT CTGAAGAAGAAGATGAAGAGGAAGAAGAAGAAGAAGATGAAAATGAGCCACCACCAGTTATCGCACCA AGACCAGAGCATACAAAATCAATCTATACTCGTTCTGTGGTTGAATCCATTGCTTCACCAGCAGTACC AAATAAAGAGGTCACACCACCCTCTGCTGAAAATGCCAATTCCAGTACTTTGTACAGGAACACAGATC GGCAAAGAAAAAAATCCAAGATGACAGATGAGGAGATCTTAGAGAAGCTAAGAAGCATTGTGAGTGTT GGGGACCCAAAGAAAAAATACACAAGATTTGAAAAAATTGGTCAAGGGGCATCAGGTACTGTTTATAC AGCACTAGACATTGCAACAGGACAAGAGGTGGCCATAAAGCAGATGAACCTTCAACAGCAACCCAAGA AGGAATTAATTATTAATGAAATTCTGGTCATGAGGGAAAATAAGAACCCTAATATTGTTAATTATTTA GATAGCTACTTGGTGGGTGATGAACTATGGGTAGTCATGGAATACTTGGCTGGTGGCTCTCTGACTGA TGTGGTCACAGAGACCTGTATGGATGAAGGACAGATAGCAGCTGTCTGCAGAGAGTGCCTGCAAGCTT TGGATTTCCTGCACTCAAACCAGGTGATCCATAGAGATATAAAGAGTGACAATATTCTTCTCGGGATG GATGGCTCTGTTAAATTGACTGACTTTGGGTTCTGTGCCCAGATCACTCCTGAGCAAAGTAAACGAAG CACTATGGTGGGAACCCCATATTGGATGGCACCTGAGGTGGTGACTCGAAAAGCTTATGGTCCGAAAG TTGATATCTGGTCTCTTGGAATTATGGCAATTGAAATGGTGGAAGGTGAACCCCCTTACCTTAATGAA AATCCACTCAGGGCATTGTATCTGATAGCCACTAATGGAACTCCAGAGCTCCAGAATCCTGAGAGACT GTCAGCTGTATTCCGTGACTTTTTAAATCGCTGTCTTGAGATGGATGTGGATAGGCGAGGATCTGCCA AGGAGCTTTTGCAGCATCCATTTTTAAAATTAGCCAAGCCTCTCTCCAGCCTGACTCCTCTGATTATC GCTGCAAAGGAAGCAATTAAGAACAGCAGCCGCTAAGACTGCAAGCCTTACACCTCACCATCTCCCTC ATGAGTAAGACTGAAATAAAACTCTGCTGCAGGAAAGATGGAAGAAAAGACAGTCAAATGGGGTGG GGGTTCTTTACCTTTCAAATGAATAGAAACTTCTTATAAGCCTTTTTCCTACTCCCTCAGATTATGTA ATTTATTTGTAAGCCTGAATCGCAGCCCAAACAGGGCAGCAATGTTGAAGTGACCATAAAGTGGTCAC TTCCACCGTGAAGCGAAAGAGCCAGTAGTGAATCCCCTCATTTTGTGCATTCACTTTGAAGAAAAAGG TTTCTCAAAGATGCACACTCCCTCTTCATAGTGTTGTGTTTGTTTTTAAGTTAGAGAGTAGTCCCTCT TGCATTCAAACCTCCTTCAAAACTCCTTACCCAATGTGATGTTTTTCACTTGCATTGTCATTAGATGT CCAGAAAAAAAAAAGATGTCAAAATGTTTTTCTAAAAAAAGAAAGCAAAAAAAGCAAGGCAAAAAAAA AAAAAAAAACAAACAAAAACAAAAACAAAACAAAAACAAGCAAACAAAAAATACCAGAGCAAGTACTG TGTGAACATGTGGAAGTCCATGCCCTAATAGAGTTGCAATTTTTTATTCTTCTTCTATAGTGGTGGCT TGGTTTGTGTACCTATTTTTCTGCATTTGTATTGGAAAAGGTTTCTTTTAAGACATTTTCCAAAAGTG GAGAGGAATATGTGTGTTCAGGAAGGGCTTTCAAAAAACTGTATATCTAAATAAAGCTCAAACGGTGA AATCCTGTCACATTTTCACAATGATGCTTAAAAGATAATTGAGTAAACCAGGTTGTTAATCTCCTTAA TACCTGAAAGAGGACACACTGAAACTGAAACTGTGACATCCTGCTAGGTGAGTTCAGGTTCTGAACCT AGGAAATCCTCATAGGAGAAACCACATTTAAACAAAGATGGGACTTTCTCTGAGAGCCAAAACCAGAT AAATGTAGAATACTGAAATCCTTGTTGGACATTAAGTAAACAAAGATAATGATACCTAAATTAATCCT CTCTTGTGCTTATGAAACATATGCACTGTAAAATAGGCATACCAGGAGGAAATAGATACATTAATCAT CATTTACTTATGATACAAATTATTTATTTTGACAATTTATAACGTTTAAAAAAGTTTTTTAAAGATCT AGAGAAAGGTGATATAGTAAACATTCAACTCTGTAAGAAATGGGAGGTCAGTGAAGGCTACATCCCAA TCAATATTTGGCTCTAAGTACCTCTTCCCATTTTTCCTATGTATCACCTATTTCTGTTTCGGAATATG GTGTGTTCATGCTTAGTTCTTTGGGCTTTTGAATATCAAAAGCATATTCATAAATGTCTTGAAATTCT CTCCAGTGGAAAATAATTTTAACTTACAATCATATCCCAAGAAATGTCAGTCCGACAGAATTCCTTAT ATGACTTGGGGAAAATAACAAAATTTGACTACTATTTCACCATATATCTATTTATTAAAAAATTCAAC AGTTGGCACTTCCTGAATCTTCTGAGAGTAGAAAAATATCTGCGGAGTGTCTGTGTAGAAAAGGATAT GCCTCTCTTTTGAGTGTATTGACAATTTTGTAAATTACAGAAAGTTGTTTCTCTAAGCCTTTGAAAAA CTAACAATTTGTGTTATAGAAGGCTTCTTAATTTGCAGTATAAAAGAATCTAAACAGAACTTATGTAC ATTCAGCCAGAAGGGGAAAGAGATCAGTTACATAGGCCTCTCTCCTTCTTTGCCAAGGTACATCCATC CATCTAACCATCCATATATCCACATCTTAAAATGAAAGCACTTTCTTTAGAGTTTCAGCAAACTATAT AGTGTACGTGTTTATGTTCAGGAGATGACCCCACTGGTGTATTTCCTATTTTCCCTATTGTTTTCTTT GACTGTAAAAGTTGGGAGAGGCTTGACCTCCTCCCCTTGAAAATGTCCACAGTGGGATAAAACAACAA ATGTGAAAAGAAAATGAAACGGTAATATTAATTTGAAGCATACTATGTTATACTTTGCAAAAACGAAT CTGGGCCTGTAATTTTTAATGCCACACTGCTCTAATGAGAGAGAGAGGCCTTAATTTTGATTTCATTT AAAAATAAGTACTTTAAAAAATTTTTCACTCATAGTGCCGGGAAATTCAATGAAATCCTGGGATGCAA ATAAAAATCAGTACATTAGTGACTGTGTCCTGCCAGTGGAGAGAGCCCAATACCTGGTTAGGAAGCCC TATTCATTAGTTAGCATCCCTTACATGTTGAGAAGGCCTTTTTTTTGTTGTTATTTTGGAGACCTTGG AGCAGTGACCCTTCAGATCACTGTAGGCAGAGAAATGGCTTCTCTCTTATGCTTTCAGTTCAGCATAT TAACAATGAGGAGCCAGGTACTTCTTTACTACCACTTTGTACCAAGATTTGATAATAATATATCCCAG GAGGCATTACTTTTATAAATTTGTATTCATGTAAATTTTCAAATGAGAACAGCTTCTAAAGCCCCTTC CCTGTATTGGAGAGTTATGTATATTTCTAATAAGTATTAGAAAGAAGCTGTTTCTCATGCCACAGTGA TGCTGAAGGATTCACATTTGGTACAATCGAGTAACTTGAACGCCAGATTGTTAACAGTTTATTCTCTT TCCCTGGATTTTTAAGCTCATCTTGACACAGGTGAGTCTATCCAAATCTTTGATGTTGCTAGTGTGCC CTGAGATAACGAGGGCACATCTTTCAATGTTGATTCCAAAATGTCCTGAGTTAGGAATAGGGCAGTGG GAAAGTCAGGGAAGGGTGAGAAGCACAGTAGAGATTATTTATTTAAAAAAGGAAAGAACGTTAATGTT GTTAGCAAGGATCCAGTGCGTTGTCATAATCCCATGAGGATTTTCAGATGACACAATCCCCTCAAATC AGTCACCATGTTGGGTAATGACTTCGTTCTTGCTGATCTCGTGTGTGTGTCATTGTAAATATTTGTGT GTCCATGTTCCATTTTGGCTACTGGATGGCCAAGCCATGTAAGAAGATTTAACTCAAGTATTTATTCT TTATGTTATTCAGATTTCTTTCAGGCTTGTGAACTGCACCCCAATGTTTGAGTTTAACCACCTGATCC TTACATCTATCCCTCCCCGGTGAAGCACATTCCATTGCTAAAAGAAAAAGAAACACGAAATTGCTTCC TGTTGTCTGTATAACTGTTTTGATAGTTTGAGATATTTGTCTATAAATGATATTTCTCAGCTCAAAGA TCGTGTAAATAATTATATTCCTTTGCTCAATGGGTTTATTTCTAATGAGGCTGCCAGTTCTGAGAGAT TCTATAATATCACTTTTAAATAACATAAACAGGGATTACAACTATGTAAAAAGAAATGCATATGGACA AAGACTGGGAACACAGATAATTGAAATCAGTTGTGTTAGGGTGGTGGAATTATGTGAATTTTTTTTTC TTTTTAAAATTTTATTTGATATTGTTATAATATTGCTTTACAATAAATAAACAGCAGAAAGGGAACTA TAGACACATAGAAAAGATGCCAGAAGCAGATGCCTTCTGGCCAGAGCGCAGAGCATGCAGGGCAGAGA TATTTGCTAGTTACAATTATTCCATAGGCTTTATGCTTGCCTGGGTGCTGAGGTTGGCACACGCTCGG GTATGGCACACGCTTTCTTAGGAGACTATTATCTATAAGTTAAAGCTAGGGAGATGTCACTATTAGAA CTCCAAACACACTCTTCTGCTTTAAAACAGGTTGTCTGCCCTCTGCTTTGGTATGGCATTCGGGTGTC TGTTTTGTGGTTGCTTTAGATTGGAGGGGTGACCATTTTATTAGCCCCCTTGATAACATCTGTTGCAG ATATTGCCTTTCTGGAACGTTTTAACAGACTCTCAGGTTGAATTTTGGAGGACTAGAAGGATAAAATC CCCAGCTCCCACCATTTTCTTGTCCAACAGGATATTACTGTATATCATTCAGGTAGGATTCTTCTTTT AATAACCAATAGGGCAAGTCCCACTAATTTCAATAGAAGTTATGACTTGCAATTAAAAGCTGACTTTG AAATCATTAAACAAATATGTAGGACTGTCTCTGCCTGTTGGCATTCAGTTATAGTTCTGTTAATTTTG GCTTGGGATGGTCTCCATGTGCTTTTTTCTGCCTATTTATAGGTTGTTTGCAGTAGTTGTGATTTTTA AAGAGCAAGGGAGACCATCTAACCAAAGGATAACTTCCTTCTAACTCACCAAAGAAATTTTAGGTGAG AACTTTAATAATGAGGTAGTCACCTCAGATATGCTGCTTAGTTTCACTAAAAGCAGACCCTATACCTA GAGAAGTCACTGGCTTTTTATTGGTCATTCTCAATACAGAAATACTTAGGGGAGTCTTAACCCTGCCA TCCCCGGTTGAATCTCTTGGTCTTTATCTAAGCTACTTGCAGTTAATATTCAGTTAAGCAAAGGTATG GCCAGTAGTGCAAGTATCTCCCAGTCTCTGAGCTCTGAACAAGAGGACTGAAATTCAGCATTTGTAAA CTGACAGTTTGATGGGCCTGGGATTTGAAGTGAACTCAGCACACAATTCTGAACGTGTATTTGCATGT GGACTGGGAAGGAAATAAATGGGAACTTGGAAATAATGGAATATTTCTCCTATGAAAGAATTTTTCGT AGAAGATTTGTTTTTGATATAATCTTTCTGTTGGTTAGCTTTTAGTGTTTTCATTCCTTTTCTGATCC ACACTCCTTTAAGTGACCAAATGAATATAACCCAACATGCATTGGGAATGTGTTTAATATTAAACAAT GTCTAACTGAATCTGCAAATGCGGGAACTGAGATATCACCTCCATGTGCACACCTGTGTGTACGAGTA TTCTATACAACTTGTAGCATTTACTGCCACTTAATTGGGTTGAACTTGCAAGATAAACTTTTGGAAAC TGCTTAGTGCCATCGGAGTCTCCTTTAGAAGCTGCCATCAGGCAAATGCTATCCCATAATACCAGCAG TAAGCCTGGCAACATGTTCAACAGATTTAGTACCCAAGAGGAAATCAACAGCGATAGTAGAGAATGAG TCAGATGTAGTGGGATAAATACTAGCCTAGGAAGAAGGAGCCCCGGAGTCTAATATGAGCTTTATTAC TAAATTGCTATGTGACGCTAGGCAAGTCACTTAACCTCTCCATGGCTGTTTCCTCATCTGTAAAATAA GTGTATTGGACTAGATGATCCTTAGGGTCTTTCCAAAAGTCTAACATTCTATGGCATTATAGGTTGCC TTGCAAATTCAGCCTGCTATAGTGATGGCAAATATCACGTTTAAGCCTGAGTCTCTTATGTTGCAGTT AAATAAAAGAACTATGTAAGATGATTTTTAAAATTCAAGCAAATGGGCCGGGTGCGGTGGCTCATACC TGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCT GACCAACATAGAGAAACCCCATCTCTACTAAAAATACAAAATTAGCCGGGTGTGGTGGCGGGCGCCTG TAATCCCAGCTACTTGGGAGGCTGAGGTGGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGTGGTGA GCTGAGATCATGCCATTGCACTCCAGCCTCGGCAACAAGAGTGAAACTTCGTCTCCAAAAAAAAAAAC TCAAGCAAATGAAGTTCATAATAATAGGGGATGTTGATAAAACTTGTGGCAGCCTTCCAATTCATTTA CAGTTGTTTCGTTTTGTTTTTGTTTTAATGTCCATTTTCTGTTGACTGTTCCCAGTTTTCATTTTCCA TACAGTCTGTATGTAAAGTCTGGTTTTCATTAAGCTGTGGCCAGTATTTGCCACTACAACAGAAACAC ACTGTCACACTTGCTAGAATATAACTGTACTTGAGCTTCTCCTTTCCTGTGAAGTAGTGCTGGGCTTT CTAGAGTTTAATTCTCAAGTGGCACAAGATAGCAGAGCCCATGCATTTTAATGGCTGAGACTGCTAAG AGTGAACCTAAACACTTACAAGTTGCAGAGAGAAATGAAAAAGTAATTACATGCTATTAGCATTGAGA AATGTTGACAAATTAATTTGTTGGGAACCAAAGATAGCATTTCTGATGACAACTCCCACAGTGATTGG CCAGTTGTATGATGAGTACACTGCTGGAAAGAGGGTAAACTGGGAGTTAGTGGATGGTCCCAATGCCC TGCCTACAGCAGAGTGCCAACCAGCCCTGAGTGCAAAATTCAAGTTCAATGTGTGTGCTTGTGTGTGG TGTGCTTTATGGACCCGCAAATACCATATTCATTATTGATGATAAGATCTTCACAGAATCCTGTAGCT ACTAATGCATTGAGTTTTTAATCTCAGTACATCAGCCAGGAGGAGCCAGATCACAGGGTAGTGATGTC TACTGGGATTATACTCATAACATCTACACAAAACAAGTTGAGAAGGATCCACGTTTTCATTGTTTATC AGAATTGTATCTCATTTGGCTGAGCATTACTTTTGTCAGAATGTGTTATCTGTAAACCATGTGTAGTG AAATTCTTCTGTAACTTTGGATTAAAGGTATTTATGGTCTTTTTGTTTGTTTGATTTTTAAGTAAGTT ATTTCTTTTGTAGACCTGCTGATGGTATGGTTCCATCCTTCTGACCTCAGCATCCAATCTTTTTAAGG ATTTTTGTTTTCAATATTGTTATTTTAAATTGTGGTTGAAGCAATAGAAAATTGAAATATGGATTGTG CATGACTGTGTCTTGAGTGTAAAAATATTGCAGTTTGAAACTTGGACCTAAAGTATTGCAAATAAAAA TGACAAACATCAATGA 7189 Human PAK3 AGAGCATCCTCAGCAGCTGCCACCGAAGCAGCCTCCTCCTTCTCTCTTCCTCCTCCTCCTACCACGGC transcript CGCCGCCACCACCGCTGCGGCTGTGATCTCCTATCCCCTCTGGTCCTCCTTCCTCCCCCAGTTCCTGC variant TCCTCCTCCCATCCCCTGCTCCTCCTGCCCAGCAGCGAAGGGCAGAACCCTCGGCTGCCGCCCTCCTT 3 mRNA CGCTCTGACCAAGAAGAGGCTGGAACAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGACGGTC NM_001128167. TGGATAATGAAGAGAAACCCCCGGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTTCAGCA 3 CTCAACCACAGCTCCAAACCACTTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTTCGCTC (GI:1890283404 TATCTTCCCAGGAGGAGGGGATAAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTCTCTTC version 3) CTTCAGACTTTGAGCATACGATTCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTGGAATTCCA GAGCAATGGGCACGATTACTCCAAACTTCCAACATAACAAAATTGGAACAGAAGAAGAACCCACAAGC TGTTCTAGATGTTCTCAAATTCTATGATTCCAAAGAAACAGTCAACAACCAGAAATACATGAGCTTTA CATCAGGAGATAAAAGTGCACATGGATACATAGCAGCCCATCCTTCGAGTACAAAAACAGCATCTGAG CCTCCATTGGCCCCTCCTGTGTCTGAAGAAGAAGATGAAGAGGAAGAAGAAGAAGAAGATGAAAATGA GCCACCACCAGTTATCGCACCAAGACCAGAGCATACAAAATCAATCTATACTCGTTCTGTGGTTGAAT CCATTGCTTCACCAGCAGTACCAAATAAAGAGGTCACACCACCCTCTGCTGAAAATGCCAATTCCAGT ACTTTGTACAGGAACACAGATCGGCAAAGAAAAAAATCCAAGATGACAGATGAGGAGATCTTAGAGAA GCTAAGAAGCATTGTGAGTGTTGGGGACCCAAAGAAAAAATACACAAGATTTGAAAAAATTGGTCAAG GGGCATCAGGTACTGTTTATACAGCACTAGACATTGCAACAGGACAAGAGGTGGCCATAAAGCAGATG AACCTTCAACAGCAACCCAAGAAGGAATTAATTATTAATGAAATTCTGGTCATGAGGGAAAATAAGAA CCCTAATATTGTTAATTATTTAGATAGCTACTTGGTGGGTGATGAACTATGGGTAGTCATGGAATACT TGGCTGGTGGCTCTCTGACTGATGTGGTCACAGAGACCTGTATGGATGAAGGACAGATAGCAGCTGTC TGCAGAGAGTGCCTGCAAGCTTTGGATTTCCTGCACTCAAACCAGGTGATCCATAGAGATATAAAGAG TGACAATATTCTTCTCGGGATGGATGGCTCTGTTAAATTGACTGACTTTGGGTTCTGTGCCCAGATCA CTCCTGAGCAAAGTAAACGAAGCACTATGGTGGGAACCCCATATTGGATGGCACCTGAGGTGGTGACT CGAAAAGCTTATGGTCCGAAAGTTGATATCTGGTCTCTTGGAATTATGGCAATTGAAATGGTGGAAGG TGAACCCCCTTACCTTAATGAAAATCCACTCAGGGCATTGTATCTGATAGCCACTAATGGAACTCCAG AGCTCCAGAATCCTGAGAGACTGTCAGCTGTATTCCGTGACTTTTTAAATCGCTGTCTTGAGATGGAT GTGGATAGGCGAGGATCTGCCAAGGAGCTTTTGCAGCATCCATTTTTAAAATTAGCCAAGCCTCTCTC CAGCCTGACTCCTCTGATTATCGCTGCAAAGGAAGCAATTAAGAACAGCAGCCGCTAAGACTGCAAGC CTTACACCTCACCATCTCCCTCATGAGTAAGACTGAAATAAAACTCTGCTGCAGGAAAGATGGAAGAA AAGACAGTCAAATGGGGTGGGGGTTCTTTACCTTTCAAATGAATAGAAACTTCTTATAAGCCTTTTTC CTACTCCCTCAGATTATGTAATTTATTTGTAAGCCTGAATCGCAGCCCAAACAGGGCAGCAATGTTGA AGTGACCATAAAGTGGTCACTTCCACCGTGAAGCGAAAGAGCCAGTAGTGAATCCCCTCATTTTGTGC ATTCACTTTGAAGAAAAAGGTTTCTCAAAGATGCACACTCCCTCTTCATAGTGTTGTGTTTGTTTTTA AGTTAGAGAGTAGTCCCTCTTGCATTCAAACCTCCTTCAAAACTCCTTACCCAATGTGATGTTTTTCA CTTGCATTGTCATTAGATGTCCAGAAAAAAAAAAGATGTCAAAATGTTTTTCTAAAAAAAGAAAGCAA AAAAAGCAAGGCAAAAAAAAAAAAAAAAACAAACAAAAACAAAAACAAAACAAAAACAAGCAAACAAA AAATACCAGAGCAAGTACTGTGTGAACATGTGGAAGTCCATGCCCTAATAGAGTTGCAATTTTTTATT CTTCTTCTATAGTGGTGGCTTGGTTTGTGTACCTATTTTTCTGCATTTGTATTGGAAAAGGTTTCTTT TAAGACATTTTCCAAAAGTGGAGAGGAATATGTGTGTTCAGGAAGGGCTTTCAAAAAACTGTATATCT AAATAAAGCTCAAACGGTGAAATCCTGTCACATTTTCACAATGATGCTTAAAAGATAATTGAGTAAAC CAGGTTGTTAATCTCCTTAATACCTGAAAGAGGACACACTGAAACTGAAACTGTGACATCCTGCTAGG TGAGTTCAGGTTCTGAACCTAGGAAATCCTCATAGGAGAAACCACATTTAAACAAAGATGGGACTTTC TCTGAGAGCCAAAACCAGATAAATGTAGAATACTGAAATCCTTGTTGGACATTAAGTAAACAAAGATA ATGATACCTAAATTAATCCTCTCTTGTGCTTATGAAACATATGCACTGTAAAATAGGCATACCAGGAG GAAATAGATACATTAATCATCATTTACTTATGATACAAATTATTTATTTTGACAATTTATAACGTTTA AAAAAGTTTTTTAAAGATCTAGAGAAAGGTGATATAGTAAACATTCAACTCTGTAAGAAATGGGAGGT CAGTGAAGGCTACATCCCAATCAATATTTGGCTCTAAGTACCTCTTCCCATTTTTCCTATGTATCACC TATTTCTGTTTCGGAATATGGTGTGTTCATGCTTAGTTCTTTGGGCTTTTGAATATCAAAAGCATATT CATAAATGTCTTGAAATTCTCTCCAGTGGAAAATAATTTTAACTTACAATCATATCCCAAGAAATGTC AGTCCGACAGAATTCCTTATATGACTTGGGGAAAATAACAAAATTTGACTACTATTTCACCATATATC TATTTATTAAAAAATTCAACAGTTGGCACTTCCTGAATCTTCTGAGAGTAGAAAAATATCTGCGGAGT GTCTGTGTAGAAAAGGATATGCCTCTCTTTTGAGTGTATTGACAATTTTGTAAATTACAGAAAGTTGT TTCTCTAAGCCTTTGAAAAACTAACAATTTGTGTTATAGAAGGCTTCTTAATTTGCAGTATAAAAGAA TCTAAACAGAACTTATGTACATTCAGCCAGAAGGGGAAAGAGATCAGTTACATAGGCCTCTCTCCTTC TTTGCCAAGGTACATCCATCCATCTAACCATCCATATATCCACATCTTAAAATGAAAGCACTTTCTTT AGAGTTTCAGCAAACTATATAGTGTACGTGTTTATGTTCAGGAGATGACCCCACTGGTGTATTTCCTA TTTTCCCTATTGTTTTCTTTGACTGTAAAAGTTGGGAGAGGCTTGACCTCCTCCCCTTGAAAATGTCC ACAGTGGGATAAAACAACAAATGTGAAAAGAAAATGAAACGGTAATATTAATTTGAAGCATACTATGT TATACTTTGCAAAAACGAATCTGGGCCTGTAATTTTTAATGCCACACTGCTCTAATGAGAGAGAGAGG CCTTAATTTTGATTTCATTTAAAAATAAGTACTTTAAAAAATTTTTCACTCATAGTGCCGGGAAATTC AATGAAATCCTGGGATGCAAATAAAAATCAGTACATTAGTGACTGTGTCCTGCCAGTGGAGAGAGCCC AATACCTGGTTAGGAAGCCCTATTCATTAGTTAGCATCCCTTACATGTTGAGAAGGCCTTTTTTTTGT TGTTATTTTGGAGACCTTGGAGCAGTGACCCTTCAGATCACTGTAGGCAGAGAAATGGCTTCTCTCTT ATGCTTTCAGTTCAGCATATTAACAATGAGGAGCCAGGTACTTCTTTACTACCACTTTGTACCAAGAT TTGATAATAATATATCCCAGGAGGCATTACTTTTATAAATTTGTATTCATGTAAATTTTCAAATGAGA ACAGCTTCTAAAGCCCCTTCCCTGTATTGGAGAGTTATGTATATTTCTAATAAGTATTAGAAAGAAGC TGTTTCTCATGCCACAGTGATGCTGAAGGATTCACATTTGGTACAATCGAGTAACTTGAACGCCAGAT TGTTAACAGTTTATTCTCTTTCCCTGGATTTTTAAGCTCATCTTGACACAGGTGAGTCTATCCAAATC TTTGATGTTGCTAGTGTGCCCTGAGATAACGAGGGCACATCTTTCAATGTTGATTCCAAAATGTCCTG AGTTAGGAATAGGGCAGTGGGAAAGTCAGGGAAGGGTGAGAAGCACAGTAGAGATTATTTATTTAAAA AAGGAAAGAACGTTAATGTTGTTAGCAAGGATCCAGTGCGTTGTCATAATCCCATGAGGATTTTCAGA TGACACAATCCCCTCAAATCAGTCACCATGTTGGGTAATGACTTCGTTCTTGCTGATCTCGTGTGTGT GTCATTGTAAATATTTGTGTGTCCATGTTCCATTTTGGCTACTGGATGGCCAAGCCATGTAAGAAGAT TTAACTCAAGTATTTATTCTTTATGTTATTCAGATTTCTTTCAGGCTTGTGAACTGCACCCCAATGTT TGAGTTTAACCACCTGATCCTTACATCTATCCCTCCCCGGTGAAGCACATTCCATTGCTAAAAGAAAA AGAAACACGAAATTGCTTCCTGTTGTCTGTATAACTGTTTTGATAGTTTGAGATATTTGTCTATAAAT GATATTTCTCAGCTCAAAGATCGTGTAAATAATTATATTCCTTTGCTCAATGGGTTTATTTCTAATGA GGCTGCCAGTTCTGAGAGATTCTATAATATCACTTTTAAATAACATAAACAGGGATTACAACTATGTA AAAAGAAATGCATATGGACAAAGACTGGGAACACAGATAATTGAAATCAGTTGTGTTAGGGTGGTGGA ATTATGTGAATTTTTTTTTCTTTTTAAAATTTTATTTGATATTGTTATAATATTGCTTTACAATAAAT AAACAGCAGAAAGGGAACTATAGACACATAGAAAAGATGCCAGAAGCAGATGCCTTCTGGCCAGAGCG CAGAGCATGCAGGGCAGAGATATTTGCTAGTTACAATTATTCCATAGGCTTTATGCTTGCCTGGGTGC TGAGGTTGGCACACGCTCGGGTATGGCACACGCTTTCTTAGGAGACTATTATCTATAAGTTAAAGCTA GGGAGATGTCACTATTAGAACTCCAAACACACTCTTCTGCTTTAAAACAGGTTGTCTGCCCTCTGCTT TGGTATGGCATTCGGGTGTCTGTTTTGTGGTTGCTTTAGATTGGAGGGGTGACCATTTTATTAGCCCC CTTGATAACATCTGTTGCAGATATTGCCTTTCTGGAACGTTTTAACAGACTCTCAGGTTGAATTTTGG AGGACTAGAAGGATAAAATCCCCAGCTCCCACCATTTTCTTGTCCAACAGGATATTACTGTATATCAT TCAGGTAGGATTCTTCTTTTAATAACCAATAGGGCAAGTCCCACTAATTTCAATAGAAGTTATGACTT GCAATTAAAAGCTGACTTTGAAATCATTAAACAAATATGTAGGACTGTCTCTGCCTGTTGGCATTCAG TTATAGTTCTGTTAATTTTGGCTTGGGATGGTCTCCATGTGCTTTTTTCTGCCTATTTATAGGTTGTT TGCAGTAGTTGTGATTTTTAAAGAGCAAGGGAGACCATCTAACCAAAGGATAACTTCCTTCTAACTCA CCAAAGAAATTTTAGGTGAGAACTTTAATAATGAGGTAGTCACCTCAGATATGCTGCTTAGTTTCACT AAAAGCAGACCCTATACCTAGAGAAGTCACTGGCTTTTTATTGGTCATTCTCAATACAGAAATACTTA GGGGAGTCTTAACCCTGCCATCCCCGGTTGAATCTCTTGGTCTTTATCTAAGCTACTTGCAGTTAATA TTCAGTTAAGCAAAGGTATGGCCAGTAGTGCAAGTATCTCCCAGTCTCTGAGCTCTGAACAAGAGGAC TGAAATTCAGCATTTGTAAACTGACAGTTTGATGGGCCTGGGATTTGAAGTGAACTCAGCACACAATT CTGAACGTGTATTTGCATGTGGACTGGGAAGGAAATAAATGGGAACTTGGAAATAATGGAATATTTCT CCTATGAAAGAATTTTTCGTAGAAGATTTGTTTTTGATATAATCTTTCTGTTGGTTAGCTTTTAGTGT TTTCATTCCTTTTCTGATCCACACTCCTTTAAGTGACCAAATGAATATAACCCAACATGCATTGGGAA TGTGTTTAATATTAAACAATGTCTAACTGAATCTGCAAATGCGGGAACTGAGATATCACCTCCATGTG CACACCTGTGTGTACGAGTATTCTATACAACTTGTAGCATTTACTGCCACTTAATTGGGTTGAACTTG CAAGATAAACTTTTGGAAACTGCTTAGTGCCATCGGAGTCTCCTTTAGAAGCTGCCATCAGGCAAATG CTATCCCATAATACCAGCAGTAAGCCTGGCAACATGTTCAACAGATTTAGTACCCAAGAGGAAATCAA CAGCGATAGTAGAGAATGAGTCAGATGTAGTGGGATAAATACTAGCCTAGGAAGAAGGAGCCCCGGAG TCTAATATGAGCTTTATTACTAAATTGCTATGTGACGCTAGGCAAGTCACTTAACCTCTCCATGGCTG TTTCCTCATCTGTAAAATAAGTGTATTGGACTAGATGATCCTTAGGGTCTTTCCAAAAGTCTAACATT CTATGGCATTATAGGTTGCCTTGCAAATTCAGCCTGCTATAGTGATGGCAAATATCACGTTTAAGCCT GAGTCTCTTATGTTGCAGTTAAATAAAAGAACTATGTAAGATGATTTTTAAAATTCAAGCAAATGGGC CGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGATCACCTGAGGT CAGGAGTTCGAGACCAGCCTGACCAACATAGAGAAACCCCATCTCTACTAAAAATACAAAATTAGCCG GGTGTGGTGGCGGGCGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGTGGGAGAATCGCTTGAACCCA GGAGGCGGAGGTTGTGGTGAGCTGAGATCATGCCATTGCACTCCAGCCTCGGCAACAAGAGTGAAACT TCGTCTCCAAAAAAAAAAACTCAAGCAAATGAAGTTCATAATAATAGGGGATGTTGATAAAACTTGTG GCAGCCTTCCAATTCATTTACAGTTGTTTCGTTTTGTTTTTGTTTTAATGTCCATTTTCTGTTGACTG TTCCCAGTTTTCATTTTCCATACAGTCTGTATGTAAAGTCTGGTTTTCATTAAGCTGTGGCCAGTATT TGCCACTACAACAGAAACACACTGTCACACTTGCTAGAATATAACTGTACTTGAGCTTCTCCTTTCCT GTGAAGTAGTGCTGGGCTTTCTAGAGTTTAATTCTCAAGTGGCACAAGATAGCAGAGCCCATGCATTT TAATGGCTGAGACTGCTAAGAGTGAACCTAAACACTTACAAGTTGCAGAGAGAAATGAAAAAGTAATT ACATGCTATTAGCATTGAGAAATGTTGACAAATTAATTTGTTGGGAACCAAAGATAGCATTTCTGATG ACAACTCCCACAGTGATTGGCCAGTTGTATGATGAGTACACTGCTGGAAAGAGGGTAAACTGGGAGTT AGTGGATGGTCCCAATGCCCTGCCTACAGCAGAGTGCCAACCAGCCCTGAGTGCAAAATTCAAGTTCA ATGTGTGTGCTTGTGTGTGGTGTGCTTTATGGACCCGCAAATACCATATTCATTATTGATGATAAGAT CTTCACAGAATCCTGTAGCTACTAATGCATTGAGTTTTTAATCTCAGTACATCAGCCAGGAGGAGCCA GATCACAGGGTAGTGATGTCTACTGGGATTATACTCATAACATCTACACAAAACAAGTTGAGAAGGAT CCACGTTTTCATTGTTTATCAGAATTGTATCTCATTTGGCTGAGCATTACTTTTGTCAGAATGTGTTA TCTGTAAACCATGTGTAGTGAAATTCTTCTGTAACTTTGGATTAAAGGTATTTATGGTCTTTTTGTTT GTTTGATTTTTAAGTAAGTTATTTCTTTTGTAGACCTGCTGATGGTATGGTTCCATCCTTCTGACCTC AGCATCCAATCTTTTTAAGGATTTTTGTTTTCAATATTGTTATTTTAAATTGTGGTTGAAGCAATAGA AAATTGAAATATGGATTGTGCATGACTGTGTCTTGAGTGTAAAAATATTGCAGTTTGAAACTTGGACC TAAAGTATTGCAAATAAAAATGACAAACATCAATGA 7190 Human PAK3 ACCGCGGGCGGGCAGCTGTGCCAGCTAACCGTCTGGGATCTCGCACTGGGGGCTGCAGCTTTTCCCCG transcript CCTCGAGCCAGTGTGCGGGGGCGGGAGAAGAGCCAGGGGGAGCGGGCTGGGCCCGGGGCTGCGGCTGC variant GGCCGCGGGGCTGCGGCTCCCCAGCCCCGCCAGCTGGAGCGCTCGGAGGTAGAGGAAAGGTCTTGACG 4 mRNA GGGTGGCTGGATCCGTGGCAGAATCCAGTTCCAGATTCTAGACTTGAGGGTTCTGGGCTGTTGGTCTG NM_001128168. TAGAAGCGAAGGAGAGAAGGACTCAAATCCAGGCCAAGTGTATGGCTGTCTGAGGTATTGGAACAGAA 3 GGAGGTCCATTCCTGTTGGTGACAACACCGTGGCCCTGTTCTGGGATGAGCAAGGTGTAAAGCAGGTT (GI:1676441496 TCCCCCAAGAAAGAGCAGCTGAGTCCTTGCATCTTGTGGCAGCTGGTGTGCCCAGCACTGAGTCTGTA version 3) GGAGCTGAAGCCAGCCCGGACCCTTCTCATGGGCAGTGCCCACCTGTGCTGAAGTCCTGCAGCGGTGG CGGTGTGAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGACGGTCTGGATAATGAAGAGAAACC CCCGGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTTCAGCACTCAACCACAGCTCCAAAC CACTTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTTCGCTCTATCTTCCCAGGAGGAGGG GATAAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTCTCTTCCTTCAGACTTTGAGCATAC GATTCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTAACTCCCCTTTCCAGACCTCTAGACCTG TGACGGTCGCTTCAAGTCAATCAGAGGGAAAAATGCCAGATCTCTATGGCTCACAGATGTGCCCAGGG AAGCTCCCAGAGGGAATTCCAGAGCAATGGGCACGATTACTCCAAACTTCCAACATAACAAAATTGGA ACAGAAGAAGAACCCACAAGCTGTTCTAGATGTTCTCAAATTCTATGATTCCAAAGAAACAGTCAACA ACCAGAAATACATGAGCTTTACATCAGGAGATAAAAGTGCACATGGATACATAGCAGCCCATCCTTCG AGTACAAAAACAGCATCTGAGCCTCCATTGGCCCCTCCTGTGTCTGAAGAAGAAGATGAAGAGGAAGA AGAAGAAGAAGATGAAAATGAGCCACCACCAGTTATCGCACCAAGACCAGAGCATACAAAATCAATCT ATACTCGTTCTGTGGTTGAATCCATTGCTTCACCAGCAGTACCAAATAAAGAGGTCACACCACCCTCT GCTGAAAATGCCAATTCCAGTACTTTGTACAGGAACACAGATCGGCAAAGAAAAAAATCCAAGATGAC AGATGAGGAGATCTTAGAGAAGCTAAGAAGCATTGTGAGTGTTGGGGACCCAAAGAAAAAATACACAA GATTTGAAAAAATTGGTCAAGGGGCATCAGGTACTGTTTATACAGCACTAGACATTGCAACAGGACAA GAGGTGGCCATAAAGCAGATGAACCTTCAACAGCAACCCAAGAAGGAATTAATTATTAATGAAATTCT GGTCATGAGGGAAAATAAGAACCCTAATATTGTTAATTATTTAGATAGCTACTTGGTGGGTGATGAAC TATGGGTAGTCATGGAATACTTGGCTGGTGGCTCTCTGACTGATGTGGTCACAGAGACCTGTATGGAT GAAGGACAGATAGCAGCTGTCTGCAGAGAGTGCCTGCAAGCTTTGGATTTCCTGCACTCAAACCAGGT GATCCATAGAGATATAAAGAGTGACAATATTCTTCTCGGGATGGATGGCTCTGTTAAATTGACTGACT TTGGGTTCTGTGCCCAGATCACTCCTGAGCAAAGTAAACGAAGCACTATGGTGGGAACCCCATATTGG ATGGCACCTGAGGTGGTGACTCGAAAAGCTTATGGTCCGAAAGTTGATATCTGGTCTCTTGGAATTAT GGCAATTGAAATGGTGGAAGGTGAACCCCCTTACCTTAATGAAAATCCACTCAGGGCATTGTATCTGA TAGCCACTAATGGAACTCCAGAGCTCCAGAATCCTGAGAGACTGTCAGCTGTATTCCGTGACTTTTTA AATCGCTGTCTTGAGATGGATGTGGATAGGCGAGGATCTGCCAAGGAGCTTTTGCAGCATCCATTTTT AAAATTAGCCAAGCCTCTCTCCAGCCTGACTCCTCTGATTATCGCTGCAAAGGAAGCAATTAAGAACA GCAGCCGCTAAGACTGCAAGCCTTACACCTCACCATCTCCCTCATGAGTAAGACTGAAATAAAACTCT GCTGCAGGAAAGATGGAAGAAAAGACAGTCAAATGGGGTGGGGGTTCTTTACCTTTCAAATGAATAGA AACTTCTTATAAGCCTTTTTCCTACTCCCTCAGATTATGTAATTTATTTGTAAGCCTGAATCGCAGCC CAAACAGGGCAGCAATGTTGAAGTGACCATAAAGTGGTCACTTCCACCGTGAAGCGAAAGAGCCAGTA GTGAATCCCCTCATTTTGTGCATTCACTTTGAAGAAAAAGGTTTCTCAAAGATGCACACTCCCTCTTC ATAGTGTTGTGTTTGTTTTTAAGTTAGAGAGTAGTCCCTCTTGCATTCAAACCTCCTTCAAAACTCCT TACCCAATGTGATGTTTTTCACTTGCATTGTCATTAGATGTCCAGAAAAAAAAAAGATGTCAAAATGT TTTTCTAAAAAAAGAAAGCAAAAAAAGCAAGGCAAAAAAAAAAAAAAAAACAAACAAAAACAAAAACA AAACAAAAACAAGCAAACAAAAAATACCAGAGCAAGTACTGTGTGAACATGTGGAAGTCCATGCCCTA ATAGAGTTGCAATTTTTTATTCTTCTTCTATAGTGGTGGCTTGGTTTGTGTACCTATTTTTCTGCATT TGTATTGGAAAAGGTTTCTTTTAAGACATTTTCCAAAAGTGGAGAGGAATATGTGTGTTCAGGAAGGG CTTTCAAAAAACTGTATATCTAAATAAAGCTCAAACGGTGAAATCCTGTCACATTTTCACAATGATGC TTAAAAGATAATTGAGTAAACCAGGTTGTTAATCTCCTTAATACCTGAAAGAGGACACACTGAAACTG AAACTGTGACATCCTGCTAGGTGAGTTCAGGTTCTGAACCTAGGAAATCCTCATAGGAGAAACCACAT TTAAACAAAGATGGGACTTTCTCTGAGAGCCAAAACCAGATAAATGTAGAATACTGAAATCCTTGTTG GACATTAAGTAAACAAAGATAATGATACCTAAATTAATCCTCTCTTGTGCTTATGAAACATATGCACT GTAAAATAGGCATACCAGGAGGAAATAGATACATTAATCATCATTTACTTATGATACAAATTATTTAT TTTGACAATTTATAACGTTTAAAAAAGTTTTTTAAAGATCTAGAGAAAGGTGATATAGTAAACATTCA ACTCTGTAAGAAATGGGAGGTCAGTGAAGGCTACATCCCAATCAATATTTGGCTCTAAGTACCTCTTC CCATTTTTCCTATGTATCACCTATTTCTGTTTCGGAATATGGTGTGTTCATGCTTAGTTCTTTGGGCT TTTGAATATCAAAAGCATATTCATAAATGTCTTGAAATTCTCTCCAGTGGAAAATAATTTTAACTTAC AATCATATCCCAAGAAATGTCAGTCCGACAGAATTCCTTATATGACTTGGGGAAAATAACAAAATTTG ACTACTATTTCACCATATATCTATTTATTAAAAAATTCAACAGTTGGCACTTCCTGAATCTTCTGAGA GTAGAAAAATATCTGCGGAGTGTCTGTGTAGAAAAGGATATGCCTCTCTTTTGAGTGTATTGACAATT TTGTAAATTACAGAAAGTTGTTTCTCTAAGCCTTTGAAAAACTAACAATTTGTGTTATAGAAGGCTTC TTAATTTGCAGTATAAAAGAATCTAAACAGAACTTATGTACATTCAGCCAGAAGGGGAAAGAGATCAG TTACATAGGCCTCTCTCCTTCTTTGCCAAGGTACATCCATCCATCTAACCATCCATATATCCACATCT TAAAATGAAAGCACTTTCTTTAGAGTTTCAGCAAACTATATAGTGTACGTGTTTATGTTCAGGAGATG ACCCCACTGGTGTATTTCCTATTTTCCCTATTGTTTTCTTTGACTGTAAAAGTTGGGAGAGGCTTGAC CTCCTCCCCTTGAAAATGTCCACAGTGGGATAAAACAACAAATGTGAAAAGAAAATGAAACGGTAATA TTAATTTGAAGCATACTATGTTATACTTTGCAAAAACGAATCTGGGCCTGTAATTTTTAATGCCACAC TGCTCTAATGAGAGAGAGAGGCCTTAATTTTGATTTCATTTAAAAATAAGTACTTTAAAAAATTTTTC ACTCATAGTGCCGGGAAATTCAATGAAATCCTGGGATGCAAATAAAAATCAGTACATTAGTGACTGTG TCCTGCCAGTGGAGAGAGCCCAATACCTGGTTAGGAAGCCCTATTCATTAGTTAGCATCCCTTACATG TTGAGAAGGCCTTTTTTTTGTTGTTATTTTGGAGACCTTGGAGCAGTGACCCTTCAGATCACTGTAGG CAGAGAAATGGCTTCTCTCTTATGCTTTCAGTTCAGCATATTAACAATGAGGAGCCAGGTACTTCTTT ACTACCACTTTGTACCAAGATTTGATAATAATATATCCCAGGAGGCATTACTTTTATAAATTTGTATT CATGTAAATTTTCAAATGAGAACAGCTTCTAAAGCCCCTTCCCTGTATTGGAGAGTTATGTATATTTC TAATAAGTATTAGAAAGAAGCTGTTTCTCATGCCACAGTGATGCTGAAGGATTCACATTTGGTACAAT CGAGTAACTTGAACGCCAGATTGTTAACAGTTTATTCTCTTTCCCTGGATTTTTAAGCTCATCTTGAC ACAGGTGAGTCTATCCAAATCTTTGATGTTGCTAGTGTGCCCTGAGATAACGAGGGCACATCTTTCAA TGTTGATTCCAAAATGTCCTGAGTTAGGAATAGGGCAGTGGGAAAGTCAGGGAAGGGTGAGAAGCACA GTAGAGATTATTTATTTAAAAAAGGAAAGAACGTTAATGTTGTTAGCAAGGATCCAGTGCGTTGTCAT AATCCCATGAGGATTTTCAGATGACACAATCCCCTCAAATCAGTCACCATGTTGGGTAATGACTTCGT TCTTGCTGATCTCGTGTGTGTGTCATTGTAAATATTTGTGTGTCCATGTTCCATTTTGGCTACTGGAT GGCCAAGCCATGTAAGAAGATTTAACTCAAGTATTTATTCTTTATGTTATTCAGATTTCTTTCAGGCT TGTGAACTGCACCCCAATGTTTGAGTTTAACCACCTGATCCTTACATCTATCCCTCCCCGGTGAAGCA CATTCCATTGCTAAAAGAAAAAGAAACACGAAATTGCTTCCTGTTGTCTGTATAACTGTTTTGATAGT TTGAGATATTTGTCTATAAATGATATTTCTCAGCTCAAAGATCGTGTAAATAATTATATTCCTTTGCT CAATGGGTTTATTTCTAATGAGGCTGCCAGTTCTGAGAGATTCTATAATATCACTTTTAAATAACATA AACAGGGATTACAACTATGTAAAAAGAAATGCATATGGACAAAGACTGGGAACACAGATAATTGAAAT CAGTTGTGTTAGGGTGGTGGAATTATGTGAATTTTTTTTTCTTTTTAAAATTTTATTTGATATTGTTA TAATATTGCTTTACAATAAATAAACAGCAGAAAGGGAACTATAGACACATAGAAAAGATGCCAGAAGC AGATGCCTTCTGGCCAGAGCGCAGAGCATGCAGGGCAGAGATATTTGCTAGTTACAATTATTCCATAG GCTTTATGCTTGCCTGGGTGCTGAGGTTGGCACACGCTCGGGTATGGCACACGCTTTCTTAGGAGACT ATTATCTATAAGTTAAAGCTAGGGAGATGTCACTATTAGAACTCCAAACACACTCTTCTGCTTTAAAA CAGGTTGTCTGCCCTCTGCTTTGGTATGGCATTCGGGTGTCTGTTTTGTGGTTGCTTTAGATTGGAGG GGTGACCATTTTATTAGCCCCCTTGATAACATCTGTTGCAGATATTGCCTTTCTGGAACGTTTTAACA GACTCTCAGGTTGAATTTTGGAGGACTAGAAGGATAAAATCCCCAGCTCCCACCATTTTCTTGTCCAA CAGGATATTACTGTATATCATTCAGGTAGGATTCTTCTTTTAATAACCAATAGGGCAAGTCCCACTAA TTTCAATAGAAGTTATGACTTGCAATTAAAAGCTGACTTTGAAATCATTAAACAAATATGTAGGACTG TCTCTGCCTGTTGGCATTCAGTTATAGTTCTGTTAATTTTGGCTTGGGATGGTCTCCATGTGCTTTTT TCTGCCTATTTATAGGTTGTTTGCAGTAGTTGTGATTTTTAAAGAGCAAGGGAGACCATCTAACCAAA GGATAACTTCCTTCTAACTCACCAAAGAAATTTTAGGTGAGAACTTTAATAATGAGGTAGTCACCTCA GATATGCTGCTTAGTTTCACTAAAAGCAGACCCTATACCTAGAGAAGTCACTGGCTTTTTATTGGTCA TTCTCAATACAGAAATACTTAGGGGAGTCTTAACCCTGCCATCCCCGGTTGAATCTCTTGGTCTTTAT CTAAGCTACTTGCAGTTAATATTCAGTTAAGCAAAGGTATGGCCAGTAGTGCAAGTATCTCCCAGTCT CTGAGCTCTGAACAAGAGGACTGAAATTCAGCATTTGTAAACTGACAGTTTGATGGGCCTGGGATTTG AAGTGAACTCAGCACACAATTCTGAACGTGTATTTGCATGTGGACTGGGAAGGAAATAAATGGGAACT TGGAAATAATGGAATATTTCTCCTATGAAAGAATTTTTCGTAGAAGATTTGTTTTTGATATAATCTTT CTGTTGGTTAGCTTTTAGTGTTTTCATTCCTTTTCTGATCCACACTCCTTTAAGTGACCAAATGAATA TAACCCAACATGCATTGGGAATGTGTTTAATATTAAACAATGTCTAACTGAATCTGCAAATGCGGGAA CTGAGATATCACCTCCATGTGCACACCTGTGTGTACGAGTATTCTATACAACTTGTAGCATTTACTGC CACTTAATTGGGTTGAACTTGCAAGATAAACTTTTGGAAACTGCTTAGTGCCATCGGAGTCTCCTTTA GAAGCTGCCATCAGGCAAATGCTATCCCATAATACCAGCAGTAAGCCTGGCAACATGTTCAACAGATT TAGTACCCAAGAGGAAATCAACAGCGATAGTAGAGAATGAGTCAGATGTAGTGGGATAAATACTAGCC TAGGAAGAAGGAGCCCCGGAGTCTAATATGAGCTTTATTACTAAATTGCTATGTGACGCTAGGCAAGT CACTTAACCTCTCCATGGCTGTTTCCTCATCTGTAAAATAAGTGTATTGGACTAGATGATCCTTAGGG TCTTTCCAAAAGTCTAACATTCTATGGCATTATAGGTTGCCTTGCAAATTCAGCCTGCTATAGTGATG GCAAATATCACGTTTAAGCCTGAGTCTCTTATGTTGCAGTTAAATAAAAGAACTATGTAAGATGATTT TTAAAATTCAAGCAAATGGGCCGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCAA GGCAGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGACCAACATAGAGAAACCCCATCTCTA CTAAAAATACAAAATTAGCCGGGTGTGGTGGCGGGCGCCTGTAATCCCAGCTACTTGGGAGGCTGAGG TGGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGTGGTGAGCTGAGATCATGCCATTGCACTCCAGC CTCGGCAACAAGAGTGAAACTTCGTCTCCAAAAAAAAAAACTCAAGCAAATGAAGTTCATAATAATAG GGGATGTTGATAAAACTTGTGGCAGCCTTCCAATTCATTTACAGTTGTTTCGTTTTGTTTTTGTTTTA ATGTCCATTTTCTGTTGACTGTTCCCAGTTTTCATTTTCCATACAGTCTGTATGTAAAGTCTGGTTTT CATTAAGCTGTGGCCAGTATTTGCCACTACAACAGAAACACACTGTCACACTTGCTAGAATATAACTG TACTTGAGCTTCTCCTTTCCTGTGAAGTAGTGCTGGGCTTTCTAGAGTTTAATTCTCAAGTGGCACAA GATAGCAGAGCCCATGCATTTTAATGGCTGAGACTGCTAAGAGTGAACCTAAACACTTACAAGTTGCA GAGAGAAATGAAAAAGTAATTACATGCTATTAGCATTGAGAAATGTTGACAAATTAATTTGTTGGGAA CCAAAGATAGCATTTCTGATGACAACTCCCACAGTGATTGGCCAGTTGTATGATGAGTACACTGCTGG AAAGAGGGTAAACTGGGAGTTAGTGGATGGTCCCAATGCCCTGCCTACAGCAGAGTGCCAACCAGCCC TGAGTGCAAAATTCAAGTTCAATGTGTGTGCTTGTGTGTGGTGTGCTTTATGGACCCGCAAATACCAT ATTCATTATTGATGATAAGATCTTCACAGAATCCTGTAGCTACTAATGCATTGAGTTTTTAATCTCAG TACATCAGCCAGGAGGAGCCAGATCACAGGGTAGTGATGTCTACTGGGATTATACTCATAACATCTAC ACAAAACAAGTTGAGAAGGATCCACGTTTTCATTGTTTATCAGAATTGTATCTCATTTGGCTGAGCAT TACTTTTGTCAGAATGTGTTATCTGTAAACCATGTGTAGTGAAATTCTTCTGTAACTTTGGATTAAAG GTATTTATGGTCTTTTTGTTTGTTTGATTTTTAAGTAAGTTATTTCTTTTGTAGACCTGCTGATGGTA TGGTTCCATCCTTCTGACCTCAGCATCCAATCTTTTTAAGGATTTTTGTTTTCAATATTGTTATTTTA AATTGTGGTTGAAGCAATAGAAAATTGAAATATGGATTGTGCATGACTGTGTCTTGAGTGTAAAAATA TTGCAGTTTGAAACTTGGACCTAAAGTATTGCAAATAAAAATGACAAACATCAATGA 7191 Human TRNP1 GGGGTGGGGGCTGTGGCCGTGTCTAGCTGTTCGGGTGTGCTGTGGTCATCCTCCCTGCGCACCTACAG mRNA CCGCAGACCGCCGGTGGGGGGCGGGGGATGCCGGGCTGCCGCATCAGCGCCTGCGGCCCGGGGGCCCA NM_001013642. GGAGGGGACGGCAGAGCAGAGGTCGCCGCCGCCGCCCTGGGATCCCATGCCGTCCTCTCAGCCCCCGC 3 CCCCAACTCCGACCTTGACTCCTACCCCGACCCCGGGTCAGTCCCCGCCGCTGCCGGACGCAGCTGGG (GI:1519242294 GCTTCAGCAGGCGCGGCCGAGGACCAGGAGCTGCAGCGCTGGCGCCAGGGCGCTAGCGGGATCGCGGG version 3) GCTCGCCGGCCCCGGAGGGGGCTCTGGCGCGGCTGCGGGGGCGGGGGGCCGCGCGCTGGAGCTGGCCG AAGCACGGCGGCGGCTGCTGGAGGTGGAGGGCCGCCGGCGCCTGGTGTCGGAGCTGGAGAGCCGCGTG CTGCAGCTGCACCGCGTTTTCTTGGCGGCCGAGCTGCGCCTGGCGCACCGCGCGGAGAGCCTGAGCCG CCTGAGCGGCGGCGTGGCGCAGGCCGAGCTCTACCTGGCGGCTCACGGGTCGCGCCTCAAGAAGGGCC CGCGCCGCGGCCGCCGCGGCCGACCCCCCGCGCTGCTGGCCTCGGCGCTGGGCCTGGGCGGCTGCGTG CCCTGGGGTGCCGGGCGACTGCGGCGCGGCCACGGCCCCGAGCCCGACTCGCCCTTCCGCCGCAGCCC GCCCCGCGGCCCCGCCTCCCCGCAGCGCTGACCTCCACGCCCGGACCCCTGGCCACCCCGACAAGCTT CGCCGAGGTGCCGACCGACCGACTGATCGCGGACGCCGGCTGGAAGGACTACGGATCCGCAGGAAGAG GCAGTTGGGGGCCAGGGGCCCAGTAGAGGAGGCTGAGCTCCTTCCAACTCCTCAGAACCTCCACTCTA TGGATCTGGACCTCTGGATTCGGCTTTCTCCCTGGGCACTGCCTTCAGGAAGACGTTGAGAATTGACC TTACACAATCCCAGCGCCCTCCTCACAGGAGCCTTTCACTTTACAGTGGCAAGGGGCTGGTTCTGGAG AACTGGCTGATGCTCTGAATTTCTTCATATACCCCACATTTGACTTTGGCTTACACTGTACAATTGGA GATGTTGCTACAGGTCCCTGAGATGCAATCAGATTAAGCGTAGCAAGCATTGCCAATGGGAAAGTCAA AATAATTTATTTTTTTTCCCTTTCCCCCTACCCCATCCCCAGCCAAGAATTTCTTTTCAAGATATCGT CATCATTCTTAAACAACATTCTTAACCCCCAGCTGGGGTCCCCATTTTAATAGATGTCATTGCTTCAA GTCTAACGGCGCCGGGAGGCCTGTTTGAGGGAAAACATTAGTTTGAAAAATCCCCGTTCCCTTCATCC ACTGCCCTTGTTCTCCACGTGGGAGTGTGCTTGTGGCCCCTCAGAAAGATAGTCTGCTGGCTCCTAGG GGTTGGGGTGGGGGACACACCTTTTTCTCAGGAAGAGGTGATGGCAATGTAAAACATCTAAGCAAAGT TTTAAATGAAAAAAAGGAAACACATTTAAACATCCTGATAATGGAGGGAAGGGGGGCACATTTACACA TAGCCCAGAACTTGTAGAATTCTGCATAGTGAATGTATATTGAATTAGTCTCCTGCCTTATACATTCA GGAGGAATAAATTTCCATAATGTAAGGCAAATGCATGGGGTTCTGAGGTTCACTTTGCAAGTGCCCTT GCTGCCTTTCCTCTGTGTCTATTATGGCTCTTTAAGTTGACGGTTCCTGGAGCAGCTTGTATTTAGTT TCGTTTGGCAGTCTGGCCCTGTTGACTTTGATTTGCAGACCAATTCTCCCTTGACCTGACTCACAGCC GCCTGCTCTTACCCCCCTCCTCAGGAAGTCTTCCTCATTAAAGGATGTGATGACGGA 7192 Human APLN GAGCATTCTCTCTGGCAGCCGGGGTCACGGGCAGTTGCAGCCGCGGCCGAGCAGCCAGCCGCTAAGAA mRNA AGAGCTCGCCGCTGCCGCTCCCGGAGCCGCCGAGGCCAGCTTCGCGGCGCTGCCCCGCGGCGGGAGAG NM_017413.5 GAGGCTGCAGAAGAGCGGAGGCGGCCAGCGGGAGCGGCGGGGCTCAGCGCGCACACTCAGCGGCCGGG (GI:1519315208 GAGCCTCCCGAGCTCTGCGCCCGCACGCGCCAGCCGCGGCTCGCGCCTTTCTTGGCCTCCGGGCGCCC version 5) GACCTCTCCTCCCCCGCGCCGGCTCGCCGGGGCCGCGGCGGCCCAAGGAGCAGCATGAATCTGCGGCT CTGCGTGCAGGCGCTCCTGCTGCTCTGGCTCTCCTTGACCGCGGTGTGTGGAGGGTCCCTGATGCCGC TTCCCGATGGGAATGGGCTGGAAGACGGCAATGTCCGCCACCTGGTGCAGCCCAGAGGGTCAAGGAAT GGGCCAGGGCCCTGGCAGGGAGGTCGGAGGAAATTCCGCCGCCAGCGGCCCCGCCTCTCCCATAAGGG ACCCATGCCTTTCTGAAGCAGGACTGAAGGGGCCCCCAAGTGCCCACCCCCGGCGGTTATGTCTCCTC CATAGATTGGTCTGCTTCTCTGGAGGCCTCACGTCCATTCAGCTCTCACCTCGCACCTGCTGTAGCCA CCAGTGGGCCCAGCTCTTCTCACCTGCCTGCTTCCCCCAGTGGCGTGCTCCTGGCTGTAGTTTGGATG ATTCCCGTTCTCTCACAAGAATCCGTCCAGTCCATCTTCCTGGCCCCTCCCTGGACTGACTTTGGAGA CCTAGCCCCAGAAAGCCTCCCTTCTTCTCCAGGTCCCCTCCGCCCTAGTCCCTGCCTGTCTCATCTAA CGCCCCAAACCTTCATTTGGGCCTTCCTTCCTCATGTCTGCCCTGAGCGCGGGGTGGAAGTGCTCCCT TCTGTGGGCTCCAGCAGATCCCTTGTTTTCCTGTCAGTTGGACCCCTCACCTGGCCTCCAGGGAAGAA TGCAGAGAAAAGCAAGGAGAGACTCTAGTTAAGAGGTGCTGGCTGCGGGGATCCAGACAGGGCACATT GGGGGCATGGAAGTGCCAGGGTGGTTTTCAGGAGCTCTGGTGAAGTGGGTGGAGCATCAGCGTTTGCT CAGTTAAGGGAGAGGTAGAGAGGGGCCCGTGAAGTCCTTTGTCACTTCTCTTGCCTTAGTGTGCCTCC CAATACTCCCTTCTTCCTGCCCCCACACCCCATCCCCAGCTAGCCCAAGCTCCAGGTCAGGAGGGGAG GGTGCTGGGCCTGACATGGCTATATACCCTCCCAGGAGTAAAAGCCAAGCAAGAGGTTGTTTTTGCCA AGAATCACAGAATGTTAGAGCTGACAGGACCCTTGAAGGTCACTTAGCCTTCTTAGGCAAACGCCTGC AAAACAGAAGCCTGGAGAGGGGAGTGACCTGCTCAGAGTCATTGCAGAGCCGGGATGGGGACCAGGTC TCCCATCTCCTACTTTATGACGCCCTCTTCCCTCTTGATGATGTCTTTTCAAAGCAAATGAAGTGCCT TTTCCCGAGGCTGGGGCTGGGGGTGGCTGGGAGGGGAAGGGAAGGGAGAGGCAAGCTGGCTGTGAACT GTCCTGTTGTGGGGCTGGAGCTGCTCCCACCTCCCTGACCTACCCCTGCTGCACCATTCCCCCAGCTG GGCTGGAAGGTTCCATAACTGGCCAGCTGCCCCCATAACTGGCAGCATTCCCAGACCCAGGGTACTCT AATAGGGGCGGCTCAGGCACTGAGACTACCGCTCAACCCCAGGGTGGTTTTCAGGAGTCCGAGGTAGC CTTCAATCACTGGACTCCATGGCCTTCCCTTCGTGTTGACCGGACCTTCCTTCCAGGGCTTTTCCTTT GGGGGAGGCGGAGAGGGGAGAAGAAGGAAGGGAAGGGCAGAAGGAAGGAGGGAAGAAAAGAAAGCAAA GGAACAGAAGGAAGGAAAGAAAGATGGGAGGAAGTGCAGCAGGAATAGCACCCTCTCCCCGGGAGGCC CTAGCTTCCGTGAGGGGCCATCACCAGCCATTCCTTGGAGGGGGCTTTCTCCCCTTTTGCTTGAGCAG GGTTCCCAGGAGGGAGAAAGAGAAGACAAGAGCCTGATGCCCAACTTTGTGTGTGTGGGGACGGGGGA GTCAGGGCCCCCCAAGTCCCACAATAGCCCCAATGTTTGCCTATCCACCTCCCCCAAGCCCCTTTACC TATGCTGCTGCTAACGCTGCTGCTGCTGCTGCTGCTGCTTAAAGGCTCATGCTTGGAGTGGGGACT GGTCGGTGCCCAGAAAGTCTCTTCTGCCACTGACGCCCCCATCAGGGATTGGGCCTTCTTTCCCCCTT CCTTTCTGTGTCTCCTGCCTCATCGGCCTGCCATGACCTGCAGCCAAGCCCAGCCCCGTGGGGAAGGG GAGAAAGTGGGGGATGGCTAAGAAAGCTGGGAGATAGGGAACAGAAGAGGGTAGTGGGTGGGCTAGGG GGGCTGCCTTATTTAAAGTGGTTGTTTATGATTCTTATACTAATTTATACAAAGATATTAAGGCCCTG TTCATTAAGAAATTGTTCCCTTCCCCTGTGTTCAATGTTTGTAAAGATTGTTCTGTGTAAATATGTCT TTATAATAAACAGTTAAAAGCTGACAGTTCGCCCTTACTCTTGGAGGTCATGTTCAGGAGGGGCATTC CTTTCCCCTGGGGGTCATGGGTGTCCCCATGCCCACATATTGCACGTGCAGGGAGGTAAGTGCCTGCA TCCCAAATCGGTTCTAGGTCAACTGGCCTCAAACTGATTTGCCATGAGCTCACAAAATGAATCCCTAT GCTTAATGACCAGGTCACATAAAATCCAGCCCACTTACAGGTTTTCTGGCATCTGTTTGGGTGTCCTA ATTTTTTTGGCAGTGTCATTTGAAGAATTTTTTTAAAGCAGTTTATTTAAGAACATACTGATTAAATG CAGGATCGCTACTAAAAATTGTTTTGTATCCTTGGTGGGTGTCTTCTGCTATTTTATCTACTTTTGAA CACTTTCAGGACTTTTTAGCCAGTTTGCCTTTCTTGAAAAATGTTATGTTTTCAGCAATAAATACATT TGATAATGACTTTGTTTGTATCATTTTATGTTTCACAAAGTAGAGTTGCTTGATGAATGAGATAGCCT GAAAAATAAAATGCAAAGAGTTCAATATAA 7193 Human KIF20A GGAGTTGTGCTCTGCGGCTGCGAAAGTCCAGCTTCGGCGACTAGGTGTGAGTAAGCCAGTATCCCAGG transcript AGGAGCAAGTGGCACGTCTTCGGACCTAGGCTGCCCCTGCCGTCATGTCGCAAGGGATCCTTTCTCCG variant CCAGCGGGCTTGCTGTCCGATGACGATGTCGTAGTTTCTCCCATGTTTGAGTCCACAGCTGCAGATTT 1 mRNA GGGGTCTGTGGTACGCAAGAACCTGCTATCAGACTGCTCTGTCGTCTCTACCTCCCTAGAGGACAAGC NM_005733.3 AGCAGGTTCCATCTGAGGACAGTATGGAGAAGGTGAAAGTATACTTGAGGGTTAGGCCCTTGTTACCT (GI:1519313609 TCAGAGTTGGAACGACAGGAAGATCAGGGTTGTGTCCGTATTGAGAATGTGGAGACCCTTGTTCTACA version 3) AGCACCCAAGGACTCTTTTGCCCTGAAGAGCAATGAACGGGGAATTGGCCAAGCCACACACAGGTTCA CCTTTTCCCAGATCTTTGGGCCAGAAGTGGGACAGGCATCCTTCTTCAACCTAACTGTGAAGGAGATG GTAAAGGATGTACTCAAAGGGCAGAACTGGCTCATCTATACATATGGAGTCACTAACTCAGGGAAAAC CCACACGATTCAAGGTACCATCAAGGATGGAGGGATTCTCCCCCGGTCCCTGGCGCTGATCTTCAATA GCCTCCAAGGCCAACTTCATCCAACACCTGATCTGAAGCCCTTGCTCTCCAATGAGGTAATCTGGCTA GACAGCAAGCAGATCCGACAGGAGGAAATGAAGAAGCTGTCCCTGCTAAATGGAGGCCTCCAAGAGGA GGAGCTGTCCACTTCCTTGAAGAGGAGTGTCTACATCGAAAGTCGGATAGGTACCAGCACCAGCTTCG ACAGTGGCATTGCTGGGCTCTCTTCTATCAGTCAGTGTACCAGCAGTAGCCAGCTGGATGAAACAAGT CATCGATGGGCACAGCCAGACACTGCCCCACTACCTGTCCCGGCAAACATTCGCTTCTCCATCTGGAT CTCATTCTTTGAGATCTACAACGAACTGCTTTATGACCTATTAGAACCGCCTAGCCAACAGCGCAAGA GGCAGACTTTGCGGCTATGCGAGGATCAAAATGGCAATCCCTATGTGAAAGATCTCAACTGGATTCAT GTGCAAGATGCTGAGGAGGCCTGGAAGCTCCTAAAAGTGGGTCGTAAGAACCAGAGCTTTGCCAGCAC CCACCTCAACCAGAACTCCAGCCGCAGTCACAGCATCTTCTCAATCAGGATCCTACACCTTCAGGGGG AAGGAGATATAGTCCCCAAGATCAGCGAGCTGTCACTCTGTGATCTGGCTGGCTCAGAGCGCTGCAAA GATCAGAAGAGTGGTGAACGGTTGAAGGAAGCAGGAAACATTAACACCTCTCTACACACCCTGGGCCG CTGTATTGCTGCCCTTCGTCAAAACCAGCAGAACCGGTCAAAGCAGAACCTGGTTCCCTTCCGTGACA GCAAGTTGACTCGAGTGTTCCAAGGTTTCTTCACAGGCCGAGGCCGTTCCTGCATGATTGTCAATGTG AATCCCTGTGCATCTACCTATGATGAAACTCTTCATGTGGCCAAGTTCTCAGCCATTGCTAGCCAGCT TGTGCATGCCCCACCTATGCAACTGGGATTCCCATCCCTGCACTCGTTCATCAAGGAACATAGTCTTC AGGTATCCCCCAGCTTAGAGAAAGGGGCTAAGGCAGACACAGGCCTTGATGATGATATTGAAAATGAA GCTGACATCTCCATGTATGGCAAAGAGGAGCTCCTACAAGTTGTGGAAGCCATGAAGACACTGCTTTT GAAGGAACGACAGGAAAAGCTACAGCTGGAGATGCATCTCCGAGATGAAATTTGCAATGAGATGGTAG AACAGATGCAACAGCGGGAACAGTGGTGCAGTGAACATTTGGACACCCAAAAGGAACTATTGGAGGAA ATGTATGAAGAAAAACTAAATATCCTCAAGGAGTCACTGACAAGTTTTTACCAAGAAGAGATTCAGGA GCGGGATGAAAAGATTGAAGAGCTAGAAGCTCTCTTGCAGGAAGCCAGACAACAGTCAGTGGCCCATC AGCAATCAGGGTCTGAATTGGCCCTACGGCGGTCACAAAGGTTGGCAGCTTCTGCCTCCACCCAGCAG CTTCAGGAGGTTAAAGCTAAATTACAGCAGTGCAAAGCAGAGCTAAACTCTACCACTGAAGAGTTGCA TAAGTATCAGAAAATGTTAGAACCACCACCCTCAGCCAAGCCCTTCACCATTGATGTGGACAAGAAGT TAGAAGAGGGCCAGAAGAATATAAGGCTGTTGCGGACAGAGCTTCAGAAACTTGGTGAGTCTCTCCAA TCAGCAGAGAGAGCTTGTTGCCACAGCACTGGGGCAGGAAAACTTCGTCAAGCCTTGACCACTTGTGA TGACATCTTAATCAAACAGGACCAGACTCTGGCTGAACTGCAGAACAACATGGTGCTAGTGAAACTGG ACCTTCGGAAGAAGGCAGCATGTATTGCTGAGCAGTATCATACTGTGTTGAAACTCCAAGGCCAGGTT TCTGCCAAAAAGCGCCTTGGTACCAACCAGGAAAATCAGCAACCAAACCAACAACCACCAGGGAAGAA ACCATTCCTTCGAAATTTACTTCCCCGAACACCAACCTGCCAAAGCTCAACAGACTGCAGCCCTTATG CCCGGATCCTACGCTCACGGCGTTCCCCTTTACTCAAATCTGGGCCTTTTGGCAAAAAGTACTAAGGC TGTGGGGAAAGAGAAGAGCAGTCATGGCCCTGAGGTGGGTCAGCTACTCTCCTGAAGAAATAGGTCTC TTTTATGCTTTACCATATATCAGGAATTATATCCAGGATGCAATACTCAGACACTAGCTTTTTTCTCA CTTTTGTATTATAACCACCTATGTAATCTCATGTTGTTGTTTTTTTTTATTTACTTATATGATTTCTA TGCACACAAAAACAGTTATATTAAAGATATTATTGTTCACATTTTTTATTGAATTCCAAATGTAGCAA AATCATTAAAACAAATTATAAAAGGGACAGAAAAA 7194 Human LTB AGTCTCAATGGGGGCACTGGGGCTGGAGGGCAGGGGTGGGAGGCTCCAGGGGAGGGGTTCCCTCCTGC transcript TAGCTGTGGCAGGAGCCACTTCTCTGGTGACCTTGTTGCTGGCGGTGCCTATCACTGTCCTGGCTGTG variant CTGGCCTTAGTGCCCCAGGATCAGGGAGGACTGGTAACGGAGACGGCCGACCCCGGGGCACAGGCCCA 1 mRNA GCAAGGACTGGGGTTTCAGAAGCTGCCAGAGGAGGAGCCAGAAACAGATCTCAGCCCCGGGCTCCCAG NM_002341.2 CTGCCCACCTCATAGGCGCTCCGCTGAAGGGGCAGGGGCTAGGCTGGGAGACGACGAAGGAACAGGCG (GI:1720810086 TTTCTGACGAGCGGGACGCAGTTCTCGGACGCCGAGGGGCTGGCGCTCCCGCAGGACGGCCTCTATTA version 2) CCTCTACTGTCTCGTCGGCTACCGGGGCCGGGCGCCCCCTGGCGGCGGGGACCCCCAGGGCCGCTCGG TCACGCTGCGCAGCTCTCTGTACCGGGCGGGGGGCGCCTACGGGCCGGGCACTCCCGAGCTGCTGCTC GAGGGCGCCGAGACGGTGACTCCAGTGCTGGACCCGGCCAGGAGACAAGGGTACGGGCCTCTCTGGTA CACGAGCGTGGGGTTCGGCGGCCTGGTGCAGCTCCGGAGGGGCGAGAGGGTGTACGTCAACATCAGTC ACCCCGATATGGTGGACTTCGCGAGAGGGAAGACCTTCTTTGGGGCCGTGATGGTGGGGTGAGGGAAT ATGAGTGCGTGGTGCGAGTGCGTGAATATTGGGGGCCCGGACGCCCAGGACCCCATGGCAGTGGGAAA AATGTAGGAGACTGTTTGGAAATTGATTTTGAACCTGATGAAAATAAAGAATGGAAAGCTTCAGTGCT GCCGATAAA 7195 Human LTB CAGTCTCAATGGGGGCACTGGGGCTGGAGGGCAGGGGTGGGAGGCTCCAGGGGAGGGGTTCCCTCCTG transcript CTAGCTGTGGCAGGAGCCACTTCTCTGGTGACCTTGTTGCTGGCGGTGCCTATCACTGTCCTGGCTGT variant GCTGGCCTTAGTGCCCCAGGATCAGGGAGGACTGGGTTTCAGAAGCTGCCAGAGGAGGAGCCAGAAAC 2 mRNA AGATCTCAGCCCCGGGCTCCCAGCTGCCCACCTCATAGGCGCTCCGCTGAAGGGGCAGGGGCTAGGCT NM_009588.1 GGGAGACGACGAAGGAACAGGCGTTTCTGACGAGCGGGACGCAGTTCTCGGACGCCGAGGGGCTGGCG (GI:6996015, CTCCCGCAGGACGGCCTCTATTACCTCTACTGTCTCGTCGGCTACCGGGGCCGGGCGCCCCCTGGCGG version 1) CGGGGACCCCCAGGGCCGCTCGGTCACGCTGCGCAGCTCTCTGTACCGGGCGGGGGGCGCCTACGGGC CGGGCACTCCCGAGCTGCTGCTCGAGGGCGCCGAGACGGTGACTCCAGTGCTGGACCCGGCCAGGAGA CAAGGGTACGGGCCTCTCTGGTACACGAGCGTGGGGTTCGGCGGCCTGGTGCAGCTCCGGAGGGGCGA GAGGGTGTACGTCAACATCAGTCACCCCGATATGGTGGACTTCGCGAGAGGGAAGACCTTCTTTGGGG CCGTGATGGTGGGGTGAGGGAATATGAGTGCGTGGTGCGAGTGCGTGAATATTGGGGGCCCGGACGCC CAGGACCCCATGGCAGTGGGAAAAATGTAGGAGACTGTTTGGAAATTGATTTTGAACCTGATGAAAAT AAAGAATGGAAAGCTTCAGTGCTGCCGATAAA

Claims

1. A method of treating fibrosis in a disease characterised by fibrosis, comprising administering a therapeutically-effective amount of an inhibitory nucleic acid comprising or encoding antisense nucleic acid for inhibiting ITFG1 gene expression to a subject having the disease characterised by fibrosis.

2. The method according to claim 1, wherein the disease characterised by fibrosis is a disease characterised by fibrosis of the liver.

3. The method according to claim 2, wherein the disease characterised by fibrosis of the liver is selected from: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, mild liver fibrosis, advanced liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic fatty liver disease (ALFD), alcohol-related liver disease (ARLD), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis, liver damage, liver injury, liver failure, metabolic syndrome, obesity, diabetes mellitus, end-stage liver disease, inflammation of the liver, lobular inflammation, and hepatocellular carcinoma (HCC).

4. The method according to claim 3, wherein the disease characterised by fibrosis of the liver is selected from: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC) hepatitis and liver damage.

5. The method according to claim 1, wherein the inhibitory nucleic acid is an siRNA, dsiRNA, shRNA or antisense oligonucleotide.

6. The method according to claim 1, wherein the inhibitory nucleic acid comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.

7. The method according to claim 1, wherein the antisense nucleic acid for inhibiting the expression of ITFG1 comprises or consists of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NOs:457 to 1482.

8. The method according to claim 1, wherein the inhibitory nucleic acid comprises a moiety facilitating delivery to and/or uptake by a hepatocyte and/or hepatic tissue.

9. The method according to claim 1, wherein the inhibitory nucleic acid comprises one or more GalNAc moieties.

10. A method of inhibiting fibrosis of the liver in a subject, comprising administering to a subject in need thereof an inhibitory nucleic acid comprising or encoding antisense nucleic acid for inhibiting ITFG1 gene expression.

11. The method according to claim 10, wherein the subject has a disease characterised by fibrosis of the liver.

12. The method according to claim 11, wherein the disease characterised by fibrosis of the liver is selected from: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, mild liver fibrosis, advanced liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic fatty liver disease (ALFD), alcohol-related liver disease (ARLD), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis, liver damage, liver injury, liver failure, metabolic syndrome, obesity, diabetes mellitus, end-stage liver disease, inflammation of the liver, lobular inflammation, and hepatocellular carcinoma (HCC).

13. The method according to claim 12, wherein the disease characterised by fibrosis of the liver is selected from: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC) hepatitis and liver damage.

14. The method according to claim 10, wherein the inhibitory nucleic acid is an siRNA, dsiRNA, shRNA or antisense oligonucleotide.

15. The method according to claim 10, wherein the inhibitory nucleic acid comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.

16. The method according to claim 10, wherein the antisense nucleic acid for inhibiting the expression of ITFG1 comprises or consists of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NOs:457 to 1482.

17. The method according to claim 10, wherein the inhibitory nucleic acid comprises a moiety facilitating delivery to and/or uptake by a hepatocyte and/or hepatic tissue.

18. The method according to claim 10, wherein the inhibitory nucleic acid comprises one or more GalNAc moieties.

Patent History
Publication number: 20230167440
Type: Application
Filed: Aug 31, 2022
Publication Date: Jun 1, 2023
Inventors: Torsten WUESTEFELD (Singapore), Viktoriia IAKOVLEVA (Singapore)
Application Number: 17/823,839
Classifications
International Classification: C12N 15/113 (20060101); A61P 1/16 (20060101);