This application is a continuation of U.S. application Ser. No. 17/731,259, filed on 27 Apr. 2022, which is a continuation of International Application No. PCT/SG2021/050443, filed on 30 Jul. 2021, which claims priority from SG 10202007297P filed 30 Jul. 2020, the contents and elements of which are herein incorporated by reference for all purposes.
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING SUBMITTED IN XML FORMAT The Sequence Listing written in file 109046-1326735-SeqListing.xml created on Aug. 29, 2022, 9,219,798 bytes, in accordance with 37 C.F.R. §§ 1.831-1.835, is hereby incorporated by reference in its entirety for all purposes.
FIELD OF THE INVENTION The present disclosure relates generally to the field of regenerative therapy. In particular, the specification teaches a method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration to stimulate or increase proliferation of the cell in the subject.
BACKGROUND The rising incidence of acute and chronic liver failure, which causes more than 1.3 million deaths per year worldwide (World Health Organization, 2018), represents a major global health concern. The main underlying causes of end-stage liver disease are hepatitis virus infections (especially hepatitis B and C), drug- and alcohol-induced liver damage, and non-alcoholic fatty liver disease (NAFLD; associated with obesity and progressing to non-alcoholic steatohepatitis (NASH)). Asia has an especially high burden of hepatitis virus infections (WHO), and an increased incidence of NAFLD. Despite advances in the prevention and treatment of viral hepatitis (hepatitis B vaccination and hepatitis C combination therapies) the number of people with end-stage liver disease is expected to rise, mainly fueled by the obesity epidemic and aging societies.
Currently, the only curative treatment for end-stage liver disease is liver transplantation. However, donor organs are limited, and end-stage liver disease patients may also experience complications that render them unfit for major surgery. Therefore, alternative strategies to hold off or reverse end-stage liver disease are being pursued. These include cell transplantation, artificial liver devices, and enhancing the organ's endogenous regenerative capacity.
The liver is the only visceral organ that possesses the remarkable capacity to regenerate. It is known that as little as 25% of the original liver mass can regenerate back to its full size. Adult hepatocytes are long-lived and normally do not undergo cell division (Go). However, upon liver damage, they have the ability to enter the cell cycle and proliferate. Once cell proliferation is completed, the newly divided cells undergo restructuring, and other regeneration-related processes such as angiogenesis and reformation of extracellular matrix to complete the regeneration process.
Despite this amazing ability, the regenerative capacity of the liver seems limited, especially under chronic damaging conditions. The ability of the liver to regenerate is central to liver homeostasis. Because the liver is the main site of drug detoxification, it is exposed to many chemicals in the body which may potentially induce cell death and injury. Furthermore, through the enterohepatic circulation, it is exposed to microbiota related metabolites. The liver can regenerate damaged tissue rapidly thereby preventing functional failure. Liver regeneration is also critical for patients with partial removal of the liver due to tumor resection or living-donor transplantation.
In the last three decades, scientists have gained a better understanding of the process of liver regeneration. For example, the cytokines IL6 and TNFα prime the hepatocyte to enter the cell cycle and mitogens such as HGF and EGF are important for driving proliferation. However, the process of promoting the regenerative process is not well understood. Importantly, not only liver intrinsic signals are involved in the regenerative response but also signals from distant organs.
Many different processes are involved to modify the regenerative response, including nutrients, oxygen level and others. Importantly, the complex liver architecture and especially the interaction with other organs cannot be perfectly simulated in vitro and therefore in vivo experiments are essential. The disadvantage of in vivo models is in their limited potential for high throughput drug discovery pipelines, especially compound screens.
Accordingly, there is a need to overcome, or at least to alleviate, one or more of the above-mentioned problems.
SUMMARY OF THE INVENTION The present invention concerns the treatment and/or prevention of disease through inhibition of genes and/or proteins identified to be upregulated in profibrotic processes. Inhibition of such genes/proteins has protective and regenerative effects.
The present disclosure provides a method of treating or preventing a disease associated with fibrosis, comprising inhibiting at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Also provided is a method of treating or preventing a disease associated with fibrosis, comprising administering a therapeutically or prophylactically effective amount of an inhibitor of at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to a subject.
Also provided is an inhibitor of at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB for use in a method of treating or preventing a disease associated with fibrosis.
Also provided is the use of an inhibitor of at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the manufacture of a medicament for use in a method of treating or preventing a disease associated with fibrosis.
In some embodiments, the disease is a liver disease or condition.
In some embodiments, the disease or condition is selected from: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, mild liver fibrosis, advanced liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic fatty liver disease (ALFD), alcohol-related liver disease (ARLD), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis, liver damage, liver injury, liver failure, metabolic syndrome, obesity, diabetes mellitus, end-stage liver disease, inflammation of the liver, lobular inflammation, and/or hepatocellular carcinoma (HCC).
In some embodiments, the inhibitor is selected from a nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor. In some embodiments, the inhibitor is capable of binding to a polypeptide according to any one or more of SEQ ID NO: 7156 to 7178, or to a mRNA according to any one of SEQ ID NO: 7179 to 7195.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid having at least 75% sequence identity to any one of SEQ ID NOs: 7179 to 7195, or a portion thereof, or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NOs: 7179 to 7195, or a portion thereof.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1 to 7155, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NOs: 1 to 7155.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of ITFG1.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of MFAP4.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of GRHPR.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1483 to 2208, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1483 to 2208, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of ABCC4.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 2209 to 5060, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 2209 to 5060, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of PAK3.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5061 to 5389, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5061 to 5389, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of TRNP1.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5390 to 5966, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5390 to 5966, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of APLN.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5967 to 6974, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5967 to 6974, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of KIF20A.
In some embodiments, the inhibitor is an inhibitory nucleic acid comprising or encoding antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6975 to 7091, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6975 to 7091, and optionally wherein the antisense nucleic acid is capable of reducing gene and/or protein expression of LTB.
In some embodiments, the inhibitory nucleic acid comprises: (i) nucleic acid comprising the nucleotide sequence of one of SEQ ID NO: 1 to 7096 or 7146 to 7150, or a nucleotide sequence having at least 75% sequence identity to one of SEQ ID NO: 1 to 7096 or 7146 to 7150; and (ii) nucleic acid comprising a nucleotide sequence having the reverse complement of the nucleotide sequence of (i), or having at least 75% sequence identity to the reverse complement of the nucleotide sequence of (i).
In some embodiments, the inhibitory nucleic acid comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.
In some embodiments, the inhibitory nucleic acid comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7146 to 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7151 to 7155.
In some embodiments, the inhibitor comprises a moiety facilitating uptake of the inhibitory nucleic acid by hepatocytes. In some embodiments, the nucleic acid inhibitor is an antisense nucleic acid, siRNA, or shRNA.
In some embodiments, the method comprises administering the inhibitor to a subject in which expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB is upregulated.
Also provided is an inhibitory nucleic acid for reducing gene and/or protein expression of ITFG1, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7182, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7182, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6, 7, 457 to 1482, 7095, 7096, 7109 to 7114, 7130 to 7140, 7144, 7145, 7149, 7150, 7154, and/or 7155.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of MFAP4, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7179 or 7180, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7179 or 7180, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1, 2, 14 to 347, 7092, 7093, 7097 to 7102, 7115 to 7120, 7141, 7142, 7146, 7147, 7151, and/or 7152.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of GRHPR, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7181, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7181, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 3 to 5, 348 to 456, 7094, 7103 to 7108, 7121 to 7129, 7143, 7148, and/or 7153.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of ABCC4, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to any one of SEQ ID NO: 7183 to 7186, or a portion thereof, or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 7183 to 7186, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 1483 to 2208, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 1483 to 2208.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of PAK3, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to any one of SEQ ID NO: 7187 to 7190, or a portion thereof, or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 7187 to 7190, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 2209 to 5060, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 2209 to 5060.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of TRNP1, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7191, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7191, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5061 to 5389, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5061 to 5389.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of APLN, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7192, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7192, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5390 to 5966, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5390 to 5966.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of KIF20A, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7193, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7193, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 5967 to 6974, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 5967 to 6974.
Provided is an inhibitory nucleic acid for reducing gene and/or protein expression of LTB, wherein the nucleic acid comprises or encodes antisense nucleic acid having at least 75% sequence identity to SEQ ID NO: 7194 or 7195, or a portion thereof, or having at least 75% sequence identity to the reverse complement of SEQ ID NO: 7194 or 7195, or a portion thereof.
In some embodiments, the inhibitory nucleic acid comprises or encodes antisense nucleic acid comprising or consisting of a nucleotide sequence having at least 75% sequence identity to any one of SEQ ID NO: 6975 to 7091, and/or having at least 75% sequence identity to the reverse complement of any one of SEQ ID NO: 6975 to 7091.
Also provided is an inhibitory nucleic acid comprising (i) nucleic acid comprising the nucleotide sequence shown in one of SEQ ID NO: 7092 to 7096; and (ii) nucleic acid comprising the nucleotide sequence shown in one of SEQ ID NO: 7141 to 7145.
In some embodiments, the inhibitory nucleic acid comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.
Also provided is inhibitory nucleic acid comprising (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7146 to 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in one of SEQ ID NO: 7151 to 7155.
In some embodiments, the inhibitory nucleic acid further comprises a moiety facilitating uptake of the inhibitory nucleic acid by hepatocytes. In some embodiments, the inhibitory nucleic acid is an antisense nucleic acid, siRNA or shRNA.
The present disclosure also provides a nucleic acid, optionally isolated, encoding an inhibitory nucleic acid according to the present disclosure.
The present disclosure also provides an expression vector, comprising a nucleic acid according to the present disclosure.
The present disclosure also provides a composition comprising an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure, and a pharmaceutically acceptable carrier, diluent, excipient or adjuvant.
The present disclosure also provides a cell comprising an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure.
The present disclosure also provides a method of treating or preventing a disease according to the present disclosure, comprising administering a therapeutically or prophylactically effective amount of an inhibitor, an inhibitory nucleic acid, a nucleic acid, an expression vector, a composition, or a cell according to the present disclosure to a subject.
The present disclosure also provides an inhibitor, an inhibitory nucleic acid, a nucleic acid, an expression vector, a composition, or a cell according to the present disclosure for use in therapy. In some embodiments, the inhibitor, inhibitory nucleic acid, nucleic acid, expression vector, composition, or cell is provided for use in a method of treating or preventing a disease, e.g. a disease according to the present disclosure.
The present disclosure also provides the use of an inhibitor, an inhibitory nucleic acid, a nucleic acid, an expression vector, a composition, or a cell according to the present disclosure in the manufacture of a medicament for use in a method of treating or preventing a disease, e.g. a disease according to the present disclosure.
Also disclosed is an in vitro or in vivo method for reducing gene and/or protein expression of one or more of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell, comprising introducing an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure into a cell.
Also disclosed is a method of regenerating liver tissue in vitro or in vivo, the method comprising inhibiting at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell of the tissue.
Also disclosed is a method of proliferating/expanding a hepatocyte in vitro or in vivo, the method comprising inhibiting at least one of ITFG1, MFAP4, GRHPR, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the hepatocyte.
In some embodiments, a method disclosed herein comprises introducing an inhibitory nucleic acid, a nucleic acid, or an expression vector according to the present disclosure into a cell, e.g. a cell of the tissue or a hepatocyte.
Disclosed herein is a method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to stimulate or increase proliferation and/or regeneration of the cell in the subject.
Disclosed herein is a method of enhancing cell function in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell function in the subject.
Disclosed herein is a method of enhancing cell viability in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell viability in the subject.
Disclosed herein is a method of treating a liver condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the liver condition or disease in the subject.
Disclosed herein is a method of protecting a subject from liver damage, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to protect the subject from liver damage.
Disclosed herein is a method of detecting a liver condition or disease in a subject, the method comprising detecting in a sample the level of one or more biomarkers associated with organ regeneration, wherein a change in the level of the one or more biomarkers as compared to a reference indicates that the subject is suffering from a liver condition or disease.
Disclosed herein is an inhibitor of a gene or corresponding gene product associated with organ regeneration for use in preventing or treating a liver condition or disease in the subject.
Disclosed herein is the use of an inhibitor of a gene or corresponding gene product associated with organ regeneration in the manufacture of a medicament for preventing or treating a liver condition or disease in the subject.
The methods disclosed herein may employ any suitable inhibitor. In some embodiments, the inhibitor is an inhibitor according to the present disclosure.
Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1-14 or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1-14 under stringency conditions.
Disclosed herein is a method of screening for an inhibitor of a gene or corresponding gene product associated with organ regeneration by: a) contacting the gene or corresponding gene product with a chemical compound library, and b) identifying a chemical compound within the library that is binds to the gene or corresponding gene product to inhibit the expression or function of the gene or corresponding gene product.
The invention includes the combination of the aspects and preferred features described except where such a combination is clearly impermissible or expressly avoided.
DETAILED DESCRIPTION The present invention relates to the identification of proteins that are involved in the development of liver disease and/or are detrimental to liver regeneration after injury, and targeting such proteins to treat liver diseases.
Without being bound by theory, the inventors have used an unbiased in vivo functional genetic screen to identify new therapeutic targets that are upregulated in liver diseases and conditions associated with fibrosis. Enrichment of target shRNAs indicates that the knockdown/inhibition of these targets gives a survival advantage to hepatocytes under a chronic liver damaging condition. As enrichment indicates a relative expansion to the control, knockdown or inhibition of the identified genes supports hepatocyte expansion, proliferation and robustness. This is therapeutically beneficial for liver disease interception, accelerating liver regeneration, protecting against liver damage, promoting cell proliferation, stopping and reversing liver fibrosis, and increasing survival.
Targets
The present disclosure relates to inhibition of gene and/or protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Any one or combination of these genes (i.e. any one, two, three, four, five, six, seven, eight or all nine) may be inhibited in the methods provided herein. Any one or combination of these genes may be referred to herein as a target gene(s), target mRNA(s), or target protein(s). One or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be described herein as a “gene or corresponding gene product associated with organ regeneration”.
MFAP4, GRHPR and ITFG1 are found in recurrent amplifications in hepatocellular carcinoma (Nat Med. 2014 October; 20(10): 1138-1146). ABCC4, PAK3, TRNP1, APLN, KIF20A and LTB were all found by the present inventors to be dysregulated in a local patient cohort with non-alcoholic fatty liver disease (NAFLD). Microfibril-associated glycoprotein 4 (MFAP4) is an extracellular matrix protein belonging to the fibrinogen-related domain (FReD) superfamily. Human MFAP4 is identified by UniProtKB P55083.
MFAP4 structure and function is described in e.g. Pilecki B., et al., J. Biol. Chem. 291:1103-1114 (2016), which is hereby incorporated by reference in its entirety.
MFAP4 is an extracellular glycoprotein found in elastic fibres and is required for proper elastic fibre organisation. It specifically binds tropoelastin and fibrillin-1 and -2, as well as the elastin cross-linking amino acid desmosine, and it co-localizes with fibrillin-1-positive fibres in vivo. Human MFAP4 has been localized to elastic fibres in a variety of elastic tissues, including aorta, skin, and lung.
MFAP4 is closely associated with remodelling-related diseases, including liver fibrosis, atherosclerosis, arterial injury stimulated remodelling, and asthma (Wang H B et al., J Am Heart Assoc. 2020; 9(17):e015307). Pan Z et al., FASEB J. 2020, 34(11):14250-14263 reported that MFAP4 deficiency alleviates renal fibrosis by inhibiting the activation of NF-KB and TGF-β/Smad signalling pathways and downregulating the expression of fibrosis-related proteins. MFAP4 is produced by activated myofibroblasts and may be a predictive biomarker for severity of hepatic fibrosis (Madsen B S et al., Liver Int. 2020; 40(7): 1701-1712; Seekmose S G, et al., PLoS One. 2015; 10(10):e0140418). Example 2 of the present application shows that genes known to be involved in liver regeneration, e.g. Ptgs2, Areg, Dhrs9, Hmox1 and Nqo1, are upregulated after Mfap4 knockdown.
Alternative splicing of the mRNA transcribed from the human MFAP4 gene yields two isoforms: isoform 1 (UniProtKB: P55083-1, v2; SEQ ID NO: 7156), and isoform 2 (UniProtKB: P55083-2; SEQ ID NO: 7157) in which the amino acid sequence corresponding to positions 1 to 2 of SEQ ID NO: 7156 are replaced with the sequence ‘MGELSPLQRPLATEGTMKAQGVLLKL’.
The 255-amino acid sequence of human MFP4 isoform 1 comprises an N-terminal signal peptide at positions 1-21 of SEQ ID NO: 7156 and the mature protein region at positions 22-255 of SEQ ID NO: 7156. Positions 26-28 of SEQ ID NO: 7156 constitute the cell attachment site and positions 32-255 of SEQ ID NO: 7156 constitute the fibrinogen C-terminal domain.
In this specification, reference to ‘MFAP4’ encompasses: human MFAP4, isoforms of human MFAP4, homologues of human MFAP4 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, MFAP4 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7156.
Glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is an NADPH/NADH dependent enzyme with hydroxy-pyruvate reductase, glyoxylate reductase and D-glycerate dehydrogenase enzymatic activities. It reduces toxic intermediate glyoxylate to easily-excreted glycolate and reduces hydroxypyruvate into D-glycerate for use in glucose synthesis. Deficiency of GRHPR is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure (Cregeen D P et al., Hum Mol Genet. 1999; 8(11):2063-9). Human GRHPR is identified by UniProtKB Q9UBQ7.
GRHPR structure and function is described in e.g. Rumsby G. and Cregeen D. P. Biochim. Biophys. Acta 1446:383-388 (1999), and Booth et al., J Mol Biol, 2006; 360(1):178-89, which are hereby incorporated by reference in their entirety.
Alternative splicing of the mRNA transcribed from the human GRHPR gene yields two isoforms: isoform 1 (UniProtKB: Q9UBQ7-1, v1; SEQ ID NO: 7158), and isoform 2 (UniProtKB: Q9UBQ7-2; SEQ ID NO: 7159) in which the amino acid sequence corresponding to positions 1 to 21 of SEQ ID NO: 7158 are replaced with the sequence ‘MLGGVPTLCGTGNETWTLLAL’, positions 22-164 of SEQ ID NO: 7158 are missing, and positions 246-328 of SEQ ID NO: 7158 are replaced with the sequence ‘YPRATLPSKPGEEPSPLLPSGDFLPRGLLVRPQAELAGFHKPNNQLRNSWEYTRPPYREEEPSEWAWP VCFSAVAPTRRGLAHSSVASGSVPREPLQAHYPPPQRAGLEDLKGPLEAASHTAEPGFVWLWFSDTLNL MLLGGQTLKLTWS’.
The 328-amino acid sequence of human GRHPR isoform 1 comprises NADP binding sites at positions 217, 243, 162-164, 185-188 and 295 of SEQ ID NO: 7158, and substrate (glyoxylate/hydroxypyruvate) binding sites at positions 83-84, 245, 269, and 293-296 of SEQ ID NO: 7158.
In this specification, reference to ‘GRHPR’ encompasses: human GRHPR, isoforms of human GRHPR, homologues of human GRHPR (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, GRHPR according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7158.
T-cell immunomodulatory protein (ITFG1; also known as Protein TIP, Integrin-alpha FG-GAP repeat-containing protein 1, or Linkin/LNKN-1) is a modulator of T cell function. Human ITFG1 is identified by UniProtKB Q8TB96.
ITFG1 structure and function is described in e.g. Fiscella M., et al., Nat. Biotechnol. 21:302-307 (2003), which is hereby incorporated by reference in its entirety. Treatment of primary human and murine T cells with ITFG1 in vitro resulted in the secretion of IFN-gamma, TNF-alpha, and IL-10, whereas in vivo ITFG1 reportedly has a protective effect in a mouse acute graft-versus-host disease (GVHD) model. The interaction between ITFG1 and the ATPase RUVBL1 is reported to be required for breast cancer cell invasion and progression (Fan W. et al., Biochim Biophys Acta Gen Subj. 2017; 1861(7):1788-1800).
The 612-amino acid sequence of human ITFG1 is shown in SEQ ID NO: 7160 (UniprotKB: Q8TB96-1, v1). This sequence comprises: an N-terminal signal peptide at positions 1-33 of SEQ ID NO: 7160, an FG-GAP repeat at positions 258-293 of SEQ ID NO: 7160, and a transmembrane domain at positions 567-587 of SEQ ID NO: 7160.
In this specification, reference to ‘ITFG1’ encompasses: human ITFG1, isoforms of human ITFG1, homologues of human ITFG1 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, ITFG1 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7160.
ATP-binding cassette sub-family C member 4 (ABCC4; also known as multidrug resistance protein 4 (MRP4)) is an ATP-dependent transporter of the ATP-binding cassette (ABC) family that actively extrudes physiological compounds and xenobiotics from cells. It transports a range of endogenous molecules that have a key role in cellular communication and signalling, including cyclic nucleotides such as cyclic AMP (cAMP) and cyclic GMP (cGMP), bile acids, steroid conjugates, urate, and prostaglandins. It is expressed in several tissues, including hepatocytes, with highest expression in the kidney and choroid plexus (Maher J M, et al., Drug Metab. Dispos., 33 (2005), pp. 947-955). Human ABCC4 is identified by UniProtKB 015439.
ABCC4 structure and function is described in e.g. Russel et al., Trends Pharmacol Sci. 2008, 29(4):200-7, which is hereby incorporated by reference in its entirety. ABCC4 is an inducible gene in the liver following toxic acetaminophen exposure in both humans and rodents. In mice, ABCC4 deficiency is linked to increased risk of liver injury, altered gut epithelial function and altered drug disposition, although protein expression is reportedly increased in human livers with steatosis, alcoholic cirrhosis, and diabetic cirrhosis (More V R et al., Drug Metab Dispos. 2013; 41(5): 1148-1155).
Alternative splicing of the mRNA transcribed from the human ABCC4 gene yields four isoforms: isoform 1 (UniProtKB: 015439-1, v3; SEQ ID NO: 7161), isoform 2 (015439-2, SEQ ID NO: 7162) in which the amino acid sequence corresponding to positions 679-725 of SEQ ID NO: 7161 are missing, isoform 3 (015439-3, SEQ ID NO: 7163) in which the amino acid sequence corresponding to positions 846-859 of SEQ ID NO: 7161 are replaced with the sequence ‘RWDLAVLSWLVSNS’ and positions 860-1325 of SEQ ID NO: 7161 are missing, and isoform 4 (015439-4, SEQ ID NO: 7164) in which the amino acid sequence corresponding to positions 103-177 of SEQ ID NO: 7161 are missing, the amino acid sequence corresponding to positions 846-859 of SEQ ID NO: 7161 are replaced with the sequence ‘RWDLAVLSWLVSNS’, and the amino acid sequence corresponding to positions 860-1325 of SEQ ID NO: 7161 are missing.
The 1325-amino acid sequence of human ABCC4 isoform 1 comprises: an ABC transmembrane type-1 1 domain at positions 92-377, an ABC transporter 1 domain at positions 410-633, an ABC transmembrane type-1 2 domain at positions 714-1005, an ABC transporter 2 domain at positions 1041-1274, and ATP binding regions at positions 445-452 and 1075-1082 of SEQ ID NO: 7161.
In this specification, reference to ‘ABCC4’ encompasses: human ABCC4, isoforms of human ABCC4, homologues of human ABCC4 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, ABCC4 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7161.
p21-activated kinase 3 (PAK3; also known as Serine/threonine-protein kinase PAK 3, Beta-PAK or Oligophrenin-3) is a serine/threonine protein kinase that plays a role in a variety of different signalling pathways including cytoskeleton regulation, cell migration, or cell cycle regulation. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. It phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. PAK3 is also a core mediator of integrin beta-1 signalling (a critical mediator of HSC activation and progression of fibrotic disease). Human PAK3 is identified by UniProtKB 075914.
PAK3 structure and function is described in e.g. Deleris P., et al., J. Biol. Chem. 286:6470-6478 (2011) and Chong C. et al., J. Biol. Chem. 276:17347-17353 (2001), which are both hereby incorporated by reference in their entirety.
Alternative splicing of the mRNA transcribed from the human PAK3 gene yields four isoforms: isoform 1 (UniProtKB: 075914-1, v2; SEQ ID NO: 7165), isoform 2 (075914-2, SEQ ID NO: 7166) in which the amino acid sequence corresponding to positions 93-107 of SEQ ID NO: 7165 are missing, isoform 3 (075914-3, SEQ ID NO: 7167) in which the amino acid at position 92 of SEQ ID NO: 7165 is replaced with the sequence ‘TNSPFQTSRPVTVASSQSEGKM’, and isoform 4 (075914-4, SEQ ID NO: 7168) in which the amino acid sequence corresponding to positions 92-107 of SEQ ID NO: 7165 are replaced with the sequence ‘TNSPFQTSRPVTVASSQSEGKM’.
The 559-amino acid sequence of human PAK3 isoform 1 comprises: a CRIB domain at positions 70-83 and a protein kinase domain at positions 283-534 of SEQ ID NO: 7165.
In this specification, reference to ‘PAK3’ encompasses: human PAK3, isoforms of human PAK3, homologues of human PAK3 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, PAK3 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7165.
TMF-regulated nuclear protein 1 (TRNP1) is a DNA-binding factor that regulates the expression of a subset of genes and plays a key role in tangential, radial, and lateral expansion of the brain neocortex. Human TRNP1 is identified by UniProtKB Q6NT89.
TRNP1 structure and function is described in e.g. Stahl R. et al., Cell 153:535-549 (2013), which is hereby incorporated by reference in its entirety.
The 227-amino acid sequence of human TRNP1 is shown in SEQ ID NO: 7169 (UniprotKB: Q6NT89-1, v2).
In this specification, reference to ‘TRNP1’ encompasses: human TRNP1, isoforms of human TRNP1, homologues of human TRNP1 (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, TRNP1 according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7169.
Apelin (APLN) is a peptide ligand for the G-protein coupled apelin receptor (APLNR). The APLN system plays important and various roles in the physiology and pathophysiology of many organs, including regulation of blood pressure, cardiac contractility, angiogenesis, metabolic balance, and cell proliferation, apoptosis or inflammation. Apelin is expressed in the heart, endothelium, vascular smooth muscle cells (VSMCs), brain, kidney, testis, ovary, liver and adipose tissue, with the highest expression levels in the lung and the mammary gland. Human APLN is identified by UniProtKB Q9ULZ1.
APLN structure and function is described in e.g. Tatemoto K. et al., Biochem. Biophys. Res. Commun. 251:471-476 (1998), and Lee D. K. et al., J. Neurochem. 74:34-41 (2000), which are both hereby incorporated by reference in their entirety.
The 77-amino acid sequence of human APLN is shown in SEQ ID NO: 7170 (UniprotKB: Q9ULZ1-1, v1). SEQ ID NO: 7170 encompasses a signal peptide at positions 1-22 and a propeptide at positions 23-41. SEQ ID NO: 7170 is cleaved into one or more active peptides by proteolytic processing: Apelin-36 (SEQ ID NO: 7171) at positions 42-77 of SEQ ID NO: 7170, Apelin-31 (SEQ ID NO: 7172) at positions 47-77 of SEQ ID NO: 7170, Apelin-28 (SEQ ID NO: 7173) at positions 50-77 of SEQ ID NO: 7170, or Apelin-13 (SEQ ID NO: 7174) at positions 65-77 of SEQ ID NO: 7170.
In this specification, reference to ‘APLN’ encompasses: human APLN, isoforms of human APLN, homologues of human APLN (i.e. encoded by the genome of a non-human animal), proteolytic peptides derived from human APLN, and variants thereof. In some embodiments, APLN according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7170.
Kinesin-like protein KIF20A (also known as GG10_2, Mitotic kinesin-like protein 2 (MKIp2), Rab6-interacting kinesin-like protein (RAB6KIFL), Rabkinesin-6) is a mitotic kinesin required for chromosome passenger complex (CPC)-mediated cytokinesis. KIF20A is a target for polo-like kinase 1 (PIk1), and phosphorylated KIF20A binds to the polo box domain of PIk1. Phosphorylation of KIF20A by PIk1 is necessary for the spatial restriction of PIk1 to the central spindle during anaphase and telophase, and the complex of these two proteins is required for cytokinesis. Human KIF20A is identified by UniProtKB 095235.
KIF20A structure and function is described in e.g. Neef R. et al., J Cell Biol. 2003; 162(5): 863-75, which is hereby incorporated by reference in its entirety.
Alternative splicing of the mRNA transcribed from the human KIF20A gene yields two isoforms: isoform 1 (UniProtKB: 095235-1, v1; SEQ ID NO: 7175), and isoform 2 (UniProtKB: 095235-2; SEQ ID NO: 7176) in which the amino acid sequence corresponding to positions 65-82 of SEQ ID NO: 7175 are missing.
The 890-amino acid sequence of human KIF20A isoform 1 comprises: a kinesin motor domain at positions 64-507 and a coiled coil domain at positions 611-762 of SEQ ID NO: 7175.
In this specification, reference to ‘KIF20A’ encompasses: human KIF20A, isoforms of human KIF20A, homologues of human KIF20A (i.e. encoded by the genome of a non-human animal), and variants thereof.
In some embodiments, KIF20A according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7175.
Lymphotoxin-beta (LTB, also known as Tumor necrosis factor C (TNF-C), Tumor necrosis factor ligand superfamily member 3) is a pro-inflammatory cytokine belonging to the TNF family that binds to receptors LTBR/TNFRSF3. It participates in the regulation of immune and inflammatory responses and, along with other LT-related cytokines such as LT-alpha, TNFα and LIGHT (TNFSF14) and their receptors, plays a role in the development and homeostasis of secondary lymphoid organs. Human LTB is identified by UniProtKB Q06643.
LTB structure and function is described in e.g. Sudhamsu J., et al., Proc Natl Acad Sci USA 110:19896-19901 (2013); Browning J. L., et al., Cell 72:847-856 (1993), Neville M. J. & Campbell R. D. J. Immunol. 162:4745-4754 (1999); Crowe P. D. et al., Science. 1994; 264(5159):707-10; and Bjordahl R. L. et al., Curr Opin Immunol. 2013, 25(2): 222-229, which are all hereby incorporated by reference in their entirety.
Alternative splicing of the mRNA transcribed from the human LTB gene yields two isoforms: isoform 1 (UniProtKB: Q06643-1, v1; SEQ ID NO: 7177), and isoform 2 (UniProtKB: Q06643-2; SEQ ID NO: 7178) in which the amino acid sequence corresponding to positions 53-77 of SEQ ID NO: 7177 are replaced with the sequence ‘GLGFRSCQRRSQKQISAPGSQLPTS’ and positions 78-244 of SEQ ID NO: 7177 are missing.
The 244-amino acid sequence of human LTB isoform 1 comprises: a cytoplasmic domain at positions 1-18, a transmembrane domain at positions 19-48, and an extracellular domain at positions 49-244 of SEQ ID NO: 7177.
In this specification, reference to ‘LTB’ encompasses: human LTB, isoforms of human LTB, homologues of human LTB (i.e. encoded by the genome of a non-human animal), and variants thereof. In some embodiments, LTB according to the present disclosure comprises or consists of an amino acid sequence having at 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 7177.
As used herein, a “fragment”, “variant” or “homologue” of a protein may optionally be characterised as having at least 60%, preferably one of 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of the reference protein (e.g. a reference isoform). In some embodiments, fragments, variants, isoforms and homologues of a reference protein may be characterised by ability to perform a function performed by the reference protein.
A “fragment” generally refers to a fraction of the reference protein. A “variant” generally refers to a protein having an amino acid sequence comprising one or more amino acid substitutions, insertions, deletions or other modifications relative to the amino acid sequence of the reference protein, but retaining a considerable degree of sequence identity (e.g. at least 60%) to the amino acid sequence of the reference protein. An “isoform” generally refers to a variant of the reference protein expressed by the same species as the species of the reference protein. A “homologue” generally refers to a variant of the reference protein produced by a different species as compared to the species of the reference protein. Homologues include orthologues.
A “fragment” may be of any length (by number of amino acids), although may optionally be at least 20% of the length of the reference protein (that is, the protein from which the fragment is derived) and may have a maximum length of one of 50%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% of the length of the reference protein.
In some embodiments, the target gene/protein (i.e. MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB) is a target gene/protein from a mammal (any species in the class Mammalia, e.g. a primate (rhesus, cynomolgous, non-human primate or human) and/or a rodent (e.g. rat or mouse).
Isoforms, fragments, variants or homologues of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may optionally be characterised as having at least 70%, preferably one of 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of an immature or mature MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB isoform from a given species, e.g. human.
A homologue of a human gene described herein may be from any animal. In some embodiments, a homologue of a human gene described herein may be from a mammal. In some embodiments, the mammal may be a non-human mammal, e.g. a primate (e.g. a non-human primate, e.g. an animal of the genus Macaca (e.g. Macaca fascicularis, Macaca mulatta), e.g. a non-human hominid (e.g. Pan troglodytes)). In some embodiments, the mammal may be a rabbit, guinea pig, rat, mouse or animal of the order Rodentia, cat, dog, pig, sheep, goat, an animal of the order Bos (e.g. cattle), an animal of the family Equidae (e.g. horse) or donkey.
Homologues of a human protein described herein may optionally be characterised as having 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or 100% amino acid sequence identity to the amino acid sequence of SEQ ID NOs: 7156 to 7178. Variants of a human protein described herein may optionally be characterised as having 70% or greater amino acid sequence identity, preferably one of 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater amino acid sequence identity to the amino acid sequence of SEQ ID NOs: 7156 to 7178.
Isoforms, fragments, variants or homologues may optionally be functional isoforms, fragments, variants or homologues, e.g. having a functional property/activity of the reference MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, as determined by analysis by a suitable assay for the functional property/activity.
Inhibition of Targets
The present invention is concerned with inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (i.e. a target gene/protein described herein). That is, the invention is concerned with inhibition of the expression and/or activity of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and the downstream functional consequences thereof.
Inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB encompasses decreased/reduced expression (gene and/or protein expression) of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and/or decreased/reduced activity of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, relative to the level of expression/activity observed in the absence of inhibition. “Inhibition” may herein also be referred to as “antagonism”. Any one, two, three, four, five, six, seven, eight or nine of the genes/proteins may be inhibited in the methods according to the present disclosure.
In some embodiments, inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be characterised by one or more of the following (relative to the uninhibited state):
-
- Reduce expression (e.g. gene and/or protein expression) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reduce/prevent transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Increase degradation of RNA (e.g. mRNA) encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
- Reduce/prevent post-transcriptional processing (e.g. splicing, translation, post-translational processing) of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Promote/increase degradation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
- Reduce/prevent the level of a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB function; and/or
- Reduce/prevent interaction between MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and an interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Gene expression can be determined by means well known to the skilled person. The level of RNA encoding one or more of the target proteins can be determined e.g. by techniques such as RT-qPCR, northern blot, etc. By way of illustration, qRT-PCR may be used to determine the level of RNA encoding a target protein.
A reduction in the level of RNA encoding a target protein may e.g. be the result of reduced transcription of nucleic acid encoding the target protein, or increased degradation of RNA encoding the target protein.
Reduced transcription of nucleic acid encoding a target protein may be a consequence of inhibition of assembly and/or activity of factors required for transcription of the DNA encoding the target protein. Increased degradation of RNA encoding a target protein may be a consequence of increased enzymatic degradation of RNA encoding the target protein, e.g. as a consequence of RNA interference (RNAi), and/or reduced stability of RNA encoding the target protein.
Protein expression can be determined by means well known to the skilled person. The level of protein encoding a target protein can be determined e.g. by antibody-based methods including western blot, immunohisto/cytochemistry, flow cytometry, ELISA, ELISPOT, or by reporter-based methods.
A reduction in the level of a target protein may e.g. be the result of reduced level of RNA encoding the target protein, reduced post-transcriptional processing of RNA encoding the target protein, or increased degradation of the target protein.
Reduced post-transcriptional processing of a target protein may be e.g. reduced splicing of pre-mRNA encoding the target protein to mature mRNA encoding the target protein, reduced translation of mRNA encoding the target protein, or reduced post-translational processing of the target protein.
Reduced splicing of pre-mRNA encoding the target protein to mature mRNA encoding the target protein may be a consequence of inhibition of assembly and/or activity of factors required for splicing. Reduced translation of mRNA encoding the target protein may be a consequence of inhibition of assembly and/or activity of factors required for translation. Reduced post-translational processing (e.g. enzymatic processing, folding) of the target protein may be a consequence of inhibition of assembly and/or activity of factors required for post-translational processing of the target protein. Increased degradation of the target protein may be a consequence of increased enzymatic (e.g. protease-mediated) degradation of the target protein.
In some embodiments, inhibition of a target gene/protein may be characterised by a reduced level of a function of the target protein. A function of the target protein may be any functional property of the target protein.
An interaction partner may be any nucleic acid or protein which interacts with, or jointly contributes to a shared function with, any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some embodiments, an interaction partner for MFAP4 is integrin αvβ3, tropoelastin, fibrillin-1, fibrillin-2, desmosine, LOX, MFAP2, FBLN1, FBLN2, MFAP5, EFEMP2, EFEMP1, SFTPD, or elastin.
In some embodiments, an interaction partner for GRHPR is glyoxylate, hydroxypyruvate, D-glycerate, AGXT, HYI, GLYCTK, PGP, GLO1, HAO1, HAO2, DAO, NADPH or NADH.
In some embodiments, an interaction partner for ITFG1 is RUVBL1, RUVBL2, alpha-tubulin, TIPIN, ATP9A, ASCC2, RFX7, or TM7SF3.
In some embodiments, an interaction partner for ABCC4 is ATP, ABCG4, SNX27, ABCA3, ABCE1, MRPS7, SLC22A8, SLCO1B1, NR1H4 or SLC22A6.
In some embodiments, an interaction partner for PAK3 is PAK1, CDC42, NCK1, MAPK14, RAC1, PXN, GIT1, GIT2, ARHGEF7 or ARHGEF6.
In some embodiments, an interaction partner for TRNP1 is TMF1, FAM18A, CNIH3, SMARCC2, FAM19A3, TBC1D3A, TBC1D3D, ARHGAP11B, or GPR56.
In some embodiments, an interaction partner for APLN is APLNR, AGTR1, AGT, CXCR4, CCR5, KNG1, NPY, PDYN, NMU, or POMC.
In some embodiments, an interaction partner for KIF20A is MAD2L1, AURKB, RACGAP1, KIF11, PLK1, CDCA8, KIF4A, CENPE, PRC1, or INCENP.
In some embodiments, an interaction partner for LTB is LTBR, LTA, TNF, TNFSF14, TNFRSF1B, TNFSF13B, TNFRSF11A, CD40LG, MAP3K14, TNFSF11.
Functional properties of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB can be analysed using appropriate assays, e.g. in vitro assays.
In some embodiments, MFAP4 inhibition increases expression and/or activation of one or more of Ptgs2, Areg, Dhrs9, Hmox1, Nqo1, P70S6k, p38, mTOR, and/or ERK2. In some embodiments, an inhibitor of MFAP4 activates mTOR, p70S6K, ERK and p38 signalling pathways.
Inhibition of interaction between a target protein and an interaction partner for the target protein can be identified e.g. by detection of a reduction in the level of interaction between the target protein and the interaction partner, relative to a control, uninhibited condition. The ability of proteins to interact can be analysed by methods well known to the skilled person, such as co-immunoprecipitation, and resonance energy transfer (RET) assays.
Inhibition of target protein function can also be evaluated by analysis of one or more correlates of target protein function. That is, target protein function can be evaluated by analysis of downstream functional consequences of target protein function. For example, inhibition of target protein function can be identified by detection of reduced expression (gene and/or protein expression) and/or activity of one or more proteins whose expression is directly/indirectly upregulated as a consequence of target protein function. Inhibition of target protein function can also be identified by detection of increased expression (gene and/or protein expression) and/or activity of one or more proteins whose expression is directly/indirectly downregulated as a consequence of target protein function.
Inhibitors
Provided herein are inhibitors that target one or more genes/proteins from the group selected from: MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB.
An “inhibitor of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB” refers to any agent capable of inhibiting any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB expression and/or function. Such agents may be effectors of (i.e. may directly or indirectly cause) inhibition of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB as described hereinabove.
Agents capable of inhibiting any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be referred to herein as MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB inhibitors. MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB inhibitors may also be referred to herein as antagonists of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB antagonists.
“An inhibitor” of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may refer to any agent capable of inhibiting any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In addition, “An inhibitor of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB” may refer to two or more agents capable of inhibiting two, three, four, five, six, seven, eight, or nine target genes/proteins selected from the group consisting of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB. Multiple inhibitors may be used in the methods of the present disclosure to target two or more of the target genes/proteins.
In some embodiments, an inhibitor of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (i.e. a target protein) may:
-
- Reduce/prevent expression (e.g. gene and/or protein expression) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reduce/prevent transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Increase degradation of RNA (e.g. mRNA) encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
- Reduce/prevent post-transcriptional processing (e.g. splicing, translation, post-translational processing) of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Promote/increase degradation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein;
- Reduce/prevent the level of a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB function; and/or
- Reduce/prevent interaction between MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and an interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
It will be appreciated that a given inhibitor may display more than one of the properties recited in the preceding paragraph. A given inhibitor may be evaluated for the properties recited in the preceding paragraph using suitable assays. The assays may be e.g. in vitro assays, optionally cell-based assays or cell-free assays. The assays may be e.g. in vivo assays, i.e. performed in non-human animals.
Where assays are cell-based assays, they may comprise treating cells with an inhibitor (e.g. a nucleic acid) in order to determine whether the inhibitor displays one or more of the recited properties. Assays may employ species labelled with detectable entities in order to facilitate their detection. Assays may comprise evaluating the recited properties following treatment of cells separately with a range of quantities/concentrations of a given inhibitor (e.g. a dilution series). It will be appreciated that the cells are preferably cells that express the target protein to be inhibited, e.g. liver cells (e.g. HepG2 cells or HuH7 cells).
Analysis of the results of such assays may comprise determining the concentration at which 50% of the maximal level of the relevant activity is attained. The concentration of nucleic acid at which 50% of the maximal level of the relevant activity is attained may be referred to as the ‘half-maximal effective concentration’ of the inhibitor in relation to the relevant activity, which may also be referred to as the ‘EC50’. By way of illustration, the EC50 of a given inhibitor (e.g. inhibitory nucleic acid) for increasing degradation of RNA encoding a target protein may be the concentration at which 50% of the maximal level of degradation of RNA encoding a target protein is achieved.
Depending on the property, the EC50 may also be referred to as the ‘half-maximal inhibitory concentration’ or ‘IC50’, this being the concentration of inhibitor at which 50% of the maximal level of inhibition of a given property is observed. By way of illustration, the IC50 of a given inhibitor (e.g. inhibitory nucleic acid) for reducing expression of a gene encoding a target protein may be the concentration at which 50% of the maximal level of inhibition of expression of the gene is achieved.
Agents capable of reducing/preventing gene expression of any one or more MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. reducing the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB; reducing/preventing transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB; and/or increasing degradation of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB) may be identified using assays comprising detecting the level of RNA encoding the target protein, e.g. by RT-qPCR (a technique well known to the skilled person). The methods may employ primers and/or probes for the detection and/or quantification of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Such assays may comprise introducing (e.g. by transfection) into cells that express the target protein in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a control nucleic acid, such as a nucleic acid known not to influence the level of RNA encoding the target protein), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for a reduction in the level of gene expression of the target protein/transcription of nucleic acid encoding the target protein/level of RNA encoding the target protein or an increase in the level of degradation of RNA encoding the target protein to be observed) measuring the level of RNA encoding the target protein in cells according to (i) and (ii), and (iii) comparing the level of RNA encoding the target protein detected to determine whether the putative inhibitor reduces/prevents gene expression of the target protein, reduces/prevents transcription of nucleic acid encoding the target protein, reduces the level of RNA encoding the target protein, and/or increases degradation of RNA encoding the target protein.
Agents capable of reducing protein expression of any one or more MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. reducing the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein, increasing degradation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein) may be identified using assays comprising detecting the level of the target protein, e.g. using antibody/reporter-based methods (western blot, ELISA, immunohisto/cytochemistry, etc.). Such assays may comprise treating cells/tissue with the agent, and subsequently comparing the level of the target protein in such cells/tissue to the level of the target protein in cells/tissue of an appropriate control condition (e.g. untreated/vehicle-treated cells/tissue).
The methods may employ antibodies specific for the target protein. Such assays may comprise introducing (e.g. by transfection) into cells that express a target protein in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a nucleic acid known not to influence the level of the target protein), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for a reduction in the level of the target protein to be observed) measuring the level of the target protein in cells according to (i) and (ii), and (iii) comparing the level of the target protein detected to determine whether the putative inhibitor reduces the level of the target protein and/or reduces/prevents translation of mRNA encoding the target protein.
Agents capable of reducing the level of a function of any one or more MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. a function of a target protein as described herein) may be identified using assays comprising detecting the level of the relevant function. Such assays may comprise introducing (e.g. by transfection) into cells that express the target protein in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a nucleic acid known not to influence target protein function), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for a reduction in the level of a function of the target protein to be observed) measuring the level of a function of the target protein in cells according to (i) and (ii), and (iii) comparing the level of the function of the target protein detected to determine whether the putative inhibitor reduces the level of a function of the target protein.
Reference herein to ‘a function of the target protein’ may refer to any functional property of, and/or activity mediated by, MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein. Agents capable of reducing/preventing normal splicing of pre-mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be identified using assays comprising detecting and/or quantifying the level of RNA (e.g. mature mRNA) encoding one or more isoforms of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Such assays may comprise quantifying RNA (e.g. mature mRNA) encoding one or more isoforms of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB by RT-qPCR. The methods may employ primers and/or probes for the detection and/or quantification of mature mRNA produced by canonical splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and/or primers and/or probes for the detection and/or quantification of mature mRNA produced by alternative splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Mature mRNA produced by canonical splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be mature mRNA encoding the major isoform produced by expression of the gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. The major isoform may be the most commonly produced/detected isoform. For example, mature mRNA produced by canonical splicing of pre-mRNA transcribed from human MFAP4 may be mature mRNA encoding human MFAP4 isoform 1 (i.e. having the amino acid sequence shown in SEQ ID NO: 7156). Mature mRNA produced by alternative splicing of pre-mRNA transcribed from a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be mature mRNA encoding an isoform other than the major isoform produced by expression of said gene. For example, mature mRNA produced by alternative splicing of pre-mRNA transcribed from human MFAP4 may be mature mRNA encoding an isoform of human MFAP4 other than isoform 1 (i.e. having an amino acid sequence non-identical to SEQ ID NO: 7156); e.g. mature mRNA encoding human MFAP4 isoform 2 (i.e. having an amino acid sequence shown in SEQ ID NO: 7157).
Such assays may comprise introducing (e.g. by transfection) into cells that express MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in in vitro culture (i) a putative inhibitor (e.g. an inhibitory nucleic acid), or (ii) a control agent (e.g. a nucleic acid known not to influence splicing of pre-mRNA encoding the target gene), and subsequently (e.g. after an appropriate period of time, i.e. a period of time sufficient for an effect on splicing of pre-mRNA encoding the target gene to be observed) measuring the level of mature mRNA encoding one or more isoforms of the target gene in cells according to (i) and (ii), and (iii) comparing the level of mature mRNA encoding the isoform(s) to determine whether the putative inhibitor reduces/prevents normal splicing of pre-mRNA encoding the target gene.
Agents capable of reducing interaction between a target protein described herein and an interaction partner for said target protein may be identified using assays comprising detecting the level of interaction between the target protein and its interaction partner, e.g. using antibody/reporter-based methods. The level of interaction between the target protein and its interaction partner can be analysed e.g. using resonance energy transfer techniques (e.g. FRET, BRET), or methods analysing a correlate of interaction between the target protein and its interaction partner. Assays may comprise treating cells/tissue with the agent, and subsequently comparing the level of interaction between the target protein and its interaction partner in such cells/tissue to the level of interaction between the target protein and its interaction partner in cells/tissue of an appropriate control condition (e.g. untreated/vehicle-treated cells/tissue). The level of interaction between the target protein and its interaction partner can also be analysed e.g. using techniques such as ELISA, surface plasmon resonance or biolayer interferometry analysis. Assays may comprise comparing the level of interaction between the target protein and its interaction partner in the presence of the agent to the level of interaction between the target protein and its interaction partner in an appropriate control condition (e.g. the absence of the agent).
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing expression of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level of expression observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit expression of the relevant gene, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing expression of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level of expression observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit expression of the relevant gene, in a given assay.
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of RNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of RNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of RNA encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay.
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of transcription of nucleic acid encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of transcription of nucleic acid encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce transcription of nucleic acid encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay.
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein, in a given assay.
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of a function of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of the function of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of a function of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of the function of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, in a given assay.
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of binding of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to an interaction partner to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of binding, in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of binding of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to an interaction partner to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce the level of the relevant binding, in a given assay.
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing normal splicing of pre-mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce normal splicing of pre-mRNA encoding the relevant target protein(s), in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing the level of normal splicing of pre-mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce normal splicing of pre-mRNA encoding the relevant target protein(s), in a given assay.
In some embodiments, an inhibitor according to the present disclosure may be capable of reducing translation of mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 1 times, e.g. one of ≤0.99 times, ≤0.95 times, ≤0.9 times, ≤0.85 times, ≤0.8 times, ≤0.75 times, ≤0.7 times, ≤0.65 times, ≤0.6 times, ≤0.55 times, ≤0.5 times, ≤0.45 times, ≤0.4 times, ≤0.35 times, ≤0.3 times, ≤0.25 times, ≤0.2 times, ≤0.15 times, ≤0.1 times, ≤0.05 times, or ≤0.01 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce translation of mRNA encoding the relevant target protein(s), in a given assay. In some embodiments, an inhibitor according to the present disclosure may be capable of reducing translation of mRNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to less than 100%, e.g. one of ≤99%, ≤95%, ≤90%, ≤85%, ≤80%, ≤75%, ≤70%, ≤65%, ≤60%, ≤55%, ≤50%, ≤45%, ≤40%, ≤35%, ≤30%, ≤25%, ≤20%, ≤15%, ≤10%, ≤5%, or ≤1% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to reduce translation of mRNA encoding the relevant target protein(s), in a given assay.
Preferred levels of reduction in accordance with the preceding eight paragraphs are reduction to less than 0.5 times/≤50%, e.g. one of less than 0.4 times/≤40%, less than 0.3 times/≤30%, less than 0.2 times/≤20%, less than 0.15 times/≤15%, or less than 0.1 times/≤10%.
In some embodiments, an inhibitor according to the present disclosure may be capable of increasing degradation of RNA encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to more than 1 times, e.g. one of ≥1.01 times, ≥1.02 times, ≥1.03 times, ≥1.04 times, ≥1.05 times, ≥1.1 times, ≥1.2 times, ≥1.3 times, ≥1.4 times, ≥1.5 times, ≥1.6 times, ≥1.7 times, ≥1.8 times, ≥1.9 times, ≥2 times, ≥3 times, ≥4 times, ≥5 times, ≥6 times, ≥7 times, ≥8 times, ≥9 times or ≥10 times the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to increase degradation of RNA encoding the relevant target protein(s), in a given assay. In some embodiments, an inhibitor according to the present disclosure prevents or silences expression of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments, an inhibitor according to the present disclosure prevents or silences expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB at the protein level. As used herein, expression of a given gene/protein may be considered to be ‘prevented’ or ‘silenced’ where the level of expression is reduced to less than 0.1 times/≤10% of the level observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to be an inhibitor of expression of the relevant gene(s)/protein(s).
In preferred embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure inhibits greater than 50%, e.g. one of ≥60%, ≥61%, ≥62%, ≥63%, ≥64%, ≥65%, ≥66%, ≥67%, ≥68%, ≥69%, ≥70%, ≥71%, ≥72%, ≥73%, ≥74%, ≥75%, ≥76%, ≥77%, ≥78%, ≥79%, ≥80%, ≥81%, ≥82%, ≥83%, ≥84%, ≥85%, ≥86%, ≥87%, ≥88%, ≥89%, ≥90%, ≥91%, ≥92%, ≥93%, ≥94%, ≥95%, ≥96%, ≥97%, ≥98%, ≥99% or 100% of the gene and/or protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit gene and/or protein expression of the relevant gene(s)/protein(s), in a given assay.
In preferred embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure inhibits greater than 50%, e.g. one of ≥60%, ≥61%, ≥62%, ≥63%, ≥64%, 65%, ≥66%, ≥67%, ≥68%, ≥69%, ≥70%, ≥71%, ≥72%, ≥73%, ≥74%, ≥75%, ≥76%, ≥77%, ≥78%, ≥79%, 80%, ≥81%, ≥82%, ≥83%, ≥84%, ≥85%, ≥86%, ≥87%, ≥88%, ≥89%, ≥90%, ≥91%, ≥92%, ≥93%, ≥94%, ≥95%, ≥96%, ≥97%, ≥98%, ≥99% or 100% of the gene expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by qRT-PCR) observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit gene and/or protein expression of the relevant gene(s)/protein(s), in a given assay.
In preferred embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure inhibits greater than 50%, e.g. one of ≥60%, ≥61%, ≥62%, ≥63%, ≥64%, ≥65%, ≥66%, ≥67%, ≥68%, ≥69%, ≥70%, ≥71%, ≥72%, ≥73%, ≥74%, ≥75%, ≥76%, ≥77%, ≥78%, ≥79%, ≥80%, ≥81%, ≥82%, ≥83%, ≥84%, ≥85%, ≥86%, ≥87%, ≥88%, ≥89%, ≥90%, ≥91%, ≥92%, ≥93%, ≥94%, ≥95%, ≥96%, ≥97%, ≥98%, ≥99% or 100% of the protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by ELISA) observed in the absence of the inhibitor, or in the presence of the same quantity of a control agent known not to inhibit gene and/or protein expression of the relevant gene(s)/protein(s), in a given assay.
In some embodiments, an inhibitor (e.g. an inhibitory nucleic acid, such as an siRNA or shRNA) according to the present disclosure may inhibit gene and/or protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB with an IC50 of ≤1 μM, e.g. one of ≤500 nM, ≤100 nM, ≤75 nM, ≤50 nM, ≤40 nM, ≤30 nM, ≤20 nM, ≤15 nM, ≤12.5 nM, ≤10 nM, ≤9 nM, ≤8 nM, ≤7 nM, ≤6 nM, ≤5 nM, ≤4 nM ≤3 nM, ≤2 nM, ≤1 nM, ≤900 pM, ≤800 pM, ≤700 pM, ≤600 pM, ≤500 pM, ≤400 pM, ≤300 pM, ≤200 pM, ≤100 pM, ≤50 pM, ≤40 pM, ≤30 pM, ≤20 pM, ≤10 pM or ≤1 pM.
In some embodiments an inhibitor according to the present disclosure may inhibit gene expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by qRT-PCR) with an IC50 of ≤1 nM, ≤900 pM, ≤800 pM, ≤700 pM, ≤600 pM, ≤500 pM, ≤400 pM, ≤300 pM, ≤200 pM, ≤100 pM, ≤50 pM, ≤40 pM, ≤30 pM, ≤20 pM, ≤10 pM or ≤1 pM.
In some embodiments an inhibitor according to the present disclosure may inhibit protein expression of any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. as determined by ELISA) with an IC50 of ≤1 nM, ≤900 pM, ≤800 pM, ≤700 pM, ≤600 pM, ≤500 pM, ≤400 pM, ≤300 pM, ≤200 pM, ≤100 pM, ≤50 pM, ≤40 pM, ≤30 pM, ≤20 pM, ≤10 pM or ≤1 pM.
Types of Inhibitors
Inhibitors according to the present disclosure may be any kind of agent possessing the appropriate inhibitory activity.
The term “inhibitor” as used herein refers to an agent that decreases or inhibits at least one function or biological activity of a target molecule, such as those described herein.
An inhibitor according to the present disclosure may be a molecule that is capable of binding to any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB mRNA or protein, a molecule that is capable of binding to an interacting partner of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or a molecule capable of reducing expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some embodiments an inhibitor is capable of binding to a polypeptide according to any one or more of SEQ ID NO: 7156 to 7178, or a mRNA according to any one of SEQ ID NO: 7179 to 7195.
In some embodiments an inhibitor targets, e.g. is capable of binding to, a functional domain or region of any one or more of SEQ ID NO: 7156 to 7178. In some embodiments an inhibitor targets a region comprising positions 22-255, 26-28 or 32-255 of SEQ ID NO: 7156. In some embodiments an inhibitor targets a region comprising one or more of positions 83-84, 162-164, 185-188, 217, 243, 245, 269, and 293-296 of SEQ ID NO: 7158. In some embodiments an inhibitor targets a region comprising positions 258-293 of SEQ ID NO: 7160. In some embodiments an inhibitor targets a region comprising positions 92-377, 410-633, 714-1005, 1041-1274, 445-452, or 1075-1082 of SEQ ID NO: 7161. In some embodiments an inhibitor targets a region comprising positions 70-83 or 283-534 of SEQ ID NO: 7165. In some embodiments an inhibitor targets a region comprising positions 64-507 or 611-762 of SEQ ID NO: 7175. In some embodiments an inhibitor targets a region comprising positions 1-18, 19-48, or 49-244 of SEQ ID NO: 7177.
In some embodiments an inhibitor is capable of binding to an interacting partner of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, such as those described hereinabove.
Such binding molecules can be identified using any suitable assay for detecting binding of a molecule to the relevant factor (i.e. a target gene/protein described herein, or an interaction partner for said protein(s)). Such assays may comprise detecting the formation of a complex between the relevant factor and the molecule.
In some embodiments, the inhibitor is a nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor.
Small molecule inhibitors that bind to the target mRNA/proteins described herein, or their binding partners, can be identified by screening of small molecule libraries. As used herein, a “small molecule” refers to a low molecular weight (<1000 daltons, typically between ˜300-700 daltons) organic compound. Small molecule inhibitors that bind to the target mRNA/proteins described herein can be identified e.g. using a method described in Horswill A R et al., PNAS, 2004,101 (44) 15591-15596, which is hereby incorporated by reference in its entirety.
An inhibitor of GRHPR may be 4-hydroxy-2-oxoglutarate.
An inhibitor of ABCC4 may be Methotrexate, Mercaptopurine, Zidovudine, Dipyridamole, Probenecid, Sulfinpyrazone, Fluorouraci, Rucaparib, Adefovir dipivoxil, Cefazolin, Tyrphostin AG1478, Dantrolene, Glafenine, Nalidixic Acid or Prazosin.
An inhibitor of PAK3 may be FRAX597.
An inhibitor of APLN may be ML221, an apelin receptor (APJ) antagonist.
An inhibitor of KIF20A may be BKS0349 or Paprotrain.
Inhibitors provided herein include peptides/polypeptides, e.g. peptide aptamers, thioredoxins, monobodies, anticalin, Kunitz domains, avimers, knottins, fynomers, atrimers, DARPins, affibodies, nanobodies (i.e. single-domain antibodies (sdAbs)) affilins, armadillo repeat proteins (ArmRPs), OBodies and fibronectin—reviewed e.g. in Reverdatto et al., Curr Top Med Chem. 2015; 15(12): 1082-1101, which is hereby incorporated by reference in its entirety (see also e.g. Boersma et al., J Biol Chem (2011) 286:41273-85 and Emanuel et al., Mabs (2011) 3:38-48). Inhibitors include peptides/polypeptides that can be identified by screening of libraries of the relevant peptides/polypeptides. The peptide/polypeptide inhibitors may be referred to as inhibitory peptides/polypeptides.
Inhibitory peptides/polypeptides may also include e.g. peptide/polypeptide interaction partners for the target gene/mRNA/protein of interest (i.e. MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB).
Peptide/polypeptide interaction partners may be based on an interaction partner for the target gene/mRNA/protein of interest, and may e.g. comprise a fragment of an interaction partner said target(s). Peptide/polypeptide interaction partners may be based on one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and may e.g. comprise a fragment of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB that binds to an interaction partner for said mRNA/protein. Such agents may behave as ‘decoy’ molecules, and preferably display competitive inhibition of interaction between MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and a corresponding interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
An inhibitor of MFAP4 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between MFAP4 and an integrin receptor, integrin αvβ3, tropoelastin, fibrillin-1, fibrillin-2, desmosine, LOX, MFAP2, FBLN1, FBLN2, MFAP5, EFEMP2, EFEMP1, SFTPD, or elastin.
An inhibitor of GRHPR may, for example, be a peptide/polypeptide that is capable of blocking the interaction between GRHPR and glyoxylate, hydroxypyruvate, D-glycerate, AGXT, HYI, GLYCTK, PGP, GLO1, HAO1, HAO2, DAO, NADPH or NADH.
An inhibitor of ITFG1 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between ITFG1 and RUVBL1, RUVBL2, alpha-tubulin, TIPIN, ATP9A, ASCC2, RFX7, or TM7SF3.
An inhibitor of ABCC4 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between ABCC4 and ATP, ABCG4, SNX27, ABCA3, ABCE1, MRPS7, SLC22A8, SLCO1B1, NR1H4 or SLC22A6.
An inhibitor of PAK3 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between PAK3 and PAK1, CDC42, NCK1, MAPK14, RAC1, PXN, GIT1, GIT2, ARHGEF7 or ARHGEF6.
An inhibitor of TRNP1 may, for example, be a peptide/polypeptide that is capable of blocking the interaction between TRNP1 and TMF1, FAM18A, CNIH3, SMARCC2, FAM19A3, TBC1D3A, TBC1D3D, ARHGAP11B, or GPR56.
An inhibitor of APLN may, for example, be a peptide/polypeptide that is capable of blocking the interaction between APLN and APLNR, AGTR1, AGT, CXCR4, CCR5, KNG1, NPY, PDYN, NMU, or POMC.
An inhibitor of KIF20A may, for example, be a peptide/polypeptide that is capable of blocking the interaction between KIF20A and MAD2L1, AURKB, RACGAP1, KIF11, PLK1, CDCA8, KIF4A, CENPE, PRC1, or INCENP.
An inhibitor of LTB may, for example, be a peptide/polypeptide that is capable of blocking the interaction between LTB and LTBR, LTA, TNF, TNFSF14, TNFRSF1B, TNFSF13B, TNFRSF11A, CD40LG, MAP3K14, TNFSF11.
In some embodiments, an inhibitory peptide/polypeptide may comprise or consist of an amino acid sequence having at least 60%, e.g. one of at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of an interaction partner for one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or the amino acid sequence of a fragment thereof.
In some embodiments, an inhibitory peptide/polypeptide may comprise or consist of an amino acid sequence having at least 60%, e.g. one of at least 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to the amino acid sequence of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or the amino acid sequence of a fragment thereof. In such embodiments it will be appreciated that the inhibitory peptide/polypeptide will lack normal activity and/or have reduced activity compared to the wildtype version of the protein. For example, in some embodiments an inhibitory peptide/polypeptide may be a variant (e.g. mutant) version of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB having reduced function relative to wildtype MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Inhibitory peptides/polypeptides include aptamers. Nucleic acid aptamers are reviewed e.g. in Zhou and Rossi Nat Rev Drug Discov. 2017 16(3):181-202, and may be identified and/or produced by the method of Systematic Evolution of Ligands by EXponential enrichment (SELEX), or by developing SOMAmers (slow off-rate modified aptamers) (Gold L et al. (2010) PLoS ONE 5(12):e15004). Aptamers and SELEX are described in Tuerk and Gold, Science (1990) 249(4968):505-10, and in WO 91/19813. Nucleic acid aptamers may comprise DNA and/or RNA, and may be single stranded or double stranded. They may comprise chemically modified nucleic acids, for example in which the sugar and/or phosphate and/or base is chemically modified. Such modifications may improve the stability of the aptamer or make the aptamer more resistant to degradation and may include modification at the 2′ position of ribose. Nucleic acid aptamers may be chemically synthesised, e.g. on a solid support. Solid phase synthesis may use phosphoramidite chemistry. Briefly, a solid supported nucleotide is detritylated, then coupled with a suitably activated nucleoside phosphoramidite to form a phosphite triester linkage. Capping may then occur, followed by oxidation of the phosphite triester with an oxidant, typically iodine. The cycle may then be repeated to assemble the aptamer (e.g., see Sinha, N. D.; Biernat, J.; McManus, J.; Köster, H. Nucleic Acids Res. 1984, 12, 4539; and Beaucage, S. L.; Lyer, R. P. (1992). Tetrahedron 48 (12): 2223). Peptide aptamers and methods for their generation and identification are reviewed in Reverdatto et al., Curr Top Med Chem. (2015) 15(12):1082-101, which is hereby incorporated by reference in its entirety.
Inhibitory peptides/polypeptides also include antibodies (immunoglobulins) such as monoclonal antibodies, polyclonal antibodies, monospecific antibodies, multispecific antibodies (e.g., bispecific antibodies), and fragments and derivatives thereof (e.g. Fv, scFv, Fab, scFab, F(ab′)2, Fab2, diabodies, triabodies, scFv-Fc, minibodies, single domain antibodies (e.g. VhH), etc.).
In some embodiments, an inhibitor described herein is an antibody that is capable of binding to one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
An inhibitor of MFAP4 may be an antibody with catalog number PA5-42013 (ThermoFisher) or ab169757 (abcam). An inhibitor of GRHPR may be an antibody with catalog number PA5-54652 (ThermoFisher) or ab155604 (abcam). An inhibitor of ITFG1 may be an antibody with catalog number PA5-54067 (ThermoFisher) or TA339563 (ORIGENE). An inhibitor of ABCC4 may be an antibody with catalog number PA5-82019 (ThermoFisher) or ab15602 (abcam). An inhibitor of PAK3 may be an antibody with catalog number PA5-79781 (ThermoFisher) or ab40808 (abcam). An inhibitor of TRNP1 may be an antibody with catalog number PA5-71277 (ThermoFisher) or ab174303 (abcam). An inhibitor of APLN may be an APLN-blocking antibody. An inhibitor of APLN may be an antibody with catalog number PA5-114860 (ThermoFisher) or ab125213 (abcam). An inhibitor of KIF20A may be an antibody with catalog number PA5-38648 (ThermoFisher). An inhibitor of LTB may be an antibody (e.g. a recombinant Mouse Anti-LTA and LTB Antibody (CBL543)).
Inhibitors/inhibitory molecules that bind to any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, or that bind to an interacting partner thereof, may display specific binding to the relevant factor (i.e. the relevant mRNA/protein, or the interaction partner for said mRNA/protein). As used herein, “specific binding” refers to binding which is selective, and which can be discriminated from non-specific binding to non-target molecules.
An inhibitor or binding molecule that specifically binds to any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB preferably binds to any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB with greater affinity, and/or with greater duration than it binds to other, non-target molecules. Such binding molecules may be described as being “specific for” any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. An inhibitor or binding molecule that specifically binds to an interaction partner for any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB preferably binds to the interaction partner for any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB with greater affinity, and/or with greater duration than it binds to other, non-target molecules; such binding molecules may be described as being “specific for” the interaction partner for any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some embodiments an inhibitor/binding molecule described herein inhibits the ability of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to bind to a corresponding interaction partner (i.e. an interaction partner for MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB, respectively). In some embodiments the inhibitor/binding molecule behaves as a competitive inhibitor of interaction between any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and a corresponding interaction partner. The binding molecule may occupy, or otherwise reduce access to, a region of the protein required for binding to a corresponding interaction partner, or may occupy, or otherwise reduce access to, a region of an interaction partner required for binding to the corresponding protein.
The ability of an inhibitor, e.g. a binding molecule, to inhibit interaction between a protein of interest and a corresponding interaction partner can be evaluated e.g. by analysis of interaction in the presence of, or following incubation of one or both of the interaction partners with, the inhibitor. An example of a suitable assay to determine whether a given binding agent is capable of inhibiting interaction between a protein of interest and a corresponding interaction partner is a competition ELISA.
An inhibitor described herein may be a molecule capable of reducing expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. A “molecule capable of reducing expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB” refers to a molecule which is capable of reducing gene, mRNA and/or protein expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments the molecule reduces or prevents the expression of a polypeptide according to SEQ ID NO: 7156 to 7178. In some embodiments the molecule reduces or prevents the expression of a polypeptide from a sequence according to SEQ ID NO: 7179 to 7195.
Repression of expression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB or an isoform thereof will preferably result in a decrease in the quantity of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB expressed by a cell/tissue/organ/organ system/subject. For example, in a given cell the repression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB by administration of a suitable nucleic acid will result in a decrease in the level of expression relative to an untreated cell. Repression may be partial. Preferred degrees of repression are at least 50%, more preferably one of at least 60%, 70%, 80%, 85% or 90%. A level of repression between 90% and 100% is considered a ‘silencing’ of expression or function. Gene and protein expression may be determined as described herein or by methods in the art that are well known to a skilled person.
In some embodiments, inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may comprise modification of a cell(s) to reduce or prevent expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying nucleic acid encoding one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. The modification causes the cell to have a reduced level of gene and/or protein expression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB as compared to an unmodified cell.
In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may comprise modifying a gene encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises introducing an insertion, substitution or deletion into a nucleic acid sequence encoding MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises introducing a modification which reduces or prevents the expression of a polypeptide according to any one of SEQ ID NO: 7156 to 7178 from the modified nucleic acid sequence. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying a cell to comprise an allele of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB which does not encode an amino acid sequence according to any one of SEQ ID NO: 7156 to 7178. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying a cell to lack nucleic acid encoding a polypeptide according to any one of SEQ ID NO: 7156 to 7178.
In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying the relevant gene(s) to introduce a premature stop codon in the sequence transcribed from said gene(s). In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying the relevant gene(s) to encode a truncated and/or non-functional polypeptide(s). In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB comprises modifying the relevant gene(s) to encode polypeptide(s) which is/are misfolded and/or degraded.
Methods for modifying nucleic acids encoding proteins of interest and agents for achieving the same are well known in the art, and include e.g. including modification of the target nucleic acid by homologous recombination, and target nucleic acid editing using site-specific nucleases (SSNs).
Suitable methods may employ targeting by homologous recombination, which is reviewed, for example, in Mortensen Curr Protoc Neurosci. (2007) Chapter 4:Unit 4.29 and Vasquez et al., PNAS 2001, 98(15): 8403-8410, both of which are hereby incorporated by reference in their entirety. Targeting by homologous recombination involves the exchange of nucleic acid sequence through crossover events guided by homologous sequences.
In some embodiments the methods employ target nucleic acid editing using SSNs. Gene editing using SSNs is reviewed e.g. in Eid and Mahfouz, Exp Mol Med. 2016 October; 48(10): e265, which is hereby incorporated by reference in its entirety. Enzymes capable of creating site-specific double strand breaks (DSBs) can be engineered to introduce DSBs to target nucleic acid sequence(s) of interest. DSBs may be repaired by either error-prone non-homologous end-joining (NHEJ), in which the two ends of the break are rejoined, often with insertion or deletion of nucleotides. Alternatively DSBs may be repaired by highly homology-directed repair (HDR), in which a DNA template with ends homologous to the break site is supplied and introduced at the site of the DSB.
SSNs capable of being engineered to generate target nucleic acid sequence-specific DSBs include zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regularly interspaced palindromic repeats/CRISPR-associated-9 (CRISPR/Cas9) systems.
ZFN systems are reviewed e.g. in Umov et al., Nat Rev Genet. (2010) 11(9):636-46, which is hereby incorporated by reference in its entirety. ZFNs comprise a programmable Zinc Finger DNA-binding domain and a DNA-cleaving domain (e.g. a FokI endonuclease domain). The DNA-binding domain may be identified by screening a Zinc Finger array capable of binding to the target nucleic acid sequence.
TALEN systems are reviewed e.g. in Mahfouz et al., Plant Biotechnol J. (2014) 12(8):1006-14, which is hereby incorporated by reference in its entirety. TALENs comprise a programmable DNA-binding TALE domain and a DNA-cleaving domain (e.g. a FokI endonuclease domain). TALEs comprise repeat domains consisting of repeats of 33-39 amino acids, which are identical except for two residues at positions 12 and 13 of each repeat which are repeat variable di-residues (RVDs). Each RVD determines binding of the repeat to a nucleotide in the target DNA sequence according to the following relationship: ‘HD’ binds to C, ‘NI’ binds to A, ‘NG’ binds to T and ‘NN’ or ‘NK’ binds to G (Moscou and Bogdanove, Science (2009) 326(5959):1501.).
CRISPR/Cas9 and related systems e.g. CRISPR/Cpf1, CRISPR/C2c1, CRISPR/C2c2 and CRISPR/C2c3 are reviewed e.g. in Nakade et al., Bioengineered (2017) 8(3):265-273, which is hereby incorporated by reference in its entirety. These systems comprise an endonuclease (e.g. Cas9, Cpf1 etc.) and the single-guide RNA (sgRNA) molecule. The sgRNA can be engineered to target endonuclease activity to nucleic acid sequences of interest.
In some embodiments, inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB employs a site-specific nuclease (SSN) system targeting the relevant nucleic acid sequence(s). Accordingly in some embodiments the inhibitor comprises or consists of an SSN system targeting nucleic acid(s) encoding one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. In some embodiments inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB employs nucleic acid(s) encoding a SSN system targeting the relevant nucleic acid sequence(s).
In some embodiments, the SSN system targets a region of the nucleic acid encoding a domain of a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein required for protein function, e.g. a domain as described herein.
In some embodiments the SSN system is a ZFN system, a TALEN system, CRISPR/Cas9 system, a CRISPR/Cpf1 system, a CRISPR/C2c1 system, a CRISPR/C2c2 system or a CRISPR/C2c3 system.
In some embodiments the SSN system is a CRISPR/Cas9 system. In such embodiments, the inhibition may employ nucleic acid(s) encoding a CRISPR RNA (crRNA) targeting nucleic acid encoding one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and a trans-activating crRNA (tracrRNA) for processing the crRNA to its mature form.
Nucleic Acid Inhibitors
In some embodiments, the inhibitor is a nucleic acid inhibitor. A nucleic acid inhibitor may also be described herein as an inhibitory nucleic acid.
Nucleic acid inhibitors according to the present disclosure may comprise or consist of DNA and/or RNA. Nucleic acid inhibitors may be single-stranded (e.g. in the case of antisense oligonucleotides (e.g. gapmers)). Nucleic acid inhibitors may be double-stranded or may comprise double-stranded region(s) (e.g. in the case of siRNA, shRNA, etc.). Inhibitory nucleic acids may comprise both double-stranded and single-stranded regions (e.g. in the case of shRNA and pre-miRNA molecules, which are double-stranded in the stem region of the hairpin structure, and single-stranded in the loop region of the hairpin structure).
In some embodiments, a nucleic acid inhibitor according to the present disclosure may be an antisense nucleic acid as described herein. In some embodiments, a nucleic acid inhibitor may comprise an antisense nucleic acid as described herein. In some embodiments, a nucleic acid inhibitor may encode an antisense nucleic acid as described herein.
As used herein, an ‘antisense nucleic acid’ refers to a nucleic acid (e.g. DNA or RNA) that is complementary to at least a portion of a target nucleotide sequence (e.g. of RNA encoding a target gene described herein). Antisense nucleic acids according to the present disclosure are preferably single-stranded nucleic acids, and bind via complementary Watson-Crick base-pairing to a target nucleotide sequence. Complementary base-pairing may involve hydrogen bonding between complementary base pairs. Antisense nucleic acids may be provided as single-stranded molecules, as for example in the case of antisense oligonucleotides, or may be comprised in double-stranded molecular species, as for example in the case of siRNA, shRNA and pre-miRNA molecules.
Complementary base-pairing between the antisense nucleic acid and its target nucleotide sequence may be complete. In such embodiments the antisense nucleic acid comprises, or consists of, the reverse complement of its target nucleotide sequence, and complementary base-pairing occurs between each nucleotide of the target nucleotide sequence and complementary nucleotides in the antisense nucleic acid. Alternatively, complementary base-pairing between the antisense nucleic acid and its target nucleotide sequence may be incomplete/partial. In such embodiments complementary base-pairing occurs between some, but not all, nucleotides of the target nucleotide sequence and complementary nucleotides in the antisense nucleic acid.
Such binding between nucleic acids through complementary base pairing may be referred to as ‘hybridisation’. Through binding to its target nucleotide sequence, an antisense nucleic acid may form a nucleic acid complex comprising (i) the antisense nucleic acid and (ii) a target nucleic acid comprising the target nucleotide sequence.
The nucleotide sequence of an antisense nucleic acid is sufficiently complementary to its target nucleotide sequence such that it binds or hybridises to the target nucleotide sequence. It will be appreciated that an antisense nucleic acid preferably has a high degree of sequence identity to the reverse complement of its target nucleotide sequence. In some embodiments, the antisense nucleic acid comprises or consists of a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of its target nucleotide sequence.
In some embodiments, an antisense nucleic acid according to the present disclosure comprises: a nucleotide sequence which is the reverse complement of its target nucleotide sequence, or a nucleotide sequence comprising 1 to 10 (e.g. one of 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10) substitutions relative to the reverse complement of its target nucleotide sequence.
In some embodiments, the target nucleotide sequence for an antisense nucleic acid according to the present disclosure comprises, or consists of, 5 to 100 nucleotides, e.g. one of 10 to 80, 12 to 50, or 15 to 30 nucleotides (e.g. 20 to 27, e.g. ˜21 to 23). In some embodiments, the target nucleotide sequence for an antisense nucleic acid according to the present disclosure comprises or consists of DNA and/or RNA. In some embodiments, the target nucleotide sequence for an antisense nucleic acid according to the present disclosure comprises or consists of RNA.
In some embodiments, the antisense nucleic acid reduces/prevents transcription of nucleic acid comprising its target nucleotide sequence. In some embodiments, the antisense nucleic acid reduces/prevents association of factors required for normal transcription (e.g. enhancers, RNA polymerase) with nucleic acid comprising its target nucleotide sequence.
In some embodiments, the antisense nucleic acid increases/potentiates degradation of nucleic acid comprising its target nucleotide sequence, e.g. through RNA interference. In some embodiments, the antisense nucleic acid reduces/prevents translation of nucleic acid comprising its target nucleotide sequence, e.g. through RNA interference or antisense degradation via RNase H.
RNA interference is described e.g. in Agrawal et al., Microbiol. Mol. Bio. Rev. (2003) 67(4): 657-685 and Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101), both of which are hereby incorporated by reference in their entirety. Briefly, double-stranded RNA molecules are recognised by the argonaute component of the RNA-induced silencing complex (RISC). The double-stranded RNAs are separated into single strands and integrated into an active RISC, by the RISC-Loading Complex (RLC). The RISC-integrated strands bind to their target RNA through complementary base pairing, and depending on the identity of the RISC-integrated RNA and degree of complementarity to the target RNA, the RISC then either cleaves the target RNA resulting in its degradation, or otherwise blocks access of ribosomes thereby preventing its translation. RNAi based therapeutics have been approved for a number of indications (Kim, Chonnam Med J. (2020) 56(2): 87-93).
In some embodiments, the antisense nucleic acid reduces/prevents normal post-transcriptional processing (e.g. splicing and/or translation) of nucleic acid comprising its target nucleotide sequence. In some embodiments, the antisense nucleic acid reduces or alters splicing of pre-mRNA comprising its target nucleotide sequence to mature mRNA. In some embodiments, the antisense nucleic acid reduces translation of mRNA comprising its target nucleotide sequence to protein.
In some embodiments, the antisense nucleic acid reduces/prevents association of factors required for normal post-transcriptional processing (e.g. components of the spliceosome) with nucleic acid comprising its target nucleotide sequence. In such instances, the antisense nucleic may be referred to as a ‘splice-switching’ nucleic acid.
Splice-switching nucleic acids are reviewed e.g. in Haves and Hastings, Nucleic Acids Res. (2016) 44(14): 6549-6563, which is hereby incorporated by reference in its entirety. Splice-switching nucleic acids include e.g. splice-switching oligonucleotides (SSOs). They disrupt the normal splicing of target RNA transcripts by blocking the RNA:RNA base-pairing and/or protein:RNA binding interactions that occur between components of the splicing machinery and pre-mRNA. Splice-switching nucleic acids may be employed to alter the number/proportion of mature mRNA transcripts encoding a protein described herein. Splice-switching nucleic acids may be designed to target a specific region of the target transcript, e.g. to effect skipping of exon(s) of interest, e.g. exons encoding domains/regions of interest. SSOs often comprise alterations to oligonucleotide sugar-phosphate backbones in order to reduce/prevent RNAse H degradation, such as e.g. phosphorothioate linkages, phosphorodiamidate linkages such as phosphorodiamidate morpholino (PMOs), and may comprise e.g. peptide nucleic acids (PNAs), locked nucleic acids (LNAs), methoxyethyl nucleotide modifications, e.g. 2′O-methyl (2′OMe) and 2′-O-methoxyethyl (MOE) ribose modifications and/or 5′-methylcytosine modifications.
In some embodiments, the antisense nucleic acid inhibits/reduces translation of nucleic acid comprising its target nucleotide sequence. In some embodiments, the antisense nucleic acid reduces/prevents association of factors required for translation (e.g. ribosomes) with nucleic acid comprising its target nucleotide sequence.
As used herein, “target sequence” refers to a contiguous portion of the nucleotide sequence of an mRNA molecule formed during the transcription of a gene (e.g. a gene associated with organ regeneration), including mRNA that is a product of RNA processing of a primary transcription product.
It will be appreciated that the target nucleotide sequence to which an antisense nucleic acid binds is a nucleotide sequence encoding a protein which it is desired to inhibit expression of. Accordingly, in aspects and embodiments of the present disclosure, the target nucleotide sequence for an antisense nucleic acid is a nucleotide sequence of a gene encoding any one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of RNA encoded by a gene encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In some embodiments, the target nucleotide sequence is a nucleotide sequence of RNA encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In some embodiments, the target nucleotide sequence comprises one or more nucleotides of an exon of RNA encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB. In some embodiments, the target nucleotide sequence is a nucleotide sequence of an exon of RNA encoding any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB.
In some embodiments, the target nucleotide sequence is a nucleotide sequence provided in Table 14.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001198695.2 (GI: 1677501926, version 2), which is the NCBI Reference Sequence for human MFAP4 transcript variant 1 mRNA (SEQ ID NO: 7179), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_002404.3 (GI: 1677501522, version 3), which is the NCBI Reference Sequence for human MFAP4 transcript variant 2 mRNA (SEQ ID NO: 7180), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_012203.2 (GI: 1519473711, version 2) which is the NCBI Reference Sequence for human GRHPR transcript variant 1 mRNA (SEQ ID NO: 7181), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_030790.5 (GI: 1653961895, version 5) which is the NCBI Reference Sequence for human ITFG1 transcript variant 1 mRNA (SEQ ID NO: 7182), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_005845.5 (GI: 1813751621, version 5) which is the NCBI Reference Sequence for human ABCC4 transcript variant 1 mRNA (SEQ ID NO: 7183), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001105515.3 (GI: 1677498821, version 3) which is the NCBI Reference Sequence for human ABCC4 transcript variant 2 mRNA (SEQ ID NO: 7184), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001301829.2 (GI: 1677530022, version 2) which is the NCBI Reference Sequence for human ABCC4 transcript variant 3 mRNA (SEQ ID NO: 7185), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001301830.2 (GI: 1677498275, version 2) which is the NCBI Reference Sequence for human ABCC4 transcript variant 4 mRNA (SEQ ID NO: 7186), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001128166.3 (GI: 1889680926, version 3) which is the NCBI Reference Sequence for human PAK3 transcript variant 1 mRNA (SEQ ID NO: 7187), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_002578.5 (GI: 1519316149, version 5) which is the NCBI Reference Sequence for human PAK3 transcript variant 2 mRNA (SEQ ID NO: 7188), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001128167.3 (GI: 1890283404, version 3) which is the NCBI Reference Sequence for human PAK3 transcript variant 3 mRNA (SEQ ID NO: 7189), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001128168.3 (GI: 1676441496, version 3) which is the NCBI Reference Sequence for human PAK3 transcript variant 4 mRNA (SEQ ID NO: 7190), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_001013642.3 (GI: 1519242294, version 3) which is the NCBI Reference Sequence for human TRNP1 mRNA (SEQ ID NO: 7191), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_017413.5 (GI: 1519315208, version 5) which is the NCBI Reference Sequence for human APLN mRNA (SEQ ID NO: 7192), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_005733.3 (GI: 1519313609, version 3) which is the NCBI Reference Sequence for human KIF20A transcript variant 1 mRNA (SEQ ID NO: 7193), or a portion thereof.
In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_002341.2 (GI: 1720810086, version 2) which is the NCBI Reference Sequence for human LTB transcript variant 1 mRNA (SEQ ID NO: 7194), or a portion thereof. In some embodiments, the target nucleotide sequence is a nucleotide sequence of NM_009588.1 (GI: 6996015, version 1) which is the NCBI Reference Sequence for human LTB transcript variant 2 mRNA (SEQ ID NO: 7195), or a portion thereof.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of any one of SEQ ID NOs: 7179 to 7195, or a portion thereof, e.g. calculated over the length of the antisense nucleic acid or over the length of the portion of the reference sequence.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one of SEQ ID NOs: 7179 to 7195, or a portion thereof, e.g. calculated over the length of the antisense nucleic acid or over the length of the portion of the reference sequence.
In some embodiments the antisense nucleic acid and/or the portion of the reference sequence is 5 to 50, 5 to 40, 8 to 30, 8 to 25, 10 to 25, 15 to 25, or 19 to 22 nucleotides in length. Antisense nucleic acids described herein may comprise thymine or uracil residues. Where antisense nucleic acids described herein are defined by reference to sequence identity with a reference sequence, the nucleic acids may comprise uracil residues in place of any thymine residues in the reference sequence, or vice versa.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to a sequence, or to the reverse complement of a sequence, in any one or more of Tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and/or 13, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence from a Table.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 1 to 7155, or to the reverse complement of any one or more of SEQ ID NOs: 1 to 7155, e.g. calculated over the length of the antisense nucleic acid or the length of the reference sequence.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 14 to 7114 or 7141 to 7155, or to the reverse complement of any one or more of SEQ ID NOs: 14 to 7114 or 7141 to 7155, e.g. calculated over the length of the antisense nucleic acid or the length of the reference sequence.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one of SEQ ID NOs: 1 to 13, or to the reverse complement of any one of SEQ ID NOs: 1 to 13, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one of SEQ ID NOs: 7115 to 7140, or to the reverse complement of any one of SEQ ID NOs: 7115 to 7140, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 14 to 347, and/or to the reverse complement of any one or more of SEQ ID NOs: 14 to 347, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NOs: 1, 2, 15, 19 or 25, and/or to the reverse complement of SEQ ID NOs: 1, 2, 15, 19, or 25, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NOs: 7092, 7093, 7141, 7142, 7146, 7147, 7151, 7152 and/or 7097 to 7102, and/or to the reverse complement of SEQ ID NOs: 7092, 7093, 7141, 7142, 7146, 7147, 7151, 7152 and/or 7097 to 7102, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NOs: 7097 or 7100, and/or to the reverse complement of SEQ ID NOs: 7097 or 7100, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. human MFAP4.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7115 to 7120, and/or to the reverse complement of any one or more of SEQ ID NOs: 7115 to 7120, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of MFAP4, e.g. mouse MFAP4.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 348 to 456, and/or to the reverse complement of any one or more of SEQ ID NOs: 348 to 456, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. human GRHPR.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 3, 4, 5, 349, 350 and/or 351, and/or to the reverse complement of any one or more of SEQ ID NOs: 3, 4, 5, 349, 350, and/or 351, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. human GRHPR.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7094, 7143, 7148, 7153 and/or 7103 to 7108, and/or to the reverse complement of any one or more of SEQ ID NOs: 7094, 7143, 7148, 7153 and/or 7103 to 7108, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. human GRHPR.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7121 to 7129, and/or to the reverse complement of any one or more of SEQ ID NOs: 7121 to 7129, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of GRHPR, e.g. mouse GRHPR.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 457 to 1482, and/or to the reverse complement of any one or more of SEQ ID NOs: 457 to 1482, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. human ITFG1.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 6, 7, 457, 465, 468, 470, and/or 473, and/or to the reverse complement of any one or more of SEQ ID NOs: 6, 7, 457, 465, 468, 470, and/or 473, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. human ITFG1.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7095, 7096, 7144, 7145, 7149, 7150, 7154, 7155, and/or 7109 to 7114, and/or to the reverse complement of any one or more of SEQ ID NOs: 7095, 7096, 7144, 7145, 7149, 7150, 7154, 7155, and/or 7109 to 7114, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. human ITFG1.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 7130 to 7140, and/or to the reverse complement of any one or more of SEQ ID NOs: 7130 to 7140, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ITFG1, e.g. mouse ITFG1.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 1483 to 2208, and/or to the reverse complement of any one or more of SEQ ID NOs: 1483 to 2208, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ABCC4, e.g. human ABCC4.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 1483, 1485, 1486, 1488, 1489 and/or 1490, and/or to the reverse complement of any one or more of SEQ ID NOs: 1483, 1485, 1486, 1488, 1489 and/or 1490, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of ABCC4, e.g. human ABCC4.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 2209 to 5060, and/or to the reverse complement of any one or more of SEQ ID NOs: 2209 to 5060, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of PAK3, e.g. human PAK3.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 2209, 2225 and/or 2234, and/or to the reverse complement of any one or more of SEQ ID NOs: 2209, 2225 and/or 2234 e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of PAK3, e.g. human PAK3.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5061 to 5389, and/or to the reverse complement of any one or more of SEQ ID NOs: 5061 to 5389, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of TRNP1, e.g. human TRNP1.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5061 and/or 5062, and/or to the reverse complement of any one or more of SEQ ID NOs: 5061 and/or 5062 e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of TRNP1, e.g. human TRNP1.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5390 to 5966, and/or to the reverse complement of any one or more of SEQ ID NOs: 5390 to 5966, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of APLN, e.g. human APLN.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5390, 5391, 5392 and/or 5393, and/or to the reverse complement of any one or more of SEQ ID NOs: 5390, 5391, 5392 and/or 5393, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of APLN, e.g. human APLN.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5967 to 6974, and/or to the reverse complement of any one or more of SEQ ID NOs: 5967 to 6974, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of KIF20A, e.g. human KIF20A.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 5967, 5970 and/or 5971, and/or to the reverse complement of any one or more of SEQ ID NOs: 5967, 5970 and/or 5971, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of KIF20A, e.g. human KIF20A.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 6975 to 7091, and/or to the reverse complement of any one or more of SEQ ID NOs: 6975 to 7091, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of LTB, e.g. human LTB.
In some embodiments, the antisense nucleic acid comprises or consists of a sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to any one or more of SEQ ID NOs: 6977, 6978 and/or 6993, and/or to the reverse complement of any one or more of SEQ ID NOs: 6977, 6978 and/or 6993, e.g. calculated over the length of the antisense nucleic acid or over the length of the reference sequence. The antisense nucleic acid may be capable of reducing gene and/or protein expression of LTB, e.g. human LTB.
The antisense nucleic acid may comprise or consist of a sequence that hybridises to a sequence listed in any of Tables 1 to 14, or a sequence that hybridises to the complement of a sequence listed in any of Tables 1 to 14.
In some embodiments, a nucleic acid inhibitor is an antisense oligonucleotide (ASO). ASOs are single-stranded nucleic acid molecules comprising or consisting of an antisense nucleic acid to a target nucleotide sequence. An antisense oligonucleotide according to the present disclosure may comprise or consist of an antisense nucleic acid as described herein.
ASOs can modify expression of RNA molecules comprising their target nucleotide sequence by altering splicing, or by recruiting RNase H to degrade RNA comprising the target nucleotide sequence. RNase H recognises nucleic acid complex molecules formed when the ASO binds to RNA comprising its target nucleotide sequence. ASOs according to the present disclosure may comprise or consist of an antisense nucleic acid according to the present disclosure. ASOs may comprise 10 to 40 (e.g. 17 to 30, 20 to 27, 21 to 23) nucleotides in length. Many ASOs are designed as chimeras, comprising a mix of bases with different chemistries, or as gapmers, comprising a central DNA portion surrounded by ‘wings’ of modified nucleotides. ASOs are described in e.g. Scoles et al., Neurol Genet. 2019 April; 5(2): e323. ASOs sometimes comprise alterations to the sugar-phosphate backbone in order to increase their stability and/or reduce/prevent RNAse H degradation, such as e.g. phosphorothioate linkages, phosphorodiamidate linkages such as phosphorodiamidate morpholino (PMOs), and may comprise e.g. peptide nucleic acids (PNAs), locked nucleic acids (LNAs), methoxyethyl nucleotide modifications, e.g. 2′O-methyl (2′OMe) and 2′-O-methoxyethyl (MOE) ribose modifications and/or 5′-methylcytosine modifications.
In some embodiments, a nucleic acid inhibitor is selected from: an siRNA, dsiRNA, miRNA, shRNA, pri-miRNA, pre-miRNA, saRNA, snoRNA, or antisense oligonucleotide (e.g. a gapmer), or a nucleic acid encoding the same. In some embodiments, a nucleic acid inhibitor is selected from: an siRNA, dsiRNA, miRNA, shRNA. In some embodiments, a nucleic acid inhibitor is an siRNA. In some embodiments, a nucleic acid inhibitor is an shRNA.
The nucleic acid inhibitor may be an RNAi agent (e.g. siRNA, shRNA or miRNA-based shRNA or gRNA for CRISR/CAS9 knockout) or a nucleic acid encoding an RNAi agent that reduces expression of a gene/mRNA, e.g. one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some embodiments, an inhibitory nucleic acid may comprise an antisense nucleic acid described herein, e.g. as part of a larger nucleic acid species. For example, in some embodiments, an inhibitory nucleic acid may be an siRNA, dsiRNA, miRNA, shRNA, pri-miRNA, pre-miRNA, saRNA or snoRNA comprising an antisense nucleic acid described herein.
In some embodiments, an inhibitory nucleic acid is a small interfering RNA (siRNA). As used herein, ‘siRNA’ refers to a double-stranded RNA molecule having a length between 17 to 30 (e.g. 20 to 27, e.g. ˜21 to 23) base pairs, which is capable of engaging the RNA interference (RNAi) pathway for the targeted degradation of target RNA. Double-stranded siRNA molecules may be formed as a nucleic acid complex of RNA strands having a high degree of complementarity. The strand of the double-stranded siRNA molecule having complementarity to a target nucleotide sequence (i.e. the antisense nucleic acid) may be referred to as the ‘guide’ strand, and the other strand may be referred to as the ‘passenger’ strand. The structure and function of siRNAs is described e.g. in Kim and Rossi, Biotechniques. 2008 April; 44(5): 613-616.
The RNAi agent may contain one or more overhang regions and/or capping groups at the 3′-end, 5′-end, or both ends of one or both strands e.g. comprising one or two or three nucleotides (e.g. a ‘UU’ 3′ overhang, a ‘TT’ 3′ overhang, or a ‘CCA’ 5′ overhang). The overhang can be 1-6 nucleotides in length, for instance 2-6 nucleotides in length, 1-5 nucleotides in length, 2-5 nucleotides in length, 1-4 nucleotides in length, 2-4 nucleotides in length, 1-3 nucleotides in length, 2-3 nucleotides in length, or 1-2 nucleotides in length. The overhangs can be the result of one strand being longer than the other, or the result of two strands of the same length being staggered. The overhang can form a mismatch with the target mRNA or it can be complementary to the gene sequences being targeted or can be another sequence. The first and second strands can also be joined, e.g., by additional bases to form a hairpin, or by other non-base linkers.
In some embodiments, a passenger strand of an siRNA according to the present disclosure may comprise a ‘CCA’ modification at the 5′ end, i.e. the addition of nucleotides ‘CCA’. In some embodiments, a passenger strand of an siRNA according to the present disclosure may comprise a ‘TT’ modification at the 3′ end, e.g. replacing the 3′ two nucleotides.
In some embodiments, the guide strand of an siRNA according to the present disclosure may comprise or consist of an antisense nucleic acid according to an embodiment of an antisense nucleic acid described herein.
In some embodiments an siRNA according to the present disclosure (e.g. in Tables 1-11) may be contained within a longer shRNA sequence (e.g. in Tables 12 and 13) that undergoes processing to form the siRNA.
The term “RNAi agent” or “RNAi” as used interchangeably herein, refer to an agent that contains RNA as that term is defined herein, and which mediates the targeted cleavage of an RNA transcript via an RNA-induced silencing complex (RISC) pathway. RNAi agent directs the sequence-specific degradation of mRNA through a process known as RNA interference (RNAi). The RNAi agent modulates, e.g., inhibits, the expression of a gene associated with organ regeneration in a cell, e.g., a cell within a subject, such as a mammalian subject. The term “RNAi agent” includes both shRNAs (e.g. in Table 12 or 13), or precursor RNAs that are processed by RISC into siRNAs (e.g. in Tables 1 to 11), as well as the siRNAs themselves that inhibits the expression of an endogenous gene.
The invention provides for double-stranded RNAi agents capable of inhibiting the expression of a target gene in vivo. The RNAi agent may comprise a sense strand and an antisense strand. Each strand of the RNAi agent may range from 12-30 nucleotides in length. For example, each strand may be between 14-30 nucleotides in length, 17-30 nucleotides in length, 25-30 nucleotides in length, 27-30 nucleotides in length, 17-23 nucleotides in length, 17-21 nucleotides in length, 17-19 nucleotides in length, 19-25 nucleotides in length, 19-23 nucleotides in length, 19-21 nucleotides in length, 21-25 nucleotides in length, or 21-23 nucleotides in length.
The sense strand and antisense strand typically form a duplex double stranded RNA (“dsRNA”). The duplex region of an RNAi agent may be 12-30 nucleotide pairs in length. For example, the duplex region can be between 14-30 nucleotide pairs in length, 17-30 nucleotide pairs in length, 27-30 nucleotide pairs in length, 17-23 nucleotide pairs in length, 17-21 nucleotide pairs in length, 17-19 nucleotide pairs in length, 19-25 nucleotide pairs in length, 19-23 nucleotide pairs in length, 19-21 nucleotide pairs in length, 21-25 nucleotide pairs in length, or 21-23 nucleotide pairs in length. In another example, the duplex region is selected from 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, and 27 nucleotides in length.
In some embodiments, an inhibitory nucleic acid is a dicer small interfering RNA (dsiRNA). As used herein, ‘dsiRNA’ refers to a double-stranded RNA molecule having a length of ˜27 base pairs, which is processed by Dicer to siRNA for RNAi-mediated degradation of target RNA. DsiRNAs are described e.g. in Raja et al., Asian J Pharm Sci. (2019) 14(5): 497-510, which is hereby incorporated by reference in their entirety. DsiRNAs are optimised for Dicer processing and may have increased potency compared with 21-mer siRNAs (see e.g. Kim et al., Nat Biotechnol. (2005) 23(2):222-226), which may be related to the link between Dicer-mediated nuclease activity and RISC loading.
In some embodiments, an inhibitory nucleic acid is a micro RNA (miRNA), or a precursor thereof (e.g. a pri-miRNA or a pre-miRNA). miRNA molecules have a similar structure to siRNA molecules, but are encoded endogenously, and derived from processing of short hairpin RNA molecules. They are initially expressed as long primary transcripts (pri-miRNAs), which are processed within the nucleus into 60 to 70 nucleotide hairpins (pre-miRNAs), which are further processed in the cytoplasm into smaller species that interact with RISC and target mRNA. miRNAs comprise ‘seed sequences’ that are essential for binding to target mRNA. Seed sequences usually comprise six nucleotides and are situated at positions 2 to 7 at the miRNA 5′ end.
In some embodiments, an inhibitory nucleic acid is a short hairpin RNA (shRNA), e.g. as provided in Tables 12 and 13 (showing sense-loop-antisense sequences). shRNA molecules comprise sequences of nucleotides having a high degree of complementarity that associate with one another through complementary base pairing to form the stem region of the hairpin. The sequences of nucleotides having a high degree of complementarity may be linked by one or more nucleotides that form the loop region of the hairpin. shRNA molecules may be processed (e.g. via catalytic cleavage by DICER) to form siRNA or miRNA molecules. shRNA molecules may have a length of between 35 to 100 (e.g. 40 to 70) nucleotides. The stem region of the hairpin may have a length between 17 to 30 (e.g. 20 to 27, e.g. ˜21-23) base pairs. The stem region may comprise G-U pairings to stabilise the hairpin structure. An shRNA sequence described herein may comprise sequences that will be subsequently processed into shorter siRNA strand(s), such as the guide/passenger strands presented in Tables 1-11.
siRNA, dsiRNA, miRNAs and shRNAs for the targeted inhibition of gene and/or protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB may be identified/designed in accordance with principles and/or using tools well known to the skilled person. Parameters and tools for designing siRNA and shRNA molecules are described e.g. in Fakhr et al., Cancer Gene Therapy (2016) 23:73-82 (hereby incorporated by reference in its entirety). Software that may be used by the skilled person for the design of such molecules is summarised in Table 1 of Fakhr et al., Cancer Gene Therapy (2016) 23:73-82, and includes e.g. siRNA Wizard (InvivoGen). Details for making such molecules can be found in the websites of commercial vendors such as Ambion, Dharmacon, GenScript, Invitrogen and OligoEngine.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of any one or more of SEQ ID NOs: 1 to 7091, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 1 to 7091; and (ii) nucleic acid comprising a nucleotide sequence having the reverse complement of the nucleotide sequence of (i), or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of the nucleotide sequence of (i). SEQ ID NOs 1 to 7091 are displayed in Tables 1 to 10 provided herein. The nucleic acid according to the present disclosure may be capable of reducing gene and/or protein expression of any one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB, according to the heading of the Table in which the SEQ ID NO is presented. For example, a SEQ ID NO presented in Table 2 may be capable of reducing gene and/or protein expression of MFAP4.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of any one or more of SEQ ID NOs: 7092 to 7096, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 7092 to 7096; and (ii) nucleic acid comprising a nucleotide sequence having the reverse complement of the nucleotide sequence of (i), or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to the reverse complement of the nucleotide sequence of (i).
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7092, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7092; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7141, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7141.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7093, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7093; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7142, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7142.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7094, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7094; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7143, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7143.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7095, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7095; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7144, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7144.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of SEQ ID NO: 7096, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7096; and (ii) nucleic acid comprising a nucleotide sequence of SEQ ID NO: 7145, or having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7145.
In some embodiments in accordance with the preceding seven paragraphs, the nucleotide sequence of (i) and the nucleotide sequence of (ii) may be provided on different nucleic acids (i.e. separate oligonucleotides). As such, the nucleic acid of (i) and (ii) may be different nucleic acids. In such embodiments, the inhibitory nucleic acid may comprise or consist of a nucleic acid duplex formed by complementary base pairing between the different nucleic acids comprising the nucleotide sequences of (i) and (ii).
Alternatively, in some embodiments the nucleotide sequence of (i) and the nucleotide sequence of (ii) may be provided on the same nucleic acid (i.e. a single oligonucleotide). That is, the nucleic acid of (i) and (ii) may be the same nucleic acid. In such embodiments, the nucleotide sequence of (i) and the nucleotide sequence of (ii) may be connected by one or more linker nucleotides. The inhibitory nucleic acid may comprise a nucleic acid duplex region formed by complementary base pairing between the nucleotide sequences of (i) and (ii), and the linker regions may form a single-stranded loop region.
Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1 to 13 (or any combination of Tables thereof) or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1 to 13 (or any combination of Tables thereof) under stringency conditions.
Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 2-12 (or any combination of Tables thereof) or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 2-12 (or any combination of Tables thereof) under stringency conditions.
Disclosed herein is a nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in Table 1 or 13, or an RNAi agent that hybridizes to the complement of an RNA sequence listed in Table 1 or 13 under stringency conditions.
The terms “nucleic acid” and “polynucleotide’, used interchangeably herein, refer to polymeric forms of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. Thus, these terms include, but are not limited to, single-, double-, or multi-stranded DNA or RNA, genomic DNA, cDNA, DNA-RNA hybrids, or a polymer comprising purine and pyrimidine bases or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases. These terms further include, but are not limited to, mRNA or cDNA that comprise intronic sequences. The backbone of the polynucleotide can comprise sugars and phosphate groups (as may typically be found in RNA or DNA), or modified or substituted sugar or phosphate groups. Alternatively, the backbone of the polynucleotide can comprise a polymer of synthetic subunits such as phosphoramidites and thus can be an oligodeoxynucleoside phosphoramidate or a mixed phosphoramidate-phosphodiester oligomer. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs, uracyl, other sugars, and linking groups such as fluororibose and thioate, and nucleotide branches. The sequence of nucleotides may be interrupted by non-nucleotide components. A polynucleotide may be further modified after polymerization, such as by conjugation with a labeling component. Other types of modifications included in this definition are caps, substitution of one or more of the naturally occurring nucleotides with an analog, and introduction of means for attaching the polynucleotide to proteins, metal ions, labeling components, other polynucleotides, or a solid support. The term “polynucleotide” also encompasses peptidic nucleic acids, PNA and LNA. Polynucleotides may further comprise genomic DNA, cDNA, or DNA-RNA hybrids.
The term “RNA” or “RNA molecule” or “ribonucleic acid molecule” refers to a polymer of ribonucleotides. The term “DNA” or “DNA molecule” or deoxyribonucleic acid molecule” refers to a polymer of deoxyribonucleotides. DNA and RNA can be synthesized naturally (e.g., by DNA replication or transcription of DNA, respectively). RNA can be post-transcriptionally modified. DNA and RNA can also be chemically synthesized. DNA and RNA can be single-stranded (i.e., ssRNA and ssDNA, respectively) or multi-stranded (e.g., double stranded, i.e., dsRNA and dsDNA, respectively). “mRNA” or “messenger RNA” is single-stranded RNA that specifies the amino acid sequence of one or more polypeptide chains. This information is translated during protein synthesis when ribosomes bind to the mRNA.
“Stringency conditions” refers to conditions under which a nucleic acid may hybridize to its target polynucleotide sequence, but not other sequences. Stringent conditions are sequence-dependent (e.g., longer sequences hybridize specifically at higher temperatures). Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength, pH, and polynucleotide concentration) at which 50% of the probes complementary to the target sequence hybridize to the target sequence at equilibrium. Typically, stringent conditions will be those in which the salt concentration is at least about 0.01 to about 1.0 M sodium ion concentration (or other salts) at about pH 7.0 to about pH 8.3 and the temperature is at least about 30° C. for short probes (e.g., 10 to 50 nucleotides).
As used herein, the term “complement” when used in reference to a nucleic acid sequence refers to the complementary sequence of the nucleic acid sequence as dictated by base-pairing, but in reverse orientation so as to result in complementarity upon fold-over into a hairpin structure. The term encompasses partial complementarity where only some of the bases are matched according to base pairing rules as well as total complementarity between the two nucleic acid sequences.
Modifications
Nucleic acid inhibitors/inhibitory nucleic acids according to the present disclosure may comprise chemically modified nucleotide acids, e.g. in which the phosphonate and/or ribose and/or base is/are chemically modified. Such modifications may influence the activity, specificity and/or stability of nucleic acid. One or more (e.g. one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 or all) nucleotides of a nucleic acid inhibitor may comprise such chemical modification.
Modifications contemplated in accordance with nucleic acid inhibitors according to the present disclosure include those described in Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101) (incorporated by reference hereinabove), in particular those shown in FIG. 2 of Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101). Further modifications contemplated in accordance with nucleic acid inhibitors according to the present disclosure include those described in Selvam et al., Chem Biol Drug Des. (2017) 90(5): 665-678, which is hereby incorporated by reference in its entirety).
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more nucleotides comprising a phosphonate modification. In some embodiments, the phosphonate modification(s) may be selected from: phosphorothioate (e.g. Rp isomer, Sp isomer), phosphorodithioate, methylphosphonate, methoxypropylphosphonate, 5′-(E)-vinylphosphonate, 5′-methylphosphonate, (S)-5′-C-methyl with phosphate, 5′-phosphorothioate, and peptide nucleic acid. In some embodiments, aa nucleic acid inhibitor comprises one or more nucleotides comprising phosphorothioate modification.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more nucleotides comprising a ribose modification. In some embodiments, the ribose modification(s) may be selected from: 2′-O-methyl, 2′-O-methoxyethyl, 2′-fluoro, 2′-deoxy-2′-fluoro, 2′-methoxyethyl, 2′-O-alkyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, 2′-hydroxyl, 2′-arabino-fluoro, 2′-O-benzyl, 2′-O-methyl-4-pyridine, locked nucleic acid, (S)-cEt-BNA, tricyclo-DNA, PMO, unlocked nucleic acid, hexitol nucleic acid and glycol nucleic acid. In some embodiments, an inhibitory nucleic acid comprises one or more nucleotides comprising 2′-O-methyl modification. In some embodiments, an inhibitory nucleic acid comprises one or more nucleotides comprising 2′-fluoro modification.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more nucleotides comprising a base modification. In some embodiments, the base modification(s) may be selected from: pseudouridine, 2′-thiouridine, N6′-methyladenosine, 5′-methylcytidine, 5′-fluoro-2′-deoxyuridine, N-ethylpiperidine 7′-EAA triazole-modified adenine, N-ethylpiperidine 6′-triazole-modified adenine, 6′-phenylpyrrolo-cytosine, 2′,4′-difluorotoluyl ribonucleoside and 5′-nitroindole.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: one or more nucleotides comprising phosphorothioate modification, one or more nucleotides comprising 2′-O-methyl modification, and one or more nucleotides comprising 2′-fluoro modification.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises one or more modified nucleotides selected from: 2′-O-methyluridine-3′-phosphate, 2′-O-methyladenosine-3′-phosphate, 2′-O-methylguanosine-3′-phosphate, 2′-O-methylcytidine-3′-phosphate, 2′-O-methyluridine-3′-phosphorothioate, 2′-O-methyladenosine-3′-phosphorothioate, 2′-O-methylguanosine-3′-phosphorothioate, 2′-O-methylcytidine-3′-phosphorothioate, 2′-fluorouridine-3′-phosphate, 2′-fluoroadenosine-3′-phosphate, 2′-fluoroguanosine-3′-phosphate, 2′-fluorocytidine-3′-phosphate, 2′-fluorocytidine-3′-phosphorothioate, 2′-fluoroguanosine-3′-phosphorothioate, 2′-fluoroadenosine-3′-phosphorothioate, and 2′-fluorouridine-3′-phosphorothioate.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 3 to 10 (e.g. one of 3, 4, 5, 6, 7, 8, 9 or 10) nucleotides comprising 2′-fluoro modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises 4 to 15 (e.g. one of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15) nucleotides comprising 2′-fluoro modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 2 to 6 (e.g. one of 2, 3, 4, 5 or 6) nucleotides comprising phosphorothioate modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises 5 to 20 (e.g. one of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20) nucleotides comprising 2′-O-methyl modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 2 to 6 (e.g. one of 2, 3, 4, 5 or 6) nucleotides comprising 2′-O-methyl and phosphorothioate modification. In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises a nucleotide sequence comprising 1 to 4 (e.g. one of 1, 2, 3 or 4) nucleotides comprising 2′-fluoro and phosphorothioate modification.
In embodiments wherein nucleic acid inhibitors/inhibitory nucleic acids comprise nucleotides comprising chemical modification as described herein, the nucleotide sequence is nevertheless evaluated for the purposes of sequence comparison in accordance with the present disclosure as if the equivalent unmodified nucleotide were instead present.
Nucleic acids comprising nucleotide(s) comprising a modified phosphonate group are evaluated for the purposes of nucleotide sequence comparison as if nucleotide(s) comprising a modified phosphonate group instead comprise the equivalent unmodified phosphonate group. Nucleic acids comprising nucleotide(s) comprising a modified ribose group are evaluated for the purposes of nucleotide sequence comparison as if nucleotide(s) comprising a modified ribose group instead comprise the equivalent unmodified ribose group. Nucleic acids comprising nucleotide(s) comprising a modified base group are evaluated for the purposes of nucleotide sequence comparison as if nucleotide(s) comprising a modified base group instead comprise the equivalent unmodified base group.
By way of illustration, nucleic acids comprising nucleotides comprising pseudouridine, 2-thiouridine and/or 5′-fluoro-2′-deoxyuridine are evaluated for the purposes of nucleotide sequence comparison as if nucleotides comprising uridine were instead present at their respective positions. By way of illustration, nucleic acids comprising nucleotides comprising N6′-methyladenosine, N-ethylpiperidine 7′-EAA triazole-modified adenine and/or N-ethylpiperidine 6′-triazole-modified adenine are evaluated for the purposes of nucleotide sequence comparison as if nucleotides comprising adenine were instead present at their respective positions. By way of illustration, nucleic acids comprising nucleotides comprising 5′-methylcytidine and/or 6′-phenylpyrrolo-cytosine are evaluated for the purposes of nucleotide sequence comparison as if nucleotides comprising cytosine were instead present at their respective positions.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in Table 11.
In some embodiments, an inhibitory nucleic acid comprises nucleic acid comprising the nucleotide sequence (including the modifications thereto) shown in any one or more of SEQ ID NOs: 7146 to 7155 of Table 11. The following six paragraphs refer to SEQ ID NOs presented in Table 11.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of any one of SEQ ID NOs: 7146 to 7150, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 7146 to 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of any one of SEQ ID NOs: 7151 to 7155, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 7151 to 7155.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7146, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7146; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7151, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7151.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7147, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7147; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7152, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7152.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7148, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7148; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7153, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7153.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7149, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7149; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7154, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7154.
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7150, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7150; and (ii) nucleic acid comprising the nucleotide sequence (including the modifications thereto) of SEQ ID NO: 7155, or a nucleotide sequence (including the modifications thereto) having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to SEQ ID NO: 7155.
In general, the majority of nucleotides of each strand of a dsRNA molecule are ribonucleotides, but as described in detail herein, each or both strands can also include one or more non-ribonucleotides, e.g., a deoxyribonucleotide and/or a modified nucleotide. In addition, an “RNAi agent” may include ribonucleotides with chemical modifications; an RNAi agent may include substantial modifications at multiple nucleotides. Such modifications may include all types of modifications disclosed herein or known in the art. Any such modifications, as used in a siRNA type molecule, are encompassed by “RNAi agent” for the purposes of this specification and claims.
In one embodiment, each residue of the sense strand and antisense strand is independently modified with LNA, HNA, CeNA, 2′-methoxyethyl, 2′-O-methyl, 2′-O-allyl, 2′-C-allyl, 2′-deoxy, 2′-hydroxyl, or 2′-fluoro. The strands can contain more than one modification.
Inhibitory nucleic acids according to the present disclosure may be produced in accordance with techniques well known to the skilled person.
For example, inhibitory nucleic acids may be produced recombinantly by transcription of a nucleic acid sequence encoding the inhibitory nucleic acid. A nucleic acid encoding an inhibitory nucleic acid according to the present disclosure may e.g. be contained within an expression vector for expression of the inhibitory nucleic acid.
Transcription may be performed in cell-free transcription reactions using recombinant enzymes (e.g. RNA polymerase) for transcription of the inhibitory nucleic acids. Alternatively, production of an inhibitory nucleic acid according to the present disclosure may be performed in a cell comprising nucleic acid encoding the inhibitory nucleic acid, and may employ cellular enzymes (e.g. RNA polymerase) for transcription. Production of an inhibitory nucleic acid according to the present disclosure by expression within a cell may comprise transcription from a vector. Introduction of nucleic acid/vectors for the purposes of production of inhibitory nucleic acids according to the present disclosure may be performed in any of the ways known in the art (e.g. transfection, transduction, electroporation, etc.). Expression of an inhibitory nucleic acid can be regulated using a cell-specific promoter (e.g. a liver cell-specific promoter).
For example, an shRNA molecule according to the present disclosure may be produced within a cell by transcription from a vector encoding the shRNA. shRNAs may be produced within a cell by transfecting the cell with a vector encoding the shRNA sequence under control of an RNA polymerase promoter.
An siRNA molecule according to the present disclosure may be produced within a cell by transcription from a vector encoding shRNA encoding/comprising the siRNA, and subsequent processing of the shRNA molecule by cellular DICER to form the siRNA molecule. An shRNA molecule according to the present disclosure, e.g. a sequence in Table 12 or 13, may be embedded into and expressed using a miR-30-based system, e.g. as described in Fellmann C et al., Cell Rep. 2013; 5(6):1704-13, and Rio D C et al., Cold Spring Harb Protoc; 2013; doi:10.1101/pdb.prot075853, which are hereby incorporated by reference in their entirety.
Inhibitory nucleic acids may also be synthesised using standard solid or solution phase synthesis techniques which are well known in the art. Solid phase synthesis may use phosphoramidite chemistry. Briefly, a solid supported nucleotide may be detritylated, then coupled with a suitably activated nucleoside phosphoramidite to form a phosphite triester linkage. Capping may then occur, followed by oxidation of the phosphite triester with an oxidant, typically iodine. The cycle may then be repeated to yield a polynucleotide.
The present disclosure provides nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure. In some embodiments, nucleic acid comprising or encoding an inhibitory nucleic acid comprises, or consists of, DNA and/or RNA.
The present disclosure also provides a vector comprising the nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure.
Nucleic acids and vectors according to the present disclosure may be provided in purified or isolated form, i.e. from other nucleic acid, or naturally-occurring biological material.
The nucleotide sequence of a nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure may be contained in a vector, e.g. an expression vector. A ‘vector’ as used herein is a nucleic acid molecule used as a vehicle to transfer exogenous nucleic acid into a cell. The vector may be a vector for expression of the nucleic acid in the cell. Such vectors may include a promoter sequence operably linked to the nucleotide sequence encoding the sequence to be expressed. A vector may also include a termination codon and expression enhancers. Any suitable vectors, promoters, enhancers and termination codons known in the art may be used to express nucleic acid from a vector according to the present disclosure.
The term ‘operably linked’ may include the situation where a selected nucleic acid sequence and regulatory nucleic acid sequence (e.g. promoter and/or enhancer) are covalently linked in such a way as to place the expression of nucleic acid sequence under the influence or control of the regulatory sequence (thereby forming an expression cassette). Thus, a regulatory sequence is operably linked to the selected nucleic acid sequence if the regulatory sequence is capable of affecting transcription of the nucleic acid sequence.
Suitable vectors include plasmids, binary vectors, DNA vectors, mRNA vectors, viral vectors (e.g. gammaretroviral vectors (e.g. murine Leukemia virus (MLV)-derived vectors), lentiviral vectors, adenovirus vectors, adeno-associated virus vectors, vaccinia virus vectors and herpesvirus vectors), transposon-based vectors, and artificial chromosomes (e.g. yeast artificial chromosomes).
In some embodiments, the vector may be a eukaryotic vector, e.g. a vector comprising the elements necessary for expression of nucleic acid from the vector in a eukaryotic cell. In some embodiments, the vector may be a mammalian vector, e.g. comprising a cytomegalovirus (CMV) or SV40 promoter to drive expression. In some embodiments, the vector comprises a cell- or tissue-specific promoter. In some embodiments, the vector comprises a liver cell-specific promoter.
The present disclosure also provides a plurality of inhibitory nucleic acids according to the present disclosure. The present disclosure also provides nucleic acids and vectors comprising or encoding a plurality of inhibitory nucleic acids according to the present disclosure.
Individual inhibitory nucleic acids of a plurality of inhibitory nucleic acids according to the present disclosure may be identical or non-identical. Similarly, in embodiments wherein a nucleic acid/vector comprising or encoding an inhibitory nucleic acid according to the present disclosure comprises/encodes more than one inhibitory nucleic acid according to the present disclosure, the inhibitory nucleic acids comprised/encoded by the nucleic acid/vector may be identical or non-identical.
In some embodiments, nucleic acids/vectors may encode one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 inhibitory nucleic acids according to the present disclosure. In some embodiments, nucleic acids/vectors may encode multiple (e.g. 2, 3, 4, 5, 6, 7, 8, 9, 10, etc.) copies of a given inhibitory nucleic acid according to the present disclosure.
In some embodiments, a plurality of inhibitory nucleic acids according to the present disclosure may be a plurality of non-identical inhibitory nucleic acids. In some embodiments, a plurality of inhibitory nucleic acids may comprise one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 non-identical inhibitory nucleic acids. In some embodiments, nucleic acids/vectors may comprise/encode a plurality of non-identical inhibitory nucleic acids according to the present disclosure.
The following two paragraphs further define pluralities of non-identical inhibitory nucleic acids in accordance with embodiments of pluralities of inhibitory nucleic acids according to the present disclosure, and also in accordance with embodiments of nucleic acids/vectors comprising/encoding a plurality of non-identical inhibitory nucleic acids according to the present disclosure.
In some embodiments, the non-identical inhibitory nucleic acids comprise or encode non-identical antisense nucleic acids. In such embodiments, the non-identical antisense nucleic acids may each independently conform to any embodiment of an antisense nucleic acid as described hereinabove.
In some embodiments, the non-identical inhibitory nucleic acids may comprise or encode antisense nucleic acids targeting non-identical target nucleotide sequences. In such embodiments, the non-identical target nucleotide sequences may each independently conform to any embodiment of a target nucleotide sequence for an antisense nucleic acid as described hereinabove.
The present disclosure also provides a cell comprising or expressing (i) an inhibitory nucleic acid according to the present disclosure, (ii) nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure, and/or (iii) a vector comprising nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure.
The cell may be a eukaryotic cell, e.g. a mammalian cell. The mammal may be a primate (rhesus, cynomolgous, non-human primate or human) or a non-human mammal (e.g. rabbit, guinea pig, rat, mouse or other rodent (including any animal in the order Rodentia), cat, dog, pig, sheep, goat, cattle (including cows, e.g. dairy cows, or any animal in the order Bos), horse (including any animal in the order Equidae), donkey, and non-human primate). In preferred embodiments, the cell may be a human cell. In some embodiments, the cell may be a liver cell.
The present disclosure also provides a method for producing a cell comprising a nucleic acid or vector according to the present disclosure, comprising introducing a nucleic acid or vector according to the present disclosure into a cell. In some embodiments, introducing a nucleic acid or vector according to the present disclosure into a cell comprises transformation, transfection, electroporation or transduction (e.g. retroviral transduction).
The present disclosure also provides a method for producing an inhibitory nucleic acid according to the present disclosure or a nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure, comprising culturing a cell comprising nucleic acid comprising or encoding an inhibitory nucleic acid according to the present disclosure or a vector according to the present disclosure under conditions suitable for expression of the nucleic acid or vector by the cell. In some embodiments, the methods are performed in vitro.
The present disclosure also provides compositions comprising nucleic acids (including inhibitory nucleic acids, nucleic acids comprising/encoding an inhibitory nucleic acid, expression vectors comprising/encoding such nucleic acids) or cells according to the present disclosure.
In therapeutic and prophylactic applications, the inhibitors and compositions of the present disclosure are preferably formulated as a medicament or pharmaceutical composition (suitable for clinical use). Such compositions may comprise the inhibitor or cell together with one or more other pharmaceutically-acceptable ingredients well known to those skilled in the art. Such ingredients include, but are not limited to, pharmaceutically-acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, preservatives, anti-oxidants, lubricants, stabilisers, solubilisers, surfactants (e.g., wetting agents), masking agents, colouring agents, flavouring agents, and sweetening agents.
Provided herein is a pharmaceutical composition comprising an inhibitor as defined herein and a pharmaceutically acceptable carrier.
Compositions according to the present disclosure may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active compound with a carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active compound with carriers (e.g., liquid carriers, finely divided solid carrier, etc.), and then shaping the product, if necessary.
The compositions may be prepared for topical, parenteral, systemic, intracavitary, intravenous, intra-arterial, intramuscular, intrathecal, intraocular, intravitreal, intraconjunctival, subretinal, suprachoroidal, subcutaneous, intradermal, intrathecal, oral, nasal or transdermal routes of administration which may include injection or infusion. Suitable formulations may comprise the selected agent in a sterile or isotonic medium. The formulation and mode of administration may be selected according to the agent to be administered, and disease to be treated/prevented.
The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including intranasal or intrapulmonary), oral or parenteral. Parenteral administration includes intravenous, subcutaneous, intraperitoneal or intramuscular injection.
The compositions of the present disclosure may be formulated in fluid, including gel, form. Fluid formulations may be formulated for administration by injection or infusion (e.g. via catheter) to a selected organ or region of the human or animal body. A further aspect of the present disclosure relates to a method of formulating or producing a medicament or pharmaceutical composition according to the present disclosure, the method comprising formulating a pharmaceutical composition or medicament by mixing an agent with a pharmaceutically acceptable carrier, adjuvant, excipient or diluent.
Delivery of Inhibitors
Inhibitors (including e.g. small molecules, antibodies and nucleic acids (including inhibitory nucleic acids, expression vectors)), cells and compositions according to the present disclosure may be modified and/or be formulated to facilitate delivery to, and/or uptake by, a cell/tissue of interest, e.g. a liver cell (hepatocyte) or hepatic tissue.
Strategies for targeted delivery of such species are reviewed e.g. in Li et al., Int. J. Mol. Sci. (2015) 16: 19518-19536 and Fu et al., Bioconjug Chem. (2014) 25(9): 1602-1608, which are hereby incorporated by reference in their entirety. In particular, nucleic acids according to the present disclosure may employ a delivery platform described in Hu et al., Sig. Transduc. Tar. Ther. (2020) 5(101) (incorporated by reference hereinabove), or Tatiparti et al. ‘siRNA Delivery Strategies: A Comprehensive Review of Recent Developments.’ Ed. Thomas Nann. Nanomaterials 7.4 (2017): 77, and Lehto T et al., Adv Drug Deliv Rev. 2016, 106(Pt A):172-182, which are hereby incorporated by reference in their entirety.
In some embodiments, articles of the present disclosure may be encapsulated in a nanoparticle or a liposome. In some embodiments, articles of the present disclosure may be (covalently or non-covalently) associated with a cell-penetrating peptide (e.g. a protein transduction domain, trojan peptide, arginine-rich peptide, vectocell peptide), a cationic polymer, a cationic lipid or a viral carrier.
Nanoparticles may be organic, e.g. micelles, liposomes, proteins, solid-lipid particles, solid polymer particles, dendrimers, and polymer therapeutics. Nanoparticles may be inorganic, e.g. such as nanotubes or metal particles, optionally with organic molecules added. In some embodiments, a nanoparticle is a nanoparticle described in Chen et al., Mol Ther Methods Clin Dev. (2016) 3:16023, which is hereby incorporated by reference in its entirety. In some embodiments, a nanoparticle is a PLGA, polypeptide, poly(β-amino ester), DOPE, β-cyclodextrin-containing polycation, linear PEI, PAMAM dendrimer, branched PEI, chitosan or polyphosophoester nanoparticle.
The delivery of a nucleic acid inhibitor, e.g. an RNAi agent, to a cell e.g., a cell within a subject, such as a human subject can be achieved in a number of different ways. For example, delivery may be performed by contacting a cell with a nucleic acid of the invention either in vitro or in vivo. In vivo delivery may also be performed directly by administering a composition comprising a nucleic acid inhibitor, e.g., a siRNA, shRNA, dsRNA, to a subject. Alternatively, in vivo delivery may be performed indirectly by administering one or more vectors (e.g. one or more DNA vectors) that encode and direct the expression of the nucleic acid inhibitor. In one embodiment, the nucleic acid inhibitor is delivered using a viral-based or transposon-based nucleic acid construct. In one embodiment, the nucleic acid inhibitor is encapsulated in a liposome.
In some embodiments, an inhibitor according to the present disclosure (e.g. a small molecule, a peptide, an antibody, an inhibitory nucleic acid, a nucleic acid comprising/encoding an inhibitory nucleic acid, or an expression vector) comprises modification to incorporate one or more moieties facilitating delivery to, and/or uptake by, a cell type or tissue of interest. In some embodiments, an inhibitor according to the present disclosure is linked (e.g. chemically conjugated to) one or more moieties facilitating delivery to, and/or uptake by, a cell type or tissue of interest.
Modification to, and formulation of, inhibitors to facilitate targeted delivery to cell types and/or tissues of interest is described e.g. in Lorenzer et al., J Control Release (2015) 203:1-15, which is hereby incorporated by reference in its entirety. The moiety facilitating delivery to, and/or uptake by, a cell type or tissue of interest may bind selectively to the target cell type/tissue of interest. The moiety may facilitate traversal of the cell membrane of the target cell type and/or of cells of the tissue of interest. The moiety may bind to a molecule expressed at the cell surface of the target cell type/tissue of interest. The moiety may facilitate internalisation of the nucleic acid by the target cell type/tissue of interest (e.g. by endocytosis).
Moieties facilitating delivery to, and/or uptake by, cell types or tissues of interest are described e.g. in Benizri et al., Bioconjug Chem. (2019) 30(2): 366-383, which is hereby incorporated by reference in its entirety. Such moieties include e.g. N-acetylgalactosamine (GalNAc), α-tocopherol, cell-penetrating peptide, nucleic acid aptamer, antibody and antigen-binding fragments/derivatives thereof, cholesterol, squalene, polyethylene glycol (PEG), fatty acid (e.g. palmitic acid) and nucleolipid moieties.
In some embodiments, the moiety may e.g. be a peptide/polypeptide (e.g. an antibody, fragment or derivative thereof, peptide aptamer or cell-penetrating peptide) or nucleic acid (e.g. a nucleic acid aptamer) which binds to the target cell type/tissue of interest, e.g. via interaction with a molecule expressed at the cell surface of the target cell type/tissue of interest.
In some embodiments, a nucleic acid according to the present disclosure comprises a moiety facilitating delivery to, and/or uptake by, a liver cell (e.g. a hepatocyte) and/or hepatic tissue. In such embodiments, the moiety may facilitate traversal of the hepatocyte cell membrane. The moiety may bind to a molecule expressed at the cell surface of hepatocytes. In some embodiments, a molecule expressed at the cell surface of hepatocytes is an asialoglycoprotein receptor, e.g. ASGR1 or ASGR2. The moiety may facilitate internalisation of a nucleic acid by hepatocytes (e.g. by endocytosis).
In some embodiments, the moiety may e.g. be a peptide/polypeptide (e.g. an antibody, fragment or derivative thereof, peptide aptamer or cell-penetrating peptide) or nucleic acid (e.g. a nucleic acid aptamer) which binds to a hepatocyte and/or hepatic tissue, e.g. via interaction with a molecule expressed at the cell surface of a hepatocyte (e.g. an asialoglycoprotein receptor, e.g. ASGR1 or ASGR2).
In some embodiments, the moiety is, or comprises, GalNAc. In some embodiments, an inhibitor, e.g. a nucleic acid, is conjugated to GalNAc. GalNAc interacts with asialoglycoprotein receptors expressed by hepatocytes. Nucleic acids conjugated to GalNAc are efficiently internalised by hepatic cells via receptor-mediated endocytosis following binding of GalNAc to ASGPR (see e.g. Nair et al., J. Am. Chem. Soc. (2014) 136(49): 16958-16961). In some embodiments, an inhibitor, e.g. a nucleic acid, is conjugated to one or more (e.g. 1, 2, 3, 4 or more) GalNAc moieties. In some embodiments, one or more GalNAc moieties may be covalently associated to the 5′ or 3′ end of one or more strands of a nucleic acid. In some embodiments, a nucleic acid is conjugated to a triantennary GalNAc carbohydrate moiety (such moieties are described e.g. in Nair et al., supra).
In some embodiments, an inhibitory nucleic acid according to the present disclosure comprises: (i) nucleic acid comprising the nucleotide sequence of one of SEQ ID NOs: 1 to 7155, or a nucleotide sequence having at least 75% sequence identity (e.g. one of at least 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or greater sequence identity) to one of SEQ ID NOs: 1 to 7155; and (ii) a triantennary GalNAc carbohydrate moiety.
In some embodiments, the moiety is, or comprises, α-tocopherol (i.e. vitamin E). In some embodiments, a nucleic acid is conjugated to α-tocopherol. Nucleic acid-α-tocopherol conjugates have been employed for targeted delivery of nucleic acids to the liver (see e.g. Nishina et al., Mol Ther. (2008) 16(4):734-740). In some embodiments, a nucleic acid is conjugated to one or more (e.g. 1, 2, 3, 4 or more) α-tocopherol moieties. In some embodiments, one or more α-tocopherol moieties may be covalently associated to the 5′ or 3′ end of one or more strands of a nucleic acid.
Conjugates of biomolecules may be produced utilising ‘click chemistry’, as described e.g. in Nwe and Brechbiel Cancer Biother Radiopharm. (2009) 24(3):289-302 and Astakhova et al., Mol Pharm. (2018) 15(8): 2892-2899, both of which are hereby incorporated by reference in their entirety. In some embodiments, conjugation may employ akyne-azide or thio-maleimide approaches. In some embodiments, an inhibitor, e.g. nucleic acid, may be conjugated to a moiety facilitating delivery to, and/or uptake by, a cell type or tissue of interest, e.g. at the 3′ and/or 5′ end of one or more strands of the nucleic acid.
Inhibitors may be conjugated to one or more moieties facilitating delivery to, and/or uptake by, cell types or tissues of interest via a linker. In some embodiments, a linker may be or comprise a nucleotide sequence. The nucleotide sequence of a linker may comprise one or more modified nucleotides as described herein.
Treatment/Prevention of Disease
The inhibitors, nucleic acids, expression vectors, cells and compositions described herein find use in therapeutic and prophylactic methods.
The present invention provides methods and articles (agents and compositions) for the treatment and/or prevention of diseases through inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Treatment/prevention of disease is achieved by inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in e.g. a cell, tissue/organ/organ system/subject.
The invention is concerned with the treatment and/or prevention of diseases which are caused and/or exacerbated by an increase in the expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (and/or associated downstream factors), or diseases which are caused and/or exacerbated by a decrease in the expression/activity of one or more associated downstream factors that are downregulated by one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (genes, mRNA and/or proteins) in any of the methods described herein may be achieved using any suitable inhibitor. In some embodiments, the inhibitor is a nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor, e.g. as described herein. Multiple inhibitors may be used to target any two or more of the genes/proteins.
In any method provided herein, the inhibitor may be a nucleic acid as described herein, e.g. an inhibitory nucleic acid.
The utility of the present invention extends to the treatment/prevention of any disease that would derive therapeutic/prophylactic benefit from a reduction in the level of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB expression and/or activity.
In some embodiments, a disease to be treated/prevented may be characterised by an increase in the expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (or a correlate thereof) in an organ/tissue/subject affected by the disease e.g. as compared to normal organ/tissue/subject (i.e. in the absence of the disease).
Treatment/prevention may be of a disease that is associated with an upregulation in the expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (or a correlate thereof) in cells/tissue/an organ in which the symptoms of the disease manifest.
The experimental examples demonstrate that expression of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB is upregulated in fibroinflammatory disorders, such as liver disease, inflammatory liver disorders, steatosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC).
Thus, the present disclosure establishes inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, or LTB as being useful for the treatment/prevention of diseases that are characterised by, e.g., NAFLD, NASH, fibrosis, and/or inflammation, e.g. of the liver or other tissues.
Aspects of the present invention are concerned with the treatment/prevention of a liver disease or condition.
Thus, in one aspect the present invention provides a method of treating or preventing a liver disease or condition, comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. As described hereinabove, inhibition/inhibiting may refer to inhibition of the expression and/or activity of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB and the downstream functional consequences thereof, and encompasses decreased/reduced gene and/or protein expression or decreased/reduced activity of any one of said genes/proteins.
Also provided is a method of treating or preventing a liver disease or condition, comprising administering a therapeutically or prophylactically effective amount of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to a subject. The method may comprise administering two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) inhibitors that target two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Also provided is an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB for use in a method of treating or preventing a liver disease or condition.
Also provided is the use of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the manufacture of a medicament for use in a method of treating or preventing a liver disease or condition.
The inhibitor may be any suitable inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, such as any agent described herein, e.g. nucleic acid, peptide, antibody, antigen-binding molecule or small molecule inhibitor. In some embodiments the inhibitor is an inhibitory nucleic acid, such as those described herein.
In some embodiments, the liver disease or condition to be treated/prevented is selected from the group consisting of: acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, mild liver fibrosis, advanced liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic fatty liver disease (ALFD), alcohol-related liver disease (ARLD), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis, liver damage, liver injury, liver failure, metabolic syndrome, obesity, diabetes mellitus, end-stage liver disease, inflammation of the liver, lobular inflammation, and/or hepatocellular carcinoma (HCC).
In some embodiments, the liver fibrosis is a virus-induced liver fibrosis. In some embodiments, the hepatitis is an alcohol-induced hepatitis. In some embodiments, the liver damage is a drug or virus-induced liver damage.
The experimental examples of the present disclosure identify MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and LTB as regulators of fibroinflammatory processes, which are moreover conserved between different tissue types.
Aspects of the present invention are concerned with the treatment/prevention of diseases in which profibrotic processes are pathologically implicated. Accordingly, in some embodiments the disease is fibrosis, or a disease characterised by fibrosis.
As used herein, “fibrosis” refers to the formation of excess fibrous connective tissue as a result of the excess deposition of extracellular matrix components, for example collagen. Fibrous connective tissue is characterised by having extracellular matrix (ECM) with a high collagen content. The collagen may be provided in strands or fibers, which may be arranged irregularly or aligned. The ECM of fibrous connective tissue may also include glycosaminoglycans.
As used herein, “excess fibrous connective tissue” refers to an amount of connective tissue at a given location (e.g. a given tissue or organ, or part of a given tissue or organ) which is greater than the amount of connective tissue present at that location in the absence of fibrosis, e.g. under normal, non-pathological conditions. As used herein, “excess deposition of ECM components” refers to a level of deposition of one or more ECM components which is greater than the level of deposition in the absence of fibrosis, e.g. under normal, non-pathological conditions.
The cellular and molecular mechanisms of fibrosis are described in Wynn, J. Pathol. (2008) 214(2): 199-210, and Wynn and Ramalingam, Nature Medicine (2012) 18:1028-1040, which are hereby incorporated by reference in their entirety.
Damage to tissues can result from various stimuli, including infections, autoimmune reactions, toxins, radiation and mechanical injury. Repair typically involves replacement of injured cells by cells of the same type, and replacement of normal parenchymal tissue with connective tissue. Repair processes become pathogenic when they are not controlled properly, resulting in substantial deposition of ECM components in which normal tissue is replaced with permanent scar tissue. In diseases such as idiopathic pulmonary fibrosis, liver cirrhosis, cardiovascular fibrosis, systemic sclerosis and nephritis, extensive tissue remodelling and fibrosis can ultimately lead to organ failure and death.
The main cellular effectors of fibrosis are myofibroblasts, which produce a collagen-rich ECM. In response to tissue injury, damaged cells and leukocytes produce pro-fibrotic factors such as TGFβ, IL-13 and PDGF, which activate fibroblasts to αSMA-expressing myofibroblasts, and recruit myofibroblasts to the site of injury. Myofibroblasts produce a large amount of ECM, and are important mediators in aiding contracture and closure of the wound. However, under conditions of persistent infection or during chronic inflammation there can be overactivation and recruitment of myofibroblasts, and thus over-production of ECM components, resulting in the formation of excess fibrous connective tissue.
Inflammatory reactions play an important part in triggering fibrosis in many different organ systems. Inflammation can lead to excess in deposition of ECM components in the affected tissues. Low-grade but persistent inflammation is also thought to contribute to the progression of fibrosis in cardiovascular disease and hypertension. In many fibrotic disorders, a persistent inflammatory trigger is crucial to upregulation of production of growth factors, proteolytic enzymes, angiogenic factors and fibrogenic cytokines, which stimulate the deposition of connective tissue elements that progressively remodel and destroy normal tissue architecture.
In some embodiments fibrosis may be triggered by pathological conditions, e.g. conditions, infections or disease states that lead to production of pro-fibrotic factors such as TGFβ1. In some embodiments, fibrosis may be caused by physical injury/stimuli, chemical injury/stimuli or environmental injury/stimuli. Physical injury/stimuli may occur during surgery, e.g. iatrogenic causes. Chemical injury/stimuli may include drug induced fibrosis, e.g. following chronic administration of drugs such as bleomycin, cyclophosphamide, amiodarone, procainamide, penicillamine, gold and nitrofurantoin (Daba et al., Saudi Med J 2004 June, 25(6): 700-6). Environmental injury/stimuli may include exposure to asbestos fibres or silica.
Fibrosis can be of any tissue/organ of the body. In some embodiments, fibrosis is of the heart, kidney, liver, lung, skeletal muscle, blood vessels, eye, skin, pancreas, bowel, small intestine, large intestine, colon, brain, or bone marrow. In some embodiments, the fibrosis is of the liver. In some embodiments, the fibrosis is of the heart, lung or kidney. Fibrosis may also occur in multiple tissues/organs at once.
Thus, the present invention provides methods and articles (agents and compositions) for the treatment and/or prevention of diseases characterised by fibrosis through inhibition of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Thus, in one aspect the present invention provides a method of treating or preventing a disease characterised by fibrosis, comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Also provided is a method of treating or preventing a disease characterised by fibrosis, comprising administering a therapeutically or prophylactically effective amount of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to a subject. The method may comprise administering two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) inhibitors that target two or more (i.e. 2, 3, 4, 5, 6, 7, 8 or 9) of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Also provided is an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB for use in a method of treating or preventing a disease characterised by fibrosis.
Also provided is the use of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in the manufacture of a medicament for use in a method of treating or preventing a disease characterised by fibrosis.
A “disease characterised by fibrosis” refers to a disease in which fibrosis and/or profibrotic processes are pathologically implicated. A “disease characterised by fibrosis” may be fibrosis, e.g. of any cell, tissue or organ.
Diseases characterised by fibrosis include but are not limited to: respiratory conditions such as pulmonary fibrosis, cystic fibrosis, idiopathic pulmonary fibrosis, progressive massive fibrosis, scleroderma, obliterative bronchiolitis, Hermansky-Pudlak syndrome, asbestosis, silicosis, chronic pulmonary hypertension, AIDS associated pulmonary hypertension, sarcoidosis, tumor stroma in lung disease, and asthma; chronic liver disease, cirrhosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), primary biliary cirrhosis (PBC), schistosomal liver disease, cardiovascular conditions such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), fibrosis of the atrium, atrial fibrillation, fibrosis of the ventricle, ventricular fibrillation, myocardial fibrosis, Brugada syndrome, myocarditis, endomyocardial fibrosis, myocardial infarction, fibrotic vascular disease, hypertensive heart disease, arrhythmogenic right ventricular cardiomyopathy (ARVC), tubulointerstitial and glomerular fibrosis, atherosclerosis, varicose veins, cerebral infarcts; neurological conditions such as gliosis and Alzheimer's disease; muscular dystrophy such as Duchenne muscular dystrophy (DMD) or Becker's muscular dystrophy (BMD); gastrointestinal conditions such as Crohn's disease, microscopic colitis and primary sclerosing cholangitis (PSC); skin conditions such as scleroderma, nephrogenic systemic fibrosis and cutis keloid; arthrofibrosis; Dupuytren's contracture; mediastinal fibrosis; retroperitoneal fibrosis; myelofibrosis; Peyronie's disease; adhesive capsulitis; kidney disease (e.g., renal fibrosis, nephritic syndrome, Alport's syndrome, HIV associated nephropathy, polycystic kidney disease, Fabry's disease, diabetic nephropathy, chronic glomerulonephritis, nephritis associated with systemic lupus); progressive systemic sclerosis (PSS); chronic graft versus host disease; diseases of the eye such as Grave's opthalmopathy, epiretinal fibrosis, retinal fibrosis, subretinal fibrosis (e.g. associated with macular degeneration (e.g. wet age-related macular degeneration (AMD)), diabetic retinopathy, glaucoma, corneal fibrosis, post-surgical fibrosis (e.g. of the posterior capsule following cataract surgery, or of the bleb following trabeculectomy for glaucoma), conjunctival fibrosis, subconjunctival fibrosis; arthritis; fibrotic pre-neoplastic and fibrotic neoplastic disease; and fibrosis induced by chemical or environmental insult (e.g., cancer chemotherapy, pesticides, radiation/cancer radiotherapy).
It will be appreciated that many of the diseases/conditions recited in the preceding paragraph are interrelated. For example, fibrosis of the ventricle may occur post myocardial infarction, and is associated with DCM, HCM and myocarditis.
Fibrosis can lead directly or indirectly to, and/or increase susceptibility to development of, diseases. For example, more than 80% of hepatocellular carcinomas (HCCs) develop in fibrotic or cirrhotic livers (Affo et al. 2016, Annu Rev Pathol.), suggesting an important role for liver fibrosis in the premalignant environment (PME) of the liver.
Accordingly, the present invention also finds use in methods for the treatment and prevention of diseases associated with fibrosis, and/or for which fibrosis is a risk factor. In some embodiments, the disease associated with fibrosis, or for which fibrosis is a risk factor, is a cancer, e.g. cancer of the liver (e.g. hepatocellular carcinoma).
In some embodiments, the fibrosis to be treated/prevented according to the present invention may be of fibrosis that is associated with an upregulation of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB expression and/or activity, e.g. in cells/tissue/an organ in which the fibrosis occurs or may occur.
The therapy may be effective to inhibit development (delay/prevent) of the fibrosis, or of progression (e.g. worsening) of the fibrosis. In some embodiments therapy may lead to an improvement in the disease, e.g. a reduction in the symptoms of fibrosis. Prevention of fibrosis may refer to prevention of a worsening of the condition or prevention of the development of fibrosis, e.g. preventing an early stage fibrosis (e.g. inflammation, steatosis, NAFLD) developing to a later stage (e.g. fibrosis, cirrhosis, HCC).
Aspects of the present invention are concerned with the treatment/prevention of diseases in which proinflammatory processes are pathologically implicated. Inflammation is reviewed e.g. in Chen et al., Oncotarget. (2018) 9(6): 7204-7218, which is hereby incorporated by reference in its entirety. Inflammation refers to the bodily response to cellular/tissue injury, and is characterised by edema, erythema (redness), heat, pain, and loss of function (stiffness and immobility) resulting from local immune, vascular and inflammatory cell responses to infection or injury. The injury may result from e.g. of physical (e.g. mechanical) or chemical insult, trauma, infection, cancer or overactive/aberrant immune responses (e.g. autoimmune disease). Inflammation forms part of the innate immune response, and plays an important physiological role in wound healing and the control of infection, and contributes to the restoration of tissue homeostasis.
However, many diseases are associated with an overactive inflammatory response (i.e. excessive inflammation and/or aberrantly activated inflammation), and/or chronic (prolonged) inflammation. Herein, excessive and/or chronic inflammation may be referred to as “pathological inflammation”. Pathological inflammation may refer to inflammation which is implicated in (i.e. which positively contributes to) the pathology of a disease.
In some embodiments, the disease to be treated/prevented in accordance with the present invention is a disease characterised by chronic inflammation. In some embodiments, the disease to be treated/prevented is a disease characterised by an overactive inflammatory response.
In some embodiments, the treatment/prevention of chronic inflammation or an overactive inflammatory immune response associated with a chronic infection, cancer, autoimmune disease, degenerative disease or allergic disease is contemplated.
Pathological inflammation which is “associated with” a given disease (e.g. a chronic infection, a cancer, an autoimmune disease, a degenerative disease or an allergic disease) may refer to pathological inflammation caused by, initiated by and/or which is a consequence of the disease. Pathological inflammation associated with a given disease may be concurrent with the disease.
Chronic inflammation generally refers to inflammation lasting for prolonged periods of time, e.g. from months to years. Chronic inflammation can result e.g. from failure to properly control/eliminate an infectious agent causing inflammation (i.e. chronic infection), prolonged/repeated exposure to physical/chemical insult, prolonged/repeated exposure to an allergen (allergy), and autoimmune disease.
The chronic inflammation, overactive inflammatory immune response, chronic infection, cancer, autoimmune disease, degenerative disease or allergic disease may affect any tissue/organ of the body, e.g. the heart, kidney, liver, lung, skeletal muscle, blood vessels, eye, skin, pancreas, bowel, small intestine, large intestine, colon, brain, or bone marrow, or multiple tissues/organs at once.
An overactive inflammatory immune response generally refers to an inflammatory immune response that is excessive, and/or which has been activated inappropriately (i.e. an inflammatory immune response which is aberrant). An excessive inflammatory immune response refers to an inflammatory immune response which is greater than the response required for restoration of tissue homeostasis following injury to tissue (e.g. as a result of physical or chemical insult or infection). Aberrant inflammatory immune responses include inflammatory immune responses resulting from autoimmunity and allergy.
Chronic infections include persistent/unresolved infection by any infectious agent, e.g. chronic viral, bacterial, fungal and protozoal infections. Chronic viral infections may be caused e.g. by infection with human immunodeficiency viruses (HIVs), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein-Barr Virus (EBV), measles virus (MV), cytomegalovirus (CMV), human T-cell leukemia viruses (HTLVs), human herpesviruses (HHVs), herpes simplex viruses (HSVs), Varicella-Zoster virus (VZV), human papovaviruses (e.g. JC virus, BK virus), adenoviruses (AdVs), paroviruses or human papillomaviruses (HPVs). Chronic bacterial infections may be caused e.g. by infection with Mycobacterium tuberculosis Helicobacter pylori, Salmonella Typhi, Treponema pallidum, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Hemophilus influenza or Mycobacterium leprae. Chronic fungal infections may be caused e.g. by infection with Candida spp or Aspergillus. Chronic protozoal infections may be caused e.g. by infection with Plasmodium spp., Babesia spp., Giardia spp., Leishmania spp., Trypanosoma spp. or Toxoplasma spp.
A cancer may be any cancer. As used herein, cancers include any unwanted cell proliferation (or any disease manifesting itself by unwanted cell proliferation), neoplasm or tumor. The cancer may be benign or malignant and may be primary or secondary (metastatic). A neoplasm or tumor may be any abnormal growth or proliferation of cells and may be located in any tissue. The cancer may be of tissues/cells derived from e.g. the adrenal gland, adrenal medulla, anus, appendix, bladder, blood, bone, bone marrow, brain, breast, cecum, central nervous system (including or excluding the brain) cerebellum, cervix, colon, duodenum, endometrium, epithelial cells (e.g. renal epithelia), gallbladder, oesophagus, glial cells, heart, ileum, jejunum, kidney, lacrimal glad, larynx, liver, lung, lymph, lymph node, lymphoblast, maxilla, mediastinum, mesentery, myometrium, nasopharynx, omentum, oral cavity, ovary, pancreas, parotid gland, peripheral nervous system, peritoneum, pleura, prostate, salivary gland, sigmoid colon, skin, small intestine, soft tissues, spleen, stomach, testis, thymus, thyroid gland, tongue, tonsil, trachea, uterus, vulva, and/or white blood cells.
An autoimmune disease may be selected from: diabetes mellitus type 1, diabetes mellitus type 2, coeliac disease, Graves' disease, inflammatory bowel disease (e.g. Crohn's disease), multiple sclerosis, psoriasis, rheumatoid arthritis, and systemic lupus erythematosus.
Degenerative diseases are characterised by deterioration of cell/tissue/organ condition or function over time. Proinflammatory and profibrotic processes are implicated in the pathology of many degenerative diseases.
Degenerative disease include e.g. Alzheimer's disease, amyotrophic lateral sclerosis, cancers, Charcot-Marie-Tooth disease, chronic traumatic encephalopathy, cystic fibrosis, degenerative Leigh syndrome, Ehlers-Danlos syndrome, fibrodysplasia ossificans progressiva, Friedreich's ataxia, frontotemporal dementia, cardiovascular diseases (e.g. atherosclerotic cardiovascular disease (e.g. coronary artery disease, aortic stenosis), myocardial infarction, pulmonary arterial hypertension), Huntington's disease, infantile neuroaxonal dystrophy, keratoconus, keratoglobus, leukodystrophies, macular degeneration, Marfan's syndrome, mitochondrial myopathies, mitochondrial DNA depletion syndrome, multiple sclerosis, multiple system atrophy, muscular dystrophies, neuronal ceroid lipofuscinosis, Niemann-Pick disease, osteoarthritis, osteoporosis, Parkinson's disease, pulmonary arterial hypertension, all prion diseases (Creutzfeldt-Jakob disease, fatal familial insomnia etc.), progressive supranuclear palsy, retinitis pigmentosa, rheumatoid arthritis, Sandhoff Disease, spinal muscular atrophy, subacute sclerosing panencephalitis, Tay-Sachs disease and vascular dementia.
An allergic disease may be selected from allergic asthma, allergic rhinitis, food allergy and atopic dermatitis.
In some embodiments the chronic inflammation, overactive inflammatory immune response, chronic infection, cancer, autoimmune disease or allergic disease may be of: an organ of the cardiovascular system, e.g. of the heart or blood vessels; an organ of the gastrointestinal system, e.g. of the liver, bowel, small intestine, large intestine, colon, or pancreas; an organ of the respiratory system, e.g. the lung; the skin; an organ of the nervous system, e.g. the brain; an organ of the urinary system, e.g. the kidneys; or an organ of the musculoskeletal system, e.g. muscle tissue.
Pathological inflammation often leads to fibrosis—see e.g. Mack, Matrix Biol. (2018) 68-69:106-121 and Suthahar et al., Curr Heart Fail Rep. (2017) 14(4): 235-250, both of which are hereby incorporated by reference in their entirety.
The present invention also finds use in methods for the treatment and prevention of diseases associated with pathological inflammation, and/or for which pathological inflammation is a risk factor. In some embodiments, the disease associated with pathological inflammation, or for which pathological inflammation is a risk factor, is fibrosis or a disease characterised by fibrosis.
In some embodiments, the pathological inflammation to be treated/prevented according to the present invention may be of pathological inflammation that is associated with an upregulation of expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, e.g. in cells/tissue/an organ in which the pathological inflammation occurs or may occur.
The therapy may be effective to inhibit development (delay/prevent) of the pathological inflammation, or of progression (e.g. worsening) of the pathological inflammation. In some embodiments therapy may lead to an improvement in the disease, e.g. a reduction in the symptoms of pathological inflammation. Prevention of pathological inflammation may refer to prevention of a worsening of the condition or prevention of the development of pathological inflammation, e.g. preventing an early stage pathological inflammation developing to a later stage.
Therapeutic/prophylactic intervention in accordance with the present invention may be employed in the context of additional treatment for the relevant disease. That is, expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may be inhibited in a subject (e.g. by treatment with a suitable inhibitor such as those described herein) that is also receiving/has received/will receive further therapeutic/prophylactic intervention for the treatment/prevention of the disease.
The experimental examples show that proliferation, expansion and regeneration of liver and lung cells/tissue can be achieved via inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In accordance with various aspects of the present invention, a method of treating and/or preventing a disease according to the present invention may comprise one or more of the following:
-
- Reducing the level of gene/protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reducing the level of activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB;
- Reducing the level of a correlate of fibrosis (e.g. a collagen, αSMA, periostin, fibronectin, CTGF, vimentin or lumican);
- Reducing gene/protein expression of a pro-fibrotic factor (e.g. a collagen, αSMA, periostin,
- fibronectin, CTGF, vimentin or lumican);
- Reducing the number/proportion of myofibroblasts;
- Reducing the level of a correlate of pathological inflammation;
- Reducing gene/protein expression of a pro-inflammatory factor;
- Reducing the number/proportion of myofibroblasts;
- Increasing the function of an organ/tissue affected by the disease;
- Stimulating/increasing proliferation of a cell affected by the disease;
- Stimulating/increasing expansion of a cell affected by the disease;
- Stimulating/increasing regeneration of a cell affected by the disease;
- Stimulating/increasing proliferation of a myoblast;
- Stimulating/increasing expansion of a myoblast;
- Stimulating/increasing regeneration of a myoblast;
- Increasing the number/proportion of health myoblasts;
- Stimulating/increasing regeneration of an organ/tissue affected by the disease;
- Stimulating/increasing proliferation and/or expansion of a cell in an organ/tissue affected by the disease;
- Stimulating/increasing proliferation and/or expansion of a hepatocyte, e.g. that is affected by the disease or that is in an organ/tissue affected by the disease;
- Stimulating/increasing regeneration of liver tissue;
- Stimulating/increasing regeneration of lung tissue;
- Stimulating/increasing regeneration of the liver;
- Stimulating/increasing regeneration of the lung;
- Increasing function of an organ/tissue affected by the disease;
- Increasing liver function;
- Increasing lung function;
- Increasing wound healing in an organ/tissue affected by the disease;
- Increasing wound healing in liver tissue;
- Increasing wound healing in lung tissue;
- Protecting an organ/tissue affected by the disease;
- Protecting a liver/liver tissue affected by the disease;
- Protecting a lung/lung tissue affected by the disease;
- Increasing the survival of a subject having the disease;
- Reducing the number/proportion of macrophages in an organ/tissue affected by the disease; and/or
- Reducing the number/proportion of monocytes in an organ/tissue affected by the disease;
Methods for Treating a Subject are Provided Herein.
The disclosure teaches a method of treating a condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the condition or disease in the subject.
Disclosed herein is a method of treating a liver condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the liver condition or disease in the subject.
A “gene associated with organ regeneration” as used herein may refer to one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB genes. A “corresponding gene product associated with organ regeneration” as used herein may refer to an mRNA encoded by one or more genes above, or a MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB protein.
In one embodiment, a subject herein is suffering from a liver condition or disease, as described herein. The methods described herein may comprise preventing or treating the liver condition or disease.
In one embodiment, a subject herein is suffering from a lung condition or disease. The lung condition or disease may be a cigarette or viral-induced lung condition or disease. The lung condition or disease may be lung damage or fibrosis. The method may comprise preventing or treating the lung condition or disease.
Disclosed herein is a method of protecting a subject from liver damage or a disease associated with fibrosis, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to protect the subject from liver damage. The inhibitor may be one described herein. A gene/corresponding gene product associated with organ regeneration may be one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Disclosed herein is an inhibitor of a gene or corresponding gene product associated with organ regeneration for use in preventing or treating a liver condition or disease in the subject. In one embodiment, the inhibitor is capable of stimulating or increasing proliferation of hepatocytes in the subject.
Disclosed herein is the use of an inhibitor of a gene or corresponding gene product associated with organ regeneration in the manufacture of a medicament for preventing or treating a liver condition or disease in the subject.
Disclosed herein is a method of enhancing cell function in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell function in the subject. “Enhancing cell function” refers to improving the endogenous activity of a cell, e.g. signalling, proliferation, expansion. Function of a cell may be enhanced starting from a healthy state, or from a diseased/impaired state.
The method may comprise improving the robustness of the cell under diseased condition. The term robustness refers to being able to survive under diseased condition.
Disclosed herein is a method of enhancing cell viability in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell viability in the subject, e.g. in inhibitor described herein.
The present disclosure teaches a method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to stimulate or increase proliferation of the cell in the subject.
In one embodiment, the method further increases the robustness of the cell under diseased conditions in the subject.
In one embodiment, the gene associated with organ regeneration is identified by knocking down the gene in a hepatocyte of an animal model and detecting proliferation and/or regeneration of the hepatocyte in the animal model.
The gene associated with organ regeneration is selected from the group consisting of Microfibril Associated Protein 4 (Mfap4), Glyoxylate and Hydroxypyruvate Reductase (Grhpr), Integrin Alpha FG-GAP Repeat Containing 1 (Itfg1), ATP binding cassette subfamily C member 4 (ABCC4), p21 (RAC1) activated kinase 3 (PAK3), TMF1 regulated nuclear protein 1 (TRNP1), Apelin (APLN), Kindesin Family Member 20A (KIF20A) and Lymphotoxin beta (LTB).
A “gene product” is a biopolymeric product that is expressed or produced by a gene. A gene product may be, for example, an unspliced RNA, an mRNA, a splice variant mRNA, a polypeptide, a post-translationally modified polypeptide, a splice variant polypeptide etc. Also encompassed by this term is biopolymeric products that are made using an RNA gene product as a template (i.e. cDNA of the RNA). A gene product may be made enzymatically, recombinantly, chemically, or within a cell to which the gene is native. In many embodiments, if the gene product is proteinaceous, it exhibits a biological activity. In many embodiments, if the gene product is a nucleic acid, it can be translated into a proteinaceous gene product that exhibits a biological activity.
Disclosed herein is an in vitro or in vivo method for reducing gene and/or protein expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell, comprising introducing an inhibitor described herein into the cell. In some embodiments, the inhibitor is an inhibitory nucleic acid as described herein.
Disclosed herein is a method of regenerating liver tissue in vitro or in vivo, the method comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell of the tissue, e.g. using an inhibitor described herein.
Disclosed herein is a method for preventing age-dependent decline in the regenerative capacity of a hepatocyte, the method comprising inhibiting at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell of the tissue, e.g. using an inhibitor described herein.
The term “treating” as used herein may refer to (1) preventing or delaying the appearance of one or more symptoms of the disorder; (2) inhibiting the development of the disorder or one or more symptoms of the disorder; (3) relieving the disorder, i.e., causing regression of the disorder or at least one or more symptoms of the disorder; and/or (4) causing a decrease in the severity of one or more symptoms of the disorder. The term “treating” may refer to regeneration of the tissue/organ in question, or preventing a disease/condition from progressing to a later, more severe stage.
The term “administering” refers to contacting, applying, injecting, transfusing or providing an inhibitor as referred to herein to a subject.
The term “subject” as used throughout the specification is to be understood to mean a human or may be a domestic or companion animal. While it is particularly contemplated that the methods of the invention are for treatment of humans, they are also applicable to veterinary treatments, including treatment of companion animals such as dogs and cats, and domestic animals such as horses, cattle and sheep, or zoo animals such as primates, felids, canids, bovids, and ungulates. The “subject” may include a person, a patient or individual, and may be of any age or gender.
The patient may have a disease described herein. A subject may have been diagnosed with a disease requiring treatment, may be suspected of having such a disease, or may be at risk from developing a disease.
In embodiments according to the present invention the subject is preferably a human subject. In embodiments according to the present invention, a subject may be selected for treatment according to the methods based on characterisation for certain markers of a disease described herein.
In some embodiments, any method disclosed herein comprises administering an inhibitor according to the present disclosure into a subject, organ, tissue or cell. The organ, tissue or cell may be in vivo or in vitro. Any method described herein may be performed in vivo or in vitro.
Aspects and embodiments of the present invention concern detection of expression of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (gene and/or protein expression) and/or activity in a cell/tissue/organ of a subject, e.g. as determined by analysis of a cell/tissue/organ of a subject, e.g. in a sample obtained from the subject (such as an in vitro cell/tissue/organ/sample).
Disclosed herein is a method of detecting a liver condition or disease in a subject, the method comprising detecting in a sample the level of one or more biomarkers associated with liver regeneration, wherein a change in the level of the one or more biomarkers as compared to a reference indicates that the subject is suffering from a liver condition or disease. The one or more biomarkers may be one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
Upregulated expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may identify a subject as a subject to be treated with an inhibitor of at least one of those genes/proteins in accordance with the present invention.
Upregulated expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB refers to a level of expression/activity that is greater than would be expected for a cell/tissue of a given type. Gene or protein expression and activity can be analysed as described herein.
Upregulation may be determined by measuring the level of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a cell/tissue. Comparison may be made between the level of expression/activity in a cell or tissue sample from a subject and a reference level of expression/activity, e.g. a value/range of values representing a normal level of expression/activity for the same or corresponding cell/tissue type. In some embodiments reference levels may be determined by detecting expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB in a control sample, e.g. in corresponding cells or tissue from a healthy subject or from healthy tissue of the same subject. In some embodiments reference levels may be obtained from a standard curve or data set.
A sample obtained from a subject may be of any kind. A biological sample may be taken from any tissue or bodily fluid, e.g. a blood sample, blood-derived sample, serum sample, lymph sample, semen sample, saliva sample, synovial fluid sample. A blood-derived sample may be a selected fraction of a patient's blood, e.g. a selected cell-containing fraction or a plasma or serum fraction. A sample may comprise a tissue sample or biopsy; or cells isolated from a subject. Samples may be collected by known techniques, such as biopsy or needle aspirate. Samples may be stored and/or processed for subsequent determination of the level of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
In some preferred embodiments a sample may be a tissue sample, e.g. biopsy, taken from a tissue/organ affected by a disease described herein. A sample may contain cells.
A subject may be selected for therapy/prophylaxis in accordance with the present invention based on determination that the subject has an upregulated level of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB. Upregulated expression/activity of said genes/proteins may serve as a marker of a disease suitable for treatment in accordance with the present invention.
Following selection, a subject may be treated to inhibit expression and/or activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, e.g. by administration of an inhibitor of at least one of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. that has an upregulated level of expression/activity).
Detection of upregulation of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may also be used in a method of diagnosing a disease described herein, identifying a subject at risk of developing a disease described herein, and in methods of prognosing a subject's response to inhibition of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB (e.g. via treatment with an inhibitor targeting one or more of said genes/proteins).
In some embodiments a subject may be suspected of having or suffering from a disease, e.g. based on the presence of other symptoms indicative of the disease in the subject's body or in selected cells/tissues of the subject's body, or be considered at risk of developing the disease, e.g. because of genetic predisposition or exposure to environmental conditions, known to be risk factors for the disease. Determination of upregulation of expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB may confirm a diagnosis or suspected diagnosis, or may confirm that the subject is at risk of developing the disease. The determination may also diagnose a disease or predisposition as one suitable for treatment with an inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
As such, a method of providing a prognosis for a subject having, or suspected of having a disease may be provided, the method comprising determining whether expression/activity of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB is upregulated in a sample obtained from the subject and, based on the determination, providing a prognosis for treatment of the subject with a inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB.
The method may further comprise the step of selecting the subject for treatment with an inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB, and/or administering an inhibitor of one or more of MFAP4, GRHPR, ITFG1, ABCC4, PAK3, TRNP1, APLN, KIF20A, and/or LTB to the subject in order to provide a treatment for a disease described herein in the subject or to prevent development or progression of a disease described herein in the subject.
Methods of diagnosis or prognosis may be performed in vitro on a sample obtained from a subject, or following processing of a sample obtained from a subject. Once the sample is collected, the patient is not required to be present for the in vitro method of diagnosis or prognosis to be performed and therefore the method may be one which is not practised on the human or animal body. The sample obtained from a subject may be of any kind, as described herein above.
Other diagnostic or prognostic tests may be used in conjunction with those described here to enhance the accuracy of the diagnosis or prognosis or to confirm a result obtained using the tests described herein.
The terms “therapeutically effective amount” and “effective amount” are used interchangeably and refer to an amount of a compound that is sufficient to effect treatment as defined below, when administered to a patient (e.g., a human) in need of such treatment in one or more doses. The therapeutically effective amount will vary depending upon the patient, the disease being treated, the weight and/or age of the patient, the severity of the disease, the nature of the agent, or the manner of administration as determined by a qualified prescriber or care giver. Examples of the techniques and protocols mentioned above can be found in Remington's Pharmaceutical Sciences, 20th Edition, 2000, pub. Lippincott, Williams & Wilkins.
Multiple doses of the agent may be provided. One or more, or each, of the doses may be accompanied by simultaneous or sequential administration of another therapeutic agent.
Multiple doses may be separated by a predetermined time interval, which may be selected to be one of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, or 31 days, or 1, 2, 3, 4, 5, or 6 months. By way of example, doses may be given once every 7, 14, 21 or 28 days (plus or minus 3, 2, or 1 days).
In therapeutic applications, inhibitors for use as described herein are preferably formulated as a medicament or pharmaceutical together with one or more other pharmaceutically acceptable ingredients well known to those skilled in the art, including, but not limited to, pharmaceutically acceptable carriers, adjuvants, excipients, diluents, fillers, buffers, preservatives, anti-oxidants, lubricants, stabilisers, solubilisers, surfactants (e.g., wetting agents), masking agents, colouring agents, flavouring agents, and sweetening agents.
As used herein, “pharmaceutically acceptable carrier” includes excipients or agents such as solvents, diluents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents and the like that are not deleterious to the disclosed compound or use thereof. The use of such carriers and agents to prepare compositions of pharmaceutically active substances is well known in the art (see, e.g., Remington's Pharmaceutical Sciences, Mace Publishing Co., Philadelphia, Pa. 17th Ed. (1985); and Modern Pharmaceutics, Marcel Dekker, Inc. 3rd Ed. (G. S. Banker & C. T. Rhodes, Eds.). Each carrier, adjuvant, excipient, etc. must also be “acceptable” in the sense of being compatible with the other ingredients of the formulation.
Suitable carriers, adjuvants, excipients, etc. can be found in standard pharmaceutical texts, for example, Remington's Pharmaceutical Sciences, 18th edition, Mack Publishing Company, Easton, Pa., 1990; and Handbook of Pharmaceutical Excipients, 2nd edition, 1994.
The formulations may be prepared by any methods well known in the art of pharmacy. Such methods include the step of bringing into association the active compound with a carrier which constitutes one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association the active compound with carriers (e.g., liquid carriers, finely divided solid carrier, etc.), and then shaping the product, if necessary.
The formulations may be prepared for topical, parenteral, systemic, intravenous, intra-arterial, intramuscular, intrathecal, intraocular, intra-conjunctival, subcutaneous, oral or transdermal routes of administration which may include injection. Injectable formulations may comprise the selected agent in a sterile or isotonic medium. The formulation and mode of administration may be selected according to the agent and disease to be treated/prevented.
Disclosed herein is a method of screening for an inhibitor of a gene or corresponding gene product associated with organ regeneration by: a) contacting the gene or corresponding gene product with a chemical compound library, and b) identifying a chemical compound within the library that is binds to the gene or corresponding gene product to inhibit the expression or function of the gene or corresponding gene product.
Also provided herein are reporter cells lines for screening of small compound inhibitors for a gene or corresponding gene product associated with cell regeneration.
Numbered Paragraphs
1. A method of stimulating or increasing proliferation and/or regeneration of a cell in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to stimulate or increase proliferation of the cell in the subject.
2. The method of paragraph 1, wherein the method increases the robustness of the cell under diseased conditions in the subject.
3. The method of paragraph 1, wherein the gene associated with organ regeneration is identified by knocking down the gene in a hepatocyte of an animal model and detecting proliferation and/or regeneration of the hepatocyte in the animal model.
4. The method of paragraph 2, wherein the gene associated with organ regeneration is selected from the group consisting of Microfibril Associated Protein 4 (Mfap4), Glyoxylate and Hydroxypyruvate Reductase (Grhpr), Integrin Alpha FG-GAP Repeat Containing 1 (Itfg1), ATP binding cassette subfamily C member 4 (ABCC4), p21 (RAC1) activated kinase 3 (PAK3), TMF1 regulated nuclear protein 1 (TRNP1), Apelin (APLN), Kindesin Family Member 20A (KIF20A) and Lymphotoxin beta (LTB).
5. The method of paragraph 1, wherein the inhibitor is a nucleic acid, peptide, antibody or small molecule inhibitor.
6. The method of paragraph 5, wherein the inhibitor is a nucleic acid inhibitor comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1-14 or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1-14 under stringency conditions.
7. The method of paragraph 1, wherein the subject is suffering from a liver condition or disease.
8. The method of paragraph 7, wherein the liver condition or disease is selected from the group consisting of acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC), hepatitis and liver damage.
9. The method of paragraph 7, wherein the method comprises preventing or treating the liver condition or disease.
10. A method of enhancing cell function in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell function in the subject.
11. The method of paragraph 10, wherein the method comprises improving the robustness of the cell under diseased condition.
12. A method of enhancing cell viability in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to enhance cell viability in the subject.
13. A method of treating a liver condition or disease in a subject, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to treat the liver condition or disease in the subject.
14. A method of protecting a subject from liver damage, the method comprising administering to the subject an inhibitor of a gene or corresponding gene product associated with organ regeneration for a sufficient time and under conditions to protect the subject from liver damage.
15. A method of detecting a liver condition or disease in a subject, the method comprising detecting in a sample the level of one or more biomarkers associated with liver regeneration, wherein a change in the level of the one or more biomarkers as compared to a reference indicates that the subject is suffering from a liver condition or disease.
16. An inhibitor of a gene or corresponding gene product associated with organ regeneration for use in preventing or treating a liver condition or disease in the subject.
17. The inhibitor of paragraph 16, wherein the liver condition or disease is selected from the group consisting of acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC) hepatitis or liver damage.
18. The inhibitor of paragraph 17, wherein the inhibitor is capable of stimulating or increasing proliferation of hepatocytes in the subject.
19. Use of an inhibitor of a gene or corresponding gene product associated with organ regeneration in the manufacture of a medicament for preventing or treating a liver condition or disease in the subject.
20. The use of paragraph 19, wherein the liver condition or disease is selected from the group consisting of acute liver disease, chronic liver disease, metabolic liver disease, steatosis, liver fibrosis, primary sclerosing cholangitis (PSC), cirrhosis, liver fibrosis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), hepatic ischemia reperfusion injury, primary biliary cirrhosis (PBC) hepatitis or liver damage.
21. The use of paragraph 19, wherein the inhibitor is capable of stimulating or increasing proliferation of hepatocytes in the subject.
22. A nucleic acid inhibitor consisting, comprising or encoding an RNAi agent having at least 70%, 80%, 90% or 95% sequence identity to an RNA sequence listed in any of Tables 1-14 or an RNAi agent that hybridizes to the complement of an RNA sequence listed in any of Tables 1-14 under stringency conditions.
23. A method of screening for an inhibitor of a gene or corresponding gene product associated with organ regeneration by: a) contacting the gene or corresponding gene product with a chemical compound library, and b) identifying a chemical compound within the library that is binds to the gene or corresponding gene product to inhibit the expression or function of the gene or corresponding gene product.
The features disclosed in the foregoing description, or in the following claims, or in the accompanying drawings, expressed in their specific forms or in terms of a means for performing the disclosed function, or a method or process for obtaining the disclosed results, as appropriate, may, separately, or in any combination of such features, be utilised for realising the invention in diverse forms thereof.
Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications which fall within the spirit and scope. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.
For the avoidance of any doubt, any theoretical explanations provided herein are provided for the purposes of improving the understanding of a reader. The inventors do not wish to be bound by any of these theoretical explanations.
Any section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described.
As used in this application, the singular form “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise. For example, the term “an agent” includes a plurality of agents, including mixtures thereof. Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by the use of the antecedent “about,” it will be understood that the particular value forms another embodiment. The term “about” in relation to a numerical value is optional and means for example +/−10%.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising”, will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavor to which this specification relates.
Certain embodiments of the invention will now be described with reference to the following figures and examples which are intended for the purpose of illustration only and are not intended to limit the scope of the generality hereinbefore described. Further aspects and embodiments will be apparent to those skilled in the art. All documents mentioned in this text are incorporated herein by reference.
For standard molecular biology techniques, see Sambrook, J., Russel, D. W. Molecular Cloning, A Laboratory Manual. 3 ed. 2001, Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, which is hereby incorporated by reference in its entirety.
SUMMARY OF THE FIGURES Embodiments and experiments illustrating the principles of the invention will now be discussed, by way of non-limiting example only, with reference to the accompanying figures in which:
FIG. 1A, 1B, 1C, 1D. Functional genetic in vivo RNAi screen for modulators of liver regeneration FIG. 1A) Outline of screen. A library of 250 shRNAs targeting 89 genes was delivered to the liver by hydrodynamic-tail vine injection (HDTV) of the transposon based construct (upper panel) in combination with a sleeping beauty 13 (SB13) encoding plasmid (5 independent mice). After stable integration in ˜5 to 10% of hepatocytes, thioacetamide (TAA) treatment (3 times per week for 8 weeks) induces chronic liver damage associated with advanced liver fibrosis. Changes in shRNA abundance is detected by deep sequencing. FIG. 1B) Representation of fold change for each shRNA. The majority of shRNAs is depleted but a small number is clearly enriched. FIG. 1C) ROMAampl-library (250 shRNAs) distribution. Abundance of potential candidates is shown. Heatmap based representation of enrichment (dark grey) or depletion (light grey) for each animal. Upper panel shows all shRNAs (each raw represents one animal). Lower panel represents a higher magnification for highly significant enriched, depleted and neutral shRNAs (each column represents one animal). FIG. 1D) Functional genetic screen identifies high confidence candidates (zoom in of FIG. 1 B) is shown). At least two independent shRNAs were enriched targeting Mfap4, Grhpr, and Itfg1. Furthermore, non-targeting control (shNC) shRNAs (Renilla.713 and Luciferase.1309) did not show significant enrichment or depletion and known important liver regeneration genes are depleted, whereas shRNAs targeting the c-Met an essential receptor for liver regeneration are depleted. These results give confidence in the screening approach.
FIG. 2A, 2B, 2C, 2D, 2E, 2F, 2G: In vitro validation of targeting Mfap4 for enhancing regeneration—shRNA mediated knockdown of Mfap4 accelerates proliferation rate in embryonic liver cell line FIG. 2A) Test of knockdown efficiency of top scoring shRNAs targeting Mfap4. Upper panel, retroviral backbone for generating stable cell lines. Lower panel, Western blot showing efficient knockdown of Mfap4 by our shRNAs (control: aTub=α-TUBULIN). FIG. 2B) Schematic outline for stable cell line based assays. FIG. 2C) Wound healing assay in TIB 73 (BNLCL.2) cell line. Stable cell lines were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area. Filling of this “wound” gap was monitored. In the left panels representative images for each group are shown. Three technical replicates were performed. On the right panel the quantification over different time points is shown (Data was analyzed by ImageJ software and 2-way ANOVA test of GraphPad Prism software). Significant difference between shMfap4.1356 (SEQ ID NO: 1), shMfap4.760 (SEQ ID NO: 2) and shNC is shown by ‘*’). FIG. 2D) EdU incorporation assay. DNA synthesis of TIB 73 cells (BNLCL.2) transfected with shMfap4.1356 (SEQ ID NO: 2) and shNC was assessed by EdU assays. Quantification shows significant difference between experiment and control. Three technical replicates were performed. FIG. 2E) Cell doubling. Doubling time assay results are shown. Cells were seeded at same seeding densities. Doubling time was calculated based on the exponential phase of the growth curve. Three technical replicates were performed. FIG. 2F) Cell cycle analysis by flow cytometry using the Guava Muse Cell Analyzer. Shown is the percentage of cells in the indicated cell cycle phase. Greater amount of cells in G2 phase is indicated in case of experiment (cells with stable Mfap4 knockdown by shMfap4.1356 and shMfap4.760) compared to control NC. FIG. 2G) Wound healing assay using adult liver mouse cell line AML12. Left panel, the same effects were observed as in FIG. 2C). Right panel. quantification of FIG. 2A) shows significantly faster wound closure already at the 14 h time-point.
FIG. 3A, 3B, 3C, 3D, 3E, 3F: Mfap4 knockdown accelerates liver repopulation FIG. 3A) FAH knockout mice based liver repopulation assay. Upper panel shows the outline of the transposon based vector for the expression of the enzyme FAH, the marker GFP and the shRNA of interest. Lower panel shows the outline and rational for the assay. If the knockdown of a certain shRNA is able to enhance regeneration and accelerate hepatocyte proliferation, we should be able to see a faster clonal expansion compared to a control shRNA starting from the stably integrated hepatocytes. FIG. 3B) GFP imager images. GFP imaging of explanted mouse livers shows enhanced clonal expansion (repopulation) of hepatocytes stably expressing shMfap4.1356 (SEQ ID NO: 1) compared to hepatocytes expressing shNC (day 18 after HDTV injection of 25 μg of the indicated plasmid). Representative photographs are shown for each group (n=8 in group with shMfap4.1356, n=6 in group with shMfap4.760, n=6 in group with shNC). Light, white points represent GFP positive macroscopically visible clonal expansions. FIG. 3C) Native GFP on tissue sections. Shown are representative GFP fluorescence photographs of liver sections (200×) of FAH−/− mice 18 days after in vivo delivery of transposon constructs either expressing shMfap4 or a control shRNA corresponding to B). FIG. 3D) Histological analysis (immunostaining against GFP) for GFP-positive cells of mouse livers with stable expression of shMfap4.1356 (SEQ ID NO: 1), shMfap4.760 (SEQ ID NO: 2) and shNC (shown are representative photographs, n=8 in group with shMfap4.1356, n=6 in group with shMfap4.760, n=6 in group with shNC). Day 18 after HDTV injection of 1.25 μg of the indicated plasmid (200× magnification). Increased clonal expansion can be seen for shMfap4. FIG. 3E) Quantification of GFP-positive cells (corresponding to FIG. 3D) shows significant increase in GFP positive hepatocytes in case of Mfap4 knockdown compared to control. Each dot represents one animal. FIG. 3F) Kaplan-Meier survival curve of FAH−/− mice injected with a 1:30 (0.83 μg plasmid and 0.17 mg SB13) dilution of either p/T-FAHIG-shMfap4.1356 (n=5) or p/T-FAHIG-shNC (n=5) and SB13 (p<0.05). NTBC off indicates the time of NTBC drug removal, inducing the selection process (1 day post injection).
FIG. 4A, 4B, 4C, 4D, 4E, 4F, 4G, 4H: “Western Diet” (WD) mouse fatty liver model FIG. 4A) WD+fructose Diet facts. The used diet is rich in fat and carbohydrates. 45% energy comes from fat, predominantly saturated fat, with 0.2% cholesterol. In addition, the animals get 60% fructose/water (wt/vol). FIG. 4B) Pathological evaluation. Histological slides of liver tissue form C56B16 mice exposed for the indicated time to the “Western Diet” or normal chow were evaluated and scored by a certified pathologist. Shown are the scoring results for steatosis and fibrosis. Each point represents an animal. FIG. 4C) Mice on “Western Diet” show a progressive weight gain independent of gender. FIG. 4D) WD model shows progressive fibrosis similar to human patients (see FIG. 4E). FIG. 4E) Progressive increase in fibrosis in human patients based and disease stage, similar to the mouse model (FIGS. 4D & 4B). FIG. 4F). Advanced liver fibrosis can already macroscopically be detected after 24 weeks of WD (representative image). FIG. 4G) After 24 weeks of WD mouse liver show high levels of steatosis (H&E stained liver tissue, representative image). FIG. 4H) Sirius Red staining for collagen fibers indicating advanced fibrosis after 24 weeks of WD exposure.
FIG. 5A, 5B, 5C, 5D, 5E, 5F: Mfap4 knockdown attenuates NASH related liver fibrosis FIG. 5A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months, so that every hepatocyte in the liver expresses the shRNA construct of interest. After full repopulation was reached mice were exposed to the “Western Diet” (high fat diet and 60% fructose) for 24 weeks. Livers were harvested, processed and analyzed. FIG. 5B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 5C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=5 per experimental group and n=7 per control group; representative sections are shown, 50× magnification). FIG. 5D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental group. Fibrosis score is significantly lower in the experimental group compared to the control group. FIG. 5E) The score of oval cell hyperplasia is shown. The score was given by a certified pathologist, who was blinded regarding the experimental group. The score is significantly lower (=0) in the experimental group compared to the control group. Oval cell hyperplasia is considered a compensatory mechanism, if regeneration through hepatocytes is not sufficient anymore. FIG. 5F) Representative GFP-scanner macro-photographs of the livers are shown. Strong GFP signal on the surface of the livers indicates full repopulation.
FIG. 6A, 6B, 6C, 6D: Mfap4 knockdown attenuates chronic liver damage related liver fibrosis FIG. 6A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that chronic liver damage was induced by repetitive doses of thioacetamide administered intraperitoneal 3 times per week for 8 weeks. Livers were harvested, processed and analyzed. FIG. 6B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 6C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=6 per experimental group and n=7 per control group; representative sections are shown, 50× magnification). FIG. 6D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups. Fibrosis score is significantly lower in the experimental group compared to the control group.
FIG. 7A, 7B, 7C, 7D, 7E, 7F, 7G, 7H, 7I, 7J: Mfap4 knockdown accelerates liver regeneration after partial hepatectomy (PH) FIG. 7A) Experimental outline. FRGN were injected with our constructs, then, mice were kept for full repopulation for 3 months. FRGN mice are FAH−/−, Rag2−/−, II2rg−/− on a NOD background and are immune compromised. After full repopulation of mouse liver, ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested 48 h after surgery. FIG. 7B) Representative photographs of Ki67 immunofluorescence stained (top row) and DAB Ki67-stained (bottom row) liver sections 48 h post hepatectomy are shown (200× magnification, n=5 per experimental/control group). FIG. 7C) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to FIG. 7B)) show increased hepatocyte proliferation after partial hepatectomy in shMfap4-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM, n=5 per group). FIG. 7D) Western blot analyses for cyclin A (nuclear extracts from repopulated mouse livers at the indicated time point) indicate an earlier cell-cycle entry and faster cell-cycle progression of shMfap4-expressing mouse livers (n=2). FIG. 7E) Experimental outline. Immune-competent FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested 42 h and 48 h after surgery. FIG. 7F) Representative photographs of DAB Ki67-stained liver sections 42 h (n=5 per experimental group, n=6 per control group) and 48 h (n=5 per experimental group, n=10 per control group) post hepatectomy are shown (200× magnification). FIG. 7G) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to FIG. 7B)) show increased hepatocyte proliferation and accelerated liver regeneration after partial hepatectomy in shMfap4-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM). FIG. 7H) Western blot analyses for cyclin E (nuclear extracts from repopulated mouse livers at the indicated time point) indicate an earlier cell-cycle entry and faster cell-cycle progression of shMfap4-expressing mouse livers (n=2). FIG. 7I) GFP-imaging of fully repopulated FAH−/− livers (3 months post-HDTV injections) after ⅔ surgical partial removal of livers corresponding to different time-points of PHx. Strong GFP signal on the surface of the livers indicates full repopulation. FIG. 7J) Representative pictures of DAB GFP staining which show that full repopulation of FAH livers is around 90-95%. Dark brown zones represent repopulated hepatocytes, light brow zones are non-repopulated.
FIG. 8A, 8B, 8C, 8D, 8E, 8F, 8G, 8H, 8I, 8J, 8K: In vivo knockdown of Mfap4 impacts mTOR and p38 signalling FIG. 8A) Schematic outline of experiment. Whole-cell protein extracts from repopulated mouse livers were isolated and analyzed by protein array. FIG. 8B) Heat map shows results for phospho-antibody MAPK pathway protein array. Whole-cell protein extracts from repopulated mouse livers with stable expression of either shMfap4 or shNC were analyzed (shown is the relative spot intensity). FIG. 8C) According to STRING database, all indicated proteins are interacting and are linked to cell growth and proliferation. FIG. 8D) After performing a broad protein array focused Western blot experiments were done. Results of Western blot are shown here. Proteins from fully repopulated livers were isolated. P-P70S6k, p-p38, p-mTOR, p-ERK2 are greater expressed in case of Mfap4 knockdown compare to control and, thus, show stronger activation in case of Mfap4 knockdown compared to control. There are 3 biological replicates in experiment and 3 biological replicates in control. FIG. 8E) Schematic representation for mTOR mediated regulation. The specific mTOR phosphorylation is upstream of p70S6k activation and leads to enforced translation. FIG. 8F Wound healing under double knockdown conditions. Based on pathway analysis double knockout experiments were commenced. Our stable cell line was expanded, cells were treated with respective siRNAs and the silicon gasket was removed. Wound healing was monitored. Slower growth and migration were observed in case of double-knockdown of Mfap4 and p70S6k and Mfap4 and p38. FIG. 8G) Western blot on proteins from cells in FIG. 8F were isolated. Interestingly p38 knockdown also affects p70S6k. FIG. 8H) Schematic outline of preparation of stable cell line with Mfap4 knockdown for transcriptomic analysis. FIG. 8I) Principal component analysis for AML12-shMfap4.1356, AML12-shMfap4.760, AML12-shNC, (Rb88-RMA050 & Ren_RMA061) and AML12 (AML_RMA052) is shown. We observed cluster separation between experiment and control. FIG. 8J) Heatmap of the following samples is shown. Ptgs2, Areg, Dhrs9, Hmox1, Nqo1 are upregulated in experimental samples compared to control and these genes are known to be involved in liver regeneration according to the literature. FIG. 8K) String Database shows connections between proteins which are upregulated according to FIGS. 8D and 8J.
FIG. 9A, 9B, 9C, 9D, 9E, 9F, 9G, 9H, 9I, 9J, 9K, 9L, 9M, 9N, 9O: Mfap4 effect is conserved in human cells FIG. 9A) shRNAs were identified that efficiently targeting human Mfap4. Knockdown test by Western blot analysis using whole-cell lysates. HepG2 cells with stable expression of indicated shRNAs targeting human Mfap4 were generated by retroviral infection and selection. Tubulin serves as a loading control. FIG. 9B) EdU incorporation assay. DNA synthesis of HepG2 cells transfected with hushMfap4 and shNC was assessed by EdU assays. Quantification shows significant difference between experiment and control. FIG. 9C-9E) Transcriptomic analysis of liver samples from −150 patients shows increased Mfap4 expression in NAFLD patients with cirrhosis and fibrosis 4 score (Table: boxes indicate disease stages with significant change, but less than log 2 2 fold change; grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005). FIG. 9F) Human tissue samples from healthy and cirrhotic liver was stained for Mfap4 protein (Mfap4 specific antibody & DAB staining). On the left side healthy liver tissue was stained without primary antibody as a control. In the middle, the staining of healthy liver indicates hepatocytes are slightly positive for Mfap4. Interestingly we also see some nuclear staining. Right panel shows staining of cirrhotic human liver. Human hepatocytes show strong staining in cytoplasm as well as nuclear staining. On the left side of the cirrhotic liver fibrotic scar tissue can be seen and is highly positive for Mfap4. FIG. 9G) Knockdown test of human MFAP4 siRNA pool. Western blot analysis of protein extracts from immortalized human hepatocytes (Creative Bioarray CSC-19016L) either treated with si huMFAP4 or siNC., α-Tubulin serves as loading control (n=3). FIG. 9H) EdU incorporation assay shows greater number of EdU-positive cells in experiment compared to control. FIG. 91) EdU incorporation assay (3 technical replicates). Shown is the value of % EdU positive cells±SEM. Immortalized human hepatocytes were either treated with siRNA targeting human MFAP4 or siNC as control (*p<0.05). FIG. 9J) Scheme of retroviral backbone for generating stable cell lines. FIG. 9K) Representative GFP pictures of immortalized Human Hepatocytes (Creative Bioarray CSC-19016L) with stable integration of shRNAs against human Mfap4. FIG. 9L) qPCR analysis showing efficient knockdown of huMfap4 by two shRNAs—hu shMfap4.1812 (SEQ ID NO: 7100) and hu shMfap4.1602 (7097) compared to non-targeting control. FIG. 9M) Western blot showing efficient knockdown of human Mfap4 by two independent shRNAs in immortalized human hepatocytes-SV40. FIG. 9N) Mfap4 knockdown in human immortalized hepatocytes accelerates wound healing. Wound healing assay using immortalized human hepatocytes with stable expression of shhuMFAP4.1602 or shNC respectively. Cells were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area (0 h). Filling of this “wound” gap was monitored (48 h; n=3 for each condition). FIG. 9O) Quantification of L), wound healing area (n=3; *p<0.05, ns=non-significant).
FIG. 10A, 10B, 10C, 10D: In vitro validation of targeting Grhpr for enhancing regeneration FIG. 10A) Outline of retroviral backbone for generating stable cell lines. FIG. 10B) Test of knockdown efficiency of top scoring shRNAs targeting Grhpr. Western blot showing efficient knockdown of Grhpr by our shRNAs (Alpha-tubulin, αTub functions as loading control). FIG. 10C) Wound healing assay. Stable cell lines were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area. Filling of this “wound” gap was monitored. Representative images for each group are shown. FIG. 10D) Quantification over different time points of wound healing assay is shown (Data was analyzed by ImageJ software and 2-way ANOVA test of GraphPad Prism software. Significant difference between shGrhpr361 (SEQ ID NO: 3) and shNC is shown by ‘*’).
FIG. 11A, 11B, 11C, 11D, 11E, 11F, 11G: Grhpr knockdown accelerates liver repopulation FIG. 11A) Outline shows the transposon based vector for the expression of the enzyme FAH, the marker GFP and the shRNA of interest. FIG. 11B) FAH knockout mice based liver repopulation assay. Outline shows the rational for the assay. If the knockdown of a certain shRNA is able to enhance regeneration and accelerate hepatocyte proliferation, we should be able to see a faster clonal expansion compared to a control shRNA starting from the stably integrated hepatocytes. FIG. 11C) GFP imager images. GFP imaging of explanted mouse livers shows enhanced clonal expansion (repopulation) of hepatocytes stably expressing shGrhpr.361 (SEQ ID NO: 3) compared to hepatocytes expressing shNC (day 18 after HDTV injection of 25 μg of the indicated plasmid). Representative photographs are shown for each group (n=5). Light, white points represent GFP positive macroscopically visible clonal expansions. FIG. 11D) Native GFP on tissue sections. Shown are representative GFP fluorescence photographs of liver sections (200×) of FAH−/− mice 18 days after in vivo delivery of transposon constructs either expressing shGrhpr or a control shRNA corresponding to C). FIG. 11E) Histological analysis (immunostaining against GFP) for GFP-positive cells of mouse livers with stable expression of shGrhpr.361 (SEQ ID NO: 3) and shNC (shown are representative photographs, n=5 in group with shGrhpr.361, n=5 in group with shNC). Day 18 after HDTV injection of 1.25 μg of the indicated plasmid (200× magnification). Increased clonal expansion can be seen for shMfap4. FIG. 11F) Quantification of GFP-positive cells (corresponding to E)) shows significant increase in GFP positive hepatocytes in case of Mfap4 knockdown compared to control. Each dot represents one animal. FIG. 11G) Survival curve with dilution of constructs (1:30) as 0.83 μg plasmid and 0.17 mg SB13. All experimental mice with shGrhpr constructs (n=5) survived whereas control mice died (n=5).
FIG. 12A, 12B, 12C, 12D: Grhpr knockdown accelerates liver regeneration after partial hepatectomy FIG. 12A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested at different time points after surgery. FIG. 12B) Representative photographs of Ki67 DAB-stained liver sections (200× magnification) at 24 hours' (n=5 per group), 38 hours' (n=6 per group), 48 hours' (n=9 per group) time points after partial hepatectomy. Earlier and increased hepatocyte proliferation after partial hepatectomy in shGrhpr-expressing livers compared to shNC livers can be seen. FIG. 12C) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to B)) show earlier and increased hepatocyte proliferation after partial hepatectomy in shGrhpr-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM). FIG. 12D) Schematic representation of peak shifting of mitotic cycle in case of Grhpr knockdown compare to control shNC (corresponding to C)).
FIG. 13A, 13B, 13C, 13D: Grhpr knockdown attenuates chronic liver damage related liver fibrosis FIG. 13A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that chronic liver damage was induced by repetitive doses of thioacetamide administered intraperitoneal 3 times per week for 8 weeks. Livers were harvested, processed and analyzed. FIG. 13B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 13C) Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=5 per each group, 50× magnification). FIG. 13D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups.
FIG. 14A, 14B, 14C, 14D: Grhpr knockdown does not protect against NASH related liver fibrosis FIG. 14A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After full repopulation was reached mice were exposed to the “Western Diet” (high fat diet and 60% fructose) for 24 weeks. Livers were harvested, processed and analyzed. FIG. 14B) Representative macro-photographs of the livers are shown. FIG. 14C) Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=6 per experimental group and n=7 per control group; representative sections are shown, 50× magnification). FIG. 14D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental group.
FIG. 15A, 15B, 15C: Grhpr expression changes in human NAFLD A) Transcriptomic analysis of liver samples from ˜150 patients shows slight but significant decrease in Grhpr expression in NASH patients with advanced fibrosis and cirrhosis. Consistent with this we detected a significant reduction in patients with fibrosis 3 and 4 score (* p<0.05, ** p<0.01, ***p,0.005).
FIG. 16A, 16B, 16C, 16D, 16E, 16F, 16G, 16H: Itfg1 knockdown accelerates wound healing and liver repopulation FIG. 16A) Outline of retroviral backbone for generating stable cell lines. FIG. 16B) Test of knockdown efficiency of top scoring shRNAs targeting Itfg1. qPCR analysis and Western blot analysis show efficient knockdown of Itfg1 by our shRNAs. FIG. 16C) Itfg1 knockdown accelerates wound healing in vitro. Stable cell lines were grown to full confluence, then the silicon gasket was removed leaving a defined cell free area. Filling of this “wound” gap was monitored. Representative images are shown in upper part. Quantification over different time points of wound healing assay is shown (lower part, Data was analyzed by ImageJ software and 2-way ANOVA test of GraphPrizm software. Significant difference between shltfg1.698 (SEQ ID NO: 6), shltfg1.680 (SEQ ID NO: 7) and shNC is shown by ‘*’). FIG. 16D) Outline shows the transposon-based vector for the expression of the enzyme FAH, the marker GFP and the shRNA of interest (upper panel). Lower panel shows FAH knockout mice based liver repopulation assay. Outline shows the rational for the assay. If the knockdown of a certain shRNA is able to enhance regeneration and accelerate hepatocyte proliferation, we should be able to see a faster clonal expansion compared to a control shRNA starting from the stably integrated hepatocytes. FIG. 16E) GFP imager images. GFP imaging of explanted mouse livers shows enhanced clonal expansion (repopulation) of hepatocytes stably expressing shltfg1 compared to hepatocytes expressing shNC (day 18 after HDTV injection of 1.25 μg of the indicated plasmid; representative photographs are shown; n=8 per experimental group with knockdown by shltfg1.698, n=6 per experimental group with knockdown by shltfg1.680, and n=6 per control group). Light, white points represent GFP positive macroscopically visible clonal expansions. FIG. 16F) Histological analysis (immunostaining against GFP) for GFP-positive cells of mouse livers with stable expression of shltfg1.698, shltfg1.680 and shNC (shown are representative photographs). Day 18 after HDTV injection of 1.25 μg of the indicated plasmid (200× magnification). Increased clonal expansion can be seen for shltfg1. FIG. 16G) Quantification of GFP-positive cells (corresponding to F)) shows significant increase in GFP positive hepatocytes in case of Itfg1 knockdown compared to control. Each dot represents one animal. FIG. 16H) Repopulation survival assay. The right panel shows the outline of the experiments. We further diluted the plasmid amount delivered to the liver. At a certain dilution the amount of hepatocytes with stable integration will be not enough to expand and compensate for the loss of FAH−/− hepatocytes. However, if the knockdown by our candidate accelerates repopulation it might be sufficient to compensate and allow survival. Left panel shows the survival curve after 1:30 dilution. All animals injected with our construct expressing the control shRNA died, whereas all mice injected with our construct expressing shltfg1 survived. There is statistical significance between experiment and control. Statistical significance was calculated using a log rank test (n=5 per group).
FIG. 17A, 17B, 17C, 17D, 17E: Itfg1 knockdown attenuates chronic liver damage related liver fibrosis FIG. 17A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that chronic liver damage was induced by repetitive doses of thioacetamide administered intraperitoneal 3 times per week for 8 weeks. Livers were harvested, processed and analyzed. FIG. 17B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 17C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (n=6 for shltfg1.698 and n=7 for control group, 50× magnification). FIG. 17D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups. FIG. 17E) Representative macro-photographs of the livers with GFP-imaging system is shown. Livers are all green, hence fully repopulated.
FIG. 18A, 18B, 18C, 18D, 18E, 18F, 18G, 18H, 18I: ITFG1 expression in human liver tissue; knockdown protects against NASH related fibrosis (see also FIG. 35A-35F). FIG. 18A) Macroscopic pictures of mice with repopulated liver exposed to Western Diet. shltfg1 indicates liver was repopulated so that every hepatocyte expresses the shRNA targeting Itfg1, whereas shNC indicates repopulation so that every hepatocyte expresses a non-targeting control shRNA. Already macroscopically, livers with Itfg1 knockdown show reduced fibrosis. FIG. 18B-18D) Transcriptomic analysis of liver samples from ˜150 patients show no significant expression change for Itfg1. FIG. 18E) ITFG1 is expressed in healthy liver tissue and in NASH Cirrhosis. FIG. 18F) Expression of ITFG1 in human tissues is shown. Data is taken from The Human Protein Atlas. FIG. 18G) Low expression of ITFG1 is associated with longer survival in case of liver cancer. Data is taken from The Human Protein Atlas. FIG. 18H) Scheme of retroviral backbone for generating stable cell lines. FIG. 181) shRNAs efficiently targeting human ITFG1 were identified. Knockdown test by Western blot analysis using whole-cell lysates. HepG2 cells stably expressing the shRNA of interest were generate by retroviral infection and selection. GAPDH serves as a loading control.
FIG. 19A, 19B, 19C, 19D: EMULSION +500 in vivo functional genetic screen FIG. 19A) Schematic outline of the screen. A pooled shRNA library screen targeting 467 genes, dysregulated in human NAFLD patients, is set up. The screen is conducted in mice of both gender using two diet based NAFLD models. FIG. 19B) Representation of fold change for each shRNA passing a p-value of 0.1 from male mice exposed to choline-deficient L-amino acid defined high fat diet for 8 weeks. The majority of shRNAs is deplete but a small number is clearly enriched. FIG. 19C) Principal component analysis based on normalized shRNA abundance level. We can see a clear separation based on diet exposure. FIG. 19D) Heatmap based enrichment/depletion for each animal for top-enriched and depleted shRNAs. Based on our analysis we identified 6 high confidence targets.
FIG. 20A, 20B: CDHFD mouse fatty liver model FIG. 20A) Choline deficient L-amino acid defined high fat diet (CDHFD) leads to fast and progressive fatty liver disease in mice. Already after 8 weeks of diet exposure mice show NASH with advanced fibrosis. FIG. 20B) Pathological evaluation. Histological slides of liver tissue form C56B16 mice exposed to the indicated time to the CDHFD or normal chow were evaluated and scored by a certified pathologist. Shown are the scoring results for steatosis and fibrosis. Each point represents an animal.
FIG. 21A, 21B, 21C, 21D, 21E: Abcc4 is a potential therapeutic target for NAFLD FIG. 21A) Shown is the relative read numbers for the shRNA expression cassette targeting Abcc4 for each animal (NC=normal chow, CD=CDHFD). FIG. 21B) Summary of screening result for the shRNA expression cassette targeting Abcc4. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 21C-21E) Transcriptomic analysis of liver samples from ˜150 patients show significant increase in Abcc4 gene expression at NASH late fibrosis and cirrhosis stage. Furthermore, an increase expression can be detected based on ballooning and fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).
FIG. 22A, 22B, 22C, 22D, 22E: Pak3 is a potential therapeutic target for NAFLD FIG. 22A) Shown is the relative read numbers for the shRNA expression cassette targeting Pak3 for each animal (NC=normal chow, CD=CDHFD). FIG. 22B) Summary of screening result for the shRNA expression cassette targeting Pak3. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 22C-22E) Transcriptomic analysis of liver samples from ˜150 patients show significant increase in Pak3 gene expression at NASH cirrhosis stage. Furthermore, an increase expression can be detected based on fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).
FIG. 23A, 23B, 23C, 23D, 23E: Trnp1 is a potential therapeutic target for NAFLD FIG. 23A) Shown is the relative read numbers for the shRNA expression cassette targeting Trnp1 for each animal (NC=normal chow, CD=CDHFD). FIG. 23B) Summary of screening result for the shRNA expression cassette targeting Trnp1. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 23C-23E) Transcriptomic analysis of liver samples from −150 patients show significant increase in Trnp1 gene expression at NASH cirrhosis stage. Interestingly, with increased steatosis and inflammation expression seems to be downregulated (Table: grey mark indicates significant upregulation of at least log 2 2 fold; boxed grey mark indicates significant downregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).
FIG. 24A, 24B, 24C, 24D, 24E: Apln is a potential therapeutic target for NAFLD FIG. 24A) Shown is the relative read numbers for the shRNA expression cassette targeting Apln for each animal (NC=normal chow, CD=CDHFD). FIG. 24B) Summary of screening result for the shRNA expression cassette targeting Apln. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 24C-24E) Transcriptomic analysis of liver samples from ˜150 patients show significant increase in Apln gene expression at NASH cirrhosis stage. Interestingly, with increased inflammation expression seems to be downregulated (Table: grey mark indicates significant upregulation of at least log 2 2 fold; boxed grey mark indicates significant downregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).
FIG. 25A, 25B, 25C, 25D, 25E: Kif20a is a potential therapeutic target for NAFLD FIG. 25A) Shown is the relative read numbers for the shRNA expression cassette targeting Kif20a for each animal (NC=normal chow, CD=CDHFD). FIG. 25B) Summary of screening result for the shRNA expression cassette targeting Kif20a. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 25C-25E) Transcriptomic analysis of liver samples from ˜150 patients show a progressive increase in Kif20a gene expression till the NASH advanced fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005)
FIG. 26A, 26B, 26C, 26D, 26E: Ltb is a potential therapeutic target for NAFLD FIG. 26A) Shown is the relative read numbers for the shRNA expression cassette targeting Ltb for each animal (NC=normal chow, CD=CDHFD). FIG. 26B) Summary of screening result for the shRNA expression cassette targeting Ltb. Shown are the average relative reads for each group, the fold change and the log 2 fold change comparing CDHFD mice to NC mice. FIG. 26C-26E) Transcriptomic analysis of liver samples from ˜150 patients show a progressive increase in Ltb gene expression till the NASH advanced fibrosis stage (Table: grey mark indicates significant upregulation of at least log 2 2 fold; * p<0.05, ** p<0.01, ***p,0.005).
FIG. 27: Layout for NASH disease interception in vivo functional genetic screen FIG. 27) A genome wide in vivo functional genetic screen for disease interception. Nearly 80.000 shRNAs split into 32 sub-pools are screened. ShRNA expresses ion is inducible and only activated after liver shows steatosis but before NASH progression.
FIG. 28A, 28B, 28C, 28D, 28E: Mfap4 knockdown for 1 year does not lead to liver cancer FIG. 28A) Schematic representation of the experiment. FAH−/− mice were injected with p/T-FAHIG-shRNA & SB13 expressing constructs via HDTV; then, mice were kept for 1 year to observe any tumor formation or abnormal liver histology. FIG. 28B) Bright field. Representative pictures are shown (both surfaces of the liver) (n=5 mice per experimental group, n=5 mice per control group). FIG. 28C) GFP-imaging. Representative pictures are shown (both surfaces of the liver). No GFP-positive tumor is observed. Livers are fully repopulated (strong GFP-positive signal). FIG. 28D) Hematoxylin & Eosin staining. Representative pictures are shown. No malignant disease is observed in both: experimental group and control group. Pathology evaluation is conducted by certified pathologist. The pathologist did not find malignant lesions in the liver. FIG. 28E) GFP (DAB) staining. Representative pictures are shown. Around 95% of hepatocytes are GFP-positive which means livers were fully repopulated.
FIG. 29A, 29B, 29C: GalNAC conjugates with siRNA against Mfap4 (BNL CL.2 cell line; 72 h post-transfection) FIG. 29A) Structure of GalNAC-siRNA conjugate used in studies. Exact backbone modifications can be found in the sequence appendix (SEQ ID NOs: 7092 and 7093). The target sequence for the siRNA was based on the shRNA guide sequence. FIG. 29B) Western blot analysis with concentration 6 μM shows efficient knockdown of Mfap4 by two different conjugates GalNAC-si Mfap4.1356 (SEQ ID NOs: 7092) and GalNAC-si Mfap4. 760 (SEQ ID NOs: 7093) compared to control. FIG. 29C) Western blot analysis with concentration 11 μM shows efficient knockdown of Mfap4 by two different conjugates GalNAC-si Mfap4.1356 and GalNAC-si Mfap4. 760 compared to control.
FIG. 30A, 30B, 30C: Grhpr knockdown for 1 year does not lead to liver cancer FIG. 30A) Schematic representation of the experiment. FAH−/− mice were injected with p/T-FAHIG-shRNA & SB13 expressing constructs via HDTV; then, mice were kept for 1 year to observe any tumor formation or abnormal liver histology. Livers were harvested at 1 year after injections. FIG. 30B) Bright field. Representative pictures are shown (both surfaces of the liver) (n=3 mice per experimental group, n=5 mice per control group). FIG. 30C) GFP-imaging. Representative pictures are shown (both surfaces of the liver). No GFP-positive tumor is observed. Livers are fully repopulated (strong GFP-positive signal).
FIG. 31A, 31B, 31C: Grhpr expression in human hepatocytes (HpG2 cell line) FIG. 31A) Scheme of retroviral backbone for generating stable cell lines. FIG. 31B) shRNAs efficiently targeting human Grhpr were identified. Knockdown test by qPCR using whole-cell lysates. HepG2 cells were cotransfected with pMSCV vector. FIG. 31C) Knockdown test by Western blot using whole-cell lysates. HepG2 cells with stable expression of indicated shRNAs were generated by retroviral infection and selection. Tubulin serves as a loading control.
FIG. 32A, 32B: GalNAC conjugates with siRNA against Grhpr (BNL CL.2 cell line; 72 h post-transfection) FIG. 32A) Structure of GalNAC-siRNA conjugate used in studies. Exact backbone modifications can be found in the sequence appendix (SEQ ID NO: 7094). The target sequence for the siRNA was based on the shRNA guide sequence. FIG. 32B) Western blot analysis with concentration 6 μM shows efficient knockdown of Grhpr by conjugate GalNAC-si Grhpr.361 (SEQ ID NO: 7094) compared to scrambled control. Western blot analysis with concentration 11 μM shows efficient knockdown of Grhpr by conjugate GalNAC-si Grhpr.361 compared to scrambled control.
FIG. 33A, 33B, 33C: Itfg1 knockdown accelerates liver regeneration after partial hepatectomy (PH) FIG. 33A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After that ⅔ of the liver was surgically removed. The remaining regenerating liver was harvested at 42 h and 48 h after surgery. FIG. 33B) Representative photographs of DAB Ki67-stained liver sections 42 h (n=4 per experimental group, n=6 per control group) and 48 h (n=5 per experimental group, n=10 per control group) post hepatectomy are shown (200× magnification). FIG. 33C) Quantification of Ki67 positive cells of DAB-stained liver sections (corresponding to B) show increased hepatocyte proliferation after partial hepatectomy in shltfg1-expressing livers compared to shNC livers (individual points represent individual animals, data shows average±SEM).
FIG. 34A, 34B, 34C, 34D, 34E, 34F, 34G: Itfg1 knockdown for 1 year does not lead to liver cancer FIG. 34A) Schematic representation of the experiment. FAH−/− mice were injected with p/T-FAHIG-shRNA & SB13 expressing constructs via HDTV; then, mice were kept for 1 year to observe any tumor formation or abnormal liver histology. Livers were harvested at 1 year after injections. FIG. 34B) Bright field. Representative pictures are shown (both surfaces of the liver). No tumor is observed (n=5 mice per experimental group, n=5 mice per control group). FIG. 34C) GFP-imaging. Representative pictures are shown (both surfaces of the liver). No GFP-positive tumor is observed. Livers are fully repopulated (GFP-positive). FIGS. 34D and 34F) Hematoxylin & Eosin staining. Representative pictures are shown. No malignant disease is observed in both: experimental group and control group. Pathology evaluation is conducted by certified pathologist. FIGS. 34E and 34G) GFP (DAB) staining. Representative pictures are shown. Around 95% of hepatocytes are GFP-positive which means livers were fully repopulated.
FIG. 35A, 35B, 35C, 35D, 35E, 35F: Itfg1 knockdown attenuates chronic liver damage related liver fibrosis in a NASH model FIG. 35A) Experimental outline. FAH−/− mice were injected with our constructs, then, mice were kept for full repopulation for 3 months. After full repopulation was reached mice were exposed to the “Western Diet” (high fat diet and 60% fructose) for 24 weeks. Livers were harvested, processed and analyzed. FIG. 35B) Representative macro-photographs of the livers are shown. Already macroscopically differences between groups were visible. FIG. 35C) Picro Sirius Red staining (staining for fibrotic scar tissue) and Hematoxylin & Eosin staining on sections of indicated repopulated mouse livers (representative images are shown; n=6 for shltfg1.698 and n=7 for control group, 50× magnification). FIG. 35D) The fibrotic score for each animal is shown. The score was given by a certified pathologist, who was blinded regarding the experimental groups. FIG. 35E) Objective, Al-based analysis of steatosis done by HistoIndex. Representative pictures are shown. FIG. 35F) Quantification analysis shows significantly lower steatosis score in experimental group (n=7 mice per group) compared to control group (n=7 mice per group).
FIG. 36A, 36B, 36C: Knockdown of Itfg1 impacts MKK6, JNK, and RPS6 signaling FIG. 36A) Schematic outline of isolating proteins from full repopulated livers for further broad protein array analysis. FIG. 36B) After performing a broad protein array focused Western blot experiments were done. Results of Western blot are shown here. Proteins from fully repopulated livers were isolated. Especially P-MKK6/P-MKK3 are greater activated in case of Itfg1 knockdown compared to control. There are 3 biological replicates in experiment and 3 biological replicates in control. FIG. 36C) According to STRING database, all indicated proteins are interacting and are linked to cell growth and proliferation.
FIG. 37A, 37B: GalNAC conjugates with siRNA against Itfg1 (BNL CL.2 cell line; 72 h post-transfection) FIG. 37A) Structure of GalNAC-siRNA conjugate used in studies. Exact backbone modifications can be found in the sequence appendix (SEQ ID NOs: 7095 and 7096). The target sequence for the siRNA was based on the shRNA guide sequence. FIG. 37B) Western blot analysis with concentration 6 μM shows efficient knockdown of Itfg1 by two different conjugates GalNAC-si Itfg1.698 (SEQ ID NO: 7095) and GalNAC-si Itfg1.680 (SEQ ID NO: 7096) compared to control. Western blot analysis with concentration 11 μM shows efficient knockdown of Itfg1 by two different conjugates GalNAC-si Itfg1.698 and GalNAC-si Itfg1.680 compared to control.
FIG. 38A, 38B, 38C: Mfap4 and Itfg1 knockdown enhances proliferation and regeneration beyond liver FIG. 38A) Outline of the wound healing assay. Stable cell lines were generated expressing the respective shRNAs. FIG. 38B) Knockdown of Mfap4 as well as the knockdown of Itfg1 accelerates wound healing of mouse lung cells (cell line CCL206). FIG. 38C) Knockdown of Mfap4 as well as the knockdown of Itfg1 accelerates wound healing of mouse myoblast cells (Myoblast cell line CRL1772).
FIG. 39: Pak3 knockdown accelerates wound healing in vitro Stable knockdown of Pak3 in AML12 adult hepatocyte cell line accelerates wound healing (representative images are shown).
EXAMPLES Example 1 Functional Genetic In Vivo RNAi Screen An in vivo functional genetic screen was conducted to identify new modulators of liver regeneration as therapeutic targets to increase endogenous regeneration and counteract liver disease. This approach was originally pioneered by taking advantage of FAH−/− mice. From there the screening set up was further modified and improved, so it can be applied to any mouse independent of genetic background and modification (FIG. 1A). A focused shRNA library was delivered, comprising of 250 shRNAs targeting 89 genes, by hydrodynamic tail vine injection to the liver. Through the combination with a plasmid encoding for the sleeping beauty 13 transposase, stable integration was obtained in around 5 to 10% of hepatocytes. Therefore, a chimeric mouse liver in which the shRNA expressing hepatocytes are surrounded by “wt” hepatocytes is generated. To simulate chronic liver damage the inventors treated 3 times per week for 8 weeks mice with thioacetamid (TAA), a chemical inducing liver damage (FIG. 1A). Cycles of liver damage and compensatory regeneration induce a competitive environment. If the knockdown by a certain shRNA gives an advantage to hepatocytes, the cells will expand and an enrichment for the shRNA can be detected. In contrast, if the expression of a shRNA is detrimental, this shRNA should deplete. No change compared to the starting pool indicates no effect in this environment. The abundance of the shRNAs can be determined by Illumina based deep sequencing. For sequencing, the genomic DNA was isolated from the liver, the shRNA expressing cassette was amplified with primers including Illumina adapter sequences and the product was directly sequenced.
Also, the majority of the shRNAs were depleted in this screen, a subset was consistently enriched in all biological replicates (5 independent mice) (FIG. 1B-1C). Importantly and giving confidence in the screen, two independent non-targeting control shRNAs (also named shNC or shCTRL; one targeting renilla and one targeting luciferase, both are not expressed in mice) were not enriched or depleted. Furthermore, three independent shRNAs targeting c-Met the receptor for hepatocyte growth factor and essential for liver regeneration were depleted (FIG. 1D). To avoid off-target effects of the shRNAs the inventors focused on targets against which at least two independent shRNAs were enriched (FIG. 1D). Four independent shRNAs were found enriched targeting Mfap4, two independent shRNAs for each targeting Grhpr and Itfg1.
Example 2 Validation of Identified Therapeutic Targets Mfap4—Microfibril Associated Protein 4
For validation, the knockdown efficiency of the two top-enriched shRNAs targeting Mfap4 in vitro were first tested (FIG. 2A). Both shRNAs show efficient knockdown. For each shRNA stable expressing cell lines (FIG. 2B) were generated as well as for a non-targeting control shRNA and the effect of the shRNAs in a wound healing assay was tested. The knockdown of Mfap4 (two independent shRNAs tested) increased wound closure in TIB 73 (BNLCL.2) cells and AML 12 cells, indicating increased proliferation (FIGS. 2C and 2G). Furthermore, using the stable cell lines the inventors checked for enhanced cell replication by EdU incorporation and determining the cell doubling time (FIG. 2D-2E). Accelerated proliferation was clearly detected. Cell cycle analysis by flow cytometry using the Guava Muse Cell Analyzer showed greater cell amounts (shown is amount of cell in %) in the G2 phase of cell cycle for cells with stable Mfap4 knockdown by shMfap4.1356 (SEQ ID NO: 1) and shMfap4.760 (SEQ ID NO: 2) compared to the non-targeting control (shNC), likewise indicating increased proliferation (FIG. 2F).
The inventors then took advantage of the FAH (fumarylacetoacetate) knock out mouse. The defect in the tyrosine metabolism leads to the accumulation of toxic side products in hepatocytes resulting in liver failure. Delivering a construct to around 5-10% of hepatocytes for the expression of the missing enzyme FAH and the shRNAs by hydrodynamic tail vine injection, the repopulation efficiency could be tested. If the knockdown by the shRNA targeting Mfap4 enhances regeneration and proliferation, a faster clonal expansion should be seen (FIG. 3A). As expected, knockdown of Mfap4 enhances repopulation detected by GFP-imaging of the whole liver (FIG. 3B), native-GFP fluorescence of cryosections (FIG. 3C) of the liver and antibody based staining for GFP in paraffin sections (FIG. 3D-3E). A further dilution of the amount of injected plasmids could reduce the amount of hepatocytes with stable expression of FAH, GFP and the shRNA of interest, so that the FAH expressing hepatocytes cannot fast enough expand and compensate for FAH−/− hepatocyte loss. However a shRNA dependent acceleration of regeneration might be able to allow survival. At a 1:30 dilution still all shMfap4.1356 (SEQ ID NO: 1) injected mice survive whereas all control shNC injected mice die (FIG. 3F). This further supports the Mfap4 knockdown mediated acceleration, as only in case of Mfap4 the hepatocytes expand fast enough to compensate for hepatocyte loss.
The “Western Diet” induces progressive NAFLD, leading to NASH and fibrosis (FIG. 4). The inventors repopulated FAH−/− mouse liver so that all hepatocytes express either a shRNA targeting Mfap4 or a non-targeting control shRNA. After full repopulation, the mice were exposed to the “Western Diet” (FIG. 5A). Knockdown of Mfap4 clearly attenuates disease progression, reflected in reduced fibrosis (FIG. 5B-5F). Chronic TAA exposure to shMfapp4 and shCTRL repopulated FAH mice (FIG. 6A) was also applied. Consistent with the screening results Mfap4 knockdown protects against TAA induced liver damage and fibrosis (FIG. 6B-6D). As an acute damage model, a ⅔ partial hepatectomy (PH) on repopulated mice (FIGS. 7A and 7E) was performed. Enhanced Ki67 staining (FIGS. 7B-7C and 7F-7G) as well as earlier activation of cyclin A (FIG. 7D) and cyclin E (FIG. 7H), respectively, after PH indicate faster regeneration. GFP-imaging (FIG. 7I) and DAB GFP staining (FIG. 7J) of FAH−/− livers after ⅔ surgical partial removal of livers indicated that mice were fully repopulated.
The inventors also checked for differences in pathway activation by protein arrays and Western blot after full repopulation with either shMfap4 or non-targeting control shRNA. Livers were collected and proteins for protein array and Western blot as well as RNA for transcriptomics were isolated (FIG. 8A-8H). Consistently with an enhanced regenerative capacity Mfap4 knockdown induces activation of mTOR, p70S6K, ERK and p38 (FIGS. 8B and 8D). The identified pathways are all linked (FIGS. 8C, 8E and 8K) based on STRING analysis (string-db.org) and impact cell growth and proliferation. P70S6K is a major substrate of mTOR (FIG. 8E) and contributes to liver regeneration. Furthermore, impairments in p70S6K and ERK signaling is linked to the age dependent decline of liver's regenerative capacity. Using the in vitro wound healing assay, double knockout experiments combining the stable shMfap4 or shCTRL expressing cell lines with siRNAs targeting either p70s6k or p38 (FIG. 8F-8G) were conducted. A slowdown in wound healing under such conditions was detected. This puts the knockdown of Mfap4 in line with enhancing regeneration and rejuvenating the liver. Principal component analysis for AML12-shMfap4.1356, AML12-shMfap4.760, and AML12-shNC shows cluster separation between experiment (shMfap4) and control (shNC). A heatmap comparison of Mfap4 and control indicates that genes known to be involved in liver regeneration according to the literature, such as Ptgs2, Areg, Dhrs9, Hmox1 and Nqo1, are upregulated after Mfap4 knockdown compared to control (FIG. 8H-8J). Furthermore, string analysis shows that the transcriptomic pathways coming from the cell line as well as the proteomic identified pathways from the repopulated liver are connected (FIG. 8K).
The inventors then identified 2 independent shRNAs targeting human Mfap4: huMfap4.1812 (SEQ ID NO: 7100) and huMfap4.1602 (SEQ ID NO: 7097). Efficient knockdown in the human liver cancer cell line HepG2 (FIG. 9A) was observed. Furthermore, both shRNAs show a strong on-target knockdown of huMfap4 compared to non-targeting control as determined by qPCR analysis (FIG. 9K) and Western blot (FIG. 9L) in immortalized human hepatocytes-SV40 (FIG. 91-9J). Edu incorporation assay indicates a conserved mechanism between mouse and human, as higher EdU incorporation in human HepG2 cells with Mfap4 knockdown was seen (FIG. 9B), transient knockdown of Mfap4 by siRNA in immortalised human hepatocytes shows higher EdU incorporation (FIG. 9G-9H), and stable knockdown of Mfap4 in immortalised human hepatocytes enhances wound healing (FIG. 9M-9N).
Importantly expression of Mfap4 in the liver increases in NAFLD patients with cirrhosis (FIG. 9C-9D), based on a local patient cohort. This is consistent with previous studies indicating increased Mfap4 in liver and lung fibrosis. Interestingly, Mfap4 was suggested as potential biomarker for non-invasive assessment of hepatic fibrosis in hepatitis C patients. Staining for Mfap4 of human liver tissue from healthy and cirrhotic liver done by the inventors also showed increased detection in the diseased liver. Interestingly beside strong staining in fibrotic scar areas Mfap4 was also detected in the cytoplasm and nucleus of hepatocytes (FIG. 9E). Mfap4 is thought to be an extracellular matrix protein but not much is known about its role in hepatocytes. It represents therefore a new target for liver disease therapy, with new biology.
The inventors also investigated the development of liver cancer in Mfap4 treated mice. shMfap4 constructs were delivered by HDTV to FAH−/− mice. After keeping mice for 1 year, livers were harvested to determine any tumor formation in the liver (FIG. 28A). No GFP-positive tumor is observed and livers are fully repopulated as indicated by a strong GFP-positive signal (FIGS. 28B-28C and 28E). Around 95% of hepatocytes are GFP-positive. Also, Hematoxylin & Eosin staining did not reveal any malignant disease in both the shMfap4 and shNC treated group. Certified pathologists who conducted the evaluation did not find malignant lesions in the liver (FIG. 28D). The experiments show that Mfap4 knockdown for 1 year does not lead to liver cancer in mice.
Modified siRNA-GalNAC conjugates targeting Mfap4 were generated (FIG. 29A; Table 11; SEQ ID NOs: 7092 and 7093). Human immortalised hepatocytes were treated for 72 h with siRNA and were then exposed for 4 h to EdU, then fixed and analysed. Western blot analysis with shows efficient knockdown of Mfap4 by two different conjugates GalNAC-si Mfap4.1356 and GalNAC-si Mfap4.760 compared to scrambled control.
Grhpr—Qlyoxylate and Hydroxypyruvate Reductase
The second identified target is an enzyme with hydroxyl-pyruvate reductase, glyoxylate reductase and D-glycerate dehyrdrogenase enzymatic activities. Two shRNAs targeting Grhpr were strongly enriched in the screen (FIG. 1A-1D). Validation followed the same way as was described for Mfap4. First, stable cell lines were generated and the knockdown efficiency of the shRNAs was determined (FIG. 10A-10B). Both shRNAs show a strong on-target knockdown. The wound healing assay supported a faster healing and faster proliferation under Grhpr knockdown condition (FIG. 10C-10D). Again, taking advantage of the FAH−/− mice, repopulation between Grhpr targeting and control shRNA was compared. Grhpr knockdown accelerates liver repopulation under these conditions and all shGrhpr injected mice still survive at a 1:30 dilution whereas all control shNC injected mice die (FIG. 11A-11G). Next, the liver was completely repopulated so that every hepatocyte expresses shGrhpr or a non-targeting control shRNA (FIG. 12A). In the acute liver damaging model of ⅔ partial hepatectomy, Grhpr knockdown accelerates regeneration indicated by the earlier peak of Ki67 positive cells (FIG. 12B-12D). Furthermore, applying chronic TAA treatment to shGrhpr expressing repopulated FAH−/− mouse liver showed reduced liver injury and reduced fibrosis compared to control (FIG. 13A-13D). However, Grhpr knockdown does not seem to protect against NAFLD related disease progression and fibrosis development in the Western Diet mouse model (FIG. 14A-14D).
Interestingly, the NAFLD patient cohort showed a significant reduction in Grhpr expression in the liver at NASH advanced fibrosis and cirrhosis stages, but not very strongly (FIG. 15A-15C).
Similar to the experimental set up for targeting Mfap4, the development of liver cancer was investigated under Grhpr knockdown conditions (FIG. 30A). FAH−/− mice were injected with a combination of p?T-FAHIG-shGrhpr and SB13 plasmids for liver repopulation. Initially 5 to 10% of hepatocytes will have stable integration. After NTBC drug withdrawal after injection the liver will be repopulated, so that nearly every hepatocyte will express the shRNA targeting Grhpr. 1 year after injection livers were harvested and evaluated for liver tumor development. No GFP-positive tumor were observed in FAH−/− mice, and livers are fully repopulated (FIG. 30B-30C), indicating that long term Grhpr knockdown in the liver does not induce liver cancer and is safe
Furthermore, HepG2 cells with stable expression of shRNAs were generated by retroviral transfection and selection (FIG. 31A). Grhpr knockdown was determined by qPCR and Western blot using RNA or whole-cell lysates (Tubulin was used as a loading control). Several independent shRNAs targeting human Grhpr were identified (FIG. 31 B) that lead to efficient Grhpr knockdown in the human liver cancer cell line HepG2 (FIG. 31C).
Modified siRNA-GalNAC conjugates targeting Grhpr were generated (FIG. 32A, Table 11; SEQ ID NO: 7094), following the same way as was described for Mfap4. BNL CL.2 cell line; 72 h post-transfection. Western blot analysis with 6 μM and 11 μM, respectively, shows efficient knockdown of Grhpr by conjugate GalNAC-si Grhpr.361 compared to scrambled control.
Itfg1—Integrin Alpha FG-GAP Repeat Containing 1
The on-target knockdown efficiency of the top enriched shRNA and an additional independent shRNA were first tested. Both shRNAs show a good on-target knockdown by qPCR and Western blot (FIG. 16A-16B). Itfg1 knockdown strongly accelerates wound healing in vitro, taking advantage of the stable cell lines (FIG. 16C). The inventors then took advantage of the FAH−/− mice and did a repopulation assay (FIG. 16D). Consistent with the screening results, both Itfg1 knockdowns accelerate repopulation (FIG. 16E-16G). Interestingly, if the plasmid input was further diluted, at some point, the amount of hepatocytes with stable integration should be not sufficient to compensate for hepatocyte loss after NTBC withdrawal (FIG. 16H right panel). At a 1:30 dilution still all shltfg1 injected mice survive whereas all shCTRL injected mice die (FIG. 16H left panel). This further supports the Itfg1 knockdown mediated acceleration, as only in case of shltfg1 the hepatocytes expand fast enough to compensate for hepatocyte loss. Consistent with this, after full liver repopulation, a protective effect of Itfg1 knockdown against chronic TAA induced liver damage and fibrosis (FIG. 17A-17E) was seen.
In the mouse Western Diet NAFLD model (FIG. 35A), knockdown of Itfg1 attenuates fibrosis development (FIG. 35B-35F), which could already be seen macroscopically (FIG. 18A). The rough surface on the liver of mice expressing a non-targeting control shRNA indicates advanced fibrosis. In contrast the surface of shltfg1 expressing livers indicates strong reduction in fibrosis. In addition objective analysis by HistoIndex with a proprietary AI pathology system, further showed significant reduction in steatosis by Itfg1 knockdown (FIG. 35E-35F). The expression data from our NAFLD patient cohort indicates no major expression changes in the liver during disease progression (FIG. 18B), suggesting a postransciptional regulation. Itfg1 is expressed in healthy liver tissue and in NASH, Cirrhosis and hepatocellular carcinoma (FIG. 18C-18E). Data from The Human Protein Atlas show that low expression of Itfg1 is associated with increased survival in liver cancer patients (FIG. 18G). Interestingly, so far not much is known about Itfg1 and therefore it represents an interesting novel target for liver disease. Generating stable human HepG2 cell lines and determining the knockdown efficiency of different Itfg1 shRNAs showed a strong on-target knockdown (FIG. 18G-18H) for human Itfg1.
Again, taking advantage of the FAH−/− mice, the liver was completely repopulated for 3 months so that every hepatocyte expresses shltfg1 or a non-targeting control shRNA (shNC). Afterwards, ⅔ of the liver was removed and liver regeneration monitored (FIG. 33A). In the acute liver damaging model of ⅔ partial hepatectomy, Itfg1 knockdown accelerates regeneration after partial hepatectomy indicated by an earlier peak and higher amount of Ki67 positive cells (FIG. 33B-33C). No malignant disease and no GFP-positive tumor is observed 1 year after Itfg1 knockdown in mice (FIG. 34A-34E). Livers are fully repopulated in both the shltfg1 group and control group as indicated by around 95% GFP-positive hepatocytes.
To investigate the differences in pathway activation after full repopulation with either shltfg1 or non-targeting control shRNA, proteins from full repopulated livers were isolated for further broad protein array analysis (FIG. 36A). After performing the broad protein array, focused Western blot experiments were carried out. It was observed that knockdown of ITFG1 impacts MKK6, JNK, and RPS6 signaling. In particular, P-MKK6/P-MKK3 are greater activated in case of Itfg1 knockdown compared to control (FIG. 36B). According to STRING database, all indicated proteins are interacting and are linked to cell growth and proliferation (FIG. 36C).
Modified siRNA-GalNAC conjugates were generated to target Itfg1 (FIG. 37A, Table 11; SEQ ID NOs: 7095 and 7096). Western blot analysis with 6 μM and 11 μM, respectively, shows efficient knockdown of Itfg1 by two different conjugates GalNAC-si Itfg1.698 and GalNAC-si Itfg1.680 compared to control (FIG. 37B).
Mfap4 or Itfg1 Knockdown in Mouse Lung Cell Line and Mouse Myoblast Cell Line
Stable cell lines using mouse lung cell line CCL206 and mouse myoblast cell line CRL1722 were generated expressing the respective shRNA—shMfap4, shltfg1 or control shNC (FIG. 38A). Knockdown of Mfap4 as well as the knockdown of Itfg1 accelerates wound healing of mouse lung cells as well as of mouse myoblast cells. These results suggest that Mfap4 and Itfg1 knockdown enhances proliferation and regeneration not only of liver but also of lung and myoblasts.
Example 3—Emulsion +500 Screen and Target Validation Independent of the TAA chronic damage-induced screen, a functional genetic screen using a focused shRNA library containing 1780 shRNAs targeting 467 genes was also conducted. These 467 genes are the mouse homologs corresponding to differentially up-regulated genes found in our NAFLD patient cohort (FIG. 19A). The screen was conducted in two diet-based mouse models of NAFLD, the “Western Diet” (WD) model (FIG. 4A-4H) and the Choline deficient L-amino acid defined high fat diet (CDHFD) model (FIGS. 20A and 20B). The CDHFD is a very aggressive and fast model leading to NASH with advanced fibrosis in 8 weeks. In contrast, the WD takes about half a year to reach this stage. Similar to the TAA screen, the shRNA library was delivered to the liver by hydro-dynamic tail vine injection (HDTV). The combination of transposon-based constructs with a sleeping beauty 13 transposase-expressing plasmid leads to the stable integration in about 5 to 10% of hepatocytes. After injection, the respective diet exposure was started until NASH with late fibrosis is reached. After harvesting the liver the genomic DNA is isolated, part of the shRNA expression cassette is amplified and the abundance sequenced by NGS. Enriched shRNAs are identified, which indicates an advantage by these shRNAs in the context of fatty liver disease.
In the CDHFD model the majority of shRNAs were depleted (FIG. 19B). Interestingly, based on normalized shRNA abundance level in a principal component analysis, clear segregation between our CDHFD vs normal chow exposed mice (FIG. 19C) was seen. In-depth differential abundance shRNA analysis was then performed. Six shRNAs/targets for validation (FIG. 19D) were identified based on reliable enrichment in the majority of animals. Importantly, as the library was designed based on relevant human patient data and this is a functional genetic screen, scoring in the screen can already be seen as the first validation step.
ABCC4—ATP Binding Cassette Subfamily C Member 4 (MRP4)
This target is a transporter that mediates the efflux of bile components into the blood. Interestingly in all control diet exposed mice, only a low number of relative reads was detected, whereas a strong enrichment in 3 out of 5 CDHFD mice was seen (FIG. 21A-21B). Furthermore, the expression of this gene increases during disease progression in the human patient cohort (FIG. 21C-21E). The expression also significantly increases in relation to the inflammation, fibrosis and ballooning score.
PAK3—P21 (RAC1) Activated Kinase 3
This target is a serine-threonine kinase. In 4 out of 5 mice enrichment for the shRNA targeting PAK3 (FIG. 22A-B; SEQ ID NO: 9) was seen. The expression of PAK3 is significantly upregulated in cirrhosis and fibrosis score 4 NAFLD patients (FIG. 22C-22E). As liver and pancreas both derive from the foregut endoderm during development, it is interesting that Pak 3 was described as a regulator of beta-cell differentiation. In that context, Pak3 promotes cell cycle exit and therefore would have an anti-proliferative function. Therefore, this is a highly interesting target for liver disease and regeneration, too, as confirmed by stable knockdown of Pak3 in the AML12 adult hepatocyte cell line, which accelerates wound healing (FIG. 39).
TRNP1—TMF1 Regulated Nuclear Protein 1
This target is a DNA-binding factor with a crucial role in brain development and accelerates cell-cycle progression. So far, no liver related function is described. In control fed mice, a consistent selection against shTrnp1 expressing cells (low relative reads) was detected. However, 4 out of 5 mice on CDHFD show enrichment for shTrnp1 (FIG. 23A-23B; SEQ ID NO: 13). Our human NAFLD patient cohort shows a complicated gene expression pattern of Trnp1 in the liver. In the earlier disease stages, we see a downregulation, but upregulation at the cirrhosis stage (FIG. 23C-23E). Consistent with this during steatosis we see a progressive downregulation.
APLN—Apelin
This target encodes a peptide that functions as an endogenous ligand for the G-protein coupled apelin receptor. In 3 out of 5 CDHFD mice, a strong enrichment for the shRNA targeting Apln compared to the control (FIG. 24A-24B; SEQ ID NO: 11) was seen. Based on the NAFLD patient cohort a significant upregulation at the cirrhosis stage is seen and consistent with this at a fibrotic score of 4 (FIG. 24C-24E). There is already a publication suggesting that Apln promotes hepatic fibrosis through ERK signaling. Also, Apln was described to be different in NAFLD patients and fatty liver rats and suggested as a diagnostic marker. Importantly, the encoded protein is processed into active peptide fragments, making it difficult to be targeted by classic drug approaches and ideal for RNAi based therapeutics.
KIF20A—Kinesin Family Member 20A
This target encodes a mitotic kinesin required for cytokinesis. In 3 out of 5 CDHFD mice, a strong enrichment for the shRNA targeting Kif20a compared to the control (FIG. 25A-25B; SEQ ID NO: 12) is seen. Based on the NAFLD patient cohort data, expression of Kif20a is increasing during disease progression (FIG. 25C-25E). Furthermore, high expression of Kif20a is associated with poor survival in case of HCC. Interestingly, Kif20a-knockdown affects cytokinesis leading to higher polyploidy. Higher polyploidy is also seen in many chronic liver diseases.
LTB—Lymphotoxin Beta
This target encodes a type II membrane protein of the TNF family. In 4 out of 5 CDHFD mice a strong enrichment for the shRNA targeting LTB compared to the control is seen (FIG. 26A-26B; SEQ ID NO: 10). Based on the NAFLD patient cohort data expression of LTB is consistently increasing during disease progression, except at the cirrhosis stage (FIG. 26C-26E). A significant expression increase based on steatosis, inflammation, ballooning and fibrosis score is also seen. Interestingly, LTB was found to regulate liver regeneration, is linked to obesity and animals lacking the lymphotoxin pathway were shown to resist diet-induced obesity.
In addition, a functional genetic screen targeting the top down-regulated genes based on the NAFLD patient cohort is under the way. Also, a functional genomic screen is on the finishing line. In this set up, the inventors screen genome wide (32 shRNA pools of around 2500 to 3000 shRNAs in mice) specifically for modulators of NAFLD disease progression, by only inducing shRNA expression after steatosis is reached before progression to NASH (FIG. 27).
List of siRNA Guide Strands:
The siRNA guide strand is identical to the anti-sense strand of the sense-loop-anti-sense RNA structure. This sequence equals the reverse complement sequence of the targeting sequence in the mRNA. The list shows the 21 bp siRNA guide strand. SEQ ID NOs: 15 and 19 were used in the Examples. Light grey marked, bold and underlined are siRNA guide strands with top-DSIR prediction score and predicted by the genomewide sensor prediction algorithm (SEQ ID NOs: 349-351, 457, 465, 468, 470, 473, 1483, 1485, 1486, 1488-1490, 2209, 2225, 2234, 5061, 5062, 5390-5993, 5967, 5970, 5971, 6977, 6978 and 6993).
Sequence Identity
Pairwise and multiple sequence alignment for the purposes of determining percent identity between two or more amino acid or nucleic acid sequences can be achieved in various ways known to a person of skill in the art, for instance, using publicly available computer software such as ClustalOmega (Söding, J. 2005, Bioinformatics 21, 951-960), T-coffee (Notredame et al. 2000, J. Mol. Biol. (2000) 302, 205-217), Kalign (Lassmann and Sonnhammer 2005, BMC Bioinformatics, 6(298)) and MAFFT (Katoh and Standley 2013, Molecular Biology and Evolution, 30(4) 772-780) software. When using such software, the default parameters, e.g. for gap penalty and extension penalty, are preferably used.
Tables
TABLE 1
Mouse (mus musculus):
SEQ ID siRNA guide strand/AS
NO siRNA_id Sequence
1 Mfap4.1356 UUCAGAGUUGAGCAGUAGCCG
2 Mfap4.760 UUGAGGGAGUAAUAGAAGCCU
3 Grhpr.361 UUCUGCAGUGGCAUCUGUCAG
4 Grhpr.1024 UACAGCUUGAGUUCGCUGGGC
5 Grhpr.1025 UUACAGCUUGAGUUCGCUGGG
6 Iftg1.698 UUAGAGGCAGUCAAUGUCGUG
7 Itfg1.680 UUGAAGUCCAUAAUCAGUGGU
8 Abcc4 UCGAAUUUGUUCACGUCGUUG
9 Pak3 UGUGUAAACAGUUCCUGAUGC
10 Ltb UCUGGUGUAGAAUCCGCAGCU
11 Apin UCAAGGAGAGCCAGAGCAGCA
12 Kif20a UAAUUGACUUGUUUCAUCUAG
13 Trnpl UGACUUAGUGGGGGUCGGAGU
Human (Homo Sapiens):
TABLE 2
Results for MFAP4. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA_ siRNA guide strand/
NO id AS Sequence
14 1 AUAGAUGUCGUCACAGUCCAG
15 2 UAUUAUGUUAUUAUUACACUG
16 3 UUGUAGUCAUUCCAGCCGCGG
17 4 UUAUUGAGACCUUCAGUCCCU
18 5 UAGAACCAUGUGCCUCUCGGA
19 6 UAUUGAGACCUUCAGUCCCUA
20 7 UCACACUGCACUGCUCAGCUU
21 8 UUCUGCACCUGACUCCAGGUG
22 9 UCGAAGGUAGAGAACUUCUGG
23 10 UCAGCUUAGCACACUAGGGUG
24 11 UAGGACACCAUCAGCAGGGGA
25 12 UUUAUUGAGACCUUCAGUCCC
26 13 UUGGAGGCAACUCAUUCUCAU
27 14 UAUGUUAUUAUUACACUGUCU
28 15 UCGCAGCUCAUACUUCUGCUU
29 16 UAGAUGUCGUCACAGUCCAGG
30 17 UUAUGUUAUUAUUACACUGUC
31 18 UUGGUGCUCGGGAAUCAGCAG
32 19 UAAACCUCUCAACACCCAGAG
33 20 UAGUAGAAGCCCUUCCACUGG
34 21 UGUAAGGAGUUGGUGCUCGGG
35 22 AUCAGCAGAAGCAUGCAUCAG
36 23 UGUUAUUAUUACACUGUCUUU
37 24 UUCAUUCAGGUUCUGAAGGUU
38 25 UUCUGCACAAAGAGGUCCUGG
39 26 UCUCCAGAGCAUCUCCUCGGA
40 27 UUUGAGAGCAGCCCAGAGGAG
41 28 UUGAGGGAGUAGUAGAAGCCC
42 29 UAUGAUAGUGAGGUGGGCUGG
43 30 UAGAAUACACCAUGGGCCCUG
44 31 UGUAACUUCAGGUGUAGGGGA
45 32 UUGUAAGGAGUUGGUGCUCGG
46 33 UUGUUCUCAAAGUCCUCCAAG
47 34 UGAGGGAGUAGUAGAAGCCCU
48 35 UUCUGCUUCAGUGUCAGGAGG
49 36 AUACUUCUGCUUCAGUGUCAG
50 37 UUAUUAUUACACUGUCUUUUU
51 38 AUGUCGUCACAGUCCAGGGGU
52 39 AUGUUAUUAUUACACUGUCUU
53 40 UCUGCGCUGACCGCGUUCGGG
54 41 UUCCACGGUACUCACCACAGG
55 42 AAGGUUUAUUGAGACCUUCAG
56 43 UAAGGAGUUGGUGCUCGGGAA
57 44 UGUCAGGAGGUGCAUGUUCUG
58 45 AUUAUGUUAUUAUUACACUGU
59 46 UCCUCCUCUGCGCUGACCGCG
60 47 UGAAGGUUUAUUGAGACCUUC
61 48 AAGAUGGACCACAAAGGCCUG
62 49 UUCAGUGUCAGGAGGUGCAUG
63 50 UAGAUGAGGUACACGCCGUCU
64 51 UCAUACUUCUGCUUCAGUGUC
65 52 UUAGGAAUGGAUGCCCUGGGU
66 53 AUGGAGACCAUGGGUGUCCAG
67 54 UACUUCUGCUUCAGUGUCAGG
68 55 UUCAUGCUGUCAGUUCUGCUC
69 56 AAGCAGGACAAGAUGGACCAC
70 57 AUUCUCAUGGAGCCCAGCCAG
71 58 UGCGGAACCAGAAGGCUCCUG
72 59 AGAGAUUGUCCUCUGCUCCCU
73 60 AAGUCCUCCAAGUCCACUCGC
74 61 UCCAAGUCCACUCGCAGCUCA
75 62 UUCAGUCCCUACCCACUCCCA
76 63 UGUUCACACUGCACUGCUCAG
77 64 UAGGAAUGGAUGCCCUGGGUG
78 65 AACCUCUCAACACCCAGAGGG
79 66 UGGGCAUAGAUGUCGUCACAG
80 67 UGGGACAUGGUUUGAGAGCAG
81 68 UCCACGGUACUCACCACAGGG
82 69 AAGACCUCAUAUGCAUGCCUA
83 70 AGCUUGUAGUCAUUCCAGCCG
84 71 UCAUGCUGUCAGUUCUGCUCA
85 72 UGUUGGGACAGGUUGGAGGCA
86 73 AAGCUGAGUAUGAUAGUGAGG
87 74 UGUUGUUCUCAAAGUCCUCCA
88 75 UCUGCUUCAGUGUCAGGAGGU
89 76 UGUUUCAGGGUGGUGUGCGGU
90 77 UGUGCCUCUCGGAAGAGGCCU
91 78 UGUAGUCAUUCCAGCCGCGGA
92 79 UAUUAUUAUUAUGUUAUUAUU
93 80 UAUUAUUAUGUUAUUAUUACA
94 81 UCAGUCCCUACCCACUCCCAG
95 82 UUAUUAUGUUAUUAUUACACU
96 83 UAGGACAGGGAGUCACCUGCC
97 84 UACUCUCCAUCAGCACGGCCG
98 85 UGAGUAUGAUAGUGAGGUGGG
99 86 AUGGAGAAGUCAGCGUACUUG
100 87 AUGAUAGUGAGGUGGGCUGGG
101 88 UGGUAGGACAGGGAGUCACCU
102 89 UGUCAGUUCUGCUCAGAGUGG
103 90 UCUCAAAGUCCUCCAAGUCCA
104 91 UCUGAAGGUUUAUUGAGACCU
105 92 AUUAUUAUUAUGUUAUUAUUA
106 93 UACACGCCGUCUGACUGGUAG
107 94 UUGUCCUCUGCUCCCUCAUGU
108 95 UGUGAAAUACAAGGUUCCCUU
109 96 UCCUGGUCCCGGUCGAAGGUA
110 97 AGCAGAAGCAUGCAUCAGGGG
111 98 GAUGUCGUCACAGUCCAGGGG
112 99 AUGAGGUACACGCCGUCUGAC
113 100 UUUCAGGGUGGUGUGCGGUAG
114 101 UCCACAGUGAGGAAGCAGGAC
115 102 UUUGAGGGAGUAGUAGAAGCC
116 103 UCGGAUCCCGGAGACCUGGGG
117 104 UUCCCUUCUGCACCUGACUCC
118 105 UGCAGAGAUUGUCCUCUGCUC
119 106 AUCUCAGUGCGUUUGAGGGAG
120 107 UCGGUGGUCAUGUCACAGAAG
121 108 CUGAGUAUGAUAGUGAGGUGG
122 109 UGAAAUACAAGGUUCCCUUCU
123 110 AGGUUCUGAAGGUUUAUUGAG
124 111 UGGUCAUGUCACAGAAGACGG
125 112 UUCCAGCCGCGGAAGAAACUU
126 113 UGAUAGUGAGGUGGGCUGGGG
127 114 CAUGCUGUCAGUUCUGCUCAG
128 115 UCAGCUGUUGGGACAGGUUGG
129 116 ACAUGGUUUGAGAGCAGCCCA
130 117 UAAGUUGGUGGGAGGGAUGCU
131 118 CAAGGUUCCCUUCUGCACCUG
132 119 CUCAGCUUAGCACACUAGGGU
133 120 AGAGCAUCUCCUCGGAUCCCG
134 121 UCCUCGGAUCCCGGAGACCUG
135 122 CAUAGAUGUCGUCACAGUCCA
136 123 AACCAGAAGGCUCCUGAGGAG
137 124 CUUGUAGUCAUUCCAGCCGCG
138 125 AGGCCUGUGAAAUACAAGGUU
139 126 UCCCUUCUGCACCUGACUCCA
140 127 UGUGGUAGGACAGGGAGUCAC
141 128 UGAGGAAGCAGGACAAGAUGG
142 129 AGCAUCUCCUCGGAUCCCGGA
143 130 AGAACCAUGUGCCUCUCGGAA
144 131 UGGUGCUCGGGAAUCAGCAGA
145 132 GUUCUGCACAAAGAGGUCCUG
146 133 GUCGAAGGUAGAGAACUUCUG
147 134 AGGUACACGCCGUCUGACUGG
148 135 AACUCAUUCUCAUGGAGCCCA
149 136 AUGCUGAAGAUGGGACAUGGU
150 137 UGCUGAAGAUGGGACAUGGUU
151 138 UGCGCAGUUCUGCACAAAGAG
152 139 UAGCCCUGGGCAUAGAUGUCG
153 140 AAGACGGGCACAGGCACACUG
154 141 AUGCUGUCAGUUCUGCUCAGA
155 142 AAAGUCCUCCAAGUCCACUCG
156 143 AGUAGAAGCCCUUCCACUGGG
157 144 UGUCCUCUGCUCCCUCAUGUG
158 145 UCCACUCGCAGCUCAUACUUC
159 146 UCGGGAAUCAGCAGAAGCAUG
160 147 AUCAGCACGGCCGAAGCCCAG
161 148 GUUAUUAUUACACUGUCUUUU
162 149 UGCGCUGACCGCGUUCGGGGA
163 150 ACAAAGAGGUCCUGGUCCCGG
164 151 AAGUUGGUGGGAGGGAUGCUG
165 152 UGCACCUGACUCCAGGUGUAA
166 153 UGCACUGCUCAGCUUAGCACA
167 154 AGUCCUCCAAGUCCACUCGCA
168 155 UUCACACUGCACUGCUCAGCU
169 156 UCAUAUGCAUGCCUACCUUGG
170 157 UGAGGAGAGAGCUGCGCAGUU
171 158 CAGCUCAUACUUCUGCUUCAG
172 159 UGUCACAGAAGACGGGCACAG
173 160 AAACCUCUCAACACCCAGAGG
174 161 UCUGCACCUGACUCCAGGUGU
175 162 ACAGUGAGGAAGCAGGACAAG
176 163 UGGUUUGAGAGCAGCCCAGAG
177 164 UCUGACUGGUAGCCCUGGGCA
178 165 UCAUCUCAGUGCGUUUGAGGG
179 166 UGAAGAUGGGACAUGGUUUGA
180 167 CAGCUUAGCACACUAGGGUGG
181 168 UCUGCACAAAGAGGUCCUGGU
182 169 UGCCUCUCGGAAGAGGCCUGG
183 170 UGCUCAGCUUAGCACACUAGG
184 171 ACUUCUGCUUCAGUGUCAGGA
185 172 AUUAUUAUGUUAUUAUUACAC
186 173 UCAUGUCACAGAAGACGGGCA
187 174 AGAUGAGGUACACGCCGUCUG
188 175 GUUGUUCUCAAAGUCCUCCAA
189 176 UCAACACCCAGAGGGUAUGGG
190 177 AUUCAGGUUCUGAAGGUUUAU
191 178 CUGAAGGUUUAUUGAGACCUU
192 179 UGGAGAGAAGCAGCAGCAGCG
193 180 UCAAAGUCCUCCAAGUCCACU
194 181 UUGAGAGCAGCCCAGAGGAGU
195 182 UUGGUGGGAGGGAUGCUGAAG
196 183 UAGUCAUUCCAGCCGCGGAAG
197 184 AUGGACCACAAAGGCCUGCAG
198 185 AAUACAAGGUUCCCUUCUGCA
199 186 CAUGGUUUGAGAGCAGCCCAG
200 187 UCAUUCAGGUUCUGAAGGUUU
201 188 UUAUUAUUAUGUUAUUAUUAC
202 189 AGGCAACUCAUUCUCAUGGAG
203 190 UGGAGAAGUCAGCGUACUUGG
204 191 AGUACUCUCCAUCAGCACGGC
205 192 AUACAAGGUUCCCUUCUGCAC
206 193 ACUGCUCAGCUUAGCACACUA
207 194 CUAGAAUACACCAUGGGCCCU
208 195 UCAGCAGAAGCAUGCAUCAGG
209 196 UCCUGAGGAGAGAGCUGCGCA
210 197 AUCCUCCUCUGCGCUGACCGC
211 198 CUCCAGAGCAUCUCCUCGGAU
212 199 AGUGCCUUCAUGCUGUCAGUU
213 200 CACACUGCACUGCUCAGCUUA
214 201 CUCUCCAGAGCAUCUCCUCGG
215 202 AAAUACAAGGUUCCCUUCUGC
216 203 UGGAGGCAACUCAUUCUCAUG
217 204 UUCAGGUUCUGAAGGUUUAUU
218 205 CUGCUCAGCUUAGCACACUAG
219 206 CACAAAGAGGUCCUGGUCCCG
220 207 UACACCAUGGGCCCUGUUCAC
221 208 UCAGGAGGUGCAUGUUCUGCA
222 209 UGUCAGCUGUUGGGACAGGUU
223 210 AGCAGAGGGAGCACUCAUGGA
224 211 GAGACCUUCAGUCCCUACCCA
225 212 ACUCGCAGCUCAUACUUCUGC
226 213 ACUCAUUCUCAUGGAGCCCAG
227 214 UGGUCCCGGUCGAAGGUAGAG
228 215 CUGUGAAAUACAAGGUUCCCU
229 216 UACCCACUCCCAGCCCUGCAG
230 217 UUCUCAAAGUCCUCCAAGUCC
231 218 AGCCGCGGAAGAAACUUACUG
232 219 AGAUGUCGUCACAGUCCAGGG
233 220 AGCACUCAUGGAGACCAUGGG
234 221 ACUCUCCAUCAGCACGGCCGA
235 222 CUUCAGUGUCAGGAGGUGCAU
236 223 GAAGCUGAGUAUGAUAGUGAG
237 224 CAGGAGGUGCAUGUUCUGCAG
238 225 CAUCUCAGUGCGUUUGAGGGA
239 226 AGUGUAACUUCAGGUGUAGGG
240 227 ACAAGGUUCCCUUCUGCACCU
241 228 AGGUUUAUUGAGACCUUCAGU
242 229 CUCCUCUGCGCUGACCGCGUU
243 230 AUUGUCCUCUGCUCCCUCAUG
244 231 CACUCGCAGCUCAUACUUCUG
245 232 UCCACUUCCCGCCCUCGGUGG
246 233 CAGGCUAGAACCAUGUGCCUC
247 234 AAAGAGGUCCUGGUCCCGGUC
248 235 CUCGGGAAUCAGCAGAAGCAU
249 236 ACGGGCACAGGCACACUGGGG
250 237 CUCUCCAUCAGCACGGCCGAA
251 238 UCAGGUUCUGAAGGUUUAUUG
252 239 AGUUCUGCACAAAGAGGUCCU
253 240 UAGAAGCCCUUCCACUGGGCC
254 241 AGUAUGAUAGUGAGGUGGGCU
255 242 ACAGGUUGGAGGCAACUCAUU
256 243 ACCAUGUGCCUCUCGGAAGAG
257 244 AGCUGUUGGGACAGGUUGGAG
258 245 ACCUCUCCAGAGCAUCUCCUC
259 246 UCCUCUGCGCUGACCGCGUUC
260 247 GGUCAUGUCACAGAAGACGGG
261 248 AUGGUUUGAGAGCAGCCCAGA
262 249 UCAGGGUGGUGUGCGGUAGCU
263 250 UACAAGGUUCCCUUCUGCACC
264 251 AAGAGGUCCUGGUCCCGGUCG
265 252 UCCAGCCGCGGAAGAAACUUA
266 253 CUCAUAUGCAUGCCUACCUUG
267 254 AAGGUUCCCUUCUGCACCUGA
268 255 UGCUGUCAGUUCUGCUCAGAG
269 256 AACACCCAGAGGGUAUGGGGA
270 257 GUAGAUGAGGUACACGCCGUC
271 258 UAGGCCGUGUUGUUCUCAAAG
272 259 AGAUGGGACAUGGUUUGAGAG
273 260 UUCCACUGGGCCCAGUUGAUG
274 261 CAGCUGUUGGGACAGGUUGGA
275 262 AGCCCUGCAGAGAUUGUCCUC
276 263 CAUACUUCUGCUUCAGUGUCA
277 264 UUCUGAAGGUUUAUUGAGACC
278 265 AGGACAGGGAGUCACCUGCCC
279 266 ACAAGAUGGACCACAAAGGCC
280 267 AGAGGUCCUGGUCCCGGUCGA
281 268 AGCUGAGUAUGAUAGUGAGGU
282 269 UCCCUACCCACUCCCAGCCCU
283 270 AGGCUCCUGAGGAGAGAGCUG
284 271 AGACCAUGGGUGUCCAGGGGA
285 272 GUCCACUCGCAGCUCAUACUU
286 273 AUUGAGACCUUCAGUCCCUAC
287 274 AUGAGGCCUGUGAAAUACAAG
288 275 UCACAGAAGACGGGCACAGGC
289 276 AGAUUGUCCUCUGCUCCCUCA
290 277 AGACCUUCAGUCCCUACCCAC
291 278 CUGUUCACACUGCACUGCUCA
292 279 GUAGGACACCAUCAGCAGGGG
293 280 GUGUAACUUCAGGUGUAGGGG
294 281 GAGACCAUGGGUGUCCAGGGG
295 282 CAACUCAUUCUCAUGGAGCCC
296 283 CUGACUGGUAGCCCUGGGCAU
297 284 GGAAGAAACUUACUGAGCCAU
298 285 CGGAAGAAACUUACUGAGCCA
299 286 CUGUCAGUUCUGCUCAGAGUG
300 287 CCCAGCUUGUAGUCAUUCCAG
301 288 AAGCCCUUCCACUGGGCCCAG
302 289 GUACACGCCGUCUGACUGGUA
303 290 GCUAAACCUCUCAACACCCAG
304 291 AGAAGCAGCAGCAGCGGCAGG
305 292 UCAGUGUCAGGAGGUGCAUGU
306 293 AGAGAAGCAGCAGCAGCGGCA
307 294 UGACUGGUAGCCCUGGGCAUA
308 295 CUGCUUCAGUGUCAGGAGGUG
309 296 CACGGUACUCACCACAGGGGA
310 297 CUCGGUGGUCAUGUCACAGAA
311 298 AAGGAGUUGGUGCUCGGGAAU
312 299 GAGUAUGAUAGUGAGGUGGGC
313 300 GGAAUCAGCAGAAGCAUGCAU
314 301 CUAGAACCAUGUGCCUCUCGG
315 302 CUCGCAGCUCAUACUUCUGCU
316 303 UGCUUCAGUGUCAGGAGGUGC
317 304 UCCUCCAAGUCCACUCGCAGC
318 305 AGGAGUGCCUUCAUGCUGUCA
319 306 GUCCUCCAAGUCCACUCGCAG
320 307 ACACUGCACUGCUCAGCUUAG
321 308 GAGUAGUAGAAGCCCUUCCAC
322 309 GUAGUCAUUCCAGCCGCGGAA
323 310 CUGCAGAGAUUGUCCUCUGCU
324 311 AUGGGCCCUGUUCACACUGCA
325 312 AUAGGCCGUGUUGUUCUCAAA
326 313 AUGGGACAUGGUUUGAGAGCA
327 314 GAGGGAGUAGUAGAAGCCCUU
328 315 GACAGGUUGGAGGCAACUCAU
329 316 CCUCAUAUGCAUGCCUACCUU
330 317 AAUCAGCAGAAGCAUGCAUCA
331 318 CCAGGCUAGAACCAUGUGCCU
332 319 UGCACAAAGAGGUCCUGGUCC
333 320 CGUGGAGAGAAGCAGCAGCAG
334 321 CUGCACCUGACUCCAGGUGUA
335 322 CUCCAAGUCCACUCGCAGCUC
336 323 AGUAGUAGAAGCCCUUCCACU
337 324 UCAGUGCGUUUGAGGGAGUAG
338 325 GGUAGGACAGGGAGUCACCUG
339 326 CAGGGUGGUGUGCGGUAGCUG
340 327 AGACGGGCACAGGCACACUGG
341 328 CACAGUGAGGAAGCAGGACAA
342 329 CUUCAUGCUGUCAGUUCUGCU
343 330 GGAGAGAAGCAGCAGCAGCGG
344 331 UGAGGUACACGCCGUCUGACU
345 332 CUCCUGAGGAGAGAGCUGCGC
346 333 AUCUCCUCGGAUCCCGGAGAC
347 334 UGAGACCUUCAGUCCCUACCC
TABLE 3
Results for GRHPR. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA guide strand/AS
NO siRNA_id Sequence
348 1 UUCUGGGCUCGUCACAUCCAG
349 2 UGAUGUUGAUGAACACAGCUG
350 3 AUGUUGAUGAACACAGCUGUU
351 4 UAGACACAAACUCUGCCUGGA
352 5 UUCUGGAAGAAGUCCUUGUUG
353 6 UUGUUGCAGAGUCCCUCGGUU
354 7 UCACAUCCAGUCCAGCAGCUG
355 8 AUCUUCUGGAAGAAGUCCUUG
356 9 UGGAAGAAGUCCUUGUUGCAG
357 10 UUUGUAGGCAGUGGUUCUGGG
358 11 UGUUGAUGAACACAGCUGUUU
359 12 AAUCUCUGGACACCGAAUGGU
360 13 UUCUGCUGCUUCCUCAGGCCU
361 14 UACAGAAAUCUCUGGACACCG
362 15 UCGUCACAUCCAGUCCAGCAG
363 16 UUGAUGAACACAGCUGUUUCC
364 17 UUGCAGAGUCCCUCGGUUGCA
365 18 UGAUGAACACAGCUGUUUCCU
366 19 UCAUCUUCUGGAAGAAGUCCU
367 20 UCUGCUGCUUCCUCAGGCCUG
368 21 UCGGUUGCAGGUGUUAAGGAG
369 22 UUGUAGGCAGUGGUUCUGGGC
370 23 UUCCUUCAUCUUCUGGAAGAA
371 24 UCUGCCUGGAAUUCUGCUGCU
372 25 UUCUUCAGGGUCAGGAGAGGG
373 26 UGGAAUUCUGCUGCUUCCUCA
374 27 AGCUGUUUCCUUCAUCUUCUG
375 28 UGUUUCCUUCAUCUUCUGGAA
376 29 UUCAUCUUCUGGAAGAAGUCC
377 30 AUGAACACAGCUGUUUCCUUC
378 31 ACAGAAAUCUCUGGACACCGA
379 32 UUGCAGGUGUUAAGGAGCAGG
380 33 UCUCUGGACACCGAAUGGUUU
381 34 UCUUCUGGAAGAAGUCCUUGU
382 35 UGGUACAGGUCGUCCUGGUUU
383 36 CUGAUGUUGAUGAACACAGCU
384 37 GUAGACACAAACUCUGCCUGG
385 38 AUGGUUUCAGACGCCGAGCAA
386 39 AACUCUGCCUGGAAUUCUGCU
387 40 AUCUCUGGACACCGAAUGGUU
388 41 UAGGCAGUGGUUCUGGGCUCG
389 42 UGUACAGAAAUCUCUGGACAC
390 43 UGUUGCAGAGUCCCUCGGUUG
391 44 UGCUGAUGUUGAUGAACACAG
392 45 UUCAGGGUCAGGAGAGGGUGG
393 46 CUUGUUGCAGAGUCCCUCGGU
394 47 ACUCUGCCUGGAAUUCUGCUG
395 48 CAGAAAUCUCUGGACACCGAA
396 49 UGAAAUCAGAUUGGGCAGCCA
397 50 CAUCUUCUGGAAGAAGUCCUU
398 51 UGCAGAGUCCCUCGGUUGCAG
399 52 AGUCCUUGUUGCAGAGUCCCU
400 53 AAGUCCUUGUUGCAGAGUCCC
401 54 UCCUGGUUUACGACGUCGCCC
402 55 GAUGUUGAUGAACACAGCUGU
403 56 AAAUCUCUGGACACCGAAUGG
404 57 UCAGGGUCAGGAGAGGGUGGU
405 58 UUUCCUUCAUCUUCUGGAAGA
406 59 AAGAAGUCCUUGUUGCAGAGU
407 60 CUGCCUGGAAUUCUGCUGCUU
408 61 UCGUCCUGGUUUACGACGUCG
409 62 UGAACACAGCUGUUUCCUUCA
410 63 GAACACAGCUGUUUCCUUCAU
411 64 CAGUCCAGCAGCUGCAAUCUU
412 65 ACAUCCAGUCCAGCAGCUGCA
413 66 UCCUUGUUGCAGAGUCCCUCG
414 67 AGACACAAACUCUGCCUGGAA
415 68 AGUCCAGCAGCUGCAAUCUUA
416 69 AAUUCUGCUGCUUCCUCAGGC
417 70 UGCUGCUUCCUCAGGCCUGGG
418 71 ACAGCUGUUUCCUUCAUCUUC
419 72 CUUCUGGAAGAAGUCCUUGUU
420 73 AAACUCUGCCUGGAAUUCUGC
421 74 CACAGCUGUUUCCUUCAUCUU
422 75 UCUGGGCUCGUCACAUCCAGU
423 76 AUCCAGUCCAGCAGCUGCAAU
424 77 AGCAGCUGCAAUCUUACCACU
425 78 UGCUUCCUCAGGCCUGGGCUG
426 79 UGUAGGCAGUGGUUCUGGGCU
427 80 UACAGGUCGUCCUGGUUUACG
428 81 CAUCCAGUCCAGCAGCUGCAA
429 82 AGAGUCCCUCGGUUGCAGGUG
430 83 UCUUCAGGGUCAGGAGAGGGU
431 84 UCCUUCAUCUUCUGGAAGAAG
432 85 CCUUGUUGCAGAGUCCCUCGG
433 86 AACACAGCUGUUUCCUUCAUC
434 87 AGUCCCUCGGUUGCAGGUGUU
435 88 GUUGCAGGUGUUAAGGAGCAG
436 89 UCUGGAAGAAGUCCUUGUUGC
437 90 GAUGAACACAGCUGUUUCCUU
438 91 CUGGUUUACGACGUCGCCCCU
439 92 CUGGUACAGGUCGUCCUGGUU
440 93 CUGUUUCCUUCAUCUUCUGGA
441 94 AGGCCUGGUACAGGUCGUCCU
442 95 ACGACGAUGAAAUCAGAUUGG
443 96 AUUCUGCUGCUUCCUCAGGCC
444 97 CAGCUGCAAUCUUACCACUGG
445 98 GCAGCUGCAAUCUUACCACUG
446 99 AGUUCUUCAGGGUCAGGAGAG
447 100 ACCGAAUGGUUUCAGACGCCG
448 101 ACAGUUCUUCAGGGUCAGGAG
449 102 GUCCUUGUUGCAGAGUCCCUC
450 103 GCUGUUUCCUUCAUCUUCUGG
451 104 AAUGGUUUCAGACGCCGAGCA
452 105 UCUGGACACCGAAUGGUUUCA
453 106 ACAAACUCUGCCUGGAAUUCU
454 107 UGGUUUGUAGGCAGUGGUUCU
455 108 CAAACUCUGCCUGGAAUUCUG
456 109 CUGCUGAUGUUGAUGAACACA
TABLE 4
Results for ITFG1. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA_ siRNA guide strand/
NO id AS Sequence
457 1 UAUAAAUACACAAACACUGGA
458 2 UAGAUCACCAUUGAAAUCCAU
459 3 UAGAAUAAGAAGCAAGACCAA
460 4 UUGCAUUGAAGUCUGAAUGUA
461 5 UUGACCACUUACUCUGUGCUA
462 6 UUAAUGUUUACAGUAACUCAA
463 7 UAUACAUGAUAUAAGGUCCAG
464 8 UUAUCUUACGAGGACAGUCAU
465 9 UUAUAAAUACACAAACACUGG
466 10 UUUAGGUCUGUCAGCUCCCAG
467 11 UAUCAAUGCACUGUGAUUCUU
468 12 UAUUGCUGAAAUCUUGUAGGA
469 13 AUAUUGACCACUUACUCUGUG
470 14 UACUUGUAGUGGUCAAUGCUG
471 15 UUACUCUGUGCUAGGCACCAA
472 16 AUUUAUUUGAAUACUUUCCAA
473 17 UAUGGAAUGACAAUUAGCUGG
474 18 UAGGACUGGAACCCACUGCUU
475 19 UAAUAUGAGCAAGUAAAUCUU
476 20 UAAGUCUAAUAAGAUCAUCUA
477 21 UUUACUUAGCACUACAAUGUC
478 22 UUAUAGACUUCUCCAAGUGUU
479 23 UGACCUGCUGUGAUGAAGCUG
480 24 AUACUUUCCAAUAAUUACCAU
481 25 UUGCGCUCCGACCUAAACCAA
482 26 UAGACUUUAAACAUUCGACGC
483 27 UUAUUAGCAUUGAUAAACUUU
484 28 UAGAACACAGACCACUAAGAA
485 29 UUCUUUAGUAUGACCAGAGCG
486 30 UAGCACUACAAUGUCCAAGAU
487 31 UUGAGUAUGGUCAUAUUGUUA
488 32 UAUAGCAGUAAGCAGAACAAU
489 33 UGACUGUCCAACCACCAUCAU
490 34 AAUCUUUAUGUCAAUCACCAA
491 35 AUUAUUAGCAUUGAUAAACUU
492 36 UAUUGUAGUCUCCAAUAUGAA
493 37 UUAGUAUGACCAGAGCGUCUG
494 38 AUAAAUACACAAACACUGGAG
495 39 UUGAAUUAGGAGUUUAAGGCA
496 40 UUGUAGGACUGGAACCCACUG
497 41 UAGGAGUUUAAGGCAAGUCUG
498 42 UAUCAGGAAUUAGAUCACCAU
499 43 UCGUCAGGAAUAAAUCUGCUG
500 44 UUGAUUUAGGUCUGUCAGCUC
501 45 UAUUUAUUUGAAUACUUUCCA
502 46 UAUUUCUAUAAUUAGAUGUAU
503 47 UUGUAGUGGUCAAUGCUGGAU
504 48 UGGAAUGACAAUUAGCUGGGA
505 49 UUGUAUAUCCUUUACUUAGCA
506 50 AUUAUAAAUACACAAACACUG
507 51 UAUAGUACUGACAGAGAAGUU
508 52 UAAACAUUCGACGCGCCUCUU
509 53 AUUAAUAAUGACAACUACCAC
510 54 UUGUUAUCAAUGCACUGUGAU
511 55 UAUCAAGUCUAUGUAUUUCUA
512 56 UUGGAGAGCUAAAUGUGCGGA
513 57 UUUCCAAUAAUUACCAUGGGA
514 58 UAUUGUUAGGAUCUAAUGUUU
515 59 UAGUAUGACCAGAGCGUCUGG
516 60 UUAAUAAUGACAACUACCACA
517 61 UAAGGCAAGUCUGUCUUACUG
518 62 AAGUCUAAUAAGAUCAUCUAA
519 63 UAAGCAGAACAAUAUUACUUG
520 64 UUGAAAGAUACCUUUACUUUG
521 65 UACUGUGCUACCAAGUCAGAG
522 66 UAAGCACUUCACAUACAUCAU
523 67 UUUGGAAUGAUUGCAGUCCAC
524 68 UAUAAUUAGAUGUAUAAGUCU
525 69 UAAUUAGAUGUAUAAGUCUAA
526 70 UAAAUUAUAGACUUCUCCAAG
527 71 AUAUGUCAGAAGGACAUCCAU
528 72 UCUUUGUAUAUCCUUUACUUA
529 73 UUGGAGAGUACUAUAAUUUUU
530 74 UUAAUUCUUGGAGAGUACUAU
531 75 AUAAUUAGAUGUAUAAGUCUA
532 76 UAAGAAGCAAGACCAAGUCAA
533 77 UAGGGCACAUUAAUUCUUGGA
534 78 UCUGUCUUACUGUGCUACCAA
535 79 UUCUUUGUAUAUCCUUUACUU
536 80 UUAUAAAUAAUAUUUAAUCUC
537 81 UACAUCAUCCCAUUUAAUGUU
538 82 UUGCAUUAUUACAAGGGACGU
539 83 UAAUAAUGACAACUACCACAU
540 84 UUUGAUUUAGGUCUGUCAGCU
541 85 UUUCAGUUGGUUGCUGUUCAU
542 86 UGAUUCUUGAAAGAUACCUUU
543 87 UUGGUUGCUGUUCAUCCACAA
544 88 UUGCAUUCCCAGAUGCUGCCU
545 89 UAUAUCCUUUACUUAGCACUA
546 90 AAUGAUUGCAGUCCACUCUUG
547 91 UUGUAUACAUGAUAUAAGGUC
548 92 UUCAACUAAUCAAGUGAACAG
549 93 UUAAAGGCAAGUCACAUAGCA
550 94 UUACAGUAACUCAAGUAUUAG
551 95 AAUAUGAGCAAGUAAAUCUUU
552 96 AAUAAUGACAACUACCACAUA
553 97 AUGUCGUCAGGAAUAAAUCUG
554 98 UAUCUUACGAGGACAGUCAUU
555 99 UUACUUAGCACUACAAUGUCC
556 100 AUUUAGGUCUGUCAGCUCCCA
557 101 UUUAUUUGAAUACUUUCCAAU
558 102 UCGAGGGACAUUGUGAGGGUA
559 103 UUCCAUCUUCGUAAAUGUCAA
560 104 AAGAAUAUUUCUUCAUGCCUG
561 105 AUCUUGUAGGACUGGAACCCA
562 106 UACUUAGCACUACAAUGUCCA
563 107 UAAUUGGAAUUGGUAUUUCAG
564 108 UUUAAUGUUUACAGUAACUCA
565 109 UUGCUGUUCAUCCACAAAUGG
566 110 UGAAUGCCUAAUGACUCCGUG
567 111 UCAAACUGGAAGGUACUAGUG
568 112 AACAGCUCCUAAUUCACUCUU
569 113 UCCAAUAUAGUACUGACAGAG
570 114 UUCAAGAAAUCAAAUGUUCUU
571 115 UUAAGAAGACAUGUUAACAUG
572 116 UAAAGGCAAGUCACAUAGCAU
573 117 UACACAAACACUGGAGUACAU
574 118 UGAAUUAGGAGUUUAAGGCAA
575 119 AAUUUGAUUUAGGUCUGUCAG
576 120 UUUACAGAGGUUAAACAAGAG
577 121 AAGAACAAUAACUUUAACAAA
578 122 UAAAUAAUAUUUAAUCUCCCC
579 123 AUAUUGUUAGGAUCUAAUGUU
580 124 UAUUUAUUAAGAAGACAUGUU
581 125 UAGAUGUAUAAGUCUAAUAAG
582 126 UAAGUAGAUGGUACUCUUUUG
583 127 AACUAAUCAAGUGAACAGCCA
584 128 UACAUGCAACACAUUCCACAA
585 129 UUUGCAUUGAAGUCUGAAUGU
586 130 UUUGAGAAUAGAAAUGUGAUU
587 131 UAAGUGGUUGAAUUAGGAGUU
588 132 UUUAUUAAGAAGACAUGUUAA
589 133 UUGGAAUUGGUAUUUCAGUUG
590 134 AUCAAGUCUAUGUAUUUCUAU
591 135 UUCAUUAUCACAUGAUAAGGA
592 136 AACAAUGACUUUGUAAGUGGU
593 137 AUUGAGUAUGGUCAUAUUGUU
594 138 UACAGUUGUAUACAUGAUAUA
595 139 UACCAAGUCAGAGUACCCGAU
596 140 UAUAAGUCUAAUAAGAUCAUC
597 141 UGGUAUUUCAGUUGGUUGCUG
598 142 AAGCAGAACAAUAUUACUUGG
599 143 AAAUACACAAACACUGGAGUA
600 144 UGCAUUAUUACAAGGGACGUU
601 145 UUGUAAGUGGUUGAAUUAGGA
602 146 UACUUGGUGUAAGAUACAGUU
603 147 UUAAUUUGAUUUAGGUCUGUC
604 148 AAUAAGAUUAUAAAUACACAA
605 149 UUGGAUUCAUUUGUGAUACCA
606 150 UAAGCAUCUGCUUCAAAGUUA
607 151 AGACUUUAAACAUUCGACGCG
608 152 ACAUAUUGACCACUUACUCUG
609 153 UGACAGAGAAGUUUCCAUCCA
610 154 UAGGUCUGUCAGCUCCCAGUA
611 155 AUCUACAGUUGUAUACAUGAU
612 156 UAUGUAUUUCUAUAAUUAGAU
613 157 ACCACUAAGAACAAUAACUUU
614 158 UGUGAUGAAGCUGAAUGCCUA
615 159 UCAGAUACCCAUUUGCAUCUA
616 160 AUUAGCAUUGAUAAACUUUUU
617 161 UAACAGCUCCUAAUUCACUCU
618 162 AUAAUGACAACUACCACAUAU
619 163 UAUUAAUAAUGACAACUACCA
620 164 UAUUUGAAUACUUUCCAAUAA
621 165 UAAAUGCAUGAGAAUGUGGAA
622 166 UAAUGUUUACAGUAACUCAAG
623 167 UACAGCACUACAGAAUAGAGA
624 168 UUGGUGUAAGAUACAGUUUGG
625 169 AAUGUGAUUGAAGAUUUGCAU
626 170 UGUAAGUGGUUGAAUUAGGAG
627 171 AUUACUUGGUGUAAGAUACAG
628 172 UUUACAGUAACUCAAGUAUUA
629 173 UCGUAAAUGUCAAAGAAGGUG
630 174 UUGGUAUUUCAGUUGGUUGCU
631 175 ACACUUGUUAUCAAUGCACUG
632 176 UUCACAUACAUCAUCCCAUUU
633 177 AACUGGAAGGUACUAGUGGUG
634 178 UAGGAUCUAAUGUUUGAUUUU
635 179 UCUUUAGUAUGACCAGAGCGU
636 180 UUAUGUAAUAUUAAAGGCAAG
637 181 UACUGACAGAGAAGUUUCCAU
638 182 AUGACUUUGUAAGUGGUUGAA
639 183 AUUACAAGGGACGUUCUCCAG
640 184 UCUGUGCUAGGCACCAAGCUA
641 185 UACCCAUUUGCAUCUACAGUU
642 186 UGCAUCUACAGUUGUAUACAU
643 187 UCAUUCUUUGUAUAUCCUUUA
644 188 UUAGAUCACCAUUGAAAUCCA
645 189 UUGAGAAUAGAAAUGUGAUUG
646 190 UAUGUCAGAAGGACAUCCAUU
647 191 UAAGAACAAUAACUUUAACAA
648 192 UUGUGACAUAUUCAAACCAUA
649 193 UUUAGUAUGACCAGAGCGUCU
650 194 UUGUAUGGUAGUUGGAGAGCU
651 195 UUGCAGUCCACUCUUGUUUUC
652 196 UAUUAGCAUUGAUAAACUUUU
653 197 UAGUCUCCAAUAUGAAGGGUA
654 198 UUUCAAACUGGAAGGUACUAG
655 199 AAUUAUAGACUUCUCCAAGUG
656 200 AUAAGCAUCUGCUUCAAAGUU
657 201 AAACUGGAAGGUACUAGUGGU
658 202 AUGACAACUACCACAUAUUGA
659 203 UGUAUUUCUAUAAUUAGAUGU
660 204 AAGUCUGCAAAUGCUGACUGU
661 205 UCUCUAUCAUCUGCUUUCUUU
662 206 ACAACUACCACAUAUUGACCA
663 207 UAUUCAAACCAUAUUUAUUUG
664 208 UUCGUAAAUGUCAAAGAAGGU
665 209 AUUGCUGAAAUCUUGUAGGAC
666 210 UUCGAGGGACAUUGUGAGGGU
667 211 AGUCAUUAGAACACAGACCAC
668 212 UAGACUUCUCCAAGUGUUUGA
669 213 UUAUUGCUGAAAUCUUGUAGG
670 214 ACUAAUCAAGUGAACAGCCAU
671 215 UUGAAGUCUGAAUGUAAAUUA
672 216 AUGAGAAUGUGGAAUUCGCAU
673 217 UGUAAAUUAUAGACUUCUCCA
674 218 UAUAGACUUCUCCAAGUGUUU
675 219 UUAGGAUCUAAUGUUUGAUUU
676 220 UCUUGUAGGACUGGAACCCAC
677 221 UGCUGACUGUCCAACCACCAU
678 222 UUAGAAUAAGAAGCAAGACCA
679 223 UGUUAGGAUCUAAUGUUUGAU
680 224 UGGUCAUAUUGUUAGGAUCUA
681 225 UUGAAUACUUUCCAAUAAUUA
682 226 UGAUUGCAGUCCACUCUUGUU
683 227 UUAAACAUUCGACGCGCCUCU
684 228 AUGUUUACAGUAACUCAAGUA
685 229 UUACUGUGCUACCAAGUCAGA
686 230 UUCUUCAUUAUCACAUGAUAA
687 231 UGAAUGUAAAUUAUAGACUUC
688 232 UAGCUGGGAAUUUGGAAUGAU
689 233 UAGGCAUCACAUGUCCAUUUG
690 234 UGAUAUAAGGUCCAGGUUGAU
691 235 UCUAUGUAUUUCUAUAAUUAG
692 236 UGCAACACAUUCCACAAAGGA
693 237 UUUAAACAUUCGACGCGCCUC
694 238 UUGAAGAUUUGCAUUCCCAGA
695 239 UGUGAUUCUUGAAAGAUACCU
696 240 GUAAAUUAUAGACUUCUCCAA
697 241 AAAUGCUGACUGUCCAACCAC
698 242 UCUUGAAAGAUACCUUUACUU
699 243 UACUUUCCAAUAAUUACCAUG
700 244 AUUGAAGAUUUGCAUUCCCAG
701 245 UGCUGAAAUCUUGUAGGACUG
702 246 AUUCCCUCCUAAUAGUAUCUG
703 247 UGUAGUCUCCAAUAUGAAGGG
704 248 UGUUUCAACUAAUCAAGUGAA
705 249 UAUAAUUUGCAUCAUUAGAAU
706 250 AUUGUUAGGAUCUAAUGUUUG
707 251 AUAUCCUUUACUUAGCACUAC
708 252 UGUAUGGUAGUUGGAGAGCUA
709 253 AACAUGCUUAGAUACAAAGUA
710 254 AUGUUCUUCAUUAUCACAUGA
711 255 UACCCGAUCACUAUAUUGUAU
712 256 UGUUCUUCAUUAUCACAUGAU
713 257 UUAGCUGGGAAUUUGGAAUGA
714 258 UAAAUACACAAACACUGGAGU
715 259 AGGAAUUAGAUCACCAUUGAA
716 260 UUCCCUCCUAAUAGUAUCUGU
717 261 UUACUUGGUGUAAGAUACAGU
718 262 AAAGAUACCUUUACUUUGGGU
719 263 UUAGAUGUAUAAGUCUAAUAA
720 264 ACACAUUCCACAAAGGAACAA
721 265 UCUACAGUUGUAUACAUGAUA
722 266 UGUAUAUCCUUUACUUAGCAC
723 267 UUGUUAGGAUCUAAUGUUUGA
724 268 UCUGCAAAUGCUGACUGUCCA
725 269 UACCAACGUAGAGAUGGUCAA
726 270 UAAACCAAGCACGUUGUAUGG
727 271 AAGAAAUCAAAUGUUCUUCAU
728 272 UCACAUGAUAAGGAUAAGUUU
729 273 UGAAAUCUUGUAGGACUGGAA
730 274 UGUCAGAAGGACAUCCAUUUG
731 275 ACUUAGCACUACAAUGUCCAA
732 276 AACUUCGAGGGACAUUGUGAG
733 277 AUGGAAUGACAAUUAGCUGGG
734 278 AUAUUUAUUAAGAAGACAUGU
735 279 UACCAUGGGAUACAUCAUUUA
736 280 AUCUUCGUAAAUGUCAAAGAA
737 281 UCUUACUGUGCUACCAAGUCA
738 282 UCAUUAUCACAUGAUAAGGAU
739 283 UAAUUUGAUUUAGGUCUGUCA
740 284 AGUACAUGCAACACAUUCCAC
741 285 AUCAUUCUUUGUAUAUCCUUU
742 286 AAAUAAUAUUUAAUCUCCCCU
743 287 CAAGUCUGUCUUACUGUGCUA
744 288 AAAGUCUGCAAAUGCUGACUG
745 289 AUGAUUGCAGUCCACUCUUGU
746 290 AAACCAAGCACGUUGUAUGGU
747 291 AUAAAUAAUAUUUAAUCUCCC
748 292 UUUGCAUCAUUAGAAUAAGAA
749 293 AACACAGACCACUAAGAACAA
750 294 ACAAUGACUUUGUAAGUGGUU
751 295 UUCUAUAAUUAGAUGUAUAAG
752 296 AUUUAUUAAGAAGACAUGUUA
753 297 AUUGAAAUCCAUAAUUAGUGG
754 298 AUUAUAGACUUCUCCAAGUGU
755 299 AAUGACAACUACCACAUAUUG
756 300 AAGUGGUUGAAUUAGGAGUUU
757 301 AUAGUACUGACAGAGAAGUUU
758 302 AAAGAAUAUUUCUUCAUGCCU
759 303 UCCAUCUCCAUCAAAGUCUGC
760 304 UGACAUAUUCAAACCAUAUUU
761 305 UAGCAGUAAGCAGAACAAUAU
762 306 UGACCACUUACUCUGUGCUAG
763 307 AUAAGGUCCAGGUUGAUUCAC
764 308 UAUAGGCAUCACAUGUCCAUU
765 309 UGUUUGAGAAUAGAAAUGUGA
766 310 AUAGACUUCUCCAAGUGUUUG
767 311 UGUCCAAGAUUCCAUCUUCGU
768 312 UUCUAUCAAGUCUAUGUAUUU
769 313 AGAAGACAUGUUAACAUGCUU
770 314 AUGUACAGCACUACAGAAUAG
771 315 UAGGCACCAAGCUAAGCACUU
772 316 UCAUUAGAACACAGACCACUA
773 317 UCAUUUAUAAAUAAUAUUUAA
774 318 AGAAUCUCCAUCAUAAUCCCC
775 319 UAAUUCUUGGAGAGUACUAUA
776 320 AUCUCAGUGAACUAUAAAGAA
777 321 AUCCUUUACUUAGCACUACAA
778 322 AUGUCCAUUUGCAUACUAGAA
779 323 UAAAUCUUUAUGUCAAUCACC
780 324 UCCAUCUUCGUAAAUGUCAAA
781 325 UUUAAGGCAAGUCUGUCUUAC
782 326 ACUAAGUAGAUGGUACUCUUU
783 327 AUGCUGACUGUCCAACCACCA
784 328 UCAACUAAUCAAGUGAACAGC
785 329 UAUUACAAGGGACGUUCUCCA
786 330 UGAAGGGUAAUUGGAAUUGGU
787 331 UGAUUCACUCCAAAGGGUGUU
788 332 AUUAAUUCUUGGAGAGUACUA
789 333 AUUUGGAAUGAUUGCAGUCCA
790 334 UUAACAUGCUUAGAUACAAAG
791 335 AUAAGGAAUAUUUAUUAAGAA
792 336 UAAUUUGCAUCAUUAGAAUAA
793 337 AGCAGAACAAUAUUACUUGGU
794 338 CUUAAUUUGAUUUAGGUCUGU
795 339 AAUAGAAAUGUGAUUGAAGAU
796 340 UAUGAGCAAGUAAAUCUUUAU
797 341 UUUGAGAAUCUCCAUCAUAAU
798 342 AGUUCAAACAAUGACUUUGUA
799 343 UAGUUGGAGAGCUAAAUGUGC
800 344 AUAGGGUGCAUUCUGGUCUGC
801 345 UUGUAGUCUCCAAUAUGAAGG
802 346 AUAAGAAGCAAGACCAAGUCA
803 347 AUUAUGUAAUAUUAAAGGCAA
804 348 UUCUUGGAGAGUACUAUAAUU
805 349 UACACUUGUUAUCAAUGCACU
806 350 AAGAAGACAUGUUAACAUGCU
807 351 UUACAAGGGACGUUCUCCAGU
808 352 CAUCAUUAGAAUAAGAAGCAA
809 353 UUCAAUAAGGAAUAUUUAUUA
810 354 UACAUGAUAUAAGGUCCAGGU
811 355 AUUAGAACACAGACCACUAAG
812 356 AUUAUUACAAGGGACGUUCUC
813 357 UAGUGGUCAAUGCUGGAUGCC
814 358 AUCCAUAUUGUAGUCUCCAAU
815 359 AUAUGAGCAAGUAAAUCUUUA
816 360 UUUGCAUCUACAGUUGUAUAC
817 361 AGUAUGACCAGAGCGUCUGGA
818 362 UACAAGGGACGUUCUCCAGUA
819 363 UUACGAGGACAGUCAUUAGAA
820 364 AUUAAGAAGACAUGUUAACAU
821 365 UGAAGUCUGAAUGUAAAUUAU
822 366 ACACAGACCACUAAGAACAAU
823 367 CACUACAGAAUAGAGAACCCA
824 368 UUCAAACCAUAUUUAUUUGAA
825 369 UCAAAUGUUCUUCAUUAUCAC
826 370 UCAGGAAUAAAUCUGCUGUAA
827 371 UAUAAGGUCCAGGUUGAUUCA
828 372 ACAAACACUGGAGUACAUGCA
829 373 UUUAUAAAUAAUAUUUAAUCU
830 374 ACAGAGGUUAAACAAGAGCCA
831 375 UGUAGGACUGGAACCCACUGC
832 376 UGUCCAACCACCAUCAUAUUU
833 377 CAGUAGACUUUAAACAUUCGA
834 378 ACAUGCAACACAUUCCACAAA
835 379 UCAGAAGGACAUCCAUUUGAG
836 380 UCUAUCAUCUGCUUUCUUUUC
837 381 AUCAAUGCACUGUGAUUCUUG
838 382 UUGCAUCAUUAGAAUAAGAAG
839 383 UCAAAGUCUGCAAAUGCUGAC
840 384 AGUCCUAUUGAGUAUGGUCAU
841 385 UACCACAUAUUGACCACUUAC
842 386 AGUAACUCAAGUAUUAGCCCC
843 387 UAACAUGCUUAGAUACAAAGU
844 388 UCACAUACAUCAUCCCAUUUA
845 389 AUCAUUUAUAAAUAAUAUUUA
846 390 CUUGUGACAUAUUCAAACCAU
847 391 UGAUUGAAGAUUUGCAUUCCC
848 392 ACUUGUUAUCAAUGCACUGUG
849 393 AGGCAAGUCACAUAGCAUCAA
850 394 UUGAUUCACUCCAAAGGGUGU
851 395 AAUGUGAAGUUCACAAUACAA
852 396 AGGACAGUCAUUAGAACACAG
853 397 UGUUCUUUAGUAUGACCAGAG
854 398 UAUUGAGUAUGGUCAUAUUGU
855 399 GUAGUCUCCAAUAUGAAGGGU
856 400 AUGUAUUUCUAUAAUUAGAUG
857 401 UACUCUGUGCUAGGCACCAAG
858 402 UGUUAACAUGCUUAGAUACAA
859 403 AUAAAUGCAUGAGAAUGUGGA
860 404 AUUUCAAACUGGAAGGUACUA
861 405 UCCAAGAUUCCAUCUUCGUAA
862 406 UCCUUUACUUAGCACUACAAU
863 407 AAUACCAACGUAGAGAUGGUC
864 408 ACAUGAUAUAAGGUCCAGGUU
865 409 AUCUUUAUGUCAAUCACCAAA
866 410 UGAAAGAUACCUUUACUUUGG
867 411 AAGGCAAGUCUGUCUUACUGU
868 412 UGGAAUUGGUAUUUCAGUUGG
869 413 UAUAAAUAAUAUUUAAUCUCC
870 414 AUAAAUUCCCUCCUAAUAGUA
871 415 AUAAUUUGCAUCAUUAGAAUA
872 416 ACUUGUAGUGGUCAAUGCUGG
873 417 AUCUGCUUCAAAGUUAUUUUU
874 418 UAAGAAGACAUGUUAACAUGC
875 419 AAGCACUUCACAUACAUCAUC
876 420 UACAUCAUUUAUAAAUAAUAU
877 421 AUUGACCACUUACUCUGUGCU
878 422 UUCAAUGUCGUCAGGAAUAAA
879 423 AUACAUGAUAUAAGGUCCAGG
880 424 AAAUGUUCUUCAUUAUCACAU
881 425 AUUCAAACCAUAUUUAUUUGA
882 426 CAUUAGAACACAGACCACUAA
883 427 UGCUGGUUGCUUCCAGAUGUG
884 428 AUUGGAAUUGGUAUUUCAGUU
885 429 UAAUAUUAAAGGCAAGUCACA
886 430 CACUUCACAUACAUCAUCCCA
887 431 UAUCCUUUACUUAGCACUACA
888 432 AAUACUUUCCAAUAAUUACCA
889 433 UCCCUCCUAAUAGUAUCUGUG
890 434 AUGUGAUUGAAGAUUUGCAUU
891 435 AGAACAAUAUUACUUGGUGUA
892 436 AAUAUUUAUUAAGAAGACAUG
893 437 UCUAUCAAGUCUAUGUAUUUC
894 438 AAUAUUAAAGGCAAGUCACAU
895 439 UAUUUCAGUUGGUUGCUGUUC
896 440 GUAUGGAAUGACAAUUAGCUG
897 441 UCACAGCUUGCAUUAUUACAA
898 442 AAGUCUGUCUUACUGUGCUAC
899 443 AGUAUGGUCAUAUUGUUAGGA
900 444 UCAAUAAGGAAUAUUUAUUAA
901 445 AAACAAUGACUUUGUAAGUGG
902 446 UGGAUUCAUUUGUGAUACCAA
903 447 UAUUAAAGGCAAGUCACAUAG
904 448 UGGGAAUUUGGAAUGAUUGCA
905 449 AAUCUUGUAGGACUGGAACCC
906 450 AUCUCCAUCAAAGUCUGCAAA
907 451 UUAGAACACAGACCACUAAGA
908 452 UCACUAAGUAGAUGGUACUCU
909 453 UUUCUAUAAUUAGAUGUAUAA
910 454 UGCAUUGAAGUCUGAAUGUAA
911 455 UUUGCGCUCCGACCUAAACCA
912 456 UGAUUUAGGUCUGUCAGCUCC
913 457 AACCGGUGGGCUUCUUGUCGU
914 458 UGAAGAUUUGCAUUCCCAGAU
915 459 UUAUUUGAAUACUUUCCAAUA
916 460 UCCCAGUAGACUUUAAACAUU
917 461 UCAGUCAGAUCAAUAAAUGCA
918 462 CAUCCAUUUGAGAAUCUCCAU
919 463 UAGAAAUGUGAUUGAAGAUUU
920 464 ACAGCUCCUAAUUCACUCUUG
921 465 UUAGGUCUGUCAGCUCCCAGU
922 466 AAGACAUGUUAACAUGCUUAG
923 467 AUACCCAUUUGCAUCUACAGU
924 468 AAAUCUUUAUGUCAAUCACCA
925 469 CAGAGGUUAAACAAGAGCCAA
926 470 AUCAGGAAUUAGAUCACCAUU
927 471 UCCCAUUUAAUGUUUACAGUA
928 472 AGGCAAGUCUGUCUUACUGUG
929 473 UCUCAGUGAACUAUAAAGAAA
930 474 UAUUGACCACUUACUCUGUGC
931 475 AUGUAAAUUAUAGACUUCUCC
932 476 UCAGAUCAAUAAAUGCAUGAG
933 477 UGAGAAUGUGGAAUUCGCAUU
934 478 UUGCAUCUACAGUUGUAUACA
935 479 CUUAUUGCUGAAAUCUUGUAG
936 480 ACUUGGUGUAAGAUACAGUUU
937 481 AUAUUGUAGUCUCCAAUAUGA
938 482 ACAUCCAUUUGAGAAUCUCCA
939 483 UUAUCAAUGCACUGUGAUUCU
940 484 AUUACCAUGGGAUACAUCAUU
941 485 ACUUCACAUACAUCAUCCCAU
942 486 AUCAAAGUCUGCAAAUGCUGA
943 487 AUCCUUAAUUUGAUUUAGGUC
944 488 UGAAGCUGAAUGCCUAAUGAC
945 489 AGCAAGACCAAGUCAAGUGGA
946 490 AUUGCAGUCCACUCUUGUUUU
947 491 CAAACAAUGACUUUGUAAGUG
948 492 UCUAAUAAGAUCAUCUAAAAU
949 493 AUAACAGCUCCUAAUUCACUC
950 494 UAAGGAAUAUUUAUUAAGAAG
951 495 AAGGGUGUUAUCUUACGAGGA
952 496 UAAUGACAACUACCACAUAUU
953 497 UAUUACUUGGUGUAAGAUACA
954 498 AUCAUUAGAAUAAGAAGCAAG
955 499 CAAUAUAGUACUGACAGAGAA
956 500 AUUGUAGUCUCCAAUAUGAAG
957 501 UGACAACUACCACAUAUUGAC
958 502 ACUACAAUGUCCAAGAUUCCA
959 503 UCAGGAAUUAGAUCACCAUUG
960 504 ACCGGUGGGCUUCUUGUCGUU
961 505 AUGUCCAAGAUUCCAUCUUCG
962 506 AAUAAAUGCAUGAGAAUGUGG
963 507 AAGCAAGACCAAGUCAAGUGG
964 508 UCUUCGUAAAUGUCAAAGAAG
965 509 UUACCAUGGGAUACAUCAUUU
966 510 UUACAGAGGUUAAACAAGAGC
967 511 UUGCUGAAAUCUUGUAGGACU
968 512 UUGGAAUGAUUGCAGUCCACU
969 513 UAUGAAGGGUAAUUGGAAUUG
970 514 AUGAGCAAGUAAAUCUUUAUG
971 515 UUUGUAAGUGGUUGAAUUAGG
972 516 AACUACCACAUAUUGACCACU
973 517 UCAAACAAUGACUUUGUAAGU
974 518 AAUUCUUGGAGAGUACUAUAA
975 519 CUUACUGUGCUACCAAGUCAG
976 520 ACAAUUAGCUGGGAAUUUGGA
977 521 UGGAGUACAUGCAACACAUUC
978 522 AGAAAUGUGAUUGAAGAUUUG
979 523 UGCAUUCCCAGAUGCUGCCUA
980 524 UAAAUUCCCUCCUAAUAGUAU
981 525 AUUCUUUGUAUAUCCUUUACU
982 526 UUCCAAUAAUUACCAUGGGAU
983 527 UUCUUGAAAGAUACCUUUACU
984 528 UGAGCAAGUAAAUCUUUAUGU
985 529 CUGAAUGUAAAUUAUAGACUU
986 530 UGUGAGGGUAUGGAAUGACAA
987 531 AAUGUUCUUCAUUAUCACAUG
988 532 ACAGACACCGAUGAGAGCUAU
989 533 CCAACUUCGAGGGACAUUGUG
990 534 UAGUACUGACAGAGAAGUUUC
991 535 UUCACAGCUUGCAUUAUUACA
992 536 CAUAUUGACCACUUACUCUGU
993 537 AGGGACUACACUUGUUAUCAA
994 538 UUAUCACAUGAUAAGGAUAAG
995 539 AAUUACCAUGGGAUACAUCAU
996 540 ACUACACUUGUUAUCAAUGCA
997 541 UACAAUGUCCAAGAUUCCAUC
998 542 AUUUGCAUUGAAGUCUGAAUG
999 543 AUGAAGGGUAAUUGGAAUUGG
1000 544 ACUACAGAAUAGAGAACCCAA
1001 545 GAGAGCUAUAGCAGUAAGCAG
1002 546 AGAAUGUGGAAUUCGCAUUUU
1003 547 UCCAGGUUGAUUCACUCCAAA
1004 548 UUUCAAGAAAUCAAAUGUUCU
1005 549 ACCUAAACCAAGCACGUUGUA
1006 550 AAUAUAGUACUGACAGAGAAG
1007 551 GAUCUCACUAAGUAGAUGGUA
1008 552 UGUACAGCACUACAGAAUAGA
1009 553 UGUAAUAUUAAAGGCAAGUCA
1010 554 UUCCUUUCAAGAAAUCAAAUG
1011 555 AUCCAUUUGAGAAUCUCCAUC
1012 556 UAUCACAUGAUAAGGAUAAGU
1013 557 CAAUGCACUGUGAUUCUUGAA
1014 558 UGGAGAGCUAAAUGUGCGGAU
1015 559 UAAGAUUAUAAAUACACAAAC
1016 560 AUAAGAUUAUAAAUACACAAA
1017 561 UCUUGGAGAGUACUAUAAUUU
1018 562 AACAAUAUUACUUGGUGUAAG
1019 563 UCAAGAAAUCAAAUGUUCUUC
1020 564 UGUCGUCAGGAAUAAAUCUGC
1021 565 GAGUACAUGCAACACAUUCCA
1022 566 UAUGACCAGAGCGUCUGGAUA
1023 567 UCCAACCACCAUCAUAUUUUG
1024 568 CUGCAAAUGCUGACUGUCCAA
1025 569 UCCGACCUAAACCAAGCACGU
1026 570 UGUCAGCUCCCAGUAGACUUU
1027 571 AUUCUAUCAAGUCUAUGUAUU
1028 572 CUUAGCACUACAAUGUCCAAG
1029 573 UGAGAAUAGAAAUGUGAUUGA
1030 574 AAGCACGUUGUAUGGUAGUUG
1031 575 UAGGGUGCAUUCUGGUCUGCC
1032 576 UCAAUGCACUGUGAUUCUUGA
1033 577 UCCAAGUGUUUGAGAAUAGAA
1034 578 UCCAAUAUGAAGGGUAAUUGG
1035 579 CUUUCCAAUAAUUACCAUGGG
1036 580 UUAAUAUGAGCAAGUAAAUCU
1037 581 UUUCCUUUCAAGAAAUCAAAU
1038 582 UGACUUUGUAAGUGGUUGAAU
1039 583 GUAAGCAGAACAAUAUUACUU
1040 584 AUUCCAUCUUCGUAAAUGUCA
1041 585 UCUUACGAGGACAGUCAUUAG
1042 586 AAAUGUGAUUGAAGAUUUGCA
1043 587 ACAUAUUCAAACCAUAUUUAU
1044 588 UGUGACAUAUUCAAACCAUAU
1045 589 UUUGAAUACUUUCCAAUAAUU
1046 590 AAUGCCUAAUGACUCCGUGAU
1047 591 AUUUGAUUUAGGUCUGUCAGC
1048 592 AUAGGCAUCACAUGUCCAUUU
1049 593 UCAUGAUGCAAAUAAGAUUAU
1050 594 AGUUGGUUGCUGUUCAUCCAC
1051 595 AAGUCUAUGUAUUUCUAUAAU
1052 596 UGCACUGUGAUUCUUGAAAGA
1053 597 UGACAAUUAGCUGGGAAUUUG
1054 598 UGUCCAUUUGCAUACUAGAAA
1055 599 AUAGAAAUGUGAUUGAAGAUU
1056 600 UCCAACUUCGAGGGACAUUGU
1057 601 UUGAGAAUCUCCAUCAUAAUC
1058 602 GAUCACUAUAUUGUAUGCCAU
1059 603 UUCAUCCCAGAUCUCACUAAG
1060 604 UGAGUAUGGUCAUAUUGUUAG
1061 605 UGUGCUACCAAGUCAGAGUAC
1062 606 CAAACUGGAAGGUACUAGUGG
1063 607 ACACAAACACUGGAGUACAUG
1064 608 AUAUCAGGAAUUAGAUCACCA
1065 609 AAUGUUUACAGUAACUCAAGU
1066 610 UGUUUACAGUAACUCAAGUAU
1067 611 ACAUGCUUAGAUACAAAGUAA
1068 612 AUCACCAUUGAAAUCCAUAAU
1069 613 UAUUUCUUCAUGCCUGAAAAU
1070 614 UCAAGUCUAUGUAUUUCUAUA
1071 615 CAGAACAAUAUUACUUGGUGU
1072 616 UAGUUAAUAUGAGCAAGUAAA
1073 617 CUGAAAUCUUGUAGGACUGGA
1074 618 AAACAUUCGACGCGCCUCUUC
1075 619 UUCCUGCUCAUUUAAUUAUUU
1076 620 UGGGAAGAUAUGUCAGAAGGA
1077 621 UUUCAAUAAGGAAUAUUUAUU
1078 622 AUGACUCCGUGAUAUAUUCAC
1079 623 CAAACACUGGAGUACAUGCAA
1080 624 AAUGACUUUGUAAGUGGUUGA
1081 625 AAUGUCGUCAGGAAUAAAUCU
1082 626 UUCCAUUAUGUAAUAUUAAAG
1083 627 UUUGCAUUCCCAGAUGCUGCC
1084 628 UCAUAUUGUUAGGAUCUAAUG
1085 629 AAGUGUUUGAGAAUAGAAAUG
1086 630 AAGAUAACAGCUCCUAAUUCA
1087 631 AUUCUUGAAAGAUACCUUUAC
1088 632 AGUUUAAGGCAAGUCUGUCUU
1089 633 ACUACCACAUAUUGACCACUU
1090 634 AGGAGUUUAAGGCAAGUCUGU
1091 635 UUCAGUUGGUUGCUGUUCAUC
1092 636 AUUUAAUGUUUACAGUAACUC
1093 637 UCACAUGUCCAUUUGCAUACU
1094 638 UGCCCUUAUUGCUGAAAUCUU
1095 639 UGUAUAAGUCUAAUAAGAUCA
1096 640 UACAGAGGUUAAACAAGAGCC
1097 641 AAUUAGAUGUAUAAGUCUAAU
1098 642 GAGAAUAGAAAUGUGAUUGAA
1099 643 UGUCCAUCUCCAUCAAAGUCU
1100 644 UUCAAACAAUGACUUUGUAAG
1101 645 AAUGUAAAUUAUAGACUUCUC
1102 646 GUAUACAUGAUAUAAGGUCCA
1103 647 AGACUUCUCCAAGUGUUUGAG
1104 648 UACAGAAUAGAGAACCCAAAU
1105 649 CUUGUAGUGGUCAAUGCUGGA
1106 650 UUUGUAUAUCCUUUACUUAGC
1107 651 UUCUCCAAGUGUUUGAGAAUA
1108 652 UCAAACCAUAUUUAUUUGAAU
1109 653 AAUGACUCCGUGAUAUAUUCA
1110 654 AUUCUUGGAGAGUACUAUAAU
1111 655 CAUCAAAGUCUGCAAAUGCUG
1112 656 AGACAUGUUAACAUGCUUAGA
1113 657 UGUGAUUGAAGAUUUGCAUUC
1114 658 AAGAUACCUUUACUUUGGGUU
1115 659 AGAAUAUUUCUUCAUGCCUGA
1116 660 AUUUGCAUCUACAGUUGUAUA
1117 661 UCCAUUUGAGAAUCUCCAUCA
1118 662 UCCAAAGAAUAUUUCUUCAUG
1119 663 AAUAAUUACCAUGGGAUACAU
1120 664 UGGAAAUGUGAAGUUCACAAU
1121 665 ACACCGAUGAGAGCUAUAGCA
1122 666 ACUGGAGUACAUGCAACACAU
1123 667 AGGUCUGUCAGCUCCCAGUAG
1124 668 UUAGGAGUUUAAGGCAAGUCU
1125 669 AUAUAGUACUGACAGAGAAGU
1126 670 CCAUUUGAGAAUCUCCAUCAU
1127 671 UGUCUUACUGUGCUACCAAGU
1128 672 ACAGCUUGCAUUAUUACAAGG
1129 673 AGUAGACUUUAAACAUUCGAC
1130 674 UACAGUAACUCAAGUAUUAGC
1131 675 UGAGAGCUAUAGCAGUAAGCA
1132 676 ACCAUUGAAAUCCAUAAUUAG
1133 677 AGCUUGCAUUAUUACAAGGGA
1134 678 CAUAUUUCAAACUGGAAGGUA
1135 679 AACCAAGCACGUUGUAUGGUA
1136 680 UCUGAAUGUAAAUUAUAGACU
1137 681 ACCAUAUUUAUUUGAAUACUU
1138 682 CUUGUUAUCAAUGCACUGUGA
1139 683 AAAUCAAAUGUUCUUCAUUAU
1140 684 UAUGGUCAUAUUGUUAGGAUC
1141 685 AUCUUCAGUCAGAUCAAUAAA
1142 686 UAUGGUAGUUGGAGAGCUAAA
1143 687 UCCUUAAUUUGAUUUAGGUCU
1144 688 AUCCCAGAUCUCACUAAGUAG
1145 689 AAUAAGAAGCAAGACCAAGUC
1146 690 AAACCGGUGGGCUUCUUGUCG
1147 691 AGAUCUCACUAAGUAGAUGGU
1148 692 AUUUCUAUAAUUAGAUGUAUA
1149 693 UGGAAUGAUUGCAGUCCACUC
1150 694 UUCAGUCAGAUCAAUAAAUGC
1151 695 CACAUGUCCAUUUGCAUACUA
1152 696 GUCAGGAAUAAAUCUGCUGUA
1153 697 ACCCAUUUGCAUCUACAGUUG
1154 698 AGGAUCUAAUGUUUGAUUUUG
1155 699 AUAUUCAAACCAUAUUUAUUU
1156 700 AGGUUGAUUCACUCCAAAGGG
1157 701 GAAUGAUUGCAGUCCACUCUU
1158 702 UCGACGCGCCUCUUCACAGCU
1159 703 AUGACAAUUAGCUGGGAAUUU
1160 704 AGAAUAAGAAGCAAGACCAAG
1161 705 AGCUAAGCACUUCACAUACAU
1162 706 UCCAUUUGCAUACUAGAAAAU
1163 707 CACAUAUUGACCACUUACUCU
1164 708 AUAUUUAUUUGAAUACUUUCC
1165 709 AAUUGGUAUUUCAGUUGGUUG
1166 710 AGCACUACAAUGUCCAAGAUU
1167 711 AUGCCUAAUGACUCCGUGAUA
1168 712 UCAUCAUGAUGCAAAUAAGAU
1169 713 ACCUGCUGUGAUGAAGCUGAA
1170 714 AAACACUGGAGUACAUGCAAC
1171 715 UGCAUGAGAAUGUGGAAUUCG
1172 716 GUCCAAGAUUCCAUCUUCGUA
1173 717 CUACCACAUAUUGACCACUUA
1174 718 UCCAUCAUCAUGAUGCAAAUA
1175 719 CAAUGUCCAAGAUUCCAUCUU
1176 720 UUAUUAAGAAGACAUGUUAAC
1177 721 AGAAGGACAUCCAUUUGAGAA
1178 722 UCAGAGUACCCGAUCACUAUA
1179 723 AAUACACAAACACUGGAGUAC
1180 724 CUGAAUGCCUAAUGACUCCGU
1181 725 AUGUGAAGUUCACAAUACAAA
1182 726 AGCAAGUAAAUCUUUAUGUCA
1183 727 AAUUGGAAUUGGUAUUUCAGU
1184 728 AAUAUUACUUGGUGUAAGAUA
1185 729 CUUGGUGUAAGAUACAGUUUG
1186 730 GUGAUUCUUGAAAGAUACCUU
1187 731 UCACCAUUGAAAUCCAUAAUU
1188 732 UGUAGUGGUCAAUGCUGGAUG
1189 733 UCUUCAUUAUCACAUGAUAAG
1190 734 AAGUUCAAACAAUGACUUUGU
1191 735 UAUUUCAAACUGGAAGGUACU
1192 736 AAGUCUGAAUGUAAAUUAUAG
1193 737 AAUGUCCAAGAUUCCAUCUUC
1194 738 UGUUAUCUUACGAGGACAGUC
1195 739 GUGUUUGAGAAUAGAAAUGUG
1196 740 AGACCUUGUGACAUAUUCAAA
1197 741 AGAGCUAUAGCAGUAAGCAGA
1198 742 AAGGGUAAUUGGAAUUGGUAU
1199 743 UCCUGCUCAUUUAAUUAUUUU
1200 744 CUGGAGUACAUGCAACACAUU
1201 745 ACACAGACACCGAUGAGAGCU
1202 746 AUCAUGAUGCAAAUAAGAUUA
1203 747 AUUUGAAUACUUUCCAAUAAU
1204 748 AGAUUAUAAAUACACAAACAC
1205 749 GUAGUUGGAGAGCUAAAUGUG
1206 750 AGUCAGAUCAAUAAAUGCAUG
1207 751 UUUCAACUAAUCAAGUGAACA
1208 752 ACUUCGAGGGACAUUGUGAGG
1209 753 UUAUUACAAGGGACGUUCUCC
1210 754 UGGUUGCUGUUCAUCCACAAA
1211 755 ACAUGUCCAUUUGCAUACUAG
1212 756 ACAGUUGUAUACAUGAUAUAA
1213 757 UGCUGCCUACAGCAGUUUCCU
1214 758 AUUAGAUGUAUAAGUCUAAUA
1215 759 UUCGACGCGCCUCUUCACAGC
1216 760 AAAUGCAUGAGAAUGUGGAAU
1217 761 UCUAUAAUUAGAUGUAUAAGU
1218 762 GACAGAGAAGUUUCCAUCCAA
1219 763 UACAGCAGUUUCCUUUCAAGA
1220 764 CUAUUGAGUAUGGUCAUAUUG
1221 765 GUAUAAGUCUAAUAAGAUCAU
1222 766 CAGUCAUUAGAACACAGACCA
1223 767 AUUCAAUGUCGUCAGGAAUAA
1224 768 AUGAUAUAAGGUCCAGGUUGA
1225 769 AUUAUCACAUGAUAAGGAUAA
1226 770 GUGUUCUUUAGUAUGACCAGA
1227 771 CAGAGUGUGCCCUUAUUGCUG
1228 772 AAGCUAAGCACUUCACAUACA
1229 773 CUUUAGUAUGACCAGAGCGUC
1230 774 UACGAGGACAGUCAUUAGAAC
1231 775 AUGUAUAAGUCUAAUAAGAUC
1232 776 CAUAUUGUUAGGAUCUAAUGU
1233 777 AUGUCAGAAGGACAUCCAUUU
1234 778 UGUGCUAGGCACCAAGCUAAG
1235 779 AUUUGCAUCAUUAGAAUAAGA
1236 780 CAAAGGGUGUUAUCUUACGAG
1237 781 AGCAGUAAGCAGAACAAUAUU
1238 782 AGAACAAUAACUUUAACAAAA
1239 783 CAUUUGAGAAUCUCCAUCAUA
1240 784 AUGCACUGUGAUUCUUGAAAG
1241 785 ACACUGGAGUACAUGCAACAC
1242 786 CCUUAUUGCUGAAAUCUUGUA
1243 787 AUGACCAGAGCGUCUGGAUAG
1244 788 AGGCCUGCUGGUUGCUUCCAG
1245 789 AGGUUUACAGAGGUUAAACAA
1246 790 AAAUUAUAGACUUCUCCAAGU
1247 791 AGAUGCUGCCUACAGCAGUUU
1248 792 UGGUUGGAUUCAUUUGUGAUA
1249 793 CAUGAGAAUGUGGAAUUCGCA
1250 794 GUACUGACAGAGAAGUUUCCA
1251 795 GUCCAGGUUGAUUCACUCCAA
1252 796 CCGACCUAAACCAAGCACGUU
1253 797 AGUUGGAGAGCUAAAUGUGCG
1254 798 CAUAUUGUAGUCUCCAAUAUG
1255 799 CAUUAUGUAAUAUUAAAGGCA
1256 800 CUACACUUGUUAUCAAUGCAC
1257 801 AACCAUAUUUAUUUGAAUACU
1258 802 AUAUUAAAGGCAAGUCACAUA
1259 803 ACCAAGCUAAGCACUUCACAU
1260 804 GAAAGAUACCUUUACUUUGGG
1261 805 UUAAGGCAAGUCUGUCUUACU
1262 806 AAUUUGCAUCAUUAGAAUAAG
1263 807 CAUGAUAUAAGGUCCAGGUUG
1264 808 AUAGCAGUAAGCAGAACAAUA
1265 809 CAAUAAAUGCAUGAGAAUGUG
1266 810 AGAAGUUUCCAUCCAAAUUUU
1267 811 AAGCAUCUGCUUCAAAGUUAU
1268 812 CACUUGUUAUCAAUGCACUGU
1269 813 AUUCGACGCGCCUCUUCACAG
1270 814 AAGCUGAAUGCCUAAUGACUC
1271 815 UCCAUAUUGUAGUCUCCAAUA
1272 816 AUAUUAAUAAUGACAACUACC
1273 817 CUUUAAACAUUCGACGCGCCU
1274 818 CUUCGAGGGACAUUGUGAGGG
1275 819 AUGAAGCUGAAUGCCUAAUGA
1276 820 GAACCCACUGCUUCAUCCCAG
1277 821 AAAUGUGAAGUUCACAAUACA
1278 822 ACCGAUGAGAGCUAUAGCAGU
1279 823 CUUUGUAUAUCCUUUACUUAG
1280 824 GUCGUCAGGAAUAAAUCUGCU
1281 825 AGUCUGCAAAUGCUGACUGUC
1282 826 UGUUAUCAAUGCACUGUGAUU
1283 827 AUACACAAACACUGGAGUACA
1284 828 GUUGGAGAGCUAAAUGUGCGG
1285 829 AUUGAAGUCUGAAUGUAAAUU
1286 830 CCUUGUGACAUAUUCAAACCA
1287 831 UCAGCUCCCAGUAGACUUUAA
1288 832 ACAGCACUACAGAAUAGAGAA
1289 833 CUACAAUGUCCAAGAUUCCAU
1290 834 ACUGCUUCAUCCCAGAUCUCA
1291 835 ACCACUUACUCUGUGCUAGGC
1292 836 AGAAUAGAGAACCCAAAUUUU
1293 837 ACUAAGAACAAUAACUUUAAC
1294 838 AUUGUGAGGGUAUGGAAUGAC
1295 839 ACAUCAUUUAUAAAUAAUAUU
1296 840 UUCAAACUGGAAGGUACUAGU
1297 841 ACUCCAAAGGGUGUUAUCUUA
1298 842 UGAGGGUAUGGAAUGACAAUU
1299 843 ACAAUGUCCAAGAUUCCAUCU
1300 844 CUAAGUAGAUGGUACUCUUUU
1301 845 CCAUUUGCAUCUACAGUUGUA
1302 846 AAGAAGCAAGACCAAGUCAAG
1303 847 AGUGGUUGAAUUAGGAGUUUA
1304 848 UAUGUAAUAUUAAAGGCAAGU
1305 849 AAGAUUAUAAAUACACAAACA
1306 850 AAUCUCAGUGAACUAUAAAGA
1307 851 CAACUACCACAUAUUGACCAC
1308 852 ACAAGGGACGUUCUCCAGUAA
1309 853 UGACUCCGUGAUAUAUUCACA
1310 854 CUACCAAGUCAGAGUACCCGA
1311 855 AUGAAACCGGUGGGCUUCUUG
1312 856 UGUGAAGUUCACAAUACAAAA
1313 857 ACUGGAAGGUACUAGUGGUGG
1314 858 UAUUAAGAAGACAUGUUAACA
1315 859 UCUUCACAGCUUGCAUUAUUA
1316 860 ACAUGUUAACAUGCUUAGAUA
1317 861 AAGAUAUGUCAGAAGGACAUC
1318 862 GUUUAAGGCAAGUCUGUCUUA
1319 863 AUUCCUGCUCAUUUAAUUAUU
1320 864 GAAGACAUGUUAACAUGCUUA
1321 865 AAUAUGAAGGGUAAUUGGAAU
1322 866 CAAAUGCUGACUGUCCAACCA
1323 867 UAUAUACAAAGUGCUUUAAAA
1324 868 UAAUGACUCCGUGAUAUAUUC
1325 869 GUCAUUAGAACACAGACCACU
1326 870 AUCCCAUUUAAUGUUUACAGU
1327 871 ACAUCAUCCCAUUUAAUGUUU
1328 872 AUACCUUUACUUUGGGUUUAA
1329 873 GAAUAUUUCUUCAUGCCUGAA
1330 874 GUCUGUCUUACUGUGCUACCA
1331 875 AGUGUUUGAGAAUAGAAAUGU
1332 876 AUCAUCAUGAUGCAAAUAAGA
1333 877 GUAACUCAAGUAUUAGCCCCA
1334 878 GUUGUAUACAUGAUAUAAGGU
1335 879 UCUCACUAAGUAGAUGGUACU
1336 880 UGAUGAAGCUGAAUGCCUAAU
1337 881 UGCGCUCCGACCUAAACCAAG
1338 882 CAGCUUGCAUUAUUACAAGGG
1339 883 UGGAACCCACUGCUUCAUCCC
1340 884 AUAAGUCUAAUAAGAUCAUCU
1341 885 AAAGGGUGUUAUCUUACGAGG
1342 886 AACGUAGAGAUGGUCAAGAAA
1343 887 AGGGUAUGGAAUGACAAUUAG
1344 888 AUUAGCUGGGAAUUUGGAAUG
1345 889 ACUUCUCCAAGUGUUUGAGAA
1346 890 UCAGUGAACUAUAAAGAAAAA
1347 891 UCUUCAGUCAGAUCAAUAAAU
1348 892 UGGUUGAAUUAGGAGUUUAAG
1349 893 AUGGGAUACAUCAUUUAUAAA
1350 894 CCUUAAUUUGAUUUAGGUCUG
1351 895 AUCAAUAAAUGCAUGAGAAUG
1352 896 AUUUGAGAAUCUCCAUCAUAA
1353 897 UUAGCACUACAAUGUCCAAGA
1354 898 AGAGUGUGCCCUUAUUGCUGA
1355 899 UCCCAUAUUUCAAACUGGAAG
1356 900 GACUUUAAACAUUCGACGCGC
1357 901 GAUUGCAGUCCACUCUUGUUU
1358 902 GUCCAUCUCCAUCAAAGUCUG
1359 903 ACUUUAAACAUUCGACGCGCC
1360 904 CUGUGCUACCAAGUCAGAGUA
1361 905 UCCUAUUGAGUAUGGUCAUAU
1362 906 AGUAUAAUUUGCAUCAUUAGA
1363 907 ACCAACGUAGAGAUGGUCAAG
1364 908 ACAUUCGACGCGCCUCUUCAC
1365 909 CAGUUGGUUGCUGUUCAUCCA
1366 910 CUGUCUUACUGUGCUACCAAG
1367 911 AUGCAACACAUUCCACAAAGG
1368 912 AGGACUGGAACCCACUGCUUC
1369 913 UCUCCAAGUGUUUGAGAAUAG
1370 914 UGCUUCAUCCCAGAUCUCACU
1371 915 AAUAUUUCUUCAUGCCUGAAA
1372 916 AGAAAUCAAAUGUUCUUCAUU
1373 917 UCUCCAUCAAAGUCUGCAAAU
1374 918 UCAAUAAAUGCAUGAGAAUGU
1375 919 AUCACAUGAUAAGGAUAAGUU
1376 920 ACAGUCAUUAGAACACAGACC
1377 921 UCUGUCAGCUCCCAGUAGACU
1378 922 CAUUGAAAUCCAUAAUUAGUG
1379 923 CUUUGUAAGUGGUUGAAUUAG
1380 924 AAGGCAAGUCACAUAGCAUCA
1381 925 ACUUUGUAAGUGGUUGAAUUA
1382 926 AAAUAAGAUUAUAAAUACACA
1383 927 AUACAUCAUCCCAUUUAAUGU
1384 928 UAAGGUCCAGGUUGAUUCACU
1385 929 GACCACUAAGAACAAUAACUU
1386 930 CUGUGAUGAAGCUGAAUGCCU
1387 931 UGCUAGGCACCAAGCUAAGCA
1388 932 GUACCCGAUCACUAUAUUGUA
1389 933 CACCGAUGAGAGCUAUAGCAG
1390 934 UCCCAGAUGCUGCCUACAGCA
1391 935 CAGUCAGAUCAAUAAAUGCAU
1392 936 AUGCAUGAGAAUGUGGAAUUC
1393 937 UGUAUACAUGAUAUAAGGUCC
1394 938 UCCAAUAAUUACCAUGGGAUA
1395 939 CAAUAUUACUUGGUGUAAGAU
1396 940 AAAGGCAAGUCACAUAGCAUC
1397 941 AUUGGUAUUUCAGUUGGUUGC
1398 942 UCCUUUCAAGAAAUCAAAUGU
1399 943 GUAUUUCUAUAAUUAGAUGUA
1400 944 UCCAUUAUGUAAUAUUAAAGG
1401 945 AACACUGGAGUACAUGCAACA
1402 946 AAGAUUUGCAUUCCCAGAUGC
1403 947 GUAGACUUUAAACAUUCGACG
1404 948 CCACUAAGAACAAUAACUUUA
1405 949 GAUUCUUGAAAGAUACCUUUA
1406 950 CAAUUAGCUGGGAAUUUGGAA
1407 951 AGUCUAUGUAUUUCUAUAAUU
1408 952 CACGUUGUAUGGUAGUUGGAG
1409 953 UGCCUAAUGACUCCGUGAUAU
1410 954 UGAAACCGGUGGGCUUCUUGU
1411 955 GUUGAUUCACUCCAAAGGGUG
1412 956 AAUUAGAUCACCAUUGAAAUC
1413 957 UGAUAAAUUCCCUCCUAAUAG
1414 958 AUUCACUCCAAAGGGUGUUAU
1415 959 UGAAUACUUUCCAAUAAUUAC
1416 960 AAUGCUGACUGUCCAACCACC
1417 961 AAUGCACUGUGAUUCUUGAAA
1418 962 GAAUUGGUAUUUCAGUUGGUU
1419 963 AUAAUUACCAUGGGAUACAUC
1420 964 AGAUCAAUAAAUGCAUGAGAA
1421 965 GCUGAAAUCUUGUAGGACUGG
1422 966 AUUCAUUUGUGAUACCAAAAA
1423 967 GUUCAAACAAUGACUUUGUAA
1424 968 AUUCCAUUAUGUAAUAUUAAA
1425 969 GUACAUGCAACACAUUCCACA
1426 970 AUUCCCAGAUGCUGCCUACAG
1427 971 AGUCUGAAUGUAAAUUAUAGA
1428 972 CACAGCUUGCAUUAUUACAAG
1429 973 CAAUAUGAAGGGUAAUUGGAA
1430 974 CAUCUCCAUCAAAGUCUGCAA
1431 975 AGUCUAAUAAGAUCAUCUAAA
1432 976 UGCUGUGAUGAAGCUGAAUGC
1433 977 CUUUACUUAGCACUACAAUGU
1434 978 AUGUUAACAUGCUUAGAUACA
1435 979 UGCUUAGAUACAAAGUAAAAA
1436 980 AUGGUCAUAUUGUUAGGAUCU
1437 981 AACAUUCGACGCGCCUCUUCA
1438 982 UACCUUUACUUUGGGUUUAAA
1439 983 GUGAUGAAGCUGAAUGCCUAA
1440 984 AGGGCACAUUAAUUCUUGGAG
1441 985 ACAGCAGUUUCCUUUCAAGAA
1442 986 AUGCUUAGAUACAAAGUAAAA
1443 987 ACUCCGUGAUAUAUUCACAAA
1444 988 UCUUUAUGUCAAUCACCAAAA
1445 989 GAUUGAAGAUUUGCAUUCCCA
1446 990 AUUAGGAGUUUAAGGCAAGUC
1447 991 AAUUUGGAAUGAUUGCAGUCC
1448 992 UCCCAGAUCUCACUAAGUAGA
1449 993 CACUAAGUAGAUGGUACUCUU
1450 994 UGCAUCAUUAGAAUAAGAAGC
1451 995 AGAUGUAUAAGUCUAAUAAGA
1452 996 UUGUGAGGGUAUGGAAUGACA
1453 997 AGUCAGAGUACCCGAUCACUA
1454 998 CUGUGCUAGGCACCAAGCUAA
1455 999 GUAUAAUUUGCAUCAUUAGAA
1456 1000 UAAUUACCAUGGGAUACAUCA
1457 1001 CACAUUAAUUCUUGGAGAGUA
1458 1002 CUUGAAAGAUACCUUUACUUU
1459 1003 CUGCCUACAGCAGUUUCCUUU
1460 1004 AAGACCAAGUCAAGUGGACAC
1461 1005 GGAAUUGGUAUUUCAGUUGGU
1462 1006 CCAUAUUUCAAACUGGAAGGU
1463 1007 GAACAAUAUUACUUGGUGUAA
1464 1008 CAAGUCUAUGUAUUUCUAUAA
1465 1009 AAGAUUCCAUCUUCGUAAAUG
1466 1010 ACAUGAUAAGGAUAAGUUUUU
1467 1011 ACAUACAUCAUCCCAUUUAAU
1468 1012 GACAUGUUAACAUGCUUAGAU
1469 1013 UGGUAGUUGGAGAGCUAAAUG
1470 1014 CUAUAGCAGUAAGCAGAACAA
1471 1015 CUUCAUCCCAGAUCUCACUAA
1472 1016 CUCUGUGCUAGGCACCAAGCU
1473 1017 AAGGUCCAGGUUGAUUCACUC
1474 1018 GACUGGAACCCACUGCUUCAU
1475 1019 AUCACAUGUCCAUUUGCAUAC
1476 1020 CUACAGAAUAGAGAACCCAAA
1477 1021 AAUGACAAUUAGCUGGGAAUU
1478 1022 GUAAAUCUUUAUGUCAAUCAC
1479 1023 GUAUGGUAGUUGGAGAGCUAA
1480 1024 CAUCCUUAAUUUGAUUUAGGU
1481 1025 AUCUUACGAGGACAGUCAUUA
1482 1026 CACAUGAUAAGGAUAAGUUUU
TABLE 5
Results for ABCC4. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA_ siRNA guide strand/
NO id AS Sequence
1483 1 UUAACAGUGAUGACUUCCCUG
1484 2 UUGACAAAUACACAGUUCGAA
1485 3 UUAAGAUCUAGCUUCUCGGUU
1486 4 UAACACUUUAUGAUUGCUCUU
1487 5 UUCACUUUCCUCAUUAUCCUU
1488 6 UUCAAUAUCAGAAUCUGACUU
1489 7 UUAAACCUGAAUAAAUUCCUA
1490 8 UAGAAUACCAAUAGAGAUCUU
1491 9 UGCACUGAGAGGAUCGUCCAG
1492 10 UCAUCUUCCUCUAAUCUCCGU
1493 11 UAUAACUUCAUUCAUGGUCCU
1494 12 UUUGACAAAUACACAGUUCGA
1495 13 AUAACUUCAUUCAUGGUCCUG
1496 14 UUAAAGAAGGCUUCUGUGCGU
1497 15 UGUAAGAACACUGUCACCUGA
1498 16 UAAGAUUUCCAGUAACACUUU
1499 17 UCAUUCAUGGUCCUGAUCCUG
1500 18 UCAGAAUCUGACUUGCAGCUU
1501 19 UACACGGGCAGCAUCUUGCCG
1502 20 AUACAUAUCAUCUUCCUCUAA
1503 21 UGAAGAGUUAACAAGGACGUA
1504 22 UUUGUGAAGAGUUAACAAGGA
1505 23 UCUAUCAAAGAAUAAUACCGG
1506 24 UGAUAUCUCAUCAAGUAGCAA
1507 25 UGACAUUUAGCAUACUUUGUU
1508 26 AAACUUGUUCACAUCAUUGGA
1509 27 UUUACAGUGACAUUUAGCAUA
1510 28 AUUUACAGUGACAUUUAGCAU
1511 29 AAGCACAUAGGCAACAUCUUG
1512 30 UUCUCGGUUACAUUUCCUCCU
1513 31 UAAACCUGAAUAAAUUCCUAA
1514 32 AAUCUUGGAAAUCUCCUUCUU
1515 33 UAUUACUCCUCAGAGUUCCCG
1516 34 UUCCUAUUGGAUUUCUAUCAA
1517 35 AUACCAAUAGAGAUCUUGCUA
1518 36 UUUCCAGUAACACUUUAUGAU
1519 37 UUGCUCUUGUUAAAGAAGGCU
1520 38 UAUCAAAGAAUAAUACCGGAG
1521 39 UGAGGUACUGCAACUGAUGAG
1522 40 UUCCGCAUCUACUGCACUGAG
1523 41 UGAAUACAUAUCAUCUUCCUC
1524 42 AUCACCAUCCUCCAACAGCUG
1525 43 UUGCAACUCCUCUCCAAGGUG
1526 44 UUGUUAAAGAAGGCUUCUGUG
1527 45 UCUUGAUACACUGCUCUUGCA
1528 46 UUUCAGAAUUGACUCAAACAU
1529 47 AGUGAUGAGAACAACUUCCCA
1530 48 UCAAUAUCAGAAUCUGACUUG
1531 49 AAUCUUGAAGCACAUAGGCAA
1532 50 UCUUCCAUGCACGCUGACCAG
1533 51 AAGAUUUCCAGUAACACUUUA
1534 52 UACUGCACUGAGAGGAUCGUC
1535 53 UAAGAUCUAGCUUCUCGGUUA
1536 54 UUAGUGUGGGAGUUCCUGGAA
1537 55 AACACUUUAUGAUUGCUCUUG
1538 56 UACACUGCUCUUGCAAGGUUU
1539 57 AUAUCAGAAUCUGACUUGCAG
1540 58 AUAGAGAUCUUGCUAUGCCAA
1541 59 AAUACAUAUCAUCUUCCUCUA
1542 60 UACACAGUUCGAACAAGUGUC
1543 61 UAUUGGAUUUCUAUCAAAGAA
1544 62 AUCAUCUUCCUCUAAUCUCCG
1545 63 UAGAAGAUUGUUGAGACCAAA
1546 64 UACCAAUAGAGAUCUUGCUAU
1547 65 UUGUGAAGAGUUAACAAGGAC
1548 66 UGCUCUUGCAAGGUUUACCCG
1549 67 AUACUUUGUUUGUUUGCCCAG
1550 68 UUAUACCAGUUAUAACUUCAU
1551 69 UAAAUUCCUAAGUACCAGUUA
1552 70 UUGCCUCUGACACCCUCUCAA
1553 71 UAACUUCCGCAUCUACUGCAC
1554 72 UAUUCCUAUCUCCAUCCAGAG
1555 73 AUACACAGUUCGAACAAGUGU
1556 74 UUACUCCUCAGAGUUCCCGAG
1557 75 AACAAGGACGUAGAAUACCAA
1558 76 UUUAGCAUACUUUGUUUGUUU
1559 77 UCAGCAUCUUGAUACACUGCU
1560 78 UGCAGCUUUGAGGUACUGCAA
1561 79 AGAUUGUUGAGACCAAACCGA
1562 80 UUGAGGUACUGCAACUGAUGA
1563 81 UAUACCAGUUAUAACUUCAUU
1564 82 UUAGCAUACUUUGUUUGUUUG
1565 83 UUCUUUAUCCCAGAACCCUUG
1566 84 AAUACCAAUAGAGAUCUUGCU
1567 85 UUCAGAAUUGACUCAAACAUU
1568 86 UCUGAGGCAGGAACUUCUCAG
1569 87 UGUCACCUGAUCAAACUUGUU
1570 88 UCUUUCAAUAUCAGAAUCUGA
1571 89 UUGGAAAUCUCCUUCUUUCUC
1572 90 UUACAUUUCCUCCUCCAUUUA
1573 91 AUCUUGGAAAUCUCCUUCUUU
1574 92 UUCUAUCAAAGAAUAAUACCG
1575 93 UGCGCUGUGAUAUCUCAUCAA
1576 94 AAGAUUGUUGAGACCAAACCG
1577 95 UUGCAAGGUUUACCCGUGCUU
1578 96 UCCAUUUACAGUGACAUUUAG
1579 97 UGAGACACAUAGGCAAUUCUU
1580 98 UAAGUACCAGUUAAGAUCUAG
1581 99 AUUUAGCAUACUUUGUUUGUU
1582 100 UCUUGUUAAAGAAGGCUUCUG
1583 101 AAUAGAGAUCUUGCUAUGCCA
1584 102 UGUCAGCAUCUUGAUACACUG
1585 103 UACAGUGACAUUUAGCAUACU
1586 104 UGAGCAGAGGUUCGCGUCCUG
1587 105 UGACAGUAAAGGAAAGGCCUU
1588 106 ACAAGUGUCUGCUAACUUCCG
1589 107 AUACACUGCUCUUGCAAGGUU
1590 108 UCACAGUCAGAUCACCAUCCU
1591 109 UUUGAGGUACUGCAACUGAUG
1592 110 ACACAUAGGCAAUUCUUCCAU
1593 111 AUAGAUGUCAGCAUCUUGAUA
1594 112 UUUACCCGUGCUUUCUGCCCU
1595 113 UUCCUGGAACUGGAGGUUGUU
1596 114 AGUCAGAUCACCAUCCUCCAA
1597 115 UUUAUCCCAGAACCCUUGCAA
1598 116 UUCCUAUCUCCAUCCAGAGUA
1599 117 UUCCUCAUUAUCCUUCUUUAA
1600 118 AAUCUGACUUGCAGCUUUGAG
1601 119 CACAGUUCGAACAAGUGUCUG
1602 120 UACCAGUUAAGAUCUAGCUUC
1603 121 AGUUCGAACAAGUGUCUGCUA
1604 122 AAGUGUCUGCUAACUUCCGCA
1605 123 UCUGACUUGCAGCUUUGAGGU
1606 124 UCUCGGUUACAUUUCCUCCUC
1607 125 UUCAUUCAUGGUCCUGAUCCU
1608 126 UACGAUUCCUUAGUGUGGGAG
1609 127 UCCAACAGCUGUAAAUCCUUU
1610 128 UUGUGCAAAGUUUGUGAAGAG
1611 129 AAUAUCAGAAUCUGACUUGCA
1612 130 UCUUCCUCUAAUCUCCGUUUA
1613 131 AUAAGAUUUCCAGUAACACUU
1614 132 AUCCUGCACAUGCACCAUCUU
1615 133 AUCUUUCAAUAUCAGAAUCUG
1616 134 UCCUGCACAUGCACCAUCUUU
1617 135 AACCCUUGCAACUCCUCUCCA
1618 136 UCCUUCUUUCUCAAAUUGGUA
1619 137 UACUAAGACGAAGUGCCUCAA
1620 138 UCACCAUCCUCCAACAGCUGU
1621 139 UGUCUUUGGAGAAACGAUUUA
1622 140 UGUGAUCACACUGCCGAGGAG
1623 141 ACCACAGCUAACAAUUCGCCA
1624 142 UUCACAUCAUUGGACAGCAGA
1625 143 UUCUGCCCUCCACUCAGCGUG
1626 144 UUUAUGAUUGCUCUUGUUAAA
1627 145 ACCAGUUAUAACUUCAUUCAU
1628 146 UCUCCAUCCAGAGUAGGGCAG
1629 147 CAUCUUGAUACACUGCUCUUG
1630 148 UUCAAGGAGGGUCUAGAAGAU
1631 149 UAAAGAAGGCUUCUGUGCGUC
1632 150 UUGAUACACUGCUCUUGCAAG
1633 151 UUUCCUCCUCCAUUUACAGUG
1634 152 AAGUGUCCAAUGUCUUUGGAG
1635 153 UCUGAGAAGGUACGAUUCCUU
1636 154 ACAAAUACACAGUUCGAACAA
1637 155 UCAGAAUCUUGGAAAUCUCCU
1638 156 UUUCUGCCCUCCACUCAGCGU
1639 157 AGUGUCUGCUAACUUCCGCAU
1640 158 UAAAGGAAAGGCCUUGUAGAG
1641 159 UUCUGUGCGUCAUUCUCAGCU
1642 160 UCCUUAGUGUGGGAGUUCCUG
1643 161 CUGACUUGCAGCUUUGAGGUA
1644 162 AACAGUGAUGACUUCCCUGCU
1645 163 UCUAGCUUCUCGGUUACAUUU
1646 164 UCUAGAAGAUUGUUGAGACCA
1647 165 UAACCGUCAGCCGCACAGCCC
1648 166 UUGGACAGCAGAUUGACUAUC
1649 167 UAGGAACUCAGUGUAAGUCCC
1650 168 AUGCACGCUGACCAGCCCGUG
1651 169 AUAUCAUCUUCCUCUAAUCUC
1652 170 UUCCAGUAACACUUUAUGAUU
1653 171 ACUGAGAGGAUCGUCCAGGAG
1654 172 UUACCCGUGCUUUCUGCCCUC
1655 173 UAUCAUCUUCCUCUAAUCUCC
1656 174 CUUAACAGUGAUGACUUCCCU
1657 175 AAAUUCAUCCCUCUGAGGCAG
1658 176 UCCAAGUGUCCAAUGUCUUUG
1659 177 AUGAUUGCUCUUGUUAAAGAA
1660 178 UGUGCGUCAUUCUCAGCUCUU
1661 179 UGAGGCAGGAACUUCUCAGAA
1662 180 UUCACCUCCUGGUACACGGGC
1663 181 UCCAGUAACACUUUAUGAUUG
1664 182 UCAAACUUGUUCACAUCAUUG
1665 183 UAACAGUGAUGACUUCCCUGC
1666 184 UAUCACAGUCAGAUCACCAUC
1667 185 UAGCAUACUUUGUUUGUUUGC
1668 186 AAGACUCUGAGAAGGUACGAU
1669 187 AACUUGUUCACAUCAUUGGAC
1670 188 AGCAUCUUGAUACACUGCUCU
1671 189 UUGCGCUGUGAUAUCUCAUCA
1672 190 UGGAGGUUGUUCACUUUCCUC
1673 191 UAUCUCAUCAAGUAGCAAAAA
1674 192 UGGUGAAGGUCACAAACACGA
1675 193 AAGAGGGUAACCGUCAGCCGC
1676 194 UAUCAGAAUCUGACUUGCAGC
1677 195 ACAUUUAGCAUACUUUGUUUG
1678 196 UAACAAGGACGUAGAAUACCA
1679 197 UUGCAGCUUUGAGGUACUGCA
1680 198 GUUAAGAUCUAGCUUCUCGGU
1681 199 AGGGUCUAGAAGAUUGUUGAG
1682 200 UAACUUCAUUCAUGGUCCUGA
1683 201 AUAAAUUCCUAAGUACCAGUU
1684 202 UUCCUUAGUGUGGGAGUUCCU
1685 203 AGAAUUGACUCAAACAUUUUG
1686 204 UGUUACUAAGACGAAGUGCCU
1687 205 AGUCACUGCAAUCGCCUGCAG
1688 206 AGGAAGUGUAAGAACACUGUC
1689 207 CUUGAUACACUGCUCUUGCAA
1690 208 UCGGUUACAUUUCCUCCUCCA
1691 209 UAGGGCAGUCACUGCAAUCGC
1692 210 UCAAAGAAUAAUACCGGAGCU
1693 211 UUCUUCCUAUUGGAUUUCUAU
1694 212 UCAGAAUUGACUCAAACAUUU
1695 213 UUGUUCACAUCAUUGGACAGC
1696 214 UAUUAUCCUUAUACCAGUUAU
1697 215 UUGAAGCACAUAGGCAACAUC
1698 216 UGCUAACUUCCGCAUCUACUG
1699 217 GUGAUGAGAACAACUUCCCAA
1700 218 UCUCCAAGGUGCUGUGAGCGG
1701 219 UAUCUCCAUCCAGAGUAGGGC
1702 220 UACCAUCUUUCAAUAUCAGAA
1703 221 UCGUCCAGGAGAUAGAUGUCA
1704 222 AUCCAAGUGUCCAAUGUCUUU
1705 223 AGCUUUGAGGUACUGCAACUG
1706 224 AUUGCCUCUGACACCCUCUCA
1707 225 CAGAAUCUUGGAAAUCUCCUU
1708 226 UCUCCUUCUUUCUCAAAUUGG
1709 227 ACUUCUUUAUCCCAGAACCCU
1710 228 ACUUUCCUCAUUAUCCUUCUU
1711 229 UACAUAUCAUCUUCCUCUAAU
1712 230 CUAACUUCCGCAUCUACUGCA
1713 231 UCGGAUGCUGACGAUUGCCUC
1714 232 AAUACACAGUUCGAACAAGUG
1715 233 AAGUUUGUGAAGAGUUAACAA
1716 234 UCAAAUUGGUAAUAAGAUUUG
1717 235 ACUUGCAGCUUUGAGGUACUG
1718 236 UUGCAAGGGCAGGAGAAUGAU
1719 237 GAUAUUCCUAUCUCCAUCCAG
1720 238 UCCUAUUGGAUUUCUAUCAAA
1721 239 UGGUACACGGGCAGCAUCUUG
1722 240 ACUGUCACCUGAUCAAACUUG
1723 241 UGGAAAUCUCCUUCUUUCUCA
1724 242 AGUUAAGAUCUAGCUUCUCGG
1725 243 AUUUCCAGUAACACUUUAUGA
1726 244 AUCAGAAUCUGACUUGCAGCU
1727 245 AAGAAGGCUUCUGUGCGUCAU
1728 246 ACCCUUGCAACUCCUCUCCAA
1729 247 UGACCAGCCCGUGACUUGGGG
1730 248 CUAAGUACCAGUUAAGAUCUA
1731 249 UUCCCGAGAACACCCAGGGCU
1732 250 UACUUUGUUUGUUUGCCCAGU
1733 251 AAUUCUUCCAUGCACGCUGAC
1734 252 UCAGUGAUGAGAACAACUUCC
1735 253 AUGACUUCCCUGCUCCCACGG
1736 254 AUUCUUCCUAUUGGAUUUCUA
1737 255 UUUCCUCAUUAUCCUUCUUUA
1738 256 UACCGGAGCUUUCAGAAUUGA
1739 257 AUAGGCAAUUCUUCCAUGCAC
1740 258 UUUCAAUAUCAGAAUCUGACU
1741 259 AGUUAUAACUUCAUUCAUGGU
1742 260 UUCGGAUGCUGACGAUUGCCU
1743 261 CAAGUGUCUGCUAACUUCCGC
1744 262 UCUGCUAACUUCCGCAUCUAC
1745 263 UGGGAGUUCCUGGAACUGGAG
1746 264 CUAUCAAAGAAUAAUACCGGA
1747 265 ACUUCCGCAUCUACUGCACUG
1748 266 UUCUCAAAUUGGUAAUAAGAU
1749 267 AUUGUUGAGACCAAACCGAAG
1750 268 CAAUCUUGAAGCACAUAGGCA
1751 269 UGUCCGCUCGGCUGGAGCCUG
1752 270 AGGAGGGUCUAGAAGAUUGUU
1753 271 UGCUCUUGUUAAAGAAGGCUU
1754 272 UUUGUUUGUUUGCCCAGUAUG
1755 273 UUCCUAAGUACCAGUUAAGAU
1756 274 UCUCCUAUCACAGUCAGAUCA
1757 275 UCACAUCAUUGGACAGCAGAU
1758 276 UACCAGUUAUAACUUCAUUCA
1759 277 UUACAGUGACAUUUAGCAUAC
1760 278 UGACUUCCCUGCUCCCACGGG
1761 279 UAGCUUCUCGGUUACAUUUCC
1762 280 AAAUUGGUAAUAAGAUUUGAA
1763 281 ACAGUGACAUUUAGCAUACUU
1764 282 CAAGUGUCCAAUGUCUUUGGA
1765 283 AGAGUUAACAAGGACGUAGAA
1766 284 GUACCAGUUAAGAUCUAGCUU
1767 285 AUUGGACAGCAGAUUGACUAU
1768 286 AGAAUCUGACUUGCAGCUUUG
1769 287 UGGAUUUCUAUCAAAGAAUAA
1770 288 AGAAUACCAAUAGAGAUCUUG
1771 289 UGAAUAAAUUCCUAAGUACCA
1772 290 AUCAAACUUGUUCACAUCAUU
1773 291 AUCAUUGGACAGCAGAUUGAC
1774 292 UCAGCGGCAGCAAAUCAUCCA
1775 293 AGUGACAUUUAGCAUACUUUG
1776 294 CACUUUAUGAUUGCUCUUGUU
1777 295 UAGAUGUCAGCAUCUUGAUAC
1778 296 CAUCUUCCUCUAAUCUCCGUU
1779 297 CUGAAUACAUAUCAUCUUCCU
1780 298 ACAGUGAUGACUUCCCUGCUC
1781 299 UUAUCCUUAUACCAGUUAUAA
1782 300 UCCUUAUACCAGUUAUAACUU
1783 301 UGUUGUGCAAAGUUUGUGAAG
1784 302 UGACUUGCAGCUUUGAGGUAC
1785 303 ACUGCAACUGAUGAGUCACUA
1786 304 ACACGGGCAGCAUCUUGCCGG
1787 305 UGUUUGUUUGCCCAGUAUGAA
1788 306 AUUUGACAAAUACACAGUUCG
1789 307 UUCGCGUCCUGCAGCGGGUUG
1790 308 UUAUGAUUGCUCUUGUUAAAG
1791 309 UCUGUGCGUCAUUCUCAGCUC
1792 310 AAGGUCACAAACACGAUGAUU
1793 311 UUCCUCCUCCAUUUACAGUGA
1794 312 UCUCAGAAUCUUGGAAAUCUC
1795 313 UGAUACACUGCUCUUGCAAGG
1796 314 UUGUUGAGACCAAACCGAAGA
1797 315 AUUGUGAUCUUCUCAUGCAAA
1798 316 AGAGUUCCCGAGAACACCCAG
1799 317 ACAGGAAGUGUAAGAACACUG
1800 318 AAGAACACUGUCACCUGAUCA
1801 319 UUACUAAGACGAAGUGCCUCA
1802 320 AUCUCCUUCUUUCUCAAAUUG
1803 321 ACACAGUUCGAACAAGUGUCU
1804 322 AUCUUCCUCUAAUCUCCGUUU
1805 323 UCACCUGAUCAAACUUGUUCA
1806 324 UACUGCAACUGAUGAGUCACU
1807 325 UCAAGGAGGGUCUAGAAGAUU
1808 326 UGAGAGGAUCGUCCAGGAGAU
1809 327 AGUGUAAGAACACUGUCACCU
1810 328 UCCUCCUCCAUUUACAGUGAC
1811 329 UAGCUACAGUUAAACCUGAAU
1812 330 UGAGAAGGUACGAUUCCUUAG
1813 331 UUCUUUCUCAAAUUGGUAAUA
1814 332 UCCAGAGUAGGGCAGUCACUG
1815 333 AAAGGCCUUGUAGAGUUGGGG
1816 334 UUAACAAGGACGUAGAAUACC
1817 335 UUGGAUUUCUAUCAAAGAAUA
1818 336 UGCUUUCUGCCCUCCACUCAG
1819 337 UUGUUUGUUUGCCCAGUAUGA
1820 338 UUCAUCCCUCUGAGGCAGGAA
1821 339 AGAAUCUUGGAAAUCUCCUUC
1822 340 UACCAUCUGACGGCAGCUGAC
1823 341 AUUACUCCUCAGAGUUCCCGA
1824 342 GAGAAUGAUUAGAACUGCCAU
1825 343 ACGUAGAAUACCAAUAGAGAU
1826 344 UUGUGAUCUUCUCAUGCAAAA
1827 345 UACAUUUCCUCCUCCAUUUAC
1828 346 UGAUCAAACUUGUUCACAUCA
1829 347 GAACUUCUCAGAAUCUUGGAA
1830 348 UUCCUCUAAUCUCCGUUUAUG
1831 349 UAGGCAAUUCUUCCAUGCACG
1832 350 UGUGGGAGUUCCUGGAACUGG
1833 351 AUCUCCAUCCAGAGUAGGGCA
1834 352 AUUCCUAUCUCCAUCCAGAGU
1835 353 UGAAGGUCACAAACACGAUGA
1836 354 UCACUUUCCUCAUUAUCCUUC
1837 355 AAGUGUAAGAACACUGUCACC
1838 356 AGAACACUGUCACCUGAUCAA
1839 357 AACUUCAUUCAUGGUCCUGAU
1840 358 AAGGUUUACCCGUGCUUUCUG
1841 359 UCACUGCAAUCGCCUGCAGUG
1842 360 UCGCCUGCAGUGGUCCUGCCC
1843 361 UCCGCAUCUACUGCACUGAGA
1844 362 UGAGACCAAACCGAAGACUCU
1845 363 UCUUUCAAGGAGGGUCUAGAA
1846 364 AGCUUCUCGGUUACAUUUCCU
1847 365 AACAAGUGUCUGCUAACUUCC
1848 366 GUGUAAGAACACUGUCACCUG
1849 367 CUUUGAGGUACUGCAACUGAU
1850 368 UGAAGCACAUAGGCAACAUCU
1851 369 UUCUUCCAUGCACGCUGACCA
1852 370 AAUAAUACCGGAGCUUUCAGA
1853 371 CAGAUCACCAUCCUCCAACAG
1854 372 UUGAGACCAAACCGAAGACUC
1855 373 AAGAUCUAGCUUCUCGGUUAC
1856 374 AGGAACUUCUCAGAAUCUUGG
1857 375 UCAUCCAAGUGUCCAAUGUCU
1858 376 AUGUCUUUGGAGAAACGAUUU
1859 377 AGGAACUCAGUGUAAGUCCCC
1860 378 CAAAGAAUAAUACCGGAGCUU
1861 379 UGGAACUGGAGGUUGUUCACU
1862 380 AGCACAUAGGCAACAUCUUGG
1863 381 ACGAUUGCCUCUGACACCCUC
1864 382 UGAUGAGAACAACUUCCCAAA
1865 383 UUGGUAAUAAGAUUUGAAAAU
1866 384 UAAUACCGGAGCUUUCAGAAU
1867 385 CAAUCGCCUGCAGUGGUCCUG
1868 386 UGCAAAGUUUGUGAAGAGUUA
1869 387 AAGAACACGCGUGAGCAGAGG
1870 388 UCCUAUCUCCAUCCAGAGUAG
1871 389 AACUUCCGCAUCUACUGCACU
1872 390 AGAAGGUACGAUUCCUUAGUG
1873 391 UGCAACUGAUGAGUCACUAAA
1874 392 UGUCUGCUAACUUCCGCAUCU
1875 393 UCACACUGCCGAGGAGCACGU
1876 394 AUGCUGACGAUUGCCUCUGAC
1877 395 GUCUGCUAACUUCCGCAUCUA
1878 396 CAUACUUUGUUUGUUUGCCCA
1879 397 AGUAACACUUUAUGAUUGCUC
1880 398 GAAUAAAUUCCUAAGUACCAG
1881 399 UCUGGAUUCUUCGGAUGCUGA
1882 400 GACAGCAGAUUGACUAUCUGG
1883 401 CUCCAGAGCACCAUCUUUCAA
1884 402 CAGAAGAACACGCGUGAGCAG
1885 403 GUUCACAUCAUUGGACAGCAG
1886 404 UCUCAAAUUGGUAAUAAGAUU
1887 405 UCUGACGGCAGCUGACGGUUG
1888 406 UUGUUCACUUUCCUCAUUAUC
1889 407 AGCACGGCACUUAACAGUGAU
1890 408 GUAGCUACAGUUAAACCUGAA
1891 409 UUUGCCCAGUAUGAAAGCCAC
1892 410 UGGUCCUGCCCACAGGAAGUG
1893 411 AGUUUGUGAAGAGUUAACAAG
1894 412 GAUUGUUGAGACCAAACCGAA
1895 413 CCACAGCUAACAAUUCGCCAG
1896 414 AUCCCUCUGAGGCAGGAACUU
1897 415 CACAGUCAGAUCACCAUCCUC
1898 416 AACUCCUCUCCAAGGUGCUGU
1899 417 UCGAACAAGUGUCUGCUAACU
1900 418 UCUGACAGUAAAGGAAAGGCC
1901 419 UUGGGCUUCACCUCCUGGUAC
1902 420 AUUCUUCGGAUGCUGACGAUU
1903 421 GCACUGAAUACAUAUCAUCUU
1904 422 UAAGACGAAGUGCCUCAAUUA
1905 423 AAUGUCUUUGGAGAAACGAUU
1906 424 CUUGUUCACAUCAUUGGACAG
1907 425 AUCAUCCAAGUGUCCAAUGUC
1908 426 UAAGAACACUGUCACCUGAUC
1909 427 AUCUGACGGCAGCUGACGGUU
1910 428 AGGAUCGUCCAGGAGAUAGAU
1911 429 CAGAAUCUGACUUGCAGCUUU
1912 430 AGCACAAGCCUUUAUGACUUU
1913 431 GAGCUUUCAGAAUUGACUCAA
1914 432 AUCCGUGAAAGUUGCAGUUUU
1915 433 UCCAGGAGAUAGAUGUCAGCA
1916 434 ACACUUUAUGAUUGCUCUUGU
1917 435 UGCAAGGUUUACCCGUGCUUU
1918 436 UGGACCUCAAGCAGGGAUGCU
1919 437 AAAUUCCUAAGUACCAGUUAA
1920 438 GAGACCAAACCGAAGACUCUG
1921 439 ACUUUAUGAUUGCUCUUGUUA
1922 440 UCCUCUCCAAGGUGCUGUGAG
1923 441 AGGUUCGCGUCCUGCAGCGGG
1924 442 UACAGUUAAACCUGAAUAAAU
1925 443 CAGAGCACCAUCUUUCAAGGA
1926 444 ACGGUAGCUACAGUUAAACCU
1927 445 AAGGUACGAUUCCUUAGUGUG
1928 446 AACUUCUCAGAAUCUUGGAAA
1929 447 CUCAGUGAUGAGAACAACUUC
1930 448 CACACUGCCGAGGAGCACGUA
1931 449 AUCUGACUUGCAGCUUUGAGG
1932 450 GAUUCUUCGGAUGCUGACGAU
1933 451 ACUGCAAUCGCCUGCAGUGGU
1934 452 UCCUCCAUUUACAGUGACAUU
1935 453 CAACUCCUCUCCAAGGUGCUG
1936 454 UUCUUCGGAUGCUGACGAUUG
1937 455 AAACCGAAGACUCUGAGAAGG
1938 456 CAGCAUCUUGAUACACUGCUC
1939 457 UCUCCAGAGCACCAUCUUUCA
1940 458 CAAACUUGUUCACAUCAUUGG
1941 459 AGAGUAGGGCAGUCACUGCAA
1942 460 UCUUGGAAAUCUCCUUCUUUC
1943 461 UUUCUAUCAAAGAAUAAUACC
1944 462 UCACCUCCUGGUACACGGGCA
1945 463 AUCUACUGCACUGAGAGGAUC
1946 464 UCCGCUCGGCUGGAGCCUGUG
1947 465 AUCUUGAUACACUGCUCUUGC
1948 466 GUUCGAACAAGUGUCUGCUAA
1949 467 AUUUCCUCCUCCAUUUACAGU
1950 468 UCUUGAAGCACAUAGGCAACA
1951 469 UCCGUGAAAGUUGCAGUUUUA
1952 470 UGACGGCAGCUGACGGUUGCG
1953 471 UCCUGGACCUCAAGCAGGGAU
1954 472 CAUCUGACGGCAGCUGACGGU
1955 473 AAGGAGGGUCUAGAAGAUUGU
1956 474 CUUCUUUAUCCCAGAACCCUU
1957 475 UCCAGAGCACCAUCUUUCAAG
1958 476 ACCGAAGACUCUGAGAAGGUA
1959 477 AAUCAUCCAAGUGUCCAAUGU
1960 478 AAUAAGAUUUCCAGUAACACU
1961 479 CUAGAAGAUUGUUGAGACCAA
1962 480 AAGGACGUAGAAUACCAAUAG
1963 481 UCUUUCUCAAAUUGGUAAUAA
1964 482 UCUCUGAUGCCUUAUCCCAAA
1965 483 UCCAUGCACGCUGACCAGCCC
1966 484 AUUGCUCUUGUUAAAGAAGGC
1967 485 GGAACUUCUCAGAAUCUUGGA
1968 486 UGCGUCAUUCUCAGCUCUUAA
1969 487 UUUCUCAAAUUGGUAAUAAGA
1970 488 AUCGUCCAGGAGAUAGAUGUC
1971 489 UGCAGUGGUCCUGCCCACAGG
1972 490 GUCUGGAUUCUUCGGAUGCUG
1973 491 UGACGAUUGCCUCUGACACCC
1974 492 AAUAAAUUCCUAAGUACCAGU
1975 493 AGCACCAUCUUUCAAGGAGGG
1976 494 GUAAGAACACUGUCACCUGAU
1977 495 UCUUGCAAGGUUUACCCGUGC
1978 496 AGGUUGUUCACUUUCCUCAUU
1979 497 GCAUCUUGAUACACUGCUCUU
1980 498 ACAGUUCGAACAAGUGUCUGC
1981 499 AGCAAAUCAUCCAAGUGUCCA
1982 500 UAGGUGGUGAAGGUCACAAAC
1983 501 CAGAGUUCCCGAGAACACCCA
1984 502 UGUUGAGACCAAACCGAAGAC
1985 503 ACCAAUAGAGAUCUUGCUAUG
1986 504 CAGUUCGAACAAGUGUCUGCU
1987 505 AAAGAAUAAUACCGGAGCUUU
1988 506 UGGAUUCUUCGGAUGCUGACG
1989 507 AUCUAGCUUCUCGGUUACAUU
1990 508 AUAAUACCGGAGCUUUCAGAA
1991 509 GUGACAUUUAGCAUACUUUGU
1992 510 UCAUUGGACAGCAGAUUGACU
1993 511 CUGCACUGAGAGGAUCGUCCA
1994 512 UAUGAUUGCUCUUGUUAAAGA
1995 513 AUCUUGAAGCACAUAGGCAAC
1996 514 UCUACUGCACUGAGAGGAUCG
1997 515 UGUCCAAUGUCUUUGGAGAAA
1998 516 AGUACCAGUUAAGAUCUAGCU
1999 517 CUUAGUGUGGGAGUUCCUGGA
2000 518 UGAUUGCUCUUGUUAAAGAAG
2001 519 CAAAUUGGUAAUAAGAUUUGA
2002 520 GAUAGAUGUCAGCAUCUUGAU
2003 521 UACUCCUCAGAGUUCCCGAGA
2004 522 UCUUCGGAUGCUGACGAUUGC
2005 523 GAAGCACAUAGGCAACAUCUU
2006 524 GAAGACUCUGAGAAGGUACGA
2007 525 CUGUGCGUCAUUCUCAGCUCU
2008 526 AGAGCACCAUCUUUCAAGGAG
2009 527 GACAUUUAGCAUACUUUGUUU
2010 528 CUGCCGAGGAGCACGUAGGUG
2011 529 CUCCAACAGCUGUAAAUCCUU
2012 530 AUUGGUAAUAAGAUUUGAAAA
2013 531 CAGAAUUGACUCAAACAUUUU
2014 532 CUAUCACAGUCAGAUCACCAU
2015 533 CUGUGAUAUCUCAUCAAGUAG
2016 534 AGAUAGAUGUCAGCAUCUUGA
2017 535 AUUAUCCUUAUACCAGUUAUA
2018 536 AGAACCCUUGCAACUCCUCUC
2019 537 AUACCGGAGCUUUCAGAAUUG
2020 538 ACGCGUGAGCAGAGGUUCGCG
2021 539 ACAAGGACGUAGAAUACCAAU
2022 540 GUGAAGGUCACAAACACGAUG
2023 541 AAGGCCUUGUAGAGUUGGGGU
2024 542 AACCGUCAGCCGCACAGCCCC
2025 543 GAGAUAGAUGUCAGCAUCUUG
2026 544 AAACCUGAAUAAAUUCCUAAG
2027 545 ACGAAGUGCCUCAAUUAACGU
2028 546 UCGUAUUUCUUCCCAAAUAAA
2029 547 UCGCGCUGAUCAGGCGGCGGU
2030 548 UGCUGAGACACAUAGGCAAUU
2031 549 AGAGGGUAACCGUCAGCCGCA
2032 550 GAUCAAACUUGUUCACAUCAU
2033 551 UGUGCAAAGUUUGUGAAGAGU
2034 552 CAGCAAGGCACGAUAUUCCUA
2035 553 UUAUAACUUCAUUCAUGGUCC
2036 554 UUCGAACAAGUGUCUGCUAAC
2037 555 UUUCAAGGAGGGUCUAGAAGA
2038 556 ACAGCUUUGCAAGGGCAGGAG
2039 557 GUGAUGACUUCCCUGCUCCCA
2040 558 UAGUGUGGGAGUUCCUGGAAC
2041 559 UGUGAAGAGUUAACAAGGACG
2042 560 CAAAUACACAGUUCGAACAAG
2043 561 AUACCAGUUAUAACUUCAUUC
2044 562 AUAUUCCUAUCUCCAUCCAGA
2045 563 AAGAAGAGGGUAACCGUCAGC
2046 564 UGCAACUCCUCUCCAAGGUGC
2047 565 GUUACUAAGACGAAGUGCCUC
2048 566 ACGCCUGUCCGCUCGGCUGGA
2049 567 CAUCCAAGUGUCCAAUGUCUU
2050 568 ACCGUCAGCCGCACAGCCCCA
2051 569 CAUUGGACAGCAGAUUGACUA
2052 570 UGUUCACAUCAUUGGACAGCA
2053 571 ACCUGAAUAAAUUCCUAAGUA
2054 572 AUUGGAUUUCUAUCAAAGAAU
2055 573 UUUGUUUGCCCAGUAUGAAAG
2056 574 CAAGGUGCUGUGAGCGGUCUU
2057 575 AACUGGAGGUUGUUCACUUUC
2058 576 GUGCUGUGAGCGGUCUUCUGG
2059 577 CUACUGCACUGAGAGGAUCGU
2060 578 UCCCGAGAACACCCAGGGCUG
2061 579 AACCGAAGACUCUGAGAAGGU
2062 580 AAAUACACAGUUCGAACAAGU
2063 581 UUCUCAGAAUCUUGGAAAUCU
2064 582 AUUCAUCCCUCUGAGGCAGGA
2065 583 ACCUCAAGCAGGGAUGCUGGG
2066 584 GACACAUAGGCAAUUCUUCCA
2067 585 UCAGAGCACAAGCCUUUAUGA
2068 586 ACUAAAUAAGAUUUCCAGUAA
2069 587 AGUUCCUGGAACUGGAGGUUG
2070 588 CAGAGUAGGGCAGUCACUGCA
2071 589 GUCUCUGAUGCCUUAUCCCAA
2072 590 CAUCUUUCAAGGAGGGUCUAG
2073 591 CCAUCUUUCAAGGAGGGUCUA
2074 592 UACUCCUCAGUGAUGAGAACA
2075 593 AACCUGAAUAAAUUCCUAAGU
2076 594 AUUUCUAUCAAAGAAUAAUAC
2077 595 CGGUAGCUACAGUUAAACCUG
2078 596 GAAGAAGAGGGUAACCGUCAG
2079 597 UCCAAGGUGCUGUGAGCGGUC
2080 598 UGUUAAAGAAGGCUUCUGUGC
2081 599 ACGCUGACCAGCCCGUGACUU
2082 600 AAGACGAAGUGCCUCAAUUAA
2083 601 AGGACGUAGAAUACCAAUAGA
2084 602 UAUCCUUAUACCAGUUAUAAC
2085 603 GCUGCUGAGACACAUAGGCAA
2086 604 CACCUGAUCAAACUUGUUCAC
2087 605 GAGGUUCGCGUCCUGCAGCGG
2088 606 UGUGAUAUCUCAUCAAGUAGC
2089 607 CACUGUCACCUGAUCAAACUU
2090 608 CUUUCCUCAUUAUCCUUCUUU
2091 609 UCCACUCAGCGUGGUUCCCCG
2092 610 AGAGGUUCGCGUCCUGCAGCG
2093 611 CUUCCGCAUCUACUGCACUGA
2094 612 GUCACAAACACGAUGAUUUUG
2095 613 CCAAUCUUGAAGCACAUAGGC
2096 614 CACUGAAUACAUAUCAUCUUC
2097 615 ACCAGUUAAGAUCUAGCUUCU
2098 616 AGGGCAGUCACUGCAAUCGCC
2099 617 AAAUAAGAUUUCCAGUAACAC
2100 618 AGCACGUAGGUGGUGAAGGUC
2101 619 GAAUCUGACUUGCAGCUUUGA
2102 620 GUCAGCAUCUUGAUACACUGC
2103 621 AAGAAUAAUACCGGAGCUUUC
2104 622 AGAUUUCCAGUAACACUUUAU
2105 623 ACAUCAUUGGACAGCAGAUUG
2106 624 UCCUCUAAUCUCCGUUUAUGG
2107 625 AGACCAAACCGAAGACUCUGA
2108 626 CUUCACCUCCUGGUACACGGG
2109 627 UUUGGAGAAACGAUUUAAAAU
2110 628 UCGCGUCCUGCAGCGGGUUGG
2111 629 ACUGCCGAGGAGCACGUAGGU
2112 630 AGGUACGAUUCCUUAGUGUGG
2113 631 CUUGCAACUCCUCUCCAAGGU
2114 632 UCUUUAUCCCAGAACCCUUGC
2115 633 GAAGUGUAAGAACACUGUCAC
2116 634 CUGGAGGUUGUUCACUUUCCU
2117 635 UAUCCCAGAACCCUUGCAACU
2118 636 GGUAGCUACAGUUAAACCUGA
2119 637 AUGUCAGCAUCUUGAUACACU
2120 638 CCAGUUAAGAUCUAGCUUCUC
2121 639 CUCCAAGGUGCUGUGAGCGGU
2122 640 CAGUAACACUUUAUGAUUGCU
2123 641 AUCCAGAGUAGGGCAGUCACU
2124 642 GUGAAGAGUUAACAAGGACGU
2125 643 GGACAGCAGAUUGACUAUCUG
2126 644 GUGAGCAGAGGUUCGCGUCCU
2127 645 CUCUGAGGCAGGAACUUCUCA
2128 646 CAAUUCUUCCAUGCACGCUGA
2129 647 GAAGGUCACAAACACGAUGAU
2130 648 AGGAGAAUGAUUAGAACUGCC
2131 649 CAGGAAGUGUAAGAACACUGU
2132 650 AGAAGAACACGCGUGAGCAGA
2133 651 GAACUGGAGGUUGUUCACUUU
2134 652 CGAAGUGCCUCAAUUAACGUA
2135 653 ACCAUCCUCCAACAGCUGUAA
2136 654 CAUCCGUGAAAGUUGCAGUUU
2137 655 AUCGCCUGCAGUGGUCCUGCC
2138 656 CCGAGGAGCACGUAGGUGGUG
2139 657 CUGCACAUGCACCAUCUUUUU
2140 658 ACUUUGUUUGUUUGCCCAGUA
2141 659 GAUGUCAGCAUCUUGAUACAC
2142 660 GAGGUUGUUCACUUUCCUCAU
2143 661 UUAUCCCAGAACCCUUGCAAC
2144 662 AAUUGGUAAUAAGAUUUGAAA
2145 663 UCCUAUCACAGUCAGAUCACC
2146 664 CUGACAGUAAAGGAAAGGCCU
2147 665 CAUCAUUGGACAGCAGAUUGA
2148 666 ACCAAUCUUGAAGCACAUAGG
2149 667 AGAUCUAGCUUCUCGGUUACA
2150 668 UACCCGUGCUUUCUGCCCUCC
2151 669 CUGUCCGCUCGGCUGGAGCCU
2152 670 AAGGUGCUGUGAGCGGUCUUC
2153 671 AAUUCCUAAGUACCAGUUAAG
2154 672 ACUGAAUACAUAUCAUCUUCC
2155 673 GCUCUUGCAAGGUUUACCCGU
2156 674 GAAUACAUAUCAUCUUCCUCU
2157 675 UCUGCCCUCCACUCAGCGUGG
2158 676 UCUUCCUAUUGGAUUUCUAUC
2159 677 UGGACAGCAGAUUGACUAUCU
2160 678 CAAUGUCUUUGGAGAAACGAU
2161 679 UUCCAUGCACGCUGACCAGCC
2162 680 AGAACACCCAGGGCUGCUGAG
2163 681 UGUGAUCUUCUCAUGCAAAAU
2164 682 ACGGGCAGCAUCUUGCCGGGC
2165 683 GAACAAGUGUCUGCUAACUUC
2166 684 UGCCUCUGACACCCUCUCAAU
2167 685 CCAUGCACGCUGACCAGCCCG
2168 686 AAGGAAAGGCCUUGUAGAGUU
2169 687 CACCAUCCUCCAACAGCUGUA
2170 688 CGAACAAGUGUCUGCUAACUU
2171 689 GAAGAGGGUAACCGUCAGCCG
2172 690 ACUCCUCUCCAAGGUGCUGUG
2173 691 GAAUCUUGGAAAUCUCCUUCU
2174 692 CAGCGGCAGCAAAUCAUCCAA
2175 693 AAGGGCAGGAGAAUGAUUAGA
2176 694 AUAUCUCAUCAAGUAGCAAAA
2177 695 UUUGCAAGGGCAGGAGAAUGA
2178 696 AAAUCAUCCAAGUGUCCAAUG
2179 697 CGAUAUUCCUAUCUCCAUCCA
2180 698 UAAAUAAGAUUUCCAGUAACA
2181 699 CUUGAAGCACAUAGGCAACAU
2182 700 AGGAAAGGCCUUGUAGAGUUG
2183 701 UGCACGCUGACCAGCCCGUGA
2184 702 UCCCUCUGAGGCAGGAACUUC
2185 703 ACACUGCUCUUGCAAGGUUUA
2186 704 CAGGAGAAUGAUUAGAACUGC
2187 705 CACAUAGGCAAUUCUUCCAUG
2188 706 GCAUCUACUGCACUGAGAGGA
2189 707 CACUGCAAUCGCCUGCAGUGG
2190 708 GAACACUGUCACCUGAUCAAA
2191 709 AAGGCUUCUGUGCGUCAUUCU
2192 710 GUGUCCAAUGUCUUUGGAGAA
2193 711 AUCCCAGAACCCUUGCAACUC
2194 712 UCAGAGUUCCCGAGAACACCC
2195 713 CCAAUGUCUUUGGAGAAACGA
2196 714 ACGUCAGCGGCAGCAAAUCAU
2197 715 AGAACGGUAGCUACAGUUAAA
2198 716 GACCAAACCGAAGACUCUGAG
2199 717 GAACACGCGUGAGCAGAGGUU
2200 718 CUCUUGCAAGGUUUACCCGUG
2201 719 CAGUGAUGAGAACAACUUCCC
2202 720 AACACGCGUGAGCAGAGGUUC
2203 721 GUGAUAUCUCAUCAAGUAGCA
2204 722 GCAGGAACUUCUCAGAAUCUU
2205 723 CUUUAUCCCAGAACCCUUGCA
2206 724 ACCAUCUUUCAAUAUCAGAAU
2207 725 ACCUGAUCAAACUUGUUCACA
2208 726 AAUACCGGAGCUUUCAGAAUU
TABLE 6
Results for PAK3. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA_ siRNA guide strand/
NO id AS Sequence
2209 1 UAUAUCUCUAUGGAUCACCUG
2210 2 UUAUCUUGCAAGUUCAACCCA
2211 3 UUAGGUAUCAUUAUCUUUGUU
2212 4 UAAUGUAUCUAUUUCCUCCUG
2213 5 UAAUUUGUCAACAUUUCUCAA
2214 6 UUUACAAUGACACACACACGA
2215 7 UUCUGUAUUGAGAAUGACCAA
2216 8 AUUAAGGAGAUUAACAACCUG
2217 9 UCUAAUAGUGACAUCUCCCUA
2218 10 UUAAUAUUAAACACAUUCCCA
2219 11 UUACAAUGACACACACACGAG
2220 12 UAAAUAAUCUCUACUGUGCUU
2221 13 UUAACUGAAUAUUAACUGCAA
2222 14 UUCAUUAAUAAUUAAUUCCUU
2223 15 UUCUCUACUAUCGCUGUUGAU
2224 16 ACAACUACUGCAAACAACCUA
2225 17 UUGAGUGCUGAAGAAUCCCGG
2226 18 UAAUAUUAAACACAUUCCCAA
2227 19 AUGAUAUACAGUAAUAUCCUG
2228 20 UAUCUUGCAAGUUCAACCCAA
2229 21 UCAUUCUCUACUAUCGCUGUU
2230 22 UUCAGAACCUGAACUCACCUA
2231 23 UUCCUGAACACACAUAUUCCU
2232 24 UAUACAGACAACAGGAAGCAA
2233 25 UUAUGGGAUAGCAUUUGCCUG
2234 26 UUGCUGUUGAAGGUUCAUCUG
2235 27 UUUACAGAUAACACAUUCUGA
2236 28 UAUAGAAUCUCUCAGAACUGG
2237 29 UUAGAGAAACAACUUUCUGUA
2238 30 UAAGUGUUUAGGUUCACUCUU
2239 31 UGAUAUUAUAGAAUCUCUCAG
2240 32 UUAAUAAUUAAUUCCUUCUUG
2241 33 UAUUAUUAUCAAAUCUUGGUA
2242 34 UACUAUAUCACCUUUCUCUAG
2243 35 UUGAGUUAAAUCUUCUUACAU
2244 36 UAGAAUACUCGUACACACAGG
2245 37 UUUACAUACAGACUGUAUGGA
2246 38 UAUUAUGAACUUCAUUUGCUU
2247 39 UUUGGUUAGAUGGUCUCCCUU
2248 40 UUUGCAAUACUUUAGGUCCAA
2249 41 UUCUAAUAGUGACAUCUCCCU
2250 42 UUAUAGAAUCUCUCAGAACUG
2251 43 UUUCUUACAGAGUUGAAUGUU
2252 44 UAAGGCUUGCAGUCUUAGCGG
2253 45 UAUAGUUUGCUGAAACUCUAA
2254 46 UUGCCUAGCGUCACAUAGCAA
2255 47 UAACUUAUAGAUAAUAGUCUC
2256 48 UUAUAGAUAAUAGUCUCCUAA
2257 49 AUUAACAGAACUAUAACUGAA
2258 50 UAAAUAAAUAAUCUCUACUGU
2259 51 UAAAUUACAUAAUCUGAGGGA
2260 52 AAGUUGUAUAGAAUACUCGUA
2261 53 UUUAAUAUUAAACACAUUCCC
2262 54 UAGAGAAACAACUUUCUGUAA
2263 55 UAUAAUUAUUUACACGAUCUU
2264 56 UGUAACUAGCAAAUAUCUCUG
2265 57 UAGACAAAUAUCUCAAACUAU
2266 58 AUUUACACGAUCUUUGAGCUG
2267 59 AUAAUUAACAAUAUUAGGGUU
2268 60 UUGUUGACUGUUUCUUUGGAA
2269 61 UUGGGUACUAAAUCUGUUGAA
2270 62 UUAAUUUGUCAACAUUUCUCA
2271 63 UCUACUGUGCUUCUCACCCUU
2272 64 UAUAUUAUUAUCAAAUCUUGG
2273 65 UAAUUUAGGUAUCAUUAUCUU
2274 66 UUACUAUUCAUCCUCAGUGGA
2275 67 UUAAGGAGAUUAACAACCUGG
2276 68 UUUGAGAACAUCUAGAACAGC
2277 69 UACAGAUGAGGAAACAGCCAU
2278 70 UUAAUGUAUCUAUUUCCUCCU
2279 71 UGGAAUAAUUGUAACUAGCAA
2280 72 UUCUAUAACACAAAUUGUUAG
2281 73 UAACUGAAUAUUAACUGCAAG
2282 74 AAGACCAAGAGAUUCAACCGG
2283 75 UUAACAACCUGGUUUACUCAA
2284 76 UUCUCUAUGUUGGUCAGGCUG
2285 77 UAUUUCUGGUUGUUGACUGUU
2286 78 AAUAUUAACUGCAAGUAGCUU
2287 79 UAUUGCUUCAACCACAAUUUA
2288 80 UUUAUUUAGAUAUACAGUUUU
2289 81 UUAACUGCAAGUAGCUUAGAU
2290 82 AUAGAAUUUGAGAACAUCUAG
2291 83 UUUCAUAGGAGAAAUAUUCCA
2292 84 UUGUUUAAUAUUAAACACAUU
2293 85 UUAACUUAUAGAUAAUAGUCU
2294 86 UAUCGCUGUUGAUUUCCUCUU
2295 87 UUACUAUAUCACCUUUCUCUA
2296 88 UAGUGCUUCGUUUACUUUGCU
2297 89 UAUAGCAGGCUGAAUUUGCAA
2298 90 UUUGGAAUCAUAGAAUUUGAG
2299 91 UACUUGAGUUAAAUCUUCUUA
2300 92 UACAUAGUUGUAAUCCCUGUU
2301 93 UACACUAUAUAGUUUGCUGAA
2302 94 AAUCUGUUGAACAUGUUGCCA
2303 95 UUGUCCUGUUGCAAUGUCUAG
2304 96 UAUCUCAGGGCACACUAGCAA
2305 97 UCUAGCAAGUGUGACAGUGUG
2306 98 UAAAGCUCAUAUUAGACUCCG
2307 99 UUAUAUUCUAGCAAGUGUGAC
2308 100 UUACCCAACAUGGUGACUGAU
2309 101 UAUUUCAGUCUUACUCAUGAG
2310 102 UCUCCUGAACAUAAACACGUA
2311 103 UUAGAUGGAUGGAUGUACCUU
2312 104 UUCCUUUGCAGCGAUAAUCAG
2313 105 UAUGACAACGCACUGGAUCCU
2314 106 UUACUUAAUGUCCAACAAGGA
2315 107 UCUCUCUGCAACUUGUAAGUG
2316 108 UAUGCUCUGGUCUUGGUGCGA
2317 109 UUGUAUAGAAUACUCGUACAC
2318 110 UUGCUCUGGAAUUCCAGUGAA
2319 111 UAGAAUUUGAGAACAUCUAGA
2320 112 UUAUUUGGUACUGCUGGUGAA
2321 113 AUUAUUUACACGAUCUUUGAG
2322 114 UAAUUGCUUCCUUUGCAGCGA
2323 115 AUAAAUUACAUAAUCUGAGGG
2324 116 UUAAACACAUUCCCAAUGCAU
2325 117 UUUCUUAUUCUUCUCUUCAGG
2326 118 AUUUCCUAGGUUCAGAACCUG
2327 119 AUGAGAAACAGCUUCUUUCUA
2328 120 UUCUCCUAUGAGGAUUUCCUA
2329 121 UUCUCCUUCUUCUUAUUGGUU
2330 122 UAUCCCACUACAUCUGACUCA
2331 123 UUAGCUUCUCUAAGAUCUCCU
2332 124 UGGAAGUUUGGAGUAAUCGUG
2333 125 UAUAGUUCCCUUUCUGCUGUU
2334 126 UUACAGAUAACACAUUCUGAC
2335 127 UUACUCAUGAGGGAGAUGGUG
2336 128 UCAUCUAGUCCAAUACACUUA
2337 129 UUGUCACUCUUUAUAUCUCUA
2338 130 UUCAGUCUUACUCAUGAGGGA
2339 131 UAUCUGAGGUGACUACCUCAU
2340 132 UAGAACAGCUUGUGGGUUCUU
2341 133 UAUUUAUCCCACUACAUCUGA
2342 134 UAAGAUCUCCUCAUCUGUCAU
2343 135 UAGUCCAAUACACUUAUUUUA
2344 136 UUACAUACAGACUGUAUGGAA
2345 137 UGAGAACAUCUAGAACAGCUU
2346 138 AUAAGUUCUGUUUAGAUUCUU
2347 139 UACUCGAUUGUACCAAAUGUG
2348 140 UAACAUAAAGAAUAAAUACUU
2349 141 UUGUACCAAAUGUGAAUCCUU
2350 142 UCUUAUUCUUCUCUUCAGGGG
2351 143 UUCUCUGCCUACAGUGAUCUG
2352 144 UAUAACACAAAUUGUUAGUUU
2353 145 UUAAGUGACUUGCCUAGCGUC
2354 146 UUUAGGUUCACUCUUAGCAGU
2355 147 UAUUAUUAUGAACUUCAUUUG
2356 148 AUAGGUACACAAACCAAGCCA
2357 149 AAGAAUUUCACUACACAUGGU
2358 150 UACAAUGACACACACACGAGA
2359 151 AAGUAUUCCAUGACUACCCAU
2360 152 UAUCUCUAUGGAUCACCUGGU
2361 153 UAAGGAAUUCUGUCGGACUGA
2362 154 AUAUAGUUUGCUGAAACUCUA
2363 155 AUCUAGAACAGCUUGUGGGUU
2364 156 UACUUAAUGUCCAACAAGGAU
2365 157 UUCCUCUUCAUCUUCUUCUUC
2366 158 AACAUCUAGAACAGCUUGUGG
2367 159 UCAUAUAAGGAAUUCUGUCGG
2368 160 UUAGGUCCAAGUUUCAAACUG
2369 161 UUUCUCCUUCUUCUUAUUGGU
2370 162 UUCCUGUACAAAGUACUGGAA
2371 163 AUUAGUAGCUACAGGAUUCUG
2372 164 UAAUGAAUAUGGUAUUUGCGG
2373 165 UUGAGAACAUCUAGAACAGCU
2374 166 AUCUUCUUCUUCUUCUUCCUC
2375 167 UAUUCUACAUUUAUCUGGUUU
2376 168 UGAAACUAAGCAGCAUAUCUG
2377 169 UUCAUAGGAGAAAUAUUCCAU
2378 170 AAGACAUUUAUGAAUAUGCUU
2379 171 UCUAGUGCUGUAUAAACAGUA
2380 172 UAGCCUUCACUGACCUCCCAU
2381 173 UAUUUAACUGCAACAUAAGAG
2382 174 UUUCUAUUCAUUUGAAAGGUA
2383 175 UAGCUUCUCUAAGAUCUCCUC
2384 176 UUAUUAUGAACUUCAUUUGCU
2385 177 UUUACAAAUGCUGAAUUUCAG
2386 178 UUAUAAGAAGUUUCUAUUCAU
2387 179 UCAGUAUUCUACAUUUAUCUG
2388 180 UUUAUGGUCACUUCAACAUUG
2389 181 AUUGUUAAUAUGCUGAACUGA
2390 182 UUGCAGUCUUAGCGGCUGCUG
2391 183 AUACAGCUGACAGUCUCUCAG
2392 184 UAAAUACUUGAGUUAAAUCUU
2393 185 UAGUAGCUACAGGAUUCUGUG
2394 186 CUUGCUAACAACAUUAACGUU
2395 187 AUGGUCACUUCAACAUUGCUG
2396 188 UUCGUUUACUUUGCUCAGGAG
2397 189 UCACAUAAUUCCACCACCCUA
2398 190 AUAUACAGUAAUAUCCUGUUG
2399 191 UAUCACCUUUCUCUAGAUCUU
2400 192 UAUGAACUUCAUUUGCUUGAG
2401 193 UUAGAAAUAUACAUAACUCUC
2402 194 UAUUAUAACAAUAUCAAAUAA
2403 195 UAACUUCUAUUGAAAUUAGUG
2404 196 UUCUUCUUCCUCUUCAUCUUC
2405 197 UUGUCAACAUUUCUCAAUGCU
2406 198 UUCUGCUGUUUAUUUAUUGUA
2407 199 UAGAUGGUCUCCCUUGCUCUU
2408 200 AUACUCGUACACACAGGUGUG
2409 201 UUCUUCUUCUUCUUCCUCUUC
2410 202 AUACUUGAGUUAAAUCUUCUU
2411 203 UUGUAACUAGCAAAUAUCUCU
2412 204 UUCACAUAAUUCCACCACCCU
2413 205 UAAAGCUCAUGUAUUUCUGGU
2414 206 UAACUAGCAAAUAUCUCUGCC
2415 207 UAUUGAUUGGGAUGUAGCCUU
2416 208 AUAAUCUCUACUGUGCUUCUC
2417 209 UAAUCGUGCCCAUUGCUCUGG
2418 210 UUAGUAGCUACAGGAUUCUGU
2419 211 AAGGAGAUUAACAACCUGGUU
2420 212 UAAAGAAUAAAUACUUGAGUU
2421 213 UUUAACUGCAACAUAAGAGAC
2422 214 UCUAGGUAUAGGGUCUGCUUU
2423 215 AUGAACACACCAUAUUCCGAA
2424 216 UUGGAGUUCUAAUAGUGACAU
2425 217 AUAGUGACAUCUCCCUAGCUU
2426 218 UCACACAGUACUUGCUCUGGU
2427 219 UUUAGGUAUCAUUAUCUUUGU
2428 220 UAUUUCUGUAUUGAGAAUGAC
2429 221 UCUAAUGACAAUGCAAGUGAA
2430 222 UUCACACAGUACUUGCUCUGG
2431 223 UUCUUCUUCAGACACAGGAGG
2432 224 UCUGUCGGACUGACAUUUCUU
2433 225 UUCUUAUUCUUCUCUUCAGGG
2434 226 AAGGCUUAGAGAAACAACUUU
2435 227 UAAUAUGCUGAACUGAAAGCA
2436 228 UUAAUUGCUUCCUUUGCAGCG
2437 229 UUGUUCAGAGCUCAGAGACUG
2438 230 ACAUCUAGAACAGCUUGUGGG
2439 231 AUCUGUUGAACAUGUUGCCAG
2440 232 AAAUAAAUAAUCUCUACUGUG
2441 233 UUACAACUAAUUUCACAGCUC
2442 234 AUAGAAUACUCGUACACACAG
2443 235 UUACACGAUCUUUGAGCUGAG
2444 236 UAUGGUCACUUCAACAUUGCU
2445 237 UAUUCUAGCAAGUGUGACAGU
2446 238 UAAUAGUCUCCUAAGAAAGCG
2447 239 AACUAAGCAUGAACACACCAU
2448 240 UUUCAUAAGCACAAGAGAGGA
2449 241 UACUUUAGGUCCAAGUUUCAA
2450 242 UAUUAUCAAAUCUUGGUACAA
2451 243 UUUCGCUUCACGGUGGAAGUG
2452 244 UUAUACAGACAACAGGAAGCA
2453 245 UCGGACUGACAUUUCUUGGGA
2454 246 UCUUCUUCUUCAGACACAGGA
2455 247 UAUAUGGUGAAAUAGUAGUCA
2456 248 UUUCUCAAUGCUAAUAGCAUG
2457 249 UUUGUCCAUAUGCAUUUCUUU
2458 250 UUGCUAACAACAUUAACGUUC
2459 251 UCUAUAGUUCCCUUUCUGCUG
2460 252 UAGGUUCAGAACCUGAACUCA
2461 253 UCAUCUUACAUAGUUCUUUUA
2462 254 UUUAUAGACAAAUAUCUCAAA
2463 255 AAACUAAGCAGCAUAUCUGAG
2464 256 ACUCUUAGCAGUCUCAGCCAU
2465 257 AAAGCUUGCAGGCACUCUCUG
2466 258 UUAUGUUGGAAGUUUGGAGUA
2467 259 AUACUUAUUAGAAAUAUACAU
2468 260 UCUUUGGUGAGUUAGAAGGAA
2469 261 UAGAUAAUAGUCUCCUAAGAA
2470 262 AUCACCUUUCUCUAGAUCUUU
2471 263 UGAAGGAAGAGAGAUCUCUGG
2472 264 UCAUCCAUACAGGUCUCUGUG
2473 265 UACCAAAUGUGAAUCCUUCAG
2474 266 AUUCUGUGAAGAUCUUAUCAU
2475 267 UUCUUAAUUGCUUCCUUUGCA
2476 268 UAAGGAGAUUAACAACCUGGU
2477 269 UGAAUGUACAUAAGUUCUGUU
2478 270 UUUACUAUAUCACCUUUCUCU
2479 271 AUAAUUAUUUACACGAUCUUU
2480 272 UCAUCUGUCAUCUUGGAUUUU
2481 273 AUCAUCUAGUCCAAUACACUU
2482 274 AUAGUCUCCUAAGAAAGCGUG
2483 275 AUCUCCUGAACAUAAACACGU
2484 276 UAAGGGAUGCUAACUAAUGAA
2485 277 ACAACAGGAAGCAAUUUCGUG
2486 278 UGAAAUAGUAGUCAAAUUUUG
2487 279 UAUGUAACUGAUCUCUUUCCC
2488 280 AUUAACAAUAUUAGGGUUCUU
2489 281 UUUACUUUGCUCAGGAGUGAU
2490 282 UUGGUCACUUAAAGGAGUGUG
2491 283 UAUACAGUAAUAUCCUGUUGG
2492 284 UACAGUAAUAUCCUGUUGGAC
2493 285 AAGCACACCACACACAAGCAC
2494 286 AUUAUGAACUUCAUUUGCUUG
2495 287 UAAUUAAUUCCUUCUUGGGUU
2496 288 UAAAUAAUUAACAAUAUUAGG
2497 289 UUCUACAUUUAUCUGGUUUUG
2498 290 UUGCAAUGUCUAGUGCUGUAU
2499 291 UGUGCAUCUUUGAGAAACCUU
2500 292 UACAGCUGACAGUCUCUCAGG
2501 293 UGUAACUGAUCUCUUUCCCCU
2502 294 UCAAGUACAGUUAUAUUCUAG
2503 295 UGGACAUCUAAUGACAAUGCA
2504 296 ACUCAUUCUCUACUAUCGCUG
2505 297 UUGAGAAUUAAACUCUAGAAA
2506 298 UGAAUAGGGCUUCCUAACCAG
2507 299 AUUCUAGCAAGUGUGACAGUG
2508 300 UAAUGAUUUCAAAGUCAGCUU
2509 301 UAGCAAUUUAGUAAUAAAGCU
2510 302 UGACAGUCUCUCAGGAUUCUG
2511 303 AUCGCUGUUGAUUUCCUCUUG
2512 304 UGUUCCUGUACAAAGUACUGG
2513 305 UACAAUUCUGAUAAACAAUGA
2514 306 AUAAUUAAUUCCUUCUUGGGU
2515 307 AUUAAUAAUUAAUUCCUUCUU
2516 308 UUCUUCUUCUGUUCCAAUUUU
2517 309 AAGCAGAGGGCAGACAACCUG
2518 310 UUCUCUUCAUUAUCCAGACCG
2519 311 UUCUUUGGUGAGUUAGAAGGA
2520 312 UACAUCUGACUCAUUCUCUAC
2521 313 AAACACAACACUAUGAAGAGG
2522 314 UCUUAAUUGCUUCCUUUGCAG
2523 315 AUUUGAGAACAUCUAGAACAG
2524 316 UCGAACUCCUGACCUCAGGUG
2525 317 UAUGCUCAAAGUCUGAAGGAA
2526 318 UAGUUCAUCACCCACCAAGUA
2527 319 AUUUAUAGACAAAUAUCUCAA
2528 320 UAGAAAUAUACAUAACUCUCC
2529 321 UAGAUGUAAGGAUCAGGUGGU
2530 322 AAUUUAGGUAUCAUUAUCUUU
2531 323 AUAUAUUAUUAUCAAAUCUUG
2532 324 UCUGCAGACAGCUGCUAUCUG
2533 325 UAUCUUUGUUUACUUAAUGUC
2534 326 UAUUCCGAAACAGAAAUAGGU
2535 327 UAUCAUUAUCUUUGUUUACUU
2536 328 UGAACAUAAACACGUACACUA
2537 329 UUGAUUUCCUCUUGGGUACUA
2538 330 UAAACAGUACCUGAUGCCCCU
2539 331 UAGAAGGAAGUUAUCCUUUGG
2540 332 AAUAAUUAACAAUAUUAGGGU
2541 333 UCUUUGUUUACUUAAUGUCCA
2542 334 UGAACUGAAAGCAUAAGAGAG
2543 335 UAGAUAUAUGGUGAAAUAGUA
2544 336 UAGACAUCACUACCCUGUGAU
2545 337 AUAAAUAAUCUCUACUGUGCU
2546 338 UGCUAUCUGUCCUUCAUCCAU
2547 339 UUAGACAUUGUUUAAUAUUAA
2548 340 UUAUGAACUUCAUUUGCUUGA
2549 341 UUUCAUUAAUAAUUAAUUCCU
2550 342 UAACACAACUGAUUUCAAUUA
2551 343 AUUAGAAAUAUACAUAACUCU
2552 344 UUCAUCUUCUUCUUCAGACAC
2553 345 UUAAUGUCCAACAAGGAUUUC
2554 346 UCUUGGUACAAAGUGGUAGUA
2555 347 UACAGUGAUCUGAAGGGUCAC
2556 348 AUGACAACGCACUGGAUCCUU
2557 349 UUUAACUUAUAGAUAAUAGUC
2558 350 UUGGUACUGCUGGUGAAGCAA
2559 351 UGUUUAUUUAUUGUAAAGCAA
2560 352 UUGCAAGUCAUAACUUCUAUU
2561 353 AACACGUACACUAUAUAGUUU
2562 354 UUCAUAAGCACAAGAGAGGAU
2563 355 AACAACUGUAAAUGAAUUGGA
2564 356 UUCCCAUUUAUUUCCUUCCCA
2565 357 UUGGUGAGUUAGAAGGAAGUU
2566 358 UUUAUUGUAAAGCAAUAUUAU
2567 359 UAAGUAUUUCUGUAUUGAGAA
2568 360 UCUGGUUGUUGACUGUUUCUU
2569 361 AAUUGCAAGUCAUAACUUCUA
2570 362 AGACUUUACAUACAGACUGUA
2571 363 UAACACAAAUUGUUAGUUUUU
2572 364 UGGUUAAACUCAAACAUUGGG
2573 365 UUUCUCUCUGCAACUUGUAAG
2574 366 UAAUAAUUAAUUCCUUCUUGG
2575 367 UACUCGUACACACAGGUGUGC
2576 368 UGAUAUACAGUAAUAUCCUGU
2577 369 UCCUCGCCUAUCCACAUCCAU
2578 370 AUUUGCAAUACUUUAGGUCCA
2579 371 AUAAUCAGAGGAGUCAGGCUG
2580 372 UGUAUCUAUUUCCUCCUGGUA
2581 373 UAUAUGGAUGGUUAGAUGGAU
2582 374 UACUAUUCAUCCUCAGUGGAG
2583 375 AUAAGGAAUUCUGUCGGACUG
2584 376 AGAACUAUAACUGAAUGCCAA
2585 377 ACAAGCACACACAUUGAACUU
2586 378 UCACCUAGCAGGAUGUCACAG
2587 379 UUUGCAGCGAUAAUCAGAGGA
2588 380 UAACAGAACUAUAACUGAAUG
2589 381 UUGCUCAGGAGUGAUCUGGGC
2590 382 UUGGGAUGUAGCCUUCACUGA
2591 383 AUAUUGAUUGGGAUGUAGCCU
2592 384 UUAUUUAGAUAUACAGUUUUU
2593 385 UGUUGCAAUGUCUAGUGCUGU
2594 386 AACAGCUUCUUUCUAAUACUU
2595 387 UAGGUAUCAUUAUCUUUGUUU
2596 388 AUUGUAACUAGCAAAUAUCUC
2597 389 UUAGAAGGAAGUUAUCCUUUG
2598 390 AUUUCUUGGGAUAUGAUUGUA
2599 391 UUGAAGGUUCAUCUGCUUUAU
2600 392 UUAUCCUUUGGUUAGAUGGUC
2601 393 UCUUUAUUUGGUACUGCUGGU
2602 394 UCAUCAAUAAUGAAUAUGGUA
2603 395 UUUCAGUCUUACUCAUGAGGG
2604 396 UUAGAAGCUGUUCUCAUUUGA
2605 397 UCUUCUUCUUCUUCUUCCUCU
2606 398 UUAACAGAACUAUAACUGAAU
2607 399 UAAUAGCAUGUAAUUACUUUU
2608 400 AUAGACAAAUAUCUCAAACUA
2609 401 ACUCUCUGCAGACAGCUGCUA
2610 402 UUAUAUUCAUUUGGUCACUUA
2611 403 UCAGUCAAUUUAACAGAGCCA
2612 404 UUACAUAAUCUGAGGGAGUAG
2613 405 UUUAGAAGCUGUUCUCAUUUG
2614 406 ACUUCUAUUGAAAUUAGUGGG
2615 407 UUAACUGCAACAUAAGAGACU
2616 408 UUUGUAUCAUAAGUAAAUGAU
2617 409 UCUUCUUCAGACACAGGAGGG
2618 410 UUCACUGACCUCCCAUUUCUU
2619 411 UCCUCUUGGGUACUAAAUCUG
2620 412 AUCUCCUCAUCUGUCAUCUUG
2621 413 AAUAAUUAAUUCCUUCUUGGG
2622 414 AUUGUCACUCUUUAUAUCUCU
2623 415 UGUCGGACUGACAUUUCUUGG
2624 416 UGAAUUUGCAAGGCAACCUAU
2625 417 UUUACAUGAAUACAAAUUUAU
2626 418 UAUUAGGGCAUGGACUUCCAC
2627 419 UUUCCCGGCACUAUGAGUGAA
2628 420 UACAUAACUCUCCAAUACAGG
2629 421 ACAAAUAUCUCAAACUAUCAA
2630 422 UAGGUACACAAACCAAGCCAC
2631 423 UUCUGUCGGACUGACAUUUCU
2632 424 UUCAACAUUGCUGCCCUGUUU
2633 425 UGAAGAGGGAGUGUGCAUCUU
2634 426 UGAAACUCUAAAGAAAGUGCU
2635 427 UGUCACUCUUUAUAUCUCUAU
2636 428 UUCAUUUGGUCACUUAAAGGA
2637 429 AAGCUCAUAUUAGACUCCGGG
2638 430 AUACAUAACUCUCCAAUACAG
2639 431 UGUCUAGUGCUGUAUAAACAG
2640 432 UAGUGACAUCUCCCUAGCUUU
2641 433 UUCUAUUGAAAUUAGUGGGAC
2642 434 UUAUUUAUUGUAAAGCAAUAU
2643 435 AUAUGGUGAAAUAGUAGUCAA
2644 436 UGAAGCAAUGGAUUCAACCAC
2645 437 UUGUCCAUAUGCAUUUCUUUU
2646 438 UUCCGAAACAGAAAUAGGUGA
2647 439 AUUAGAAAUAAACCCAUUGAG
2648 440 UAAUUCCUUCUUGGGUUGCUG
2649 441 UGGGAUUAUGACAACGCACUG
2650 442 UUCAUUAUCCAGACCGUCAGA
2651 443 UCUCUUCAUUAUCCAGACCGU
2652 444 UUCUUUGGAAUCAUAGAAUUU
2653 445 AUAUUCUAGCAAGUGUGACAG
2654 446 UACUGCAAAUUAAGAAGCCUU
2655 447 AAAUAAAUUACAUAAUCUGAG
2656 448 AAAGUAUAACAUAGUAUGCUU
2657 449 UGACUCAUUCUCUACUAUCGC
2658 450 AGUACAGUUAUAUUCUAGCAA
2659 451 AACAUUAACGUUCUUUCCUUU
2660 452 UUAUCAUCAAUAAUGAAUAUG
2661 453 UUUAUUUCCUUCCCAGUCCAC
2662 454 UAGCGUCACAUAGCAAUUUAG
2663 455 UACAGGUCUCUGUGACCACAU
2664 456 UUUCCCACUGCCCUAUUCCUA
2665 457 UAUGUAUCCAUGUGCACUUUU
2666 458 UCAGUCUUACUCAUGAGGGAG
2667 459 AUAGGAAAUACACCAGUGGGG
2668 460 AAACAACCUAUAAAUAGGCAG
2669 461 AUCAUUAUCUUUGUUUACUUA
2670 462 UAUAGAAUACUCGUACACACA
2671 463 AAUAGUGACAUCUCCCUAGCU
2672 464 AUCUCUAUGGAUCACCUGGUU
2673 465 UUAACAAUAUUAGGGUUCUUA
2674 466 UCUCUAAGAUCUCCUCAUCUG
2675 467 UCCUCAUCUGUCAUCUUGGAU
2676 468 UUCAUCCAUACAGGUCUCUGU
2677 469 UGAAUGUUUACUAUAUCACCU
2678 470 ACAGAUAACACAUUCUGACAA
2679 471 UUUACACGAUCUUUGAGCUGA
2680 472 AAUACUCGUACACACAGGUGU
2681 473 AAAUCUUGGUACAAAGUGGUA
2682 474 AUAUCUGAGGUGACUACCUCA
2683 475 UCUCUCAUUAGAGCAGUGUGG
2684 476 UUGGAAGUUUGGAGUAAUCGU
2685 477 UUGGUUAGAUGGUCUCCCUUG
2686 478 UUUGAGCUGAGAAAUAUCAUU
2687 479 UUGAUUGGGAUGUAGCCUUCA
2688 480 UGACCUCAGGUGAUCCGCCUG
2689 481 AAUAUUUACAAUGACACACAC
2690 482 UGGAUUCAACCACAGAACGAG
2691 483 UUUCUGUAUUGAGAAUGACCA
2692 484 UUGUUAAUAUGCUGAACUGAA
2693 485 ACAACUGAUUUCAAUUAUCUG
2694 486 UGCUUAACUGAAUAUUAACUG
2695 487 AUUGCAAGUCAUAACUUCUAU
2696 488 AAUGUUUACUAUAUCACCUUU
2697 489 UGCUUCGUUUACUUUGCUCAG
2698 490 AAAGCUCAUAUUAGACUCCGG
2699 491 UGUCAGUUUACAAAUGCUGAA
2700 492 UGAACUUCAUUUGCUUGAGUU
2701 493 UCCACCACCCUAACACAACUG
2702 494 UAUGGUGAAAUAGUAGUCAAA
2703 495 AAUGAUUUCAAAGUCAGCUUU
2704 496 UCACUCUUGUUGCCGAGGCUG
2705 497 AAGAACGAAGUCAUUACCCAA
2706 498 UUUAAAUGUGGUUUCUCCUAU
2707 499 AACAUAAAGAAUAAAUACUUG
2708 500 AUGCAUUAGUAGCUACAGGAU
2709 501 UCGCCUAUCCACAUCCAUCUC
2710 502 AAUGUAUCUAUUUCCUCCUGG
2711 503 UAUUGUCACUCUUUAUAUCUC
2712 504 UAUUCAUCCUCAGUGGAGGAG
2713 505 UGAGUGCUGAAGAAUCCCGGU
2714 506 UGACUUCUCUAGGUAUAGGGU
2715 507 UCAUUUGGUCACUUAAAGGAG
2716 508 UUAUCUUUGUUUACUUAAUGU
2717 509 AUAUUAUUAUCAAAUCUUGGU
2718 510 UAAGCAUGAACACACCAUAUU
2719 511 AUGAAUAUGGUAUUUGCGGGU
2720 512 UUAUUGUAAAGCAAUAUUAUA
2721 513 UGUUUCUUUGGAAUCAUAGAA
2722 514 UACUCUCAGAAGAUUCAGGAA
2723 515 UCCUGAACACACAUAUUCCUC
2724 516 AUGGAUUCAACCACAGAACGA
2725 517 UGCAAGAGGGACUACUCUCUA
2726 518 UUCCUAACUCAGGACAUUUUG
2727 519 UAUAACAUAGUAUGCUUCAAA
2728 520 AAUUUCAGUCCUCUUGUUCAG
2729 521 UUAGUAAUAAAGCUCAUAUUA
2730 522 UCACUCUUUAUAUCUCUAUGG
2731 523 UUUCUCUAUGUUGGUCAGGCU
2732 524 UAUUAAGGAGAUUAACAACCU
2733 525 UCGCUGUUGAUUUCCUCUUGG
2734 526 UAUGUUGGAAGUUUGGAGUAA
2735 527 UACCUGAAUGAUAUACAGUAA
2736 528 UACACUCAAGACACAGUCAUG
2737 529 UCUCUGCCUACAGUGAUCUGA
2738 530 UUGGGUUAUAUUCAUUUGGUC
2739 531 UAGGUAUAGGGUCUGCUUUUA
2740 532 UUCAAAUUAAUAUUACCGUUU
2741 533 UAUAUAGUUUGCUGAAACUCU
2742 534 UAGUCUCCUAAGAAAGCGUGU
2743 535 AAUCGUAUGCUCAAAGUCUGA
2744 536 AUCAGAAAUGCUAUCUUUGGU
2745 537 UAGAAGCUGUUCUCAUUUGAA
2746 538 UUUAGUAAUAAAGCUCAUAUU
2747 539 AAACACGUACACUAUAUAGUU
2748 540 AAUGCUUCUUAGCUUCUCUAA
2749 541 UAUUGAAAUUAGUGGGACUUG
2750 542 AUUUGGAUAGACUCACCUGUG
2751 543 UAUCUAAAUAAUUAACAAUAU
2752 544 UUUCCUAGGUUCAGAACCUGA
2753 545 AUAAUGAAUAUGGUAUUUGCG
2754 546 UAAGAAGUUUCUAUUCAUUUG
2755 547 UAAAGCAAUAUUAUAACAAUA
2756 548 AACAGGAAGCAAUUUCGUGUU
2757 549 UUCACUCUUGUUGCCGAGGCU
2758 550 UUAAUGAUUUCAAAGUCAGCU
2759 551 UAAGCAGCAUAUCUGAGGUGA
2760 552 UAUGGGAUAGCAUUUGCCUGA
2761 553 UCUCAGAGAAAGUCCCAUCUU
2762 554 UUGCAGAUUCAGUUAGACAUU
2763 555 UAGCAAUGGAAUGUGCUUCAC
2764 556 UCCAUUAUUUCCAAGUUCCCA
2765 557 UUCACAGGAAAGGAGAAGCUC
2766 558 UGACUGUUUCUUUGGAAUCAU
2767 559 UAUGUUUCAUAAGCACAAGAG
2768 560 AGUAGCUUAGAUAAAGACCAA
2769 561 UGUGCUUCUCACCCUUCCCUG
2770 562 UUUAUCUUGCAAGUUCAACCC
2771 563 AAAUAAUUAACAAUAUUAGGG
2772 564 UCCACAUCCAUCUCAAGACAG
2773 565 ACACAGUCAUGCACAAUCCAU
2774 566 AUUAAUUUGUCAACAUUUCUC
2775 567 UCUGAAGGGUCACUGCUCCAA
2776 568 AACAGCUUGUGGGUUCUUCUU
2777 569 UAGGAAAUACACCAGUGGGGU
2778 570 AUAUUAUAGAAUCUCUCAGAA
2779 571 UGAGAAACAGCUUCUUUCUAA
2780 572 UGGGAUUACAGGUAUGAGCCA
2781 573 UUAGGUUCACUCUUAGCAGUC
2782 574 UGCUGUAUAAACAGUACCUGA
2783 575 UAGAUGGAUGGAUGUACCUUG
2784 576 UCUUCUUCUGUUCCAAUUUUG
2785 577 UGGUCUCGAACUCCUGACCUC
2786 578 UAAUCCAAAGUUACAGAAGAA
2787 579 AUAUUAACUGCAAGUAGCUUA
2788 580 AAGGAUUUCAGUAUUCUACAU
2789 581 UUGAGCUGAGAAAUAUCAUUU
2790 582 UGGAGCUGUGGUUGAGUGCUG
2791 583 UUCCUAACCAGGUAUUGGGCU
2792 584 AUCAUCAAUAAUGAAUAUGGU
2793 585 AGAACAUCUAGAACAGCUUGU
2794 586 UACCUCAUUAUUAAAGUUCUC
2795 587 UCAUUUAUAGACAAAUAUCUC
2796 588 AAUAAACUGUUAACAAUCUGG
2797 589 UACUGCUGGUGAAGCAAUGGA
2798 590 UCUCCUAUGAGGAUUUCCUAG
2799 591 UAACUCUCCAAUACAGGGAAG
2800 592 ACAAUUCUGAUAAACAAUGAA
2801 593 UAUUAGAAAUAUACAUAACUC
2802 594 AUAGAUGUAAGGAUCAGGUGG
2803 595 UGUAUUUCUGGUUGUUGACUG
2804 596 AUGGUGACUGAUUUGAGGGGA
2805 597 AAUGAAUAUGGUAUUUGCGGG
2806 598 ACUCUUUAUAUCUCUAUGGAU
2807 599 UUCCAGCAGUGUACUCAUCAU
2808 600 UUGUAUCAUAAGUAAAUGAUG
2809 601 UAAUCUCUACUGUGCUUCUCA
2810 602 AUGUUCACACAGUACUUGCUC
2811 603 UUUGAGUGCAGGAAAUCCAAA
2812 604 AAUGGAAUGUGCUUCACCGGG
2813 605 UCUCUCAGGAUUCUGGAGCUC
2814 606 AAACUCUAAAGAAAGUGCUUU
2815 607 UCUUGGGUACUAAAUCUGUUG
2816 608 AAUUAAACUCUAGAAAGCCCA
2817 609 AUAUUUACAAUGACACACACA
2818 610 UUCUUCCUCUUCAUCUUCUUC
2819 611 UAUCUCCUGAUGUAAAGCUCA
2820 612 UUUGCUGAAACUCUAAAGAAA
2821 613 UUGGUGCGAUAACUGGUGGUG
2822 614 UAAUUAUUUACACGAUCUUUG
2823 615 UAUUUCCUCCUGGUAUGCCUA
2824 616 ACAAAUAAAUUACAUAAUCUG
2825 617 AUUUACAUGAAUACAAAUUUA
2826 618 UACACAGACACUCCGCAGAUA
2827 619 UGGGUUCUUCUUCUGUUCCAA
2828 620 UGGAUCCUUGCUAACAACAUU
2829 621 UCUCUGCAACUUGUAAGUGUU
2830 622 UACAUGAAUACAAAUUUAUAA
2831 623 UCAAGUUACUCGAUUGUACCA
2832 624 UCUGUGACCACAUCAGUCAGA
2833 625 AUAACUCUCCAAUACAGGGAA
2834 626 UUCACUACACAUGGUUUACAG
2835 627 UAACUGCAACAUAAGAGACUC
2836 628 AACUGAUUUCAAUUAUCUGUG
2837 629 UGCUGUUCUUAAUUGCUUCCU
2838 630 UCUCAAUGCUAAUAGCAUGUA
2839 631 AUUUACAAUGACACACACACG
2840 632 AUACAGUAAUAUCCUGUUGGA
2841 633 AUGAGGAUUUCCUAGGUUCAG
2842 634 AACUUCUAUUGAAAUUAGUGG
2843 635 UGCAUCUUUGAGAAACCUUUU
2844 636 UCAGAAAUGCUAUCUUUGGUU
2845 637 AUCUGCAACAGAUGUUAUCAA
2846 638 AUUGCAACUCUAUUAGGGCAU
2847 639 UGUAAAGCUCAUGUAUUUCUG
2848 640 AGAUUUGGAUAGACUCACCUG
2849 641 UUCCACCAUUUCAAUUGCCAU
2850 642 UUACUCGAUUGUACCAAAUGU
2851 643 UUUGCUCAGGAGUGAUCUGGG
2852 644 UAACAUAGUAUGCUUCAAAUU
2853 645 UCAAAUCUUGGUACAAAGUGG
2854 646 AAUCUUGGUACAAAGUGGUAG
2855 647 UUCCUUCUUGGGUUGCUGUUG
2856 648 GAGAACAUCUAGAACAGCUUG
2857 649 AUUAUUAAAGUUCUCACCUAA
2858 650 AAGGCUUGCAGUCUUAGCGGC
2859 651 UGCAUUAGUAGCUACAGGAUU
2860 652 AGAAUUUCACUACACAUGGUU
2861 653 UUGUAAUCCCUGUUUAUGUUA
2862 654 UGGUUGUUGACUGUUUCUUUG
2863 655 UUAGAUGGUCUCCCUUGCUCU
2864 656 UCUGGAGCUCUGGAGUUCCAU
2865 657 ACUCACAAUGCUUCUUAGCUU
2866 658 AUAACUUCUAUUGAAAUUAGU
2867 659 UCAACAUUGAAAGAUGUGCCC
2868 660 UCAUCACCCACCAAGUAGCUA
2869 661 AAGUCAGUCAAUUUAACAGAG
2870 662 UAGGGCAUGGACUUCCACAUG
2871 663 AUCUCAGCUCACCACAACCUC
2872 664 AUGUUAUGAGUAUAAUCCCAG
2873 665 UUUCAUUGAAUUUCCCGGCAC
2874 666 UAUUCCAUUAUUUCCAAGUUC
2875 667 AAGAAUAUUGUCACUCUUUAU
2876 668 AGAAAUAUACAUAACUCUCCA
2877 669 UUACAGAAGAAUUUCACUACA
2878 670 UAUAAUCCCAGUAGACAUCAC
2879 671 UUUGUCAACAUUUCUCAAUGC
2880 672 UGGUCUUGGUGCGAUAACUGG
2881 673 AAGUAAAUGAUGAUUAAUGUA
2882 674 UACUUAUUAGAAAUAUACAUA
2883 675 AUAUCUCUAUGGAUCACCUGG
2884 676 UUGACUGUUUCUUUGGAAUCA
2885 677 UCUGUAUUGAGAAUGACCAAU
2886 678 UUCAACCUGAGAGUCUGUUAA
2887 679 UUGUUUAAUGAUUUCAAAGUC
2888 680 AUUCCGAAACAGAAAUAGGUG
2889 681 ACUAAAUCUGUUGAACAUGUU
2890 682 UAAUCAGAGGAGUCAGGCUGG
2891 683 AAGUAUAACAUAGUAUGCUUC
2892 684 UACACGAUCUUUGAGCUGAGA
2893 685 AAAUGCUGAAUUUCAGUCCUC
2894 686 CUAAGCAGCAUAUCUGAGGUG
2895 687 UUCUAUUCAUUUGAAAGGUAA
2896 688 UUUGCAGAUUCAGUUAGACAU
2897 689 UAGCUUUAACUUAUAGAUAAU
2898 690 UAAUCCCAGUAGACAUCACUA
2899 691 UAUAUUCAUUUGGUCACUUAA
2900 692 UAGUAAUAAAGCUCAUAUUAG
2901 693 UUCUCUAGGUAUAGGGUCUGC
2902 694 UCAAUGCAUUAGUAGCUACAG
2903 695 GUGCUGUAUAAACAGUACCUG
2904 696 AAUAUGCUGAACUGAAAGCAU
2905 697 UAAUAAAUAGAUAUAUGGUGA
2906 698 AUUAAACUCUAGAAAGCCCAG
2907 699 AUCUGACUCAUUCUCUACUAU
2908 700 AGACAGCUGCUAUCUGUCCUU
2909 701 AAUUCUGUCGGACUGACAUUU
2910 702 UAUUUGUUUAAUGAUUUCAAA
2911 703 UGUCAACAUUUCUCAAUGCUA
2912 704 UAGUUUGCUGAAACUCUAAAG
2913 705 UGUUUCAUAAGCACAAGAGAG
2914 706 AUGUGACAGGAUUUCACCGUU
2915 707 AUACUGCAAAUUAAGAAGCCU
2916 708 UAAUUGCAAGUCAUAACUUCU
2917 709 UUAUCCAGACCGUCAGACAUU
2918 710 UUUAUUUGGUACUGCUGGUGA
2919 711 AAUUGCUUCCUUUGCAGCGAU
2920 712 UAAGUGACUUGCCUAGCGUCA
2921 713 AUCAAAUCUUGGUACAAAGUG
2922 714 UCAUGGGAUUAUGACAACGCA
2923 715 UACAGUUAUAUUCUAGCAAGU
2924 716 ACAAGUUGUAUAGAAUACUCG
2925 717 AGAAUUUGAGAACAUCUAGAA
2926 718 UUCAGUUAGACAUUGUUUAAU
2927 719 UAAAUGAUGAUUAAUGUAUCU
2928 720 AAUGAUAUACAGUAAUAUCCU
2929 721 AAGUCAUUACCCAACAUGGUG
2930 722 UCUUCUUCUUCUUCCUCUUCA
2931 723 UAUUAACUGCAAGUAGCUUAG
2932 724 UGGUAGUAAAGAAGUACCUGG
2933 725 UAAGUUCUGUUUAGAUUCUUU
2934 726 UAUAAGAAGUUUCUAUUCAUU
2935 727 ACAACAUUAACGUUCUUUCCU
2936 728 UUCAAGACAUUUAUGAAUAUG
2937 729 ACAACUGUAAAUGAAUUGGAA
2938 730 AUUGUUUAAUAUUAAACACAU
2939 731 UAAAUCUGUUGAACAUGUUGC
2940 732 AACAUUGCUGCCCUGUUUGGG
2941 733 UUUCUUUGGAAUCAUAGAAUU
2942 734 UGAGUUCACUUCAAAUCCCAG
2943 735 UAAACGUUAUAAAUUGUCAAA
2944 736 UAGGGCUUCCUAACCAGGUAU
2945 737 UGUAAAGCAAUAUUAUAACAA
2946 738 UUAAAUGUGGUUUCUCCUAUG
2947 739 UCUUGGUGCGAUAACUGGUGG
2948 740 UCAGAACCUGAACUCACCUAG
2949 741 UUUCUUGGGAUAUGAUUGUAA
2950 742 UUAAUAUUACCGUUUCAUUUU
2951 743 UGAGCUGAGAAAUAUCAUUUA
2952 744 UUGUGGGUUCUUCUUCUGUUC
2953 745 UUGAGCUUUAUUUAGAUAUAC
2954 746 AGACCAGAUAUCAACUUUCGG
2955 747 GAAAUAUACAUAACUCUCCAA
2956 748 AAGAUUUGGAUAGACUCACCU
2957 749 UCUACUAUCGCUGUUGAUUUC
2958 750 AUGGUUUACAGAUAACACAUU
2959 751 UAUCAUAAGUAAAUGAUGAUU
2960 752 AUAAAGCACACCACACACAAG
2961 753 UCAGCUCACCACAACCUCCGC
2962 754 AAUAGUCUCCUAAGAAAGCGU
2963 755 UACAGAGUUGAAUGUUUACUA
2964 756 UUCCUAGGUUCAGAACCUGAA
2965 757 UUUGGUCACUUAAAGGAGUGU
2966 758 AAAGGCUUAGAGAAACAACUU
2967 759 AAAUUAGUGGGACUUGCCCUA
2968 760 AAAUUACAUAAUCUGAGGGAG
2969 761 AUUGCUUCAACCACAAUUUAA
2970 762 UACAAGUUGUAUAGAAUACUC
2971 763 UAAUUAACAAUAUUAGGGUUC
2972 764 AACAUAAACACGUACACUAUA
2973 765 AACUUUCGGACCAUAAGCUUU
2974 766 UUAUGAGUAUAAUCCCAGUAG
2975 767 UCUCAGAAGAUUCAGGAAGUG
2976 768 UGAUUAAUGUAUCUAUUUCCU
2977 769 AAUCAUAGAAUUUGAGAACAU
2978 770 ACAGCUGACAGUCUCUCAGGA
2979 771 UCAUCCUCAGUGGAGGAGCCG
2980 772 ACUAGCAACAUCAAAGAUUUG
2981 773 UAGCAACAUCAAAGAUUUGGA
2982 774 CAGUAUUCUACAUUUAUCUGG
2983 775 AACACACAUAUUCCUCUCCAC
2984 776 UUAAACUCUAGAAAGCCCAGC
2985 777 AACACAACUGAUUUCAAUUAU
2986 778 UAGAAAUAAACCCAUUGAGCA
2987 779 UACAGAUAACACAUUCUGACA
2988 780 UUGGAGCUGUGGUUGAGUGCU
2989 781 AACGAGUAUAGAUUGAUUUUG
2990 782 UGAUCUGGGCACAGAACCCAA
2991 783 AUGGAGACCAUCCCAAGCCAA
2992 784 AGUUAGAAGGAAGUUAUCCUU
2993 785 CUUAUAGAUAAUAGUCUCCUA
2994 786 UACCUUUGCUUAACUGAAUAU
2995 787 UUCUCUAAGAUCUCCUCAUCU
2996 788 UCAAGACACAGUCAUGCACAA
2997 789 AUGACACACACACGAGAUCAG
2998 790 UGGAAUUCCAGUGAAUUCCCC
2999 791 UCUCUCUCUCAUUAGAGCAGU
3000 792 UGAAUCCUUCAGCAUCACUGU
3001 793 AUUAACUGCAAGUAGCUUAGA
3002 794 UUCCAAGAGACCAGAUAUCAA
3003 795 AUAAUUGUAACUAGCAAAUAU
3004 796 UUCAGAGCUCAGAGACUGGGA
3005 797 UUAUCCCACUACAUCUGACUC
3006 798 AAUAAAUAGAUAUAUGGUGAA
3007 799 UCUCAGUUCCCGCAUUUGCAG
3008 800 UUACAAAUGCUGAAUUUCAGU
3009 801 UGUAAAUGAAUUGGAAGGCUG
3010 802 UAGGUUCACUCUUAGCAGUCU
3011 803 UUACCCUCUUUCCAGCAGUGU
3012 804 UGUUGAAGGUUCAUCUGCUUU
3013 805 UUUCAGUCCUCUUGUUCAGAG
3014 806 UCUUUGGAAUCAUAGAAUUUG
3015 807 UAACUCCCAGUUUACCCUCUU
3016 808 UCUCCUUCUUCUUAUUGGUUU
3017 809 UAGGCUAGUAUUUAUCCCACU
3018 810 UUAUCUCAGGGCACACUAGCA
3019 811 AAAUACUUGAGUUAAAUCUUC
3020 812 AGUUAUAUUCUAGCAAGUGUG
3021 813 UAAACCCAUUGAGCAAAGGAA
3022 814 UACUAUCGCUGUUGAUUUCCU
3023 815 AAUACAGCUGACAGUCUCUCA
3024 816 UCUUUCUCCUUCUUCUUAUUG
3025 817 UCAACUUUCGGACCAUAAGCU
3026 818 UUGAGCAAAGGAAUAUAAUUA
3027 819 UUGAAAGAUGUGCCCUCGUUA
3028 820 AUUUCUCUCUGCAACUUGUAA
3029 821 UGAAAGAAAUCUGAAUAACAU
3030 822 UCUUUCUAAUACUUAUUAGAA
3031 823 AACUGCAACAUAAGAGACUCA
3032 824 UUAAUUUAGGUAUCAUUAUCU
3033 825 AGAAAUAUCAUUUAUAGACAA
3034 826 CAUAUAAGGAAUUCUGUCGGA
3035 827 AAGUGUUUAGGUUCACUCUUA
3036 828 UGAUCUGAAGGGUCACUGCUC
3037 829 UGACCUCUUUAUUUGGUACUG
3038 830 UACUCGAAGGAUGGGCUGCUA
3039 831 AUUAACAACCUGGUUUACUCA
3040 832 UGAGUUAAAUCUUCUUACAUG
3041 833 AUUCCUUCUUGGGUUGCUGUU
3042 834 AAUGCAUUAGUAGCUACAGGA
3043 835 ACUAGCAAAUAUCUCUGCCCU
3044 836 UGUGACAGGAUUUCACCGUUU
3045 837 AACACAUUCCCAAUGCAUGUU
3046 838 AAUAAUUUGUAUCAUAAGUAA
3047 839 AUUAUUAUGAACUUCAUUUGC
3048 840 UAUGCUGAACUGAAAGCAUAA
3049 841 AUAAACACGUACACUAUAUAG
3050 842 UUACUGCUGGUAUUAUGGGAU
3051 843 AUCUAGUCCAAUACACUUAUU
3052 844 UCUUAGCUUCUCUAAGAUCUC
3053 845 UGCUGAAUUUCAGUCCUCUUG
3054 846 ACUAUCGCUGUUGAUUUCCUC
3055 847 ACACAUAUUCCUCUCCACUUU
3056 848 UUCUUUCUAAUACUUAUUAGA
3057 849 UGGAAUGUGCUUCACCGGGGA
3058 850 UCAUUGAUGUUUGUCAUUUUU
3059 851 AAAUGAUGAUUAAUGUAUCUA
3060 852 AAUUUGUCAACAUUUCUCAAU
3061 853 UUCAGUAUUCUACAUUUAUCU
3062 854 UCUAGUCCAAUACACUUAUUU
3063 855 ACAACUUUCUGUAAUUUACAA
3064 856 UUCUGGUUGUUGACUGUUUCU
3065 857 UUCUGUGAAGAUCUUAUCAUC
3066 858 UUAAUUCCUUCUUGGGUUGCU
3067 859 AUCUCUGCCCUGCAUGCUCUG
3068 860 UGUGGUUUCUCCUAUGAGGAU
3069 861 AUGUAACUGAUCUCUUUCCCC
3070 862 UACAGAAGAAUUUCACUACAC
3071 863 UUAAGAAGCCUUCUAUAACAC
3072 864 AAAUGCUAUCUUUGGUUCCCA
3073 865 UAAGAAGCCUUCUAUAACACA
3074 866 UUUGGAGUAAUCGUGCCCAUU
3075 867 AUUAAGGCCUCUCUCUCUCAU
3076 868 AUUUGAAAGGUAAAGAACCCC
3077 869 UUUGUUUAAAUGUGGUUUCUC
3078 870 UAUCAGAUACAAUGCCCUGAG
3079 871 UUUGGUACUGCUGGUGAAGCA
3080 872 AACACAACACUAUGAAGAGGG
3081 873 UUUCAAGACAUUUAUGAAUAU
3082 874 UGGAUCCUUCUCAACUUGUUU
3083 875 UAUAAACAGUACCUGAUGCCC
3084 876 UAGCAGGAUGUCACAGUUUCA
3085 877 AAAUCUGUUGAACAUGUUGCC
3086 878 UUCAACCACAGAACGAGUAUA
3087 879 AUGUACAUAAGUUCUGUUUAG
3088 880 UCUGAAGGAAGAGAGAUCUCU
3089 881 UGUCAUCAGAAAUGCUAUCUU
3090 882 AUCGUAUGCUCAAAGUCUGAA
3091 883 UUCUUCUUCUUCCUCUUCAUC
3092 884 UCUCUCUCAUUAGAGCAGUGU
3093 885 CACACAAGCACACACAUUGAA
3094 886 AUGGGAAGUGGUUUGGAGCUG
3095 887 UAUAGAUAAUAGUCUCCUAAG
3096 888 GAAUAAACUGUUAACAAUCUG
3097 889 UGCAUGUUGGGUUAUAUUCAU
3098 890 UCUAAGAUCUCCUCAUCUGUC
3099 891 UGGAAGUGACCACUUUAUGGU
3100 892 UCUCUAGGUAUAGGGUCUGCU
3101 893 UCUGCAACUUGUAAGUGUUUA
3102 894 UAUUGUAAAGCAAUAUUAUAA
3103 895 AUAUGCUGAACUGAAAGCAUA
3104 896 AAAUCUGAAUAACAUAAAGAA
3105 897 UUCAUCACCCACCAAGUAGCU
3106 898 AGUAGCUACAGGAUUCUGUGA
3107 899 ACAGUUAUACAGACAACAGGA
3108 900 AGAGGUUAAGUGACUUGCCUA
3109 901 UAGACAUUGUUUAAUAUUAAA
3110 902 UGAACACACAUAUUCCUCUCC
3111 903 UUCACUUCAAAUCCCAGGCCC
3112 904 UAUUCCAUGACUACCCAUAGU
3113 905 UGGGAGAUACUUGCACUACUG
3114 906 AACAAGGAUUUCAGUAUUCUA
3115 907 ACAGGUGUGCACAUGGAGGUG
3116 908 UCCAAUCUAAAGCAACCACAA
3117 909 AAUUCCACCACCCUAACACAA
3118 910 UCUUGGGUUGCUGUUGAAGGU
3119 911 AAAGUCUGAAGGAAGAGAGAU
3120 912 UAUUUACAAUGACACACACAC
3121 913 GUAUUCUACAUUUAUCUGGUU
3122 914 UGUUACUAUUCAUCCUCAGUG
3123 915 AAUACCUUUAAUCCAAAGUUA
3124 916 UAAAGAAAGUGCUUUCAUUUU
3125 917 AGAUAUCAACUUUCGGACCAU
3126 918 AACAAAUUAAUUUGUCAACAU
3127 919 UGGUUUGGAGCUGUGGUUGAG
3128 920 ACACAUUGAACUUGAAUUUUG
3129 921 UCAAAGAUUUGGAUAGACUCA
3130 922 UGGAAUCAUAGAAUUUGAGAA
3131 923 AGCACACACAUUGAACUUGAA
3132 924 UUGCAGCGAUAAUCAGAGGAG
3133 925 AUAAUUUGUAUCAUAAGUAAA
3134 926 AGAGGGACUACUCUCUAACUU
3135 927 CUAGCAAAUAUCUCUGCCCUG
3136 928 AAUUUCACUACACAUGGUUUA
3137 929 UUCUAGCAAGUGUGACAGUGU
3138 930 UUUACUUAAUGUCCAACAAGG
3139 931 AAUCAGAGGAGUCAGGCUGGA
3140 932 AAGCACACACAUUGAACUUGA
3141 933 UUGGGAUAUGAUUGUAAGUUA
3142 934 UCACUUCAACAUUGCUGCCCU
3143 935 GAACAUCUAGAACAGCUUGUG
3144 936 UAGUGAAACUAAGCAGCAUAU
3145 937 AAGUACAGUUAUAUUCUAGCA
3146 938 UGAAUUUCCCGGCACUAUGAG
3147 939 AAGUUUGGAGUAAUCGUGCCC
3148 940 UAUGAGUAUAAUCCCAGUAGA
3149 941 AACAUGGACACACAAAUAUUU
3150 942 UUCUUCCUAGGCUAGUAUUUA
3151 943 AAGCCCUUCCUGAACACACAU
3152 944 ACAUUUAUGAAUAUGCUUUUG
3153 945 ACUGUCAGUUUACAAAUGCUG
3154 946 UAUUAUGGGAUAGCAUUUGCC
3155 947 AUUUAUUUCCUUCCCAGUCCA
3156 948 ACACACACACGAGAUCAGCAA
3157 949 UGUCCAACAAGGAUUUCAGUA
3158 950 UGUAUUGAGAAUGACCAAUAA
3159 951 UUUCUGGUUGUUGACUGUUUC
3160 952 ACACAGUCACUAAUGUACUGA
3161 953 UUCCCGCAUUUGCAGAUUCAG
3162 954 UUCUUACAGAGUUGAAUGUUU
3163 955 AAUGCUACAAGUUGUAUAGAA
3164 956 AAUCCUUCAGCAUCACUGUGG
3165 957 AGUUUCACUCUUGUUGCCGAG
3166 958 UCAUCUUCUUCUUCAGACACA
3167 959 UUGCAAUACUUUAGGUCCAAG
3168 960 UAUGUUGGUCAGGCUGGUCUC
3169 961 UUUACCCUCUUUCCAGCAGUG
3170 962 UCUACACAGACACUCCGCAGA
3171 963 ACAGCUUCUUUCUAAUACUUA
3172 964 CAACUUUCGGACCAUAAGCUU
3173 965 AAAGCCUAUGGAAUAAUUGUA
3174 966 AUGAUUUCAAAGUCAGCUUUU
3175 967 UUCCUUCCCAGUCCACAUGCA
3176 968 AUGUUGGUCAGGCUGGUCUCG
3177 969 UAUCUGUCCUUCAUCCAUACA
3178 970 UUGCAACUCUAUUAGGGCAUG
3179 971 AUGCUAACUAAUGAAUAGGGC
3180 972 UGUUCUUAAUUGCUUCCUUUG
3181 973 AUCUGAAGGGUCACUGCUCCA
3182 974 UACUAAAUCUGUUGAACAUGU
3183 975 ACUUAUAGAUAAUAGUCUCCU
3184 976 AUCUUCUUCUUCAGACACAGG
3185 977 AACUACUGCAAACAACCUAUA
3186 978 UCUCUAUGGAUCACCUGGUUU
3187 979 AUUGUACCAAAUGUGAAUCCU
3188 980 UUCUCAAUGCUAAUAGCAUGU
3189 981 AUUUCUUACAGAGUUGAAUGU
3190 982 UAUAUCACCUUUCUCUAGAUC
3191 983 AAUUAAUUUGUCAACAUUUCU
3192 984 UGUUUACUUAAUGUCCAACAA
3193 985 UCAGUUACAACUAAUUUCACA
3194 986 UCUAAUACUUAUUAGAAAUAU
3195 987 ACGUACACUAUAUAGUUUGCU
3196 988 UGCAACAGAUGUUAUCAAGGG
3197 989 UUCUGGAGCUCUGGAGUUCCA
3198 990 UUACAUGAAUACAAAUUUAUA
3199 991 UUAUGGUCACUUCAACAUUGC
3200 992 AAGUCAUAUAAGGAAUUCUGU
3201 993 UAACUGCAAGUAGCUUAGAUA
3202 994 ACAGUUAUAUUCUAGCAAGUG
3203 995 AAGUGGUUUGGAGCUGUGGUU
3204 996 UCUGAGGUGACUACCUCAUUA
3205 997 AACACUCACAAUGCUUCUUAG
3206 998 UAUAACAAUAUCAAAUAAAAU
3207 999 ACACACAUUGAACUUGAAUUU
3208 1000 AAUAGCAUGUAAUUACUUUUU
3209 1001 UUAUUAUCAAAUCUUGGUACA
3210 1002 AAAGAAUAAAUACUUGAGUUA
3211 1003 CUGAAUUUCAGUCCUCUUGUU
3212 1004 AUGAACUUCAUUUGCUUGAGU
3213 1005 ACAUCCAUCUCAAGACAGCGA
3214 1006 UAUUUGGUACUGCUGGUGAAG
3215 1007 AGGAUUUCAUUGAAUUUCCCG
3216 1008 UUAGAUAAAGACCAAGAGAUU
3217 1009 AAGAGACCAGAUAUCAACUUU
3218 1010 AUCAUCUUACAUAGUUCUUUU
3219 1011 AUAACACAAAUUGUUAGUUUU
3220 1012 CACUUCAACAUUGCUGCCCUG
3221 1013 AGACAGUCCUACAUAUUUGUU
3222 1014 UAGUGCUGUAUAAACAGUACC
3223 1015 UAUACUGCAAAUUAAGAAGCC
3224 1016 AUUUAGGUAUCAUUAUCUUUG
3225 1017 AAACAGAAAUAGGUGAUACAU
3226 1018 UCUUCUUCCUCUUCAUCUUCU
3227 1019 UCAUUUCUCUCUGCAACUUGU
3228 1020 AAUAAUUGUAACUAGCAAAUA
3229 1021 AACUUCAUUUGCUUGAGUUUU
3230 1022 UGUUCACACAGUACUUGCUCU
3231 1023 UAUCCAGACCGUCAGACAUUU
3232 1024 AAAGCUCAUGUAUUUCUGGUU
3233 1025 UCACGGAAUACAGCUGACAGU
3234 1026 UGGAACCAUACCAUCAGCAGG
3235 1027 UUGGAAUCAUAGAAUUUGAGA
3236 1028 UAAACACGUACACUAUAUAGU
3237 1029 CACAACACUAUGAAGAGGGAG
3238 1030 CACACUAGCAACAUCAAAGAU
3239 1031 UCCAUCUUUCCUGCAGCAGAG
3240 1032 AUAUAAGGAAUUCUGUCGGAC
3241 1033 CAACAUUAACGUUCUUUCCUU
3242 1034 UGGUGUGACCUCUUUAUUUGG
3243 1035 AUAAAGAAUAAAUACUUGAGU
3244 1036 UAUACAUAACUCUCCAAUACA
3245 1037 UGUUGGGUUAUAUUCAUUUGG
3246 1038 UCCUAUGAGGAUUUCCUAGGU
3247 1039 UUCUAAAGGAGACUCCGAUGG
3248 1040 UCCUGAUGUAAAGCUCAUGUA
3249 1041 AUUUCAUUGAAUUUCCCGGCA
3250 1042 AAUCUCUACUGUGCUUCUCAC
3251 1043 AUCUGUCCUUCAUCCAUACAG
3252 1044 AUCUCCUGAUGUAAAGCUCAU
3253 1045 UCCAGCAGUGUACUCAUCAUA
3254 1046 UGCAUGGGCUCUGCUAUCUUG
3255 1047 AAUGCUAUCUUUGGUUCCCAA
3256 1048 AUGCUGAAUUUCAGUCCUCUU
3257 1049 UCUCCUGAUGUAAAGCUCAUG
3258 1050 UACCCAUAGUUCAUCACCCAC
3259 1051 UACAUAUUUGUUUAAUGAUUU
3260 1052 AUGGAAUGUGCUUCACCGGGG
3261 1053 UCUGCCUACAGUGAUCUGAAG
3262 1054 CAAGUCAUAACUUCUAUUGAA
3263 1055 CUUUCUUAUUCUUCUCUUCAG
3264 1056 ACACACAAGCACACACAUUGA
3265 1057 UGCAAAUUAAGAAGCCUUCUA
3266 1058 UCAUUAUCUUUGUUUACUUAA
3267 1059 AAUCUGAAUAACAUAAAGAAU
3268 1060 UAAAUGUGGUUUCUCCUAUGA
3269 1061 UCCUCUUUCAGGUAUUAAGGA
3270 1062 AACACUAUGAAGAGGGAGUGU
3271 1063 UAAUAUUACCGUUUCAUUUUC
3272 1064 UCAUCAGAAAUGCUAUCUUUG
3273 1065 UUAUUUCCAAGUUCCCAUUUA
3274 1066 UAUCCUUCUAGUCCUCCAAAA
3275 1067 UUCCCAACAAAUUAAUUUGUC
3276 1068 AUCCUCGCCUAUCCACAUCCA
3277 1069 UUAUAUCUCUAUGGAUCACCU
3278 1070 CUUUGUUUACUUAAUGUCCAA
3279 1071 AUUGAAAGAUGUGCCCUCGUU
3280 1072 UAUUCCUAACUCAGGACAUUU
3281 1073 CUUCUCUAGGUAUAGGGUCUG
3282 1074 UCACCUUUCUCUAGAUCUUUA
3283 1075 AACUUAUAGAUAAUAGUCUCC
3284 1076 UGGACACACAAAUAUUUACAA
3285 1077 UUCUUCAGACACAGGAGGGGC
3286 1078 UCUCGAACUCCUGACCUCAGG
3287 1079 UUGCAAGUUCAACCCAAUUAA
3288 1080 UGUGAAGAUCUUAUCAUCAAU
3289 1081 UCAUUAUUAAAGUUCUCACCU
3290 1082 AUUAUGGGAUAGCAUUUGCCU
3291 1083 AAAUACACGUUCAGAAUUGUG
3292 1084 AGCUUGUGGGUUCUUCUUCUG
3293 1085 UAUUUACACGAUCUUUGAGCU
3294 1086 UGAAUUUCAGUCCUCUUGUUC
3295 1087 UCUCUGUGACCACAUCAGUCA
3296 1088 UAAAUGAAUUGGAAGGCUGCC
3297 1089 UCAGAUACAAUGCCCUGAGUG
3298 1090 CAAGCACACACAUUGAACUUG
3299 1091 UGCUGUUGAAGGUUCAUCUGC
3300 1092 UUCCCACCAUAGUGCUUCGUU
3301 1093 UGUUAUGUUGGAAGUUUGGAG
3302 1094 AUUAUCCAGACCGUCAGACAU
3303 1095 UUGAAUGUUUACUAUAUCACC
3304 1096 AUGAAUAGGGCUUCCUAACCA
3305 1097 AGCAACAUCAAAGAUUUGGAU
3306 1098 UGAAAUUAGUGGGACUUGCCC
3307 1099 UAACCAGGUAUUGGGCUCUCU
3308 1100 UCAAUAAUGAAUAUGGUAUUU
3309 1101 AAGAAGUUUCUAUUCAUUUGA
3310 1102 UGGAGACGAAGUUUCACUCUU
3311 1103 CAACAUAAGAGACUCAGGCUU
3312 1104 UAAAUAAUUUGUAUCAUAAGU
3313 1105 UAAUAUCCUGUUGGACAAGAA
3314 1106 GAAUCCUUCAGCAUCACUGUG
3315 1107 UGCAGAUUCAGUUAGACAUUG
3316 1108 UAUUAUAGAAUCUCUCAGAAC
3317 1109 AUUGGGACCAUCCACUAACUC
3318 1110 AAAUAUUCCAUUAUUUCCAAG
3319 1111 AGAAAUAGGUGAUACAUAGGA
3320 1112 UCUAUUGCUUCAACCACAAUU
3321 1113 UUUAUUUAUUGUAAAGCAAUA
3322 1114 UUUAAUCCAAAGUUACAGAAG
3323 1115 CAAGUUACUCGAUUGUACCAA
3324 1116 AUAAGCACAAGAGAGGAUUAA
3325 1117 UCAGCCUCCCAAGUAGCUGGG
3326 1118 AUUUCUCAAUGCUAAUAGCAU
3327 1119 AAGACCCUAAGGAUCAUCUAG
3328 1120 GAGAAGAAUAUUGUCACUCUU
3329 1121 UCUAUAACACAAAUUGUUAGU
3330 1122 UCACUGCUCCAAGGUCUCCAA
3331 1123 AUUUGGUCACUUAAAGGAGUG
3332 1124 UCCUUCAUCCAUACAGGUCUC
3333 1125 CUACAUCUGACUCAUUCUCUA
3334 1126 UCUUCCAUCUUUCCUGCAGCA
3335 1127 ACUGCAACAUAAGAGACUCAG
3336 1128 AAGCAAUGGAUUCAACCACAG
3337 1129 CUCUGUGACCACAUCAGUCAG
3338 1130 AUCCCGGUUGUUACUAUUCAU
3339 1131 AGAAGAUUCAGGAAGUGCCAA
3340 1132 AAGCCCAGCACUACUUCACAG
3341 1133 AAAUGUGGUUUCUCCUAUGAG
3342 1134 AUCUAAAUAAUUAACAAUAUU
3343 1135 UAUCUCUGCCCUGCAUGCUCU
3344 1136 AUUAAACACAUUCCCAAUGCA
3345 1137 UAGUAUGCUUCAAAUUAAUAU
3346 1138 UCCUAAGAAAGCGUGUGCCAU
3347 1139 AGAAGGAUGGAACCAUACCAU
3348 1140 UUAGGGCAUGGACUUCCACAU
3349 1141 AAACUCUAGAAAGCCCAGCAC
3350 1142 AACAUGGUGACUGAUUUGAGG
3351 1143 AAAUAAUUUGUAUCAUAAGUA
3352 1144 CUUAACUGAAUAUUAACUGCA
3353 1145 AGAAAUAAACCCAUUGAGCAA
3354 1146 UAGAAAGCCCAGCACUACUUC
3355 1147 UCCUGUUGCAAUGUCUAGUGC
3356 1148 AAGAAGCCUUCUAUAACACAA
3357 1149 CACAUGUUCACACAGUACUUG
3358 1150 CAUUAUUAAAGUUCUCACCUA
3359 1151 UUGUUACUAUUCAUCCUCAGU
3360 1152 UGGGAAGAUAGAGCGAAGCCU
3361 1153 AGAAUACUCGUACACACAGGU
3362 1154 UCUUCCUCUUCAUCUUCUUCU
3363 1155 UCAUGCACAAUCCAUAUUUCA
3364 1156 AACUAGCAAAUAUCUCUGCCC
3365 1157 UUUCUCUUCAUUAUCCAGACC
3366 1158 AAUGCUAAUAGCAUGUAAUUA
3367 1159 UCAGAGCUCAGAGACUGGGAG
3368 1160 UUUGGAGUUCUAAUAGUGACA
3369 1161 UCACUGACCUCCCAUUUCUUA
3370 1162 UAAUGUCCAACAAGGAUUUCA
3371 1163 UCCUUCUUCUUAUUGGUUUUA
3372 1164 UGCAAGUCAUAACUUCUAUUG
3373 1165 UAAGAUGUGGAUAUAUGGAUG
3374 1166 ACGUGGAUCCUUCUCAACUUG
3375 1167 AAUACUUGAGUUAAAUCUUCU
3376 1168 AGUGUACUCAUCAUACAACUG
3377 1169 UCUCAGGAUUCUGGAGCUCUG
3378 1170 UCCUACCUGAAUGAUAUACAG
3379 1171 AUAGGGCUUCCUAACCAGGUA
3380 1172 AUAUAUGGUGAAAUAGUAGUC
3381 1173 AGUGAUAUUAUAGAAUCUCUC
3382 1174 AUGUAUCUAUUUCCUCCUGGU
3383 1175 AAAGUCAGUCAAUUUAACAGA
3384 1176 UUUGGGCUGCGAUUCAGGCUU
3385 1177 UCUUUGUCCAUAUGCAUUUCU
3386 1178 UUUGAAUGCAAGAGGGACUAC
3387 1179 AUUUAUUGUAAAGCAAUAUUA
3388 1180 UUUCUGCUGUUUAUUUAUUGU
3389 1181 AAUAUCUCUGCCCUGCAUGCU
3390 1182 UUUGUUUACUUAAUGUCCAAC
3391 1183 AUAUGGUAUUUGCGGGUCCAU
3392 1184 AUUAUUAUCAAAUCUUGGUAC
3393 1185 UAAAUGCUACAAGUUGUAUAG
3394 1186 AUAGUUUGCUGAAACUCUAAA
3395 1187 UGCUAACUAAUGAAUAGGGCU
3396 1188 UUCCAGAAAGGCAAUAUCUGC
3397 1189 AGAACCUGAACUCACCUAGCA
3398 1190 UGAUGAUUAAUGUAUCUAUUU
3399 1191 UCCGAAACAGAAAUAGGUGAU
3400 1192 UUGUCAUCAGAAAUGCUAUCU
3401 1193 UUUGAAAGGUAAAGAACCCCC
3402 1194 CUUAGAGAAACAACUUUCUGU
3403 1195 AUAUCAUUUAUAGACAAAUAU
3404 1196 AGGAUUUCACCGUUUGAGCUU
3405 1197 UAGUGGGACUUGCCCUAUUGG
3406 1198 AUAUUUGUUUAAUGAUUUCAA
3407 1199 UCACAUAGCAAUUUAGUAAUA
3408 1200 GAAUACUCGUACACACAGGUG
3409 1201 UUCCACAUGUUCACACAGUAC
3410 1202 AACCUGAACUCACCUAGCAGG
3411 1203 UCUUACAGAGUUGAAUGUUUA
3412 1204 UACUUCACAGGAAAGGAGAAG
3413 1205 CAACUUGUAAGUGUUUAGGUU
3414 1206 GCUAACAACAUUAACGUUCUU
3415 1207 AUUCAGUUAGACAUUGUUUAA
3416 1208 UACAAAGUGGUAGUAAAGAAG
3417 1209 UACAUAAGUUCUGUUUAGAUU
3418 1210 AAAUAUACAUAACUCUCCAAU
3419 1211 UGUCCUUCAUCCAUACAGGUC
3420 1212 AUGCUCUGGUCUUGGUGCGAU
3421 1213 AGUAUUCUACAUUUAUCUGGU
3422 1214 AUAAACAGUACCUGAUGCCCC
3423 1215 UCAUCUCCUGAACAUAAACAC
3424 1216 UAGUAUUUAUCCCACUACAUC
3425 1217 AUCCCACUACAUCUGACUCAU
3426 1218 CAUAGAAUUUGAGAACAUCUA
3427 1219 UACACACAGGUGUGCACAUGG
3428 1220 AACGAAGUCAUUACCCAACAU
3429 1221 UUGAGUGCAGGAAAUCCAAAG
3430 1222 UAGGCAGGGCAUUGGGACCAU
3431 1223 AUGUGAAUCCUUCAGCAUCAC
3432 1224 ACACACAGGUGUGCACAUGGA
3433 1225 UCAUAGGAGAAAUAUUCCAUU
3434 1226 UCUGCUGUUUAUUUAUUGUAA
3435 1227 CUUCAAAUUAAUAUUACCGUU
3436 1228 UCUCUGGGCGCUCUUUCUCCU
3437 1229 UCCUAGGCUAGUAUUUAUCCC
3438 1230 UUUCUCUGCCUACAGUGAUCU
3439 1231 CAACAUUGAAAGAUGUGCCCU
3440 1232 UUCUUAGCUUCUCUAAGAUCU
3441 1233 ACAGUCUCUCAGGAUUCUGGA
3442 1234 UGGUUUACUCAAUUAUCUUUU
3443 1235 AGUUCUAAUAGUGACAUCUCC
3444 1236 ACCACACACAAGCACACACAU
3445 1237 UCUCUAUGUUGGUCAGGCUGG
3446 1238 UCAAAGUCUGAAGGAAGAGAG
3447 1239 AGACCAAGAGAUUCAACCGGG
3448 1240 UUCACCUUCCACCAUUUCAAU
3449 1241 CAAAGUAUAACAUAGUAUGCU
3450 1242 UAGCUACAGGAUUCUGUGAAG
3451 1243 AAUAUCUGCAACAGAUGUUAU
3452 1244 ACAAUGACACACACACGAGAU
3453 1245 AAGUUUCACUCUUGUUGCCGA
3454 1246 AACAUUGAAAGAUGUGCCCUC
3455 1247 UCUGCAACAGAUGUUAUCAAG
3456 1248 GUGGUAGUAAAGAAGUACCUG
3457 1249 AUGCUUCUUAGCUUCUCUAAG
3458 1250 UGCUGAAGAAUCCCGGUUGUU
3459 1251 ACUACAUCUGACUCAUUCUCU
3460 1252 UUCGCUUCACGGUGGAAGUGA
3461 1253 AAGCUCAUGUAUUUCUGGUUG
3462 1254 UCUCCUCAUCUGUCAUCUUGG
3463 1255 AUUACAUAAUCUGAGGGAGUA
3464 1256 AUUCUCUACUAUCGCUGUUGA
3465 1257 AUCACAUUGGGUAAGGAGUUU
3466 1258 UUUCUUUGGUGAGUUAGAAGG
3467 1259 CAAUUUAGUAAUAAAGCUCAU
3468 1260 AUUGCUGCCCUGUUUGGGCUG
3469 1261 AUCUUUGUUUAAAUGUGGUUU
3470 1262 ACAGGAAGCAAUUUCGUGUUU
3471 1263 UUCAAGCGAUUCUCCCACCUC
3472 1264 AUACAGGUCUCUGUGACCACA
3473 1265 AAACAACUGUAAAUGAAUUGG
3474 1266 UAACAACCUGGUUUACUCAAU
3475 1267 AUAGUUGUAAUCCCUGUUUAU
3476 1268 GAACCUGAACUCACCUAGCAG
3477 1269 AUGAUGAUUAAUGUAUCUAUU
3478 1270 AAGAGAGGAUUAAUUUAGGUA
3479 1271 GUUUACAGAUAACACAUUCUG
3480 1272 UAUCUAUUUCCUCCUGGUAUG
3481 1273 AUAGAUAAUAGUCUCCUAAGA
3482 1274 UAUCCCACUGUGGACAUUUUC
3483 1275 UUGAAUUUCCCGGCACUAUGA
3484 1276 AAUUUAGUAAUAAAGCUCAUA
3485 1277 UUGCAUCCCAGGAUUUCAUUG
3486 1278 UCUUUCCAGCAGUGUACUCAU
3487 1279 UACCAUCAGCAGGUCUACAAA
3488 1280 UCAUCUUCUUCUUCUUCUUCC
3489 1281 AUCCAUACAGGUCUCUGUGAC
3490 1282 UAGCAAAUAUCUCUGCCCUGC
3491 1283 UCAGGUGAUCCGCCUGCCUUG
3492 1284 AGAGACUCAGGCUUAAACGUG
3493 1285 UCUGUGAAGAUCUUAUCAUCA
3494 1286 UUAUUAGAAAUAUACAUAACU
3495 1287 AGCUUCUCUAAGAUCUCCUCA
3496 1288 AACCACAGAACGAGUAUAGAU
3497 1289 UCAGGAUUCUGGAGCUCUGGA
3498 1290 UACAAAUAAAUUACAUAAUCU
3499 1291 UCAUUAAUAAUUAAUUCCUUC
3500 1292 UAAUUGUAACUAGCAAAUAUC
3501 1293 UUAAGGCCUCUCUCUCUCAUU
3502 1294 CAUUUCUCUCUGCAACUUGUA
3503 1295 UCUAAAUAAUUAACAAUAUUA
3504 1296 ACAACCUAUAAAUAGGCAGAA
3505 1297 UUGGGCUGCGAUUCAGGCUUA
3506 1298 AAGAGAAUAAACUGUUAACAA
3507 1299 AUUUGUAUCAUAAGUAAAUGA
3508 1300 UGCAACAUAAGAGACUCAGGC
3509 1301 UUAGUGGGACUUGCCCUAUUG
3510 1302 AUGGAACCAUACCAUCAGCAG
3511 1303 CCAGUAGACAUCACUACCCUG
3512 1304 UCCCAUUUAUUUCCUUCCCAG
3513 1305 GAACUAAGCAUGAACACACCA
3514 1306 CUUUAUUUGGUACUGCUGGUG
3515 1307 AAUAAAUUACAUAAUCUGAGG
3516 1308 UUCCAUUAUUUCCAAGUUCCC
3517 1309 AUCAGCAAGAACGAAGUCAUU
3518 1310 CUAACAACAUUAACGUUCUUU
3519 1311 AACAGAACUAUAACUGAAUGC
3520 1312 ACAAAUUAAUUUGUCAACAUU
3521 1313 UCGUACACACAGGUGUGCACA
3522 1314 GUUCACACAGUACUUGCUCUG
3523 1315 ACACGUACACUAUAUAGUUUG
3524 1316 AAAGACCCUAAGGAUCAUCUA
3525 1317 UUACAGGCCCAGAUUCGUUUU
3526 1318 CUCAAGUACAGUUAUAUUCUA
3527 1319 UGGAAAGACCCUAAGGAUCAU
3528 1320 AAAGGCAAUAUCUGCAACAGA
3529 1321 CAUGAACACACCAUAUUCCGA
3530 1322 ACUUAAAGGAGUGUGGAUCAG
3531 1323 UUGCAGGCACUCUCUGCAGAC
3532 1324 UGUUUGGAGUUCUAAUAGUGA
3533 1325 UGACAUUUCUUGGGAUAUGAU
3534 1326 UUCACUCUUAGCAGUCUCAGC
3535 1327 UACAAAUGCUGAAUUUCAGUC
3536 1328 AAAUAAUCUCUACUGUGCUUC
3537 1329 AAGAAUAAAUACUUGAGUUAA
3538 1330 UCACAGUUUCAGUUUCAGUGU
3539 1331 ACUACUGCAAACAACCUAUAA
3540 1332 AUUGGGAUGUAGCCUUCACUG
3541 1333 AAGUAGCUUAGAUAAAGACCA
3542 1334 AAUGAUGAUUAAUGUAUCUAU
3543 1335 ACAGGAUUCUGUGAAGAUCUU
3544 1336 UAGGUCCAAGUUUCAAACUGC
3545 1337 AGCUUCUAAAGGAGACUCCGA
3546 1338 AAUCACUGUGGGAGUUGUCAU
3547 1339 UAAACUCUAGAAAGCCCAGCA
3548 1340 UCAGGCUGGUCUCGAACUCCU
3549 1341 AUGUCCAACAAGGAUUUCAGU
3550 1342 UUUGGAGCUGUGGUUGAGUGC
3551 1343 CAGGCUGGUCUCGAACUCCUG
3552 1344 UGAAUCGUAUGCUCAAAGUCU
3553 1345 UCACCGUUUGAGCUUUAUUUA
3554 1346 AAUCGUGCCCAUUGCUCUGGA
3555 1347 GAAUGUUUACUAUAUCACCUU
3556 1348 UGUAUCAUAAGUAAAUGAUGA
3557 1349 UAACAAUAUUAGGGUUCUUAU
3558 1350 CUGAAUUUGCAAGGCAACCUA
3559 1351 UUGUAAAGCAAUAUUAUAACA
3560 1352 UACCCUCUUUCCAGCAGUGUA
3561 1353 AACAAUAUUAGGGUUCUUAUU
3562 1354 AAUUAAUUCCUUCUUGGGUUG
3563 1355 UCAGAGACUGGGAGAUACUUG
3564 1356 CAAGUUGUAUAGAAUACUCGU
3565 1357 UUCUCUCUGCAACUUGUAAGU
3566 1358 UCACAAUGCUUCUUAGCUUCU
3567 1359 UGUCCAUAUGCAUUUCUUUUU
3568 1360 AACAUAAGAGACUCAGGCUUA
3569 1361 UUGAAAUUAGUGGGACUUGCC
3570 1362 UCCUUCCCAGUCCACAUGCAA
3571 1363 AAUAUUAAACACAUUCCCAAU
3572 1364 UGUAUAGAAUACUCGUACACA
3573 1365 CUGUUGAAGGUUCAUCUGCUU
3574 1366 UAGGAGAAAUAUUCCAUUAUU
3575 1367 CACACAUUGAACUUGAAUUUU
3576 1368 GUUGUUACUAUUCAUCCUCAG
3577 1369 ACAGAGUUGAAUGUUUACUAU
3578 1370 UUCACCGUUUGAGCUUUAUUU
3579 1371 CAAUGGAAUGUGCUUCACCGG
3580 1372 UGUUGGUCAGGCUGGUCUCGA
3581 1373 UGUCCUGUUGCAAUGUCUAGU
3582 1374 CUUCUAUUGAAAUUAGUGGGA
3583 1375 UAUAUUCUAGCAAGUGUGACA
3584 1376 UAAAGGAGUGUGGAUCAGAAA
3585 1377 UUGCUGAAACUCUAAAGAAAG
3586 1378 UUUCUAAUACUUAUUAGAAAU
3587 1379 UUUGCUUAACUGAAUAUUAAC
3588 1380 UUCACGGUGGAAGUGACCACU
3589 1381 AGGUCUCUGUGACCACAUCAG
3590 1382 UGACAACGCACUGGAUCCUUG
3591 1383 UCCUCUUCAUCUUCUUCUUCA
3592 1384 AUACAGACAACAGGAAGCAAU
3593 1385 GAUGUUAUGAGUAUAAUCCCA
3594 1386 AUUUAUCCCACUACAUCUGAC
3595 1387 AUAUAUGGAUGGUUAGAUGGA
3596 1388 UAAGUAAAUGAUGAUUAAUGU
3597 1389 AUUAUCUUUGUUUACUUAAUG
3598 1390 CAGAACUAUAACUGAAUGCCA
3599 1391 AAAGCAUAAGAGAGAAGCCAU
3600 1392 AGAAGUUUCUAUUCAUUUGAA
3601 1393 AAUUAUUUACACGAUCUUUGA
3602 1394 UGCUGAGGUCAGAAGGAUGGA
3603 1395 AAAUUAAUAUUACCGUUUCAU
3604 1396 UCAUUGAAUUUCCCGGCACUA
3605 1397 UUAUUUACACGAUCUUUGAGC
3606 1398 UUGGAUGCUGAGGUCAGAAGG
3607 1399 UUUAAUGAUUUCAAAGUCAGC
3608 1400 AAGUUCAACCCAAUUAAGUGG
3609 1401 AAAUGAGAUACAAUUCUGAUA
3610 1402 GUAGCCUUCACUGACCUCCCA
3611 1403 AGGAUGGAACCAUACCAUCAG
3612 1404 AUCCUUGCUAACAACAUUAAC
3613 1405 UUCAGGCUUACAAAUAAAUUA
3614 1406 UCUUGUCCUGUUGCAAUGUCU
3615 1407 ACAGACAACAGGAAGCAAUUU
3616 1408 UUACAGAGUUGAAUGUUUACU
3617 1409 AACAACAUUAACGUUCUUUCC
3618 1410 AUCUGAGGUGACUACCUCAUU
3619 1411 AAUCCCAGUAGACAUCACUAC
3620 1412 AAGUAUUUCUGUAUUGAGAAU
3621 1413 AUUAAUAUUACCGUUUCAUUU
3622 1414 UAUCCUUUGGUUAGAUGGUCU
3623 1415 AGAAGAAUAUUGUCACUCUUU
3624 1416 CUUCUUCUUCUUCUUCCUCUU
3625 1417 UCAUUAGAAAUAAACCCAUUG
3626 1418 UUAUAGACAAAUAUCUCAAAC
3627 1419 AACUGAAAGCAUAAGAGAGAA
3628 1420 AUUUCAGUAUUCUACAUUUAU
3629 1421 AUCAUUUAUAGACAAAUAUCU
3630 1422 UCAUAACUUCUAUUGAAAUUA
3631 1423 CAUAACUCUCCAAUACAGGGA
3632 1424 AAAUAGGUGAUACAUAGGAAA
3633 1425 AUCACAACUACUGCAAACAAC
3634 1426 AUGAAUCGUAUGCUCAAAGUC
3635 1427 UGGAGUUCUAAUAGUGACAUC
3636 1428 UAUUUAUUGUAAAGCAAUAUU
3637 1429 CAAAUGUGAAUCCUUCAGCAU
3638 1430 AUUGCUCUGGAAUUCCAGUGA
3639 1431 AUUUCUGGUUGUUGACUGUUU
3640 1432 GUAUUUAUCCCACUACAUCUG
3641 1433 UUCCCAGUCUUUGUCCAUAUG
3642 1434 CUAAUAGUGACAUCUCCCUAG
3643 1435 UGUUUAAAUGUGGUUUCUCCU
3644 1436 UUCCUCUUGGGUACUAAAUCU
3645 1437 AGCAGUGUACUCAUCAUACAA
3646 1438 UCGUUAUCUCAGGGCACACUA
3647 1439 CUCUACUGUGCUUCUCACCCU
3648 1440 GUAACUAGCAAAUAUCUCUGC
3649 1441 UGGUGAGUUAGAAGGAAGUUA
3650 1442 CAAUGCUUCUUAGCUUCUCUA
3651 1443 AUAAAUAAUUUGUAUCAUAAG
3652 1444 AAGUUCUGUUUAGAUUCUUUU
3653 1445 CAACGCACUGGAUCCUUGCUA
3654 1446 UGAUUUCAAAGUCAGCUUUUA
3655 1447 UAAAGCACACCACACACAAGC
3656 1448 UUGCGGGUCCAUAAAGCACAC
3657 1449 UUUGAGCUUUAUUUAGAUAUA
3658 1450 AUGGAAUAAUUGUAACUAGCA
3659 1451 UUGCUUAACUGAAUAUUAACU
3660 1452 CACAGUUUCAGUUUCAGUGUG
3661 1453 AUCGUGCCCAUUGCUCUGGAA
3662 1454 UCACGGUGGAAGUGACCACUU
3663 1455 CUAAAUCUGUUGAACAUGUUG
3664 1456 AGCAAUUUAGUAAUAAAGCUC
3665 1457 UGGGAUAUGAUUGUAAGUUAA
3666 1458 UAGCAGGCUGAAUUUGCAAGG
3667 1459 UACAGUGCAUAUGUUUCAUAA
3668 1460 UUCAAAUCCCAGGCCCAUCAA
3669 1461 UUCUCCCACCUCAGCCUCCCA
3670 1462 UUAAAGGAGUGUGGAUCAGAA
3671 1463 UAGAUAAAGACCAAGAGAUUC
3672 1464 UCAACAUUGCUGCCCUGUUUG
3673 1465 UCCAUAAAGCACACCACACAC
3674 1466 UGCAACUCUAUUAGGGCAUGG
3675 1467 AUGUUUACUAUAUCACCUUUC
3676 1468 UGAAGGUUCAUCUGCUUUAUG
3677 1469 UAGUUGUAAUCCCUGUUUAUG
3678 1470 GAUCUUAUCAUCAAUAAUGAA
3679 1471 AUGGAGAGGUUAAGUGACUUG
3680 1472 UAUGGAAUAAUUGUAACUAGC
3681 1473 AUGCAUGGGCUCUGCUAUCUU
3682 1474 UCGAUUGUACCAAAUGUGAAU
3683 1475 CAUAUCUGAGGUGACUACCUC
3684 1476 AAGAACUAAGCAUGAACACAC
3685 1477 UUUAUCCCACUACAUCUGACU
3686 1478 AUUCCAUGACUACCCAUAGUU
3687 1479 UAAACACAUUCCCAAUGCAUG
3688 1480 AUUCAUUUGAAAGGUAAAGAA
3689 1481 AUAGGAGAAAUAUUCCAUUAU
3690 1482 UCUUAGCGGCUGCUGUUCUUA
3691 1483 UAUGCUUCAAAUUAAUAUUAC
3692 1484 UGGAUGGUUAGAUGGAUGGAU
3693 1485 AAAGAACUAAGCAUGAACACA
3694 1486 AAGGAGGUUUGAAUGCAAGAG
3695 1487 UCUAUGGAUCACCUGGUUUGA
3696 1488 AUGGAUGGUUAGAUGGAUGGA
3697 1489 ACACACCAUAUUCCGAAACAG
3698 1490 AUGGUUAGAUGGAUGGAUGUA
3699 1491 AGAUACAAUUCUGAUAAACAA
3700 1492 AGUAGCUAUCUAAAUAAUUAA
3701 1493 UCCACAUGCAAAUACACGUUC
3702 1494 AGUUACAGAAGAAUUUCACUA
3703 1495 UUGAAUGCAAGAGGGACUACU
3704 1496 CAGGAUUCUGUGAAGAUCUUA
3705 1497 CUGAACACACAUAUUCCUCUC
3706 1498 ACUCAAGACACAGUCAUGCAC
3707 1499 AUUAUAACAAUAUCAAAUAAA
3708 1500 UCUUUCAGGUAUUAAGGAGAU
3709 1501 UCCCAUCUUUGUUUAAAUGUG
3710 1502 AAUUGUAACUAGCAAAUAUCU
3711 1503 AACUAAGCAGCAUAUCUGAGG
3712 1504 AGAUGUAAGGAUCAGGUGGUU
3713 1505 AAUUAGUGGGACUUGCCCUAU
3714 1506 AGUUUGGAGUAAUCGUGCCCA
3715 1507 CAAAUCUUGGUACAAAGUGGU
3716 1508 ACUUUGCUCAGGAGUGAUCUG
3717 1509 UCUUCAAAGUGAAUGCACAAA
3718 1510 AUUAUUUCCAAGUUCCCAUUU
3719 1511 UCAACAUUUCUCAAUGCUAAU
3720 1512 AGGAGGUCAAGCCUCUCCCAA
3721 1513 AGUAGACAUCACUACCCUGUG
3722 1514 UGACAGGAUUUCACCGUUUGA
3723 1515 UCUUCCUAGGCUAGUAUUUAU
3724 1516 UCAACAUGUAAGGGAUGCUAA
3725 1517 CAUCUUCUUCUUCUUCUUCCU
3726 1518 UAAUAGUGACAUCUCCCUAGC
3727 1519 GCUUAGAGAAACAACUUUCUG
3728 1520 CAUCUAGAACAGCUUGUGGGU
3729 1521 UCUUCAUCUUCUUCUUCAGAC
3730 1522 AAAUGCUACAAGUUGUAUAGA
3731 1523 UUUGGUUCCCAACAAAUUAAU
3732 1524 UAUCAACUUUCGGACCAUAAG
3733 1525 AAGCUUGCAGGCACUCUCUGC
3734 1526 CUAUGUAUCCAUGUGCACUUU
3735 1527 AUGGGAUAGCAUUUGCCUGAU
3736 1528 UAAAGCCUAUGGAAUAAUUGU
3737 1529 UAGCUGGGAUUACAGGCGCCC
3738 1530 UCAGGAGUGAUCUGGGCACAG
3739 1531 AGUGCUUCGUUUACUUUGCUC
3740 1532 UCGUUUACUUUGCUCAGGAGU
3741 1533 UCACUCUUAGCAGUCUCAGCC
3742 1534 UAUGAGGAUUUCCUAGGUUCA
3743 1535 UAAUUUGUAUCAUAAGUAAAU
3744 1536 AUUAAUGUAUCUAUUUCCUCC
3745 1537 ACACAACACUAUGAAGAGGGA
3746 1538 AAAUGAAUUGGAAGGCUGCCA
3747 1539 AAGUAGCUGGGAUUACAGGCG
3748 1540 CAUCUAAUGACAAUGCAAGUG
3749 1541 UCUAUGUUGGUCAGGCUGGUC
3750 1542 CUGAGUUCACUUCAAAUCCCA
3751 1543 UCAGAGAAAGUCCCAUCUUUG
3752 1544 AUCCUCAGUGGAGGAGCCGGG
3753 1545 AAGCAAUUUCGUGUUUCUUUU
3754 1546 AUGAGAUACAAUUCUGAUAAA
3755 1547 UACAUAAUCUGAGGGAGUAGG
3756 1548 UCUUUGGUUCCCAACAAAUUA
3757 1549 UGAAGAUCUUAUCAUCAAUAA
3758 1550 AUAUUGUCACUCUUUAUAUCU
3759 1551 UGGUUUACAGAUAACACAUUC
3760 1552 UCUUCUUCUUCCUCUUCAUCU
3761 1553 CUGUCGGACUGACAUUUCUUG
3762 1554 CUCCUCAUUGUUAAUAUGCUG
3763 1555 AAAGAAAUCUGAAUAACAUAA
3764 1556 GACACAGUCACUAAUGUACUG
3765 1557 UGGGUUCAAGCGAUUCUCCCA
3766 1558 AACCAUACCAUCAGCAGGUCU
3767 1559 GUAUAACAUAGUAUGCUUCAA
3768 1560 AUACUUUAGGUCCAAGUUUCA
3769 1561 ACAUGGUGACUGAUUUGAGGG
3770 1562 UGUUUAGGUUCACUCUUAGCA
3771 1563 AGAAGGAAGUUAUCCUUUGGU
3772 1564 ACUAAUGAAUAGGGCUUCCUA
3773 1565 UCCAUGACUACCCAUAGUUCA
3774 1566 AAGGAAGAGAGAUCUCUGGGC
3775 1567 UCUAAAGAAAGUGCUUUCAUU
3776 1568 CUGAAUGUACAUAAGUUCUGU
3777 1569 UGUACAAAGUACUGGAAUUGG
3778 1570 GUGUACUCAUCAUACAACUGG
3779 1571 UCCAGAAAGGCAAUAUCUGCA
3780 1572 AAUAUGGUAUUUGCGGGUCCA
3781 1573 AAUAGAUAUAUGGUGAAAUAG
3782 1574 AUUUCCUUCCCAGUCCACAUG
3783 1575 CAGACUUUACAUACAGACUGU
3784 1576 CUUACUGCUGGUAUUAUGGGA
3785 1577 UCAUAAGUAAAUGAUGAUUAA
3786 1578 UCUGUCCUUCAUCCAUACAGG
3787 1579 UGACUUGCCUAGCGUCACAUA
3788 1580 CAUCUGACUCAUUCUCUACUA
3789 1581 AUGAGGGAGAUGGUGAGGUGU
3790 1582 GUACACUAUAUAGUUUGCUGA
3791 1583 UUUCACUCUUGUUGCCGAGGC
3792 1584 UACUGCAAACAACCUAUAAAU
3793 1585 CAACUGAUUUCAAUUAUCUGU
3794 1586 ACAUUGUUUAAUAUUAAACAC
3795 1587 CAGUUAUACAGACAACAGGAA
3796 1588 UUUGCAUCCCAGGAUUUCAUU
3797 1589 UAUCAUUUAUAGACAAAUAUC
3798 1590 UCCCACUACAUCUGACUCAUU
3799 1591 UACAGGCCCAGAUUCGUUUUU
3800 1592 UCUACUCUCAGAAGAUUCAGG
3801 1593 AUUUCAGUCUUACUCAUGAGG
3802 1594 GAAACUAAGCAGCAUAUCUGA
3803 1595 AAGGAAGUUAUCCUUUGGUUA
3804 1596 CUUCUUCAGACACAGGAGGGG
3805 1597 UUAGCGGCUGCUGUUCUUAAU
3806 1598 UUUCACUACACAUGGUUUACA
3807 1599 UGGAACAUGGACACACAAAUA
3808 1600 AUGUCACAGUUUCAGUUUCAG
3809 1601 UUAAUCCAAAGUUACAGAAGA
3810 1602 UCUCCCACCUCAGCCUCCCAA
3811 1603 AAUAGGGCUUCCUAACCAGGU
3812 1604 AGCACAUGGAGACCAUCCCAA
3813 1605 UGCAACUUGUAAGUGUUUAGG
3814 1606 AAGAGACUCAGGCUUAAACGU
3815 1607 AAUAAAGCUCAUAUUAGACUC
3816 1608 UAGCUAUCUAAAUAAUUAACA
3817 1609 AUGCUGAACUGAAAGCAUAAG
3818 1610 AUGAGUAUAAUCCCAGUAGAC
3819 1611 ACUAAGCAUGAACACACCAUA
3820 1612 AGUGCAGGAAAUCCAAAGCUU
3821 1613 UGAUAUCUCAGUUCCCGCAUU
3822 1614 AAUAUUAUAACAAUAUCAAAU
3823 1615 AGUAAUAUCCUGUUGGACAAG
3824 1616 AAUGCUGAAUUUCAGUCCUCU
3825 1617 UCCUCAUUGUUAAUAUGCUGA
3826 1618 UGCAAAGUAUAACAUAGUAUG
3827 1619 CAGACAGCUGCUAUCUGUCCU
3828 1620 AUAGUUCCCUUUCUGCUGUUU
3829 1621 CAGGACACAGUCACUAAUGUA
3830 1622 ACAUAACUCUCCAAUACAGGG
3831 1623 UAUUCAUUUGGUCACUUAAAG
3832 1624 UAUCUGCAACAGAUGUUAUCA
3833 1625 AGAAAUAUUCCAUUAUUUCCA
3834 1626 UGAGGUGUAAGGCUUGCAGUC
3835 1627 UGCCCUAUUCCUAACUCAGGA
3836 1628 UUUCCAGCAGUGUACUCAUCA
3837 1629 AAAGAAAGUGCUUUCAUUUUA
3838 1630 AUCUAAUGACAAUGCAAGUGA
3839 1631 AACUAAUGAAUAGGGCUUCCU
3840 1632 CCUUCUAUAACACAAAUUGUU
3841 1633 UCCAUCUCAAGACAGCGAUUU
3842 1634 AUAUUCCAUUAUUUCCAAGUU
3843 1635 UCACAUUGGGUAAGGAGUUUU
3844 1636 ACCAUAAAUACCUUUAAUCCA
3845 1637 GUGAUCUGGGCACAGAACCCA
3846 1638 AAAGUGCUGGGAUUACAGGUA
3847 1639 AAGAAAUCUGAAUAACAUAAA
3848 1640 AUUGAUUGGGAUGUAGCCUUC
3849 1641 ACUCGUACACACAGGUGUGCA
3850 1642 AUGUGGUUUCUCCUAUGAGGA
3851 1643 UACAUACAGACUGUAUGGAAA
3852 1644 UAUUUCCUUCCCAGUCCACAU
3853 1645 AACUGUCAGUUUACAAAUGCU
3854 1646 AGGUGUAAGGCUUGCAGUCUU
3855 1647 GACACAGUCAUGCACAAUCCA
3856 1648 AGGAGAUUAACAACCUGGUUU
3857 1649 AGAAACAACUUUCUGUAAUUU
3858 1650 UGCUGUAGGCAGGGCAUUGGG
3859 1651 UGUGCCCUCGUUAUCUCAGGG
3860 1652 ACAUAGUUGUAAUCCCUGUUU
3861 1653 UCAGCAAGAACGAAGUCAUUA
3862 1654 AGACAUUUAUGAAUAUGCUUU
3863 1655 UCCAACAAGGAUUUCAGUAUU
3864 1656 AGCAAUUUCGUGUUUCUUUUU
3865 1657 UUCCAUCUUUCCUGCAGCAGA
3866 1658 AAUUUCAAGACAUUUAUGAAU
3867 1659 UUCUAAUACUUAUUAGAAAUA
3868 1660 CUUCUUCCUCUUCAUCUUCUU
3869 1661 UCACUACACAUGGUUUACAGA
3870 1662 UCAACCUGAGAGUCUGUUAAA
3871 1663 UUCCAUGACUACCCAUAGUUC
3872 1664 UGGAUGCUGAGGUCAGAAGGA
3873 1665 ACACAGUACUUGCUCUGGUAU
3874 1666 UUAUCAAAUCUUGGUACAAAG
3875 1667 AUAAAUAGAUAUAUGGUGAAA
3876 1668 CUUCUUCUUCCUCUUCAUCUU
3877 1669 UGCUUCAAAUUAAUAUUACCG
3878 1670 AUAUACAUAACUCUCCAAUAC
3879 1671 UAAUUCCACCACCCUAACACA
3880 1672 AAGGCAAUAUCUGCAACAGAU
3881 1673 UGUUUAAUGAUUUCAAAGUCA
3882 1674 UGAUGUAAAGCUCAUGUAUUU
3883 1675 AUACCAUCAGCAGGUCUACAA
3884 1676 UGACACACACACGAGAUCAGC
3885 1677 CUUCUUUCUAAUACUUAUUAG
3886 1678 AAUUUGAGAACAUCUAGAACA
3887 1679 AGCAGGAUGUCACAGUUUCAG
3888 1680 CACGAGAUCAGCAAGAACGAA
3889 1681 UCUUGUUCAGAGCUCAGAGAC
3890 1682 UUCUCACCCUUCCCUGACUUU
3891 1683 CUGAAUAUUAACUGCAAGUAG
3892 1684 AAUGUACAUAAGUUCUGUUUA
3893 1685 UACUUUGCUCAGGAGUGAUCU
3894 1686 UGGGCGCUCUUUCUCCUUCUU
3895 1687 UCCCAGUUUACCCUCUUUCCA
3896 1688 CACAACUACUGCAAACAACCU
3897 1689 UGCAGUCUUAGCGGCUGCUGU
3898 1690 ACUGAAUAUUAACUGCAAGUA
3899 1691 UCACUUCAAAUCCCAGGCCCA
3900 1692 AGGGAUAGAUGUAAGGAUCAG
3901 1693 UUGGAGUAAUCGUGCCCAUUG
3902 1694 UCUGAAUAACAUAAAGAAUAA
3903 1695 UGAGCAAAGGAAUAUAAUUAU
3904 1696 UGAGGUGACUACCUCAUUAUU
3905 1697 AGAGACAGUCCUACAUAUUUG
3906 1698 UUUCUCCUAUGAGGAUUUCCU
3907 1699 UGUUCAGAGCUCAGAGACUGG
3908 1700 UGUAUAAACAGUACCUGAUGC
3909 1701 UGUUAUGAGUAUAAUCCCAGU
3910 1702 UGACUACCCAUAGUUCAUCAC
3911 1703 UCUCAGCUCACCACAACCUCC
3912 1704 UUUAGGUCCAAGUUUCAAACU
3913 1705 AGAGAAAGUCCCAUCUUUGUU
3914 1706 AAAGUUACAGAAGAAUUUCAC
3915 1707 UCCUCAGUGGAGGAGCCGGGG
3916 1708 AUAAAGCUCAUAUUAGACUCC
3917 1709 UAUCAAAUCUUGGUACAAAGU
3918 1710 UUAUUAAAGUUCUCACCUAAA
3919 1711 UCAGUCCUCUUGUUCAGAGCU
3920 1712 UCACCUGGUUUGAGUGCAGGA
3921 1713 CAUCUUCUUCUUCAGACACAG
3922 1714 UUCCCUGACUUUCCCACUGCC
3923 1715 GAAUCGUAUGCUCAAAGUCUG
3924 1716 UCAAGCGAUUCUCCCACCUCA
3925 1717 ACAGUCACUAAUGUACUGAUU
3926 1718 UAACCAACAGAAAGAUUAUAU
3927 1719 GUUCACUCUUAGCAGUCUCAG
3928 1720 AACAUAGUAUGCUUCAAAUUA
3929 1721 AAGCCUUCUAUAACACAAAUU
3930 1722 AUGUUGGGUUAUAUUCAUUUG
3931 1723 AAAGGAGAAGCUCAAGUACAG
3932 1724 CUUCUUCUUCAGACACAGGAG
3933 1725 CUUCCUCUUCAUCUUCUUCUU
3934 1726 AACAGAAAUAGGUGAUACAUA
3935 1727 UCACAGGAAAGGAGAAGCUCA
3936 1728 UAACUAAUGAAUAGGGCUUCC
3937 1729 AUCCUUUGGUUAGAUGGUCUC
3938 1730 UCCCAUUUCUUACAGAGUUGA
3939 1731 AGUGGUAGUAAAGAAGUACCU
3940 1732 AUUUCAGUCCUCUUGUUCAGA
3941 1733 UGGGAUGUAGCCUUCACUGAC
3942 1734 AUACCUUUGCUUAACUGAAUA
3943 1735 CACUCUUAGCAGUCUCAGCCA
3944 1736 CUUCAUUAUCCAGACCGUCAG
3945 1737 AUAUUAAACACAUUCCCAAUG
3946 1738 ACUCUUGUUGCCGAGGCUGGA
3947 1739 GACUCAUUCUCUACUAUCGCU
3948 1740 CUAUGGAAUAAUUGUAACUAG
3949 1741 UCGUAUGCUCAAAGUCUGAAG
3950 1742 AUCUUUCCUGCAGCAGAGUUU
3951 1743 AUGCAAGAGGGACUACUCUCU
3952 1744 CUUCUUCUUCUUCCUCUUCAU
3953 1745 UAAUAAAGCUCAUAUUAGACU
3954 1746 UGAGAAUUAAACUCUAGAAAG
3955 1747 AAGAGGGAGUGUGCAUCUUUG
3956 1748 AUGAUUAAUGUAUCUAUUUCC
3957 1749 UAUUUGCGGGUCCAUAAAGCA
3958 1750 AACUUGUAAGUGUUUAGGUUC
3959 1751 UUGUAAGUGUUUAGGUUCACU
3960 1752 CUCUUGGGUACUAAAUCUGUU
3961 1753 GUUAAGUGACUUGCCUAGCGU
3962 1754 AAGGAGAAGCUCAAGUACAGU
3963 1755 AUACAAUUCUGAUAAACAAUG
3964 1756 AAAGCACACCACACACAAGCA
3965 1757 ACCACUUUAUGGUCACUUCAA
3966 1758 AGUCUCCUAAGAAAGCGUGUG
3967 1759 AAGUGCUGGGAUUACAGGUAU
3968 1760 CAGUCAAUUUAACAGAGCCAU
3969 1761 UAUCCACAUCCAUCUCAAGAC
3970 1762 AGUCAUAUAAGGAAUUCUGUC
3971 1763 ACAAGCCUGAAAGAAAUCUGA
3972 1764 ACAUAUUCCUCUCCACUUUUG
3973 1765 ACUGCUGGUGAAGCAAUGGAU
3974 1766 GUGUCUAUAGUUCCCUUUCUG
3975 1767 UUCUUGGGAUAUGAUUGUAAG
3976 1768 ACUAAGCAGCAUAUCUGAGGU
3977 1769 AAUGCAAGAGGGACUACUCUC
3978 1770 UUCUUUCAUAGGAGAAAUAUU
3979 1771 GACAACAGGAAGCAAUUUCGU
3980 1772 UUUCAGUAUUCUACAUUUAUC
3981 1773 UUUGCAAGGCAACCUAUAAUG
3982 1774 UCAGGCUUAAACGUGAUAUUU
3983 1775 GUAAUCGUGCCCAUUGCUCUG
3984 1776 AGUUAUACAGACAACAGGAAG
3985 1777 ACAGAACCCAAAGUCAGUCAA
3986 1778 GAAACUCUAAAGAAAGUGCUU
3987 1779 UCCUGUACAAAGUACUGGAAU
3988 1780 UCAUAGAAUUUGAGAACAUCU
3989 1781 AUUAUCAAAUCUUGGUACAAA
3990 1782 UUACAAAUAAAUUACAUAAUC
3991 1783 UGAAUAUGGUAUUUGCGGGUC
3992 1784 ACUUAUUAGAAAUAUACAUAA
3993 1785 CAUUUAUAGACAAAUAUCUCA
3994 1786 AAUAUUGUCACUCUUUAUAUC
3995 1787 UGGACUUCCACAUGUUCACAC
3996 1788 ACAUAAAGAAUAAAUACUUGA
3997 1789 AGCUAUCUAAAUAAUUAACAA
3998 1790 ACAAAUAUUUACAAUGACACA
3999 1791 GUUGUUGACUGUUUCUUUGGA
4000 1792 AGGCUGGUCUCGAACUCCUGA
4001 1793 CUGUUGCAAUGUCUAGUGCUG
4002 1794 UUGCUUCAACCACAAUUUAAA
4003 1795 AUUCACAUAAUUCCACCACCC
4004 1796 UUGGGACCAUCCACUAACUCC
4005 1797 UCCUCUUGUUCAGAGCUCAGA
4006 1798 AGACGAAGUUUCACUCUUGUU
4007 1799 CAAUACUUUAGGUCCAAGUUU
4008 1800 UGCUCAGGAGUGAUCUGGGCA
4009 1801 CAAGAGACCAGAUAUCAACUU
4010 1802 CUGUCCUUCAUCCAUACAGGU
4011 1803 UAAUACUUAUUAGAAAUAUAC
4012 1804 UAAUUCCAAGAGACCAGAUAU
4013 1805 UUUCCUUCCCAGUCCACAUGC
4014 1806 UAAUCUGAGGGAGUAGGAAAA
4015 1807 UUGGGUUGCUGUUGAAGGUUC
4016 1808 AGAUAUAUGGUGAAAUAGUAG
4017 1809 AGGAUUUCAGUAUUCUACAUU
4018 1810 CAAUAUUAUAACAAUAUCAAA
4019 1811 GUUUAGGUUCACUCUUAGCAG
4020 1812 UCUAGAACAGCUUGUGGGUUC
4021 1813 UAUAAGGAAUUCUGUCGGACU
4022 1814 AUGGAGGUGAUAUCUCAGUUC
4023 1815 ACUAUGAAGAGGGAGUGUGCA
4024 1816 UGUGGUUGAGUGCUGAAGAAU
4025 1817 AAACACAUUCCCAAUGCAUGU
4026 1818 UAUCUUUGGUUCCCAACAAAU
4027 1819 AAGCCUAUGGAAUAAUUGUAA
4028 1820 AAUGACACACACACGAGAUCA
4029 1821 CUUCCAUCUUUCCUGCAGCAG
4030 1822 AUAAAUACUUGAGUUAAAUCU
4031 1823 UCCUUCUUCCUAGGCUAGUAU
4032 1824 UCAUUAUCCAGACCGUCAGAC
4033 1825 UGGGAUAGCAUUUGCCUGAUG
4034 1826 UCCUUUGCAGCGAUAAUCAGA
4035 1827 UUUAUAUCUCUAUGGAUCACC
4036 1828 GAAGUUUCACUCUUGUUGCCG
4037 1829 CAUCUUUGUUUAAAUGUGGUU
4038 1830 ACACUAUGAAGAGGGAGUGUG
4039 1831 AUGCACAAUCCAUAUUUCAAU
4040 1832 CUGUUCUUAAUUGCUUCCUUU
4041 1833 CUUUGCUCAGGAGUGAUCUGG
4042 1834 UACAGGAUUCUGUGAAGAUCU
4043 1835 AAAUACCUUUAAUCCAAAGUU
4044 1836 AGCUCAUAUUAGACUCCGGGG
4045 1837 AACUGCAAGUAGCUUAGAUAA
4046 1838 AACAACUUUCUGUAAUUUACA
4047 1839 UAACAACAUUAACGUUCUUUC
4048 1840 CAUGGUGACUGAUUUGAGGGG
4049 1841 UUUGCGGGUCCAUAAAGCACA
4050 1842 AGUGCUGUAUAAACAGUACCU
4051 1843 UGAAGGAGGUUUGAAUGCAAG
4052 1844 UUGCUUCCUUUGCAGCGAUAA
4053 1845 UCUCUACUAUCGCUGUUGAUU
4054 1846 AUAGGUGAUACAUAGGAAAAA
4055 1847 AUUCAACCUGAGAGUCUGUUA
4056 1848 AUUCUGUCGGACUGACAUUUC
4057 1849 GUAGACAUCACUACCCUGUGA
4058 1850 AGAUGGUCUCCCUUGCUCUUU
4059 1851 UCCCACCAUAGUGCUUCGUUU
4060 1852 UGUACCAAAUGUGAAUCCUUC
4061 1853 UGGUAUUAUGGGAUAGCAUUU
4062 1854 AAUAUUAGGGUUCUUAUUUUC
4063 1855 UCAGGCUGGAGAGAGGCUUGG
4064 1856 GUAGCUACAGGAUUCUGUGAA
4065 1857 UCUCCUAAGAAAGCGUGUGCC
4066 1858 CACUCUUUAUAUCUCUAUGGA
4067 1859 ACAACCUCCGCCUCCUGGGUU
4068 1860 UGACCUCCCAUUUCUUACAGA
4069 1861 ACAACGCACUGGAUCCUUGCU
4070 1862 UAUGGUAUUUGCGGGUCCAUA
4071 1863 CUUGGUGCGAUAACUGGUGGU
4072 1864 CUCUUCAUUAUCCAGACCGUC
4073 1865 CUCCUCAUCUGUCAUCUUGGA
4074 1866 UCUUUCCUGCAGCAGAGUUUU
4075 1867 UAUCAUCAAUAAUGAAUAUGG
4076 1868 ACACUAGCAACAUCAAAGAUU
4077 1869 CACACAGUACUUGCUCUGGUA
4078 1870 AUUCCUAACUCAGGACAUUUU
4079 1871 UCCUGACCUCAGGUGAUCCGC
4080 1872 UCAACCACAGAACGAGUAUAG
4081 1873 ACAAACACAACACUAUGAAGA
4082 1874 AGAUUCAGUUAGACAUUGUUU
4083 1875 UCCACUGGAGAGAAUUUCAAG
4084 1876 ACUAACUCCCAGUUUACCCUC
4085 1877 CACACAGGUGUGCACAUGGAG
4086 1878 CCAGACUUUACAUACAGACUG
4087 1879 AUCACCUGGUUUGAGUGCAGG
4088 1880 AAAGACCAAGAGAUUCAACCG
4089 1881 CUGCAGACAGCUGCUAUCUGU
4090 1882 AUUUCCUCCUGGUAUGCCUAU
4091 1883 AUGUUUCAUAAGCACAAGAGA
4092 1884 UUCCCAAUGCAUGUUGGGUUA
4093 1885 ACAUGGACACACAAAUAUUUA
4094 1886 GAACACACAUAUUCCUCUCCA
4095 1887 UCUUUGAGCUGAGAAAUAUCA
4096 1888 AGAAGAAUUUCACUACACAUG
4097 1889 UAUCCUGUUGGACAAGAAAAU
4098 1890 AGGAAGAGAGAUCUCUGGGCG
4099 1891 CAGCUGACAGUCUCUCAGGAU
4100 1892 CCUAAGGAUCAUCUAGUCCAA
4101 1893 UGUUAAUAUGCUGAACUGAAA
4102 1894 UCACCCACCAAGUAGCUAUCU
4103 1895 UCCCAGUAGACAUCACUACCC
4104 1896 AUAAGAAGUUUCUAUUCAUUU
4105 1897 ACAGAACGAGUAUAGAUUGAU
4106 1898 AUGGGCUCUGCUAUCUUGUGC
4107 1899 CUAAGGAUCAUCUAGUCCAAU
4108 1900 UAUUUCCAAGUUCCCAUUUAU
4109 1901 AUCCAGACCGUCAGACAUUUU
4110 1902 CAUCCAUCUCAAGACAGCGAU
4111 1903 AUUUGCAUCCCAGGAUUUCAU
4112 1904 AUCAAUAAUGAAUAUGGUAUU
4113 1905 UUCAUUUGAAAGGUAAAGAAC
4114 1906 AUCAGAGGAGUCAGGCUGGAG
4115 1907 AUGGUCUCCCUUGCUCUUUAA
4116 1908 UGGUGCGAUAACUGGUGGUGG
4117 1909 ACAAUGCUUCUUAGCUUCUCU
4118 1910 AAGCAUGAACACACCAUAUUC
4119 1911 UAAGGCCUCUCUCUCUCAUUA
4120 1912 UGCAAGGCAACCUAUAAUGCC
4121 1913 UUCAUUGAAUUUCCCGGCACU
4122 1914 AGGCUUGCAGUCUUAGCGGCU
4123 1915 AGGAAUAUAAUUAUUUACACG
4124 1916 AUUCAACCACAGAACGAGUAU
4125 1917 ACAGCUUGUGGGUUCUUCUUC
4126 1918 CUGCUAUCUGUCCUUCAUCCA
4127 1919 CUGAACAUAAACACGUACACU
4128 1920 AAUUCCUUCUUGGGUUGCUGU
4129 1921 UGAACACACCAUAUUCCGAAA
4130 1922 AAGUCAUAACUUCUAUUGAAA
4131 1923 AUCAACAUUGAAAGAUGUGCC
4132 1924 AUCAUAGAAUUUGAGAACAUC
4133 1925 GAACAUAAACACGUACACUAU
4134 1926 UACUGCUGGUAUUAUGGGAUA
4135 1927 UGGUGAGGUGUAAGGCUUGCA
4136 1928 GAAUAUAAUUAUUUACACGAU
4137 1929 AUAGCAGGCUGAAUUUGCAAG
4138 1930 GUCGGACUGACAUUUCUUGGG
4139 1931 CUUGAGAAUUAAACUCUAGAA
4140 1932 AGAUGGUGAGGUGUAAGGCUU
4141 1933 AUAACAUAAAGAAUAAAUACU
4142 1934 CACAUGGAGGUGAUAUCUCAG
4143 1935 CCAUAGUUCAUCACCCACCAA
4144 1936 AAGAUGUGGAUAUAUGGAUGG
4145 1937 UUAGAAAUAAACCCAUUGAGC
4146 1938 CAGUCUCUCAGGAUUCUGGAG
4147 1939 CAUAGUGCUUCGUUUACUUUG
4148 1940 ACACUAUAUAGUUUGCUGAAA
4149 1941 UUUCAGGUAUUAAGGAGAUUA
4150 1942 AAUGAGAUACAAUUCUGAUAA
4151 1943 GUGACUUCUCUAGGUAUAGGG
4152 1944 CUGGUCUCGAACUCCUGACCU
4153 1945 AGUUCUGUUUAGAUUCUUUUA
4154 1946 UGCACAUGGAGGUGAUAUCUC
4155 1947 UGCUUCUUAGCUUCUCUAAGA
4156 1948 UUCAGGUAUUAAGGAGAUUAA
4157 1949 UCUCCCUAGCUUUAACUUAUA
4158 1950 AUUCUACAUUUAUCUGGUUUU
4159 1951 GUCCACAUGCAAAUACACGUU
4160 1952 AACAUUUCUCAAUGCUAAUAG
4161 1953 AUCCACAUCCAUCUCAAGACA
4162 1954 UGAUUUCCUCUUGGGUACUAA
4163 1955 AUAAUCCCAGUAGACAUCACU
4164 1956 AUAUGUUUCAUAAGCACAAGA
4165 1957 AGUGUUUAGGUUCACUCUUAG
4166 1958 UAUUAAACACAUUCCCAAUGC
4167 1959 GAUUAUGACAACGCACUGGAU
4168 1960 UCUGGACAUCUAAUGACAAUG
4169 1961 CUAUAACACAAAUUGUUAGUU
4170 1962 UGGAGCUCUGGAGUUCCAUUA
4171 1963 UGAACUCACCUAGCAGGAUGU
4172 1964 AUGGACUUCCACAUGUUCACA
4173 1965 UGCCUACAGUGAUCUGAAGGG
4174 1966 UGUACAUAAGUUCUGUUUAGA
4175 1967 AAAUAUUUACAAUGACACACA
4176 1968 AGCAAUAUUAUAACAAUAUCA
4177 1969 CACUACAUCUGACUCAUUCUC
4178 1970 UUCAAAGUGAAUGCACAAAAU
4179 1971 UCUAUUGAAAUUAGUGGGACU
4180 1972 ACAUCUCCCUAGCUUUAACUU
4181 1973 AUUAAUUUAGGUAUCAUUAUC
4182 1974 CUCUCUCUCUCAUUAGAGCAG
4183 1975 UCAGUUCCCGCAUUUGCAGAU
4184 1976 UGCAAUGUCUAGUGCUGUAUA
4185 1977 CUUUGAGCUGAGAAAUAUCAU
4186 1978 AAUAAAUAAUCUCUACUGUGC
4187 1979 AGUAGCUGGGAUUACAGGCGC
4188 1980 AAUGUCCAACAAGGAUUUCAG
4189 1981 AUUUCUUUGGUGAGUUAGAAG
4190 1982 UCUUUAUAUCUCUAUGGAUCA
4191 1983 UAUUUGCAAUACUUUAGGUCC
4192 1984 AGAUACAAUGCCCUGAGUGGA
4193 1985 AUUUGCGGGUCCAUAAAGCAC
4194 1986 CAAAUAAAUUACAUAAUCUGA
4195 1987 UUGCAAGGCAACCUAUAAUGC
4196 1988 CUGUGAAGAUCUUAUCAUCAA
4197 1989 UCCCUUUCUGCUGUUUAUUUA
4198 1990 AGAGACUGGGAGAUACUUGCA
4199 1991 UGGGCUGCUAUGUAUCCAUGU
4200 1992 UCAUGUAUUUCUGGUUGUUGA
4201 1993 AAGUGACUUGCCUAGCGUCAC
4202 1994 GAAAGCAUAAGAGAGAAGCCA
4203 1995 GAAAUUAGUGGGACUUGCCCU
4204 1996 GAGAGGUUAAGUGACUUGCCU
4205 1997 CUAAUAGCAUGUAAUUACUUU
4206 1998 UCUUGGGAUAUGAUUGUAAGU
4207 1999 UGUCUAUAGUUCCCUUUCUGC
4208 2000 UCAAACUGUCAGUUUACAAAU
4209 2001 AUAAUUCCAAGAGACCAGAUA
4210 2002 AGGUUCACUCUUAGCAGUCUC
4211 2003 CUACCCAUAGUUCAUCACCCA
4212 2004 CUUGGGUUGCUGUUGAAGGUU
4213 2005 GACCAGAUAUCAACUUUCGGA
4214 2006 AAUAAUCUCUACUGUGCUUCU
4215 2007 GUUACAACUAAUUUCACAGCU
4216 2008 GUCACUUCAACAUUGCUGCCC
4217 2009 CUCAUUCUCUACUAUCGCUGU
4218 2010 AGUGACAUCUCCCUAGCUUUA
4219 2011 UUUGGUGAGUUAGAAGGAAGU
4220 2012 CUUUAUUUAGAUAUACAGUUU
4221 2013 UACUGUGCUUCUCACCCUUCC
4222 2014 UAAGGAUCAUCUAGUCCAAUA
4223 2015 CAUUCUCUACUAUCGCUGUUG
4224 2016 UGCAGACAGCUGCUAUCUGUC
4225 2017 CAUCACUACCCUGUGAUCUGG
4226 2018 CUCUUUAUUUGGUACUGCUGG
4227 2019 ACAUUCCCAAUGCAUGUUGGG
4228 2020 UGCUGGGAUUACAGGUAUGAG
4229 2021 ACAUGGUUUACAGAUAACACA
4230 2022 UUAAUAUGCUGAACUGAAAGC
4231 2023 GUACUAAAUCUGUUGAACAUG
4232 2024 AAGGAAUUCUGUCGGACUGAC
4233 2025 ACAGCUGCUAUCUGUCCUUCA
4234 2026 GUCAUCAGAAAUGCUAUCUUU
4235 2027 CUGGUUUACUCAAUUAUCUUU
4236 2028 AAAUUAAUUUGUCAACAUUUC
4237 2029 ACAUAGUAUGCUUCAAAUUAA
4238 2030 CAUUGUUAAUAUGCUGAACUG
4239 2031 AUGGAGGCUCAGAUGCUGUUU
4240 2032 CAAAGUGGUAGUAAAGAAGUA
4241 2033 UUUCCUCCUGGUAUGCCUAUU
4242 2034 AACUCUAGAAAGCCCAGCACU
4243 2035 UCACCACAACCUCCGCCUCCU
4244 2036 AUUUAACUGCAACAUAAGAGA
4245 2037 UUAUUUCCUUCCCAGUCCACA
4246 2038 GUGAUCUGAAGGGUCACUGCU
4247 2039 UCACUAUAGCAGGCUGAAUUU
4248 2040 AUGUAUUUCUGGUUGUUGACU
4249 2041 AAUACUUUAGGUCCAAGUUUC
4250 2042 CUAAGCAUGAACACACCAUAU
4251 2043 AUGGAUCACCUGGUUUGAGUG
4252 2044 UUUGUUUAAUGAUUUCAAAGU
4253 2045 AUCUCUACUGUGCUUCUCACC
4254 2046 AAGAUCUCCUCAUCUGUCAUC
4255 2047 CAAACAACCUAUAAAUAGGCA
4256 2048 AUUAUGACAACGCACUGGAUC
4257 2049 ACAUGUAAGGGAUGCUAACUA
4258 2050 GAAAUAUUCCAUUAUUUCCAA
4259 2051 AUUCUUUCAUAGGAGAAAUAU
4260 2052 CCAGUCUUUGUCCAUAUGCAU
4261 2053 UCUGACUCAUUCUCUACUAUC
4262 2054 AACAUCAAAGAUUUGGAUAGA
4263 2055 CACAAUGCUUCUUAGCUUCUC
4264 2056 CAGAUAUCAACUUUCGGACCA
4265 2057 AUAUCUGCAACAGAUGUUAUC
4266 2058 AGGCCUAUGUAACUGAUCUCU
4267 2059 UCCUUUGGUUAGAUGGUCUCC
4268 2060 AAUCCCAGGCCCAUCAAACUG
4269 2061 UCCAAAGUUACAGAAGAAUUU
4270 2062 AGAGAAUAAACUGUUAACAAU
4271 2063 UAGUUCCCUUUCUGCUGUUUA
4272 2064 AUGAUCUCAGCUCACCACAAC
4273 2065 UGAGAAAUAUCAUUUAUAGAC
4274 2066 ACUUUAUGGUCACUUCAACAU
4275 2067 AUGUAUCCAUGUGCACUUUUA
4276 2068 AUUGCUUCCUUUGCAGCGAUA
4277 2069 AGUAUUUCUGUAUUGAGAAUG
4278 2070 CAUAAAGCACACCACACACAA
4279 2071 UGGUCACUUCAACAUUGCUGC
4280 2072 CUUGUGGGUUCUUCUUCUGUU
4281 2073 AUCUCCCUAGCUUUAACUUAU
4282 2074 UUGCCGAGGCUGGAGUGCAAU
4283 2075 AGUAUAACAUAGUAUGCUUCA
4284 2076 AGGGACUACUCUCUAACUUAA
4285 2077 AGAACGAGUAUAGAUUGAUUU
4286 2078 AAUAUAAUUAUUUACACGAUC
4287 2079 UUGGUUCCCAACAAAUUAAUU
4288 2080 AAGGCCUCUCUCUCUCAUUAG
4289 2081 GAUAGAUGUAAGGAUCAGGUG
4290 2082 AUCCAUCUCAAGACAGCGAUU
4291 2083 AUCUGAAUAACAUAAAGAAUA
4292 2084 UGUUUAAUAUUAAACACAUUC
4293 2085 CUUCUAUAACACAAAUUGUUA
4294 2086 AAUAACAUAAAGAAUAAAUAC
4295 2087 CAAUGCAUUAGUAGCUACAGG
4296 2088 AAGCCUGAAAGAAAUCUGAAU
4297 2089 UGAAGGGUCACUGCUCCAAGG
4298 2090 UAUAGACAAAUAUCUCAAACU
4299 2091 GUUGAGUGCUGAAGAAUCCCG
4300 2092 ACCAAGAGAUUCAACCGGGGA
4301 2093 CUUUAUAUCUCUAUGGAUCAC
4302 2094 AUAAAUACCUUUAAUCCAAAG
4303 2095 AAAGUGGUAGUAAAGAAGUAC
4304 2096 AAGGAAUAUAAUUAUUUACAC
4305 2097 AGGCUUACAAAUAAAUUACAU
4306 2098 UCUCAACAUGUAAGGGAUGCU
4307 2099 GAUUAAUGUAUCUAUUUCCUC
4308 2100 ACCUGAACUCACCUAGCAGGA
4309 2101 AGUAAAUGCUACAAGUUGUAU
4310 2102 AGUUGUAUAGAAUACUCGUAC
4311 2103 UCAUAAGCACAAGAGAGGAUU
4312 2104 UGCUAUGUAUCCAUGUGCACU
4313 2105 CAGAAGAAUUUCACUACACAU
4314 2106 AUAUCUCUGCCCUGCAUGCUC
4315 2107 ACCUUUAAUCCAAAGUUACAG
4316 2108 AUCCUCAUGGGAUUAUGACAA
4317 2109 AAUUUGUAUCAUAAGUAAAUG
4318 2110 AGUCACUAAUGUACUGAUUUU
4319 2111 UCAAAUUAAUAUUACCGUUUC
4320 2112 GAUUUGGAUAGACUCACCUGU
4321 2113 UUGUUGCCGAGGCUGGAGUGC
4322 2114 CUACACAGACACUCCGCAGAU
4323 2115 AAAUCCAAAGCUUGCAGGCAC
4324 2116 AUAUCUCAGUUCCCGCAUUUG
4325 2117 AGUCUUUGUCCAUAUGCAUUU
4326 2118 AUUAAUUCCUUCUUGGGUUGC
4327 2119 UGUGGAUAUAUGGAUGGUUAG
4328 2120 UUGUUUAAAUGUGGUUUCUCC
4329 2121 AGACACUCCGCAGAUAUUUUU
4330 2122 UGUGAAUCCUUCAGCAUCACU
4331 2123 CAUCUAGUCCAAUACACUUAU
4332 2124 CUCGAUUGUACCAAAUGUGAA
4333 2125 AUCUUUGUUUACUUAAUGUCC
4334 2126 UAAUCCCUGUUUAUGUUAUUU
4335 2127 AUUACCCAACAUGGUGACUGA
4336 2128 CAUAAUCUGAGGGAGUAGGAA
4337 2129 AUAAACCCAUUGAGCAAAGGA
4338 2130 AGAUGUGGAUAUAUGGAUGGU
4339 2131 AGCUUAGAUAAAGACCAAGAG
4340 2132 UGGAGAGAAUUUCAAGACAUU
4341 2133 ACACAUUCCCAAUGCAUGUUG
4342 2134 CAAGUUCCCAUUUAUUUCCUU
4343 2135 CAACACUCACAAUGCUUCUUA
4344 2136 AUGAAUACAAAUUUAUAAAAG
4345 2137 UGAAUAUUAACUGCAAGUAGC
4346 2138 AGAGGGUGGUGUGACCUCUUU
4347 2139 UGCAGCGAUAAUCAGAGGAGU
4348 2140 AUAUUCAUUUGGUCACUUAAA
4349 2141 UGCAAGUUCAACCCAAUUAAG
4350 2142 GAAUCAACAUUGAAAGAUGUG
4351 2143 UAAAUAGAUAUAUGGUGAAAU
4352 2144 AGAUGUUAUGAGUAUAAUCCC
4353 2145 GUAGCUUAGAUAAAGACCAAG
4354 2146 AGUCAGGCUGGAGAGAGGCUU
4355 2147 AUCUUAUCAUCAAUAAUGAAU
4356 2148 CAACAUGGUGACUGAUUUGAG
4357 2149 UGGGAAGUGGUUUGGAGCUGU
4358 2150 AAGAUCUUAUCAUCAAUAAUG
4359 2151 CAUUGCUCUGGAAUUCCAGUG
4360 2152 AGAAAUCUGAAUAACAUAAAG
4361 2153 ACAUUAACGUUCUUUCCUUUU
4362 2154 AGGGAAAGAGAAUAAACUGUU
4363 2155 CAGGAUUCUGGAGCUCUGGAG
4364 2156 CAAAUGCUGAAUUUCAGUCCU
4365 2157 CAACACUAUGAAGAGGGAGUG
4366 2158 AGGGCACACUAGCAACAUCAA
4367 2159 GAAGUCAUUACCCAACAUGGU
4368 2160 CAACUUUCUGUAAUUUACAAA
4369 2161 CAUCUCCCUAGCUUUAACUUA
4370 2162 GAAAUAGGUGAUACAUAGGAA
4371 2163 AACAACCUAUAAAUAGGCAGA
4372 2164 UGUGACCACAUCAGUCAGAGA
4373 2165 UACAAUGCCCUGAGUGGAUUU
4374 2166 AGUCCACAUGCAAAUACACGU
4375 2167 AGUCUUACUCAUGAGGGAGAU
4376 2168 UAGCUUAGAUAAAGACCAAGA
4377 2169 AUUUGCAAGGCAACCUAUAAU
4378 2170 AUUUGUCAACAUUUCUCAAUG
4379 2171 GUAUGCUCUGGUCUUGGUGCG
4380 2172 CACUAUAGCAGGCUGAAUUUG
4381 2173 CAGAUUCAGUUAGACAUUGUU
4382 2174 UAUGGAUGGUUAGAUGGAUGG
4383 2175 CUUAGCUUCUCUAAGAUCUCC
4384 2176 UCCUCCUGGGAAGAUAGAGCG
4385 2177 AGGUCAGAAGGAUGGAACCAU
4386 2178 CAACAGAUGUUAUCAAGGGGG
4387 2179 CAACUACUGCAAACAACCUAU
4388 2180 UCACCUUCCACCAUUUCAAUU
4389 2181 AAUGGAGGCUCAGAUGCUGUU
4390 2182 CUAGUAUUUAUCCCACUACAU
4391 2183 CAUGUUCACACAGUACUUGCU
4392 2184 GUACACACAGGUGUGCACAUG
4393 2185 ACACGAGAUCAGCAAGAACGA
4394 2186 ACUUCAACAUUGCUGCCCUGU
4395 2187 GUUCCCACCAUAGUGCUUCGU
4396 2188 AAUUCUGAUAAACAAUGAAAA
4397 2189 AACAGGCAGAGACAGUCCUAC
4398 2190 CUGUGCUUCUCACCCUUCCCU
4399 2191 AAUUACAUAAUCUGAGGGAGU
4400 2192 AGCGAUAAUCAGAGGAGUCAG
4401 2193 UGAUUGGGAUGUAGCCUUCAC
4402 2194 UGGGACUUGCCCUAUUGGUUA
4403 2195 UGGAUCACCUGGUUUGAGUGC
4404 2196 UUGGUCAGGCUGGUCUCGAAC
4405 2197 UCCUACAUAUUUGUUUAAUGA
4406 2198 ACCACAUCAGUCAGAGAGCCA
4407 2199 AGAGAAACAACUUUCUGUAAU
4408 2200 UCCUUCUUGGGUUGCUGUUGA
4409 2201 UACAGACAACAGGAAGCAAUU
4410 2202 UGGAAUCAACAUUGAAAGAUG
4411 2203 AUAAUCUGAGGGAGUAGGAAA
4412 2204 AGUGGUUUGGAGCUGUGGUUG
4413 2205 UGCCUAGCGUCACAUAGCAAU
4414 2206 AUCCCGAGAAGAAUAUUGUCA
4415 2207 UAUUAAAGUUCUCACCUAAAA
4416 2208 AAAGCAAUAUUAUAACAAUAU
4417 2209 AUUCCCAAUGCAUGUUGGGUU
4418 2210 CUAGCUUUAACUUAUAGAUAA
4419 2211 CAUCCAUACAGGUCUCUGUGA
4420 2212 UGUACUCGAAGGAUGGGCUGC
4421 2213 UCCAAAGCUUGCAGGCACUCU
4422 2214 AGGUGGUUAAACUCAAACAUU
4423 2215 AUUUGUUUAAUGAUUUCAAAG
4424 2216 UUGGUACAAAGUGGUAGUAAA
4425 2217 UAUGAAGAGGGAGUGUGCAUC
4426 2218 CAAAUAUUUACAAUGACACAC
4427 2219 CUGAAGGAAGAGAGAUCUCUG
4428 2220 UGCUCUGGAAUUCCAGUGAAU
4429 2221 AGAGAGGCCUAUGUAACUGAU
4430 2222 GAAUACAGCUGACAGUCUCUC
4431 2223 AAGUUUCAAACUGCAAUAUUU
4432 2224 CUGACCUCAGGUGAUCCGCCU
4433 2225 ACUGGGAACAGUCAACAGAAA
4434 2226 GUUAUGAGUAUAAUCCCAGUA
4435 2227 UUGUUUACUUAAUGUCCAACA
4436 2228 CUAUAUAGUUUGCUGAAACUC
4437 2229 AUUCAUUUGGUCACUUAAAGG
4438 2230 CUUAAACGUGAUAUUUGCCAU
4439 2231 CACCACAACCUCCGCCUCCUG
4440 2232 AAUGUGGUUUCUCCUAUGAGG
4441 2233 UGAGGGAGAUGGUGAGGUGUA
4442 2234 UGGGUUAUAUUCAUUUGGUCA
4443 2235 AACGCACUGGAUCCUUGCUAA
4444 2236 UUACUUUGCUCAGGAGUGAUC
4445 2237 CUCUGCAACUUGUAAGUGUUU
4446 2238 CUCUAAGAUCUCCUCAUCUGU
4447 2239 AGGAUGUCACAGUUUCAGUUU
4448 2240 UCUCUACUGUGCUUCUCACCC
4449 2241 AGAAUUUCAAGACAUUUAUGA
4450 2242 UCACUGUGGGAGUUGUCAUCA
4451 2243 AAUACUUAUUAGAAAUAUACA
4452 2244 AGUCCUCUUGUUCAGAGCUCA
4453 2245 CAAACACAACACUAUGAAGAG
4454 2246 CAGCUUCUAAAGGAGACUCCG
4455 2247 UGGGACCAUCCACUAACUCCC
4456 2248 AUCAAAGAUUUGGAUAGACUC
4457 2249 UGGGAUUACAGGCGCCCGCCA
4458 2250 CUAACCAACAGAAAGAUUAUA
4459 2251 AAGUAGCUAUCUAAAUAAUUA
4460 2252 CUUUAUGGUCACUUCAACAUU
4461 2253 AGGUAUUAAGGAGAUUAACAA
4462 2254 AAAUUAAGAAGCCUUCUAUAA
4463 2255 ACAGUCAUGCACAAUCCAUAU
4464 2256 UCAGGGCACACUAGCAACAUC
4465 2257 AGACUCAGGCUUAAACGUGAU
4466 2258 GGACCAUCCACUAACUCCCAG
4467 2259 CUGAAUAACAUAAAGAAUAAA
4468 2260 UGGGUUGCUGUUGAAGGUUCA
4469 2261 UGCUACAAGUUGUAUAGAAUA
4470 2262 CUAUAGUUCCCUUUCUGCUGU
4471 2263 GUGUGCAUCUUUGAGAAACCU
4472 2264 CUAGGUAUAGGGUCUGCUUUU
4473 2265 UCUAUUUCCUCCUGGUAUGCC
4474 2266 AAUAUACAUAACUCUCCAAUA
4475 2267 GUAAAGCUCAUGUAUUUCUGG
4476 2268 UUCCCUUUCUGCUGUUUAUUU
4477 2269 CACAUGCAAAUACACGUUCAG
4478 2270 UCGAGUCACCACCUCAGGUGC
4479 2271 GAGGUGAUAUCUCAGUUCCCG
4480 2272 GUCUUGGUGCGAUAACUGGUG
4481 2273 GUUUACUAUAUCACCUUUCUC
4482 2274 CUCUCUGCAACUUGUAAGUGU
4483 2275 ACUUUCGGACCAUAAGCUUUU
4484 2276 AAUAUUGAUUGGGAUGUAGCC
4485 2277 GUUUGAGUGCAGGAAAUCCAA
4486 2278 CAGAAUUUCAUUAAUAAUUAA
4487 2279 AGUACUUGCUCUGGUAUUUUU
4488 2280 UUUCCAAGUUCCCAUUUAUUU
4489 2281 AAACAGCUUCUUUCUAAUACU
4490 2282 UGCUAACAACAUUAACGUUCU
4491 2283 AGGUCCAAGUUUCAAACUGCA
4492 2284 UUCAGUCCUCUUGUUCAGAGC
4493 2285 UUCUCAACAUGUAAGGGAUGC
4494 2286 GAAGGAAGAGAGAUCUCUGGG
4495 2287 UGUAGAUGUUAUGAGUAUAAU
4496 2288 AGGCACUCUCUGCAGACAGCU
4497 2289 ACAUCUGACUCAUUCUCUACU
4498 2290 CCUCUUUAUUUGGUACUGCUG
4499 2291 UCAAGCCUCUCCCAACUUUUA
4500 2292 UCAUGAGGGAGAUGGUGAGGU
4501 2293 ACAUUGAAAGAUGUGCCCUCG
4502 2294 UCUGCCCUGCAUGCUCUGCGC
4503 2295 CUCUGGGCGCUCUUUCUCCUU
4504 2296 CACCACCCUAACACAACUGAU
4505 2297 ACAUAAUCUGAGGGAGUAGGA
4506 2298 CAAUAUCUGCAACAGAUGUUA
4507 2299 UCAAUGCUAAUAGCAUGUAAU
4508 2300 CAUGGUUUACAGAUAACACAU
4509 2301 UGUAAGUGUUUAGGUUCACUC
4510 2302 AUAUUAUAACAAUAUCAAAUA
4511 2303 UCUAUUCAUUUGAAAGGUAAA
4512 2304 AUGGGCUGCUAUGUAUCCAUG
4513 2305 GAUAUAUUAUUAUCAAAUCUU
4514 2306 CUCAGGAUUCUGGAGCUCUGG
4515 2307 AUGUAAGGGAUGCUAACUAAU
4516 2308 AAACUGUCAGUUUACAAAUGC
4517 2309 GAAUUCUGUCGGACUGACAUU
4518 2310 AUAGUGCUUCGUUUACUUUGC
4519 2311 AUCUCAGUUCCCGCAUUUGCA
4520 2312 UAUUGAGAAUGACCAAUAAAA
4521 2313 UGGUCACUUAAAGGAGUGUGG
4522 2314 GAGUGCUGAAGAAUCCCGGUU
4523 2315 UACCUUUAAUCCAAAGUUACA
4524 2316 ACAUCUAAUGACAAUGCAAGU
4525 2317 CCACACACAAGCACACACAUU
4526 2318 CAGGUGGUUAAACUCAAACAU
4527 2319 UCCACAUGUUCACACAGUACU
4528 2320 UUAUAACAAUAUCAAAUAAAA
4529 2321 UCUUGCAAGUUCAACCCAAUU
4530 2322 CAGUAAAUGCUACAAGUUGUA
4531 2323 UGCAUAUGUUUCAUAAGCACA
4532 2324 CAGCUCACCACAACCUCCGCC
4533 2325 ACUUCCACAUGUUCACACAGU
4534 2326 GUUUACUUAAUGUCCAACAAG
4535 2327 UAAAUACCUUUAAUCCAAAGU
4536 2328 CUAGCAACAUCAAAGAUUUGG
4537 2329 ACUCUAGAAAGCCCAGCACUA
4538 2330 AUACCUUUAAUCCAAAGUUAC
4539 2331 AGAAAGUCCCAUCUUUGUUUA
4540 2332 CAAGGCAACCUAUAAUGCCAU
4541 2333 CCUCAUUAGAAAUAAACCCAU
4542 2334 AGGAAAUCCAAAGCUUGCAGG
4543 2335 UCUUCAUUAUCCAGACCGUCA
4544 2336 ACAUAAACACGUACACUAUAU
4545 2337 GUGUUUGGAGUUCUAAUAGUG
4546 2338 ACAGACACUCCGCAGAUAUUU
4547 2339 CUAAAUAAUUAACAAUAUUAG
4548 2340 CUGUUGAUUUCCUCUUGGGUA
4549 2341 AGCUCUGGAGUUCCAUUAGUG
4550 2342 GUGAUAUUAUAGAAUCUCUCA
4551 2343 ACCUAGCAGGAUGUCACAGUU
4552 2344 UUUCACCGUUUGAGCUUUAUU
4553 2345 UGUCACAGUUUCAGUUUCAGU
4554 2346 CCUUGCUAACAACAUUAACGU
4555 2347 AGCUUUAUUUAGAUAUACAGU
4556 2348 UAUUUGCAUCCCAGGAUUUCA
4557 2349 AUUGAAAUUAGUGGGACUUGC
4558 2350 UGUAUGCUCUGGUCUUGGUGC
4559 2351 UCACCCUUCCCUGACUUUCCC
4560 2352 GUGAUAUCUCAGUUCCCGCAU
4561 2353 CAACAGGAAGCAAUUUCGUGU
4562 2354 CUACCUGAAUGAUAUACAGUA
4563 2355 CUCUUCAUCUUCUUCUUCAGA
4564 2356 CACUGUGGGAGUUGUCAUCAG
4565 2357 AAGGAUGGAACCAUACCAUCA
4566 2358 UGUUCCCAGUCUUUGUCCAUA
4567 2359 AUUACAGGCCCAGAUUCGUUU
4568 2360 GUUUGGAGUAAUCGUGCCCAU
4569 2361 UGAAAGAUGUGCCCUCGUUAU
4570 2362 AAUGUGAAUCCUUCAGCAUCA
4571 2363 CUCUAGGUAUAGGGUCUGCUU
4572 2364 GUUUCUAUUCAUUUGAAAGGU
4573 2365 ACUCAUGAGGGAGAUGGUGAG
4574 2366 CUCAGCUCACCACAACCUCCG
4575 2367 ACACCAUAUUCCGAAACAGAA
4576 2368 AAUUUCAUUAAUAAUUAAUUC
4577 2369 ACACCACACACAAGCACACAC
4578 2370 AGAGGGAGUGUGCAUCUUUGA
4579 2371 AAACGUUAUAAAUUGUCAAAA
4580 2372 AGUCAUGCACAAUCCAUAUUU
4581 2373 GUAUUUCUGGUUGUUGACUGU
4582 2374 UAUCUCAGUUCCCGCAUUUGC
4583 2375 AGUGCUGAAGAAUCCCGGUUG
4584 2376 GAGUUGUCAUCAGAAAUGCUA
4585 2377 CACUACUUCACAGGAAAGGAG
4586 2378 CUCUAUGUUGGUCAGGCUGGU
4587 2379 UCGAAGGAUGGGCUGCUAUGU
4588 2380 AGAAUUAAACUCUAGAAAGCC
4589 2381 AUCACUGUGGGAGUUGUCAUC
4590 2382 CUAUAUCACCUUUCUCUAGAU
4591 2383 AAAUGUGAAUCCUUCAGCAUC
4592 2384 ACACACAAAUAUUUACAAUGA
4593 2385 ACUCGAUUGUACCAAAUGUGA
4594 2386 AAGAAUCCUACCUGAAUGAUA
4595 2387 CAUAAAGAAUAAAUACUUGAG
4596 2388 AUCAGAUACAAUGCCCUGAGU
4597 2389 ACAUCACUACCCUGUGAUCUG
4598 2390 UGCAAACAACCUAUAAAUAGG
4599 2391 CAUAGUUGUAAUCCCUGUUUA
4600 2392 ACAGUCCUACAUAUUUGUUUA
4601 2393 GGGAUUAUGACAACGCACUGG
4602 2394 UCCUUGCUAACAACAUUAACG
4603 2395 ACGAAGUCAUUACCCAACAUG
4604 2396 UACUCAUGAGGGAGAUGGUGA
4605 2397 AGAACUAAGCAUGAACACACC
4606 2398 AAUCAACAUUGAAAGAUGUGC
4607 2399 UCUUUGUUUAAAUGUGGUUUC
4608 2400 CUUUGGUUAGAUGGUCUCCCU
4609 2401 AGAUCAGCAAGAACGAAGUCA
4610 2402 GUUUGCUGAAACUCUAAAGAA
4611 2403 AGAAGCCUUCUAUAACACAAA
4612 2404 CUUUGCUUAACUGAAUAUUAA
4613 2405 AUAUCAACUUUCGGACCAUAA
4614 2406 ACACACAUAUUCCUCUCCACU
4615 2407 AUAACAUAGUAUGCUUCAAAU
4616 2408 CAAGACACAGUCAUGCACAAU
4617 2409 CAGAUAACACAUUCUGACAAA
4618 2410 GUUUAAAUGUGGUUUCUCCUA
4619 2411 AAGCAGCAUAUCUGAGGUGAC
4620 2412 UGGAGUAAUCGUGCCCAUUGC
4621 2413 ACGGUGGAAGUGACCACUUUA
4622 2414 ACCACAACCUCCGCCUCCUGG
4623 2415 AGCAAUGGAUUCAACCACAGA
4624 2416 AUUAGUGGGACUUGCCCUAUU
4625 2417 AGUUUACCCUCUUUCCAGCAG
4626 2418 CCUCUUCAUCUUCUUCUUCAG
4627 2419 AGUGGGACUUGCCCUAUUGGU
4628 2420 GUGUUCCCAGUCUUUGUCCAU
4629 2421 AGGUUCAGAACCUGAACUCAC
4630 2422 GAGGAGGUCAAGCCUCUCCCA
4631 2423 CUGGUUGUUGACUGUUUCUUU
4632 2424 CCUAUGAGGAUUUCCUAGGUU
4633 2425 AAGGGUCACUGCUCCAAGGUC
4634 2426 CUAUUGAAAUUAGUGGGACUU
4635 2427 AAGAGAGAUCUCUGGGCGCUC
4636 2428 AACCCAAAGUCAGUCAAUUUA
4637 2429 CUAAUGAAUAGGGCUUCCUAA
4638 2430 UGGAUAUAUGGAUGGUUAGAU
4639 2431 UCCUAACCAGGUAUUGGGCUC
4640 2432 UCAUGACCAGAAUUUCAUUAA
4641 2433 AUAAAGCCUAUGGAAUAAUUG
4642 2434 CAUCUCCUGAACAUAAACACG
4643 2435 UGAGAUACAAUUCUGAUAAAC
4644 2436 GAUCUCCUCAUCUGUCAUCUU
4645 2437 GUGACUUGCCUAGCGUCACAU
4646 2438 UAGAUGUUAUGAGUAUAAUCC
4647 2439 GUCACUAAUGUACUGAUUUUU
4648 2440 UCCAAGUUUCAAACUGCAAUA
4649 2441 AGCUUCUUUCUAAUACUUAUU
4650 2442 UCCUGGGUUCAAGCGAUUCUC
4651 2443 CGGACUGACAUUUCUUGGGAU
4652 2444 GGAAGAGGUACUUAGAGCCAA
4653 2445 CUUAUCAUCAAUAAUGAAUAU
4654 2446 GACUUCUCUAGGUAUAGGGUC
4655 2447 AGGCUAGUAUUUAUCCCACUA
4656 2448 AGAUGUGCCCUCGUUAUCUCA
4657 2449 UGUAGCCUUCACUGACCUCCC
4658 2450 UAUUCAUUUGAAAGGUAAAGA
4659 2451 AAUGAAUUGGAAGGCUGCCAC
4660 2452 CAAGCCUGAAAGAAAUCUGAA
4661 2453 CUGUGGUUGAGUGCUGAAGAA
4662 2454 AACUGAAUAUUAACUGCAAGU
4663 2455 GUAUGCUCAAAGUCUGAAGGA
4664 2456 AAAUAUCUCAAACUAUCAAAA
4665 2457 CUUGUCCUGUUGCAAUGUCUA
4666 2458 UGAAAGCCCUUCCUGAACACA
4667 2459 AAUAUCCUGUUGGACAAGAAA
4668 2460 UGAGGAUUUCCUAGGUUCAGA
4669 2461 ACAGAAAUAGGUGAUACAUAG
4670 2462 AGAAGCUCAAGUACAGUUAUA
4671 2463 UCUGCUGUAGGCAGGGCAUUG
4672 2464 CUAACUAAUGAAUAGGGCUUC
4673 2465 UACCCAACAUGGUGACUGAUU
4674 2466 AGUCAUUACCCAACAUGGUGA
4675 2467 GAUUUCAGUAUUCUACAUUUA
4676 2468 CUCAACAUGUAAGGGAUGCUA
4677 2469 GGACAUCUAAUGACAAUGCAA
4678 2470 UCUUUCAUAGGAGAAAUAUUC
4679 2471 AUGUAGCCUUCACUGACCUCC
4680 2472 CUUCAUCCAUACAGGUCUCUG
4681 2473 AGGCUUAUAAGAAGUUUCUAU
4682 2474 GCAACAGAUGUUAUCAAGGGG
4683 2475 CAGUAGACAUCACUACCCUGU
4684 2476 CUGCUAUGUAUCCAUGUGCAC
4685 2477 CAAGAGAGGAUUAAUUUAGGU
4686 2478 UGUUUACUAUAUCACCUUUCU
4687 2479 AUCCAAAGCUUGCAGGCACUC
4688 2480 AUGCAUGUUGGGUUAUAUUCA
4689 2481 AUGGACACACAAAUAUUUACA
4690 2482 AUUUCAUUAAUAAUUAAUUCC
4691 2483 CAGUCCUACAUAUUUGUUUAA
4692 2484 UGGUACUGCUGGUGAAGCAAU
4693 2485 ACCAGAUAUCAACUUUCGGAC
4694 2486 AGAAACAGCUUCUUUCUAAUA
4695 2487 GAGGUUUGAAUGCAAGAGGGA
4696 2488 ACCAUAGUGCUUCGUUUACUU
4697 2489 AACUCCCAGUUUACCCUCUUU
4698 2490 AAGAAUCCCGGUUGUUACUAU
4699 2491 CACACAAAUAUUUACAAUGAC
4700 2492 CUGUAUAAACAGUACCUGAUG
4701 2493 UUCCCAGUCCACAUGCAAAUA
4702 2494 GCAAUAUCUGCAACAGAUGUU
4703 2495 CAAAGAACUAAGCAUGAACAC
4704 2496 ACACGAUCUUUGAGCUGAGAA
4705 2497 UCCCAACAAAUUAAUUUGUCA
4706 2498 UGCCCUGCAUGCUCUGCGCUC
4707 2499 UUCUUGGGUUGCUGUUGAAGG
4708 2500 AGGCUUAGAGAAACAACUUUC
4709 2501 CUCAAUGCUAAUAGCAUGUAA
4710 2502 ACAUGGAGGUGAUAUCUCAGU
4711 2503 CAAGUCAUAUAAGGAAUUCUG
4712 2504 ACAUAAGAGACUCAGGCUUAA
4713 2505 AAGUGACCACUUUAUGGUCAC
4714 2506 AGAAGGAGAGAGGCCUAUGUA
4715 2507 UCCUGAACAUAAACACGUACA
4716 2508 GCUGAAUGUACAUAAGUUCUG
4717 2509 ACUGUGGGAGUUGUCAUCAGA
4718 2510 CAUGGGAUUAUGACAACGCAC
4719 2511 CAGCUGCUAUCUGUCCUUCAU
4720 2512 AGAGAAUUUCAAGACAUUUAU
4721 2513 CUGACCUCCCAUUUCUUACAG
4722 2514 UCAGUUUACAAAUGCUGAAUU
4723 2515 AGAUCUUAUCAUCAAUAAUGA
4724 2516 ACUAUAUCACCUUUCUCUAGA
4725 2517 CAUAACUUCUAUUGAAAUUAG
4726 2518 GACUUCCACAUGUUCACACAG
4727 2519 AGCAGAGGGCAGACAACCUGU
4728 2520 ACUCAAUGCAUUAGUAGCUAC
4729 2521 CAUACAGGUCUCUGUGACCAC
4730 2522 CCCAGUAGACAUCACUACCCU
4731 2523 UGUGGGAGUUGUCAUCAGAAA
4732 2524 AUCAAACUGUCAGUUUACAAA
4733 2525 CUAUCAGAUACAAUGCCCUGA
4734 2526 CUUUACAUACAGACUGUAUGG
4735 2527 AGGCCCAUCAAACUGUCAGUU
4736 2528 AGAAUAUUGUCACUCUUUAUA
4737 2529 GAUCCUUCUCAACUUGUUUUG
4738 2530 CAGGAAAUCCAAAGCUUGCAG
4739 2531 CUUUAAUCCAAAGUUACAGAA
4740 2532 ACUCUAUUAGGGCAUGGACUU
4741 2533 UCUCUGCCCUGCAUGCUCUGC
4742 2534 CUAUCUUUGGUUCCCAACAAA
4743 2535 GUUACUAUUCAUCCUCAGUGG
4744 2536 UUCAAGUUACUCGAUUGUACC
4745 2537 UCAUUACCCAACAUGGUGACU
4746 2538 ACAAUAUUAGGGUUCUUAUUU
4747 2539 CAAAUUAAUUUGUCAACAUUU
4748 2540 UUCCACCACCCUAACACAACU
4749 2541 GUUCAGAGCUCAGAGACUGGG
4750 2542 ACUUCUCUAGGUAUAGGGUCU
4751 2543 CAUAUGUUUCAUAAGCACAAG
4752 2544 AACUGUAAAUGAAUUGGAAGG
4753 2545 CAAAGUGCUGGGAUUACAGGU
4754 2546 ACCAAGUAGCUAUCUAAAUAA
4755 2547 GUUAGAAGGAAGUUAUCCUUU
4756 2548 CAGAAGAUUCAGGAAGUGCCA
4757 2549 CACACAUAUUCCUCUCCACUU
4758 2550 GAAACAACUGUAAAUGAAUUG
4759 2551 GAUAUUAUAGAAUCUCUCAGA
4760 2552 GUCUAGUGCUGUAUAAACAGU
4761 2553 AUGCUGAGGUCAGAAGGAUGG
4762 2554 ACCUUUGCUUAACUGAAUAUU
4763 2555 AAGCAAUAUUAUAACAAUAUC
4764 2556 AGGAUCAGGUGGUUAAACUCA
4765 2557 CUAUGGAUCACCUGGUUUGAG
4766 2558 UUCCCACUGCCCUAUUCCUAA
4767 2559 UACACAUGGUUUACAGAUAAC
4768 2560 ACUGCCCUAUUCCUAACUCAG
4769 2561 UGCACAAUCCAUAUUUCAAUU
4770 2562 CAGGAUGUCACAGUUUCAGUU
4771 2563 AACUCACCUAGCAGGAUGUCA
4772 2564 GAUCCUUGCUAACAACAUUAA
4773 2565 CACACCACACACAAGCACACA
4774 2566 AGGAGAAGCUCAAGUACAGUU
4775 2567 CCUGUUGCAAUGUCUAGUGCU
4776 2568 GUUGCAAUGUCUAGUGCUGUA
4777 2569 ACUUGAGUUAAAUCUUCUUAC
4778 2570 GCUAAUAGCAUGUAAUUACUU
4779 2571 UCCUCCUGGUAUGCCUAUUUU
4780 2572 CUGGAUCCUUGCUAACAACAU
4781 2573 UCCCUGACUUUCCCACUGCCC
4782 2574 CAAAUAUCUCAAACUAUCAAA
4783 2575 GUGACCACAUCAGUCAGAGAG
4784 2576 AAUAGGUGAUACAUAGGAAAA
4785 2577 UGCAAAUACACGUUCAGAAUU
4786 2578 GUAUUGGGCUCUCUCCACUGG
4787 2579 AUGUCUAGUGCUGUAUAAACA
4788 2580 GUCUCGAACUCCUGACCUCAG
4789 2581 AAACAACUUUCUGUAAUUUAC
4790 2582 UGGUGAAAUAGUAGUCAAAUU
4791 2583 ACUUUACAUACAGACUGUAUG
4792 2584 UCCCGAGAAGAAUAUUGUCAC
4793 2585 ACAACCUGGUUUACUCAAUUA
4794 2586 UGUUGAUUUCCUCUUGGGUAC
4795 2587 AUAAUUCCACCACCCUAACAC
4796 2588 CCACAUGUUCACACAGUACUU
4797 2589 UGGAGAGGUUAAGUGACUUGC
4798 2590 GAAAGAAAUCUGAAUAACAUA
4799 2591 AUCAUAAGUAAAUGAUGAUUA
4800 2592 GAGCUUUAUUUAGAUAUACAG
4801 2593 AGUUGUCAUCAGAAAUGCUAU
4802 2594 CCGGUUGUUACUAUUCAUCCU
4803 2595 GACAGUCCUACAUAUUUGUUU
4804 2596 CUCCUGGGAAGAUAGAGCGAA
4805 2597 AUGUGCCCUCGUUAUCUCAGG
4806 2598 AGUGACUUCUCUAGGUAUAGG
4807 2599 UGCUGUUUAUUUAUUGUAAAG
4808 2600 GUGGGUUCUUCUUCUGUUCCA
4809 2601 CUUGCCUAGCGUCACAUAGCA
4810 2602 ACCCAGGCAAGCAUAAAGCCU
4811 2603 ACAUAUUUGUUUAAUGAUUUC
4812 2604 GUUAAACUCAAACAUUGGGGU
4813 2605 GCAUCUUUGAGAAACCUUUUU
4814 2606 UGUAAGGGAUGCUAACUAAUG
4815 2607 UUCCAAGUUCCCAUUUAUUUC
4816 2608 GUGCAUCUUUGAGAAACCUUU
4817 2609 CAAGAACGAAGUCAUUACCCA
4818 2610 AGGUCAAGCCUCUCCCAACUU
4819 2611 GUUCAGAACCUGAACUCACCU
4820 2612 CACGGUGGAAGUGACCACUUU
4821 2613 AUCUUGCAAGUUCAACCCAAU
4822 2614 UGGGCUCUGCUAUCUUGUGCC
4823 2615 CUAGGUUCAGAACCUGAACUC
4824 2616 CUAGCGUCACAUAGCAAUUUA
4825 2617 CACAUAUUCCUCUCCACUUUU
4826 2618 CUGAAUGAUAUACAGUAAUAU
4827 2619 AUGACCAGAAUUUCAUUAAUA
4828 2620 CACAGAACGAGUAUAGAUUGA
4829 2621 AAACCCAUUGAGCAAAGGAAU
4830 2622 UGGUACAAAGUGGUAGUAAAG
4831 2623 AACUCUAAAGAAAGUGCUUUC
4832 2624 AACAGAAAGAUUAUAUCAAAA
4833 2625 CUGAACUGAAAGCAUAAGAGA
4834 2626 AAGAUGUGCCCUCGUUAUCUC
4835 2627 UCCCUAGCUUUAACUUAUAGA
4836 2628 CAUUUCUCAAUGCUAAUAGCA
4837 2629 CAAAUUAAUAUUACCGUUUCA
4838 2630 AGCCCUUCCUGAACACACAUA
4839 2631 UAUGGAUCACCUGGUUUGAGU
4840 2632 UGUGGGUUCUUCUUCUGUUCC
4841 2633 AGCUUGCAGGCACUCUCUGCA
4842 2634 AAUAUCAUUUAUAGACAAAUA
4843 2635 CUCCUGAACAUAAACACGUAC
4844 2636 AAUGGAUUCAACCACAGAACG
4845 2637 AAUUUCCCGGCACUAUGAGUG
4846 2638 AGUAUUUAUCCCACUACAUCU
4847 2639 AUUUCACCGUUUGAGCUUUAU
4848 2640 AUUUAGUAAUAAAGCUCAUAU
4849 2641 ACUUGUAAGUGUUUAGGUUCA
4850 2642 CUCUCCAAUACAGGGAAGGGG
4851 2643 CUUUCUAAUACUUAUUAGAAA
4852 2644 UGCCCUCGUUAUCUCAGGGCA
4853 2645 ACUCUAAAGAAAGUGCUUUCA
4854 2646 AUAUUCCGAAACAGAAAUAGG
4855 2647 UCACAAGCCUGAAAGAAAUCU
4856 2648 AGGAUCAUCUAGUCCAAUACA
4857 2649 ACCUCUUUAUUUGGUACUGCU
4858 2650 AUCCCUGUUUAUGUUAUUUAA
4859 2651 AGUUUCAAACUGCAAUAUUUU
4860 2652 AGAUUGGAUGCUGAGGUCAGA
4861 2653 ACACUCAAGACACAGUCAUGC
4862 2654 GUGGAUCCUUCUCAACUUGUU
4863 2655 AUGACUACCCAUAGUUCAUCA
4864 2656 AUAUCACCUUUCUCUAGAUCU
4865 2657 GUUAUAUUCUAGCAAGUGUGA
4866 2658 AAAGCAGAGGGCAGACAACCU
4867 2659 ACAAGGAUUUCAGUAUUCUAC
4868 2660 GAAUGUACAUAAGUUCUGUUU
4869 2661 ACAGAACUAUAACUGAAUGCC
4870 2662 AAUCCUACCUGAAUGAUAUAC
4871 2663 UGAGUUAGAAGGAAGUUAUCC
4872 2664 ACUUAAUGUCCAACAAGGAUU
4873 2665 AAUUUGCAAGGCAACCUAUAA
4874 2666 UCUCUGCAGACAGCUGCUAUC
4875 2667 ACUUGAGAAUUAAACUCUAGA
4876 2668 ACUGCAAGUAGCUUAGAUAAA
4877 2669 CUCUCUCUCAUUAGAGCAGUG
4878 2670 CACAUGAAUCGUAUGCUCAAA
4879 2671 AUCUUGGUACAAAGUGGUAGU
4880 2672 GAGACUGGGAGAUACUUGCAC
4881 2673 UGUAAGGAUCAGGUGGUUAAA
4882 2674 CUUAUUCUUCUCUUCAGGGGC
4883 2675 UCUUACUCAUGAGGGAGAUGG
4884 2676 AAGUUACUCGAUUGUACCAAA
4885 2677 CGGAAUACAGCUGACAGUCUC
4886 2678 UGUGACCUCUUUAUUUGGUAC
4887 2679 GUAUAGAAUACUCGUACACAC
4888 2680 CAUUGUUUAAUAUUAAACACA
4889 2681 UAAGCACAAGAGAGGAUUAAU
4890 2682 CACAUCCAUCUCAAGACAGCG
4891 2683 GAUGUAGCCUUCACUGACCUC
4892 2684 CUUUGUCCAUAUGCAUUUCUU
4893 2685 CAGGGAAAGAGAAUAAACUGU
4894 2686 UAAUGACAAUGCAAGUGAAAA
4895 2687 ACUUCAUUUGCUUGAGUUUUU
4896 2688 CUCAGAGAAAGUCCCAUCUUU
4897 2689 AUCUAUUUCCUCCUGGUAUGC
4898 2690 AGGUAUCAUUAUCUUUGUUUA
4899 2691 CAAAGAUUUGGAUAGACUCAC
4900 2692 UGCUUCUCACCCUUCCCUGAC
4901 2693 UCUGGAAUUCCAGUGAAUUCC
4902 2694 UGCUGAACUGAAAGCAUAAGA
4903 2695 GUAUCAUAAGUAAAUGAUGAU
4904 2696 GUUAUAUUCAUUUGGUCACUU
4905 2697 CAAAGUCAGUCAAUUUAACAG
4906 2698 CACCUUUCUCUAGAUCUUUAA
4907 2699 GUGCAGGAAAUCCAAAGCUUG
4908 2700 GUCAACAUUUCUCAAUGCUAA
4909 2701 CACACACAAGCACACACAUUG
4910 2702 GCUAUCAGAUACAAUGCCCUG
4911 2703 UGUAAUCCCUGUUUAUGUUAU
4912 2704 CUAAGUAUUUCUGUAUUGAGA
4913 2705 ACAGUACUUGCUCUGGUAUUU
4914 2706 ACCAUCCACUAACUCCCAGUU
4915 2707 CAGAAGGAUGGAACCAUACCA
4916 2708 UGGUAUUUGCGGGUCCAUAAA
4917 2709 UGAAUGAUAUACAGUAAUAUC
4918 2710 UGCUUCAACCACAAUUUAAAA
4919 2711 CAUGAUCUCAGCUCACCACAA
4920 2712 CAGUCCUCUUGUUCAGAGCUC
4921 2713 AAUCCCGGUUGUUACUAUUCA
4922 2714 AUAUAAUUAUUUACACGAUCU
4923 2715 GCUGUUCUUAAUUGCUUCCUU
4924 2716 UUGCUGCCCUGUUUGGGCUGC
4925 2717 UCAGGUAUUAAGGAGAUUAAC
4926 2718 UCUCAGGGCACACUAGCAACA
4927 2719 ACUGUUUCUUUGGAAUCAUAG
4928 2720 CUCAGGGCACACUAGCAACAU
4929 2721 CUGUAAAUGAAUUGGAAGGCU
4930 2722 AAGUUACAGAAGAAUUUCACU
4931 2723 AGAGAGGAUUAAUUUAGGUAU
4932 2724 UCUAUUAGGGCAUGGACUUCC
4933 2725 UGGUUCCCAACAAAUUAAUUU
4934 2726 GACAUUUAUGAAUAUGCUUUU
4935 2727 ACCAACAGAAAGAUUAUAUCA
4936 2728 GUUCCUGUACAAAGUACUGGA
4937 2729 ACAUGUUCACACAGUACUUGC
4938 2730 UGCUAAUAGCAUGUAAUUACU
4939 2731 AUAGAUAUAUGGUGAAAUAGU
4940 2732 GUACAGUUAUAUUCUAGCAAG
4941 2733 UAGCGGCUGCUGUUCUUAAUU
4942 2734 CACCGUUUGAGCUUUAUUUAG
4943 2735 ACCAUACCAUCAGCAGGUCUA
4944 2736 CAAGACAUUUAUGAAUAUGCU
4945 2737 GACUGGGAGAUACUUGCACUA
4946 2738 CUUGUAAGUGUUUAGGUUCAC
4947 2739 AGUAAUCGUGCCCAUUGCUCU
4948 2740 UAAGAGACUCAGGCUUAAACG
4949 2741 ACAUGCAAAUACACGUUCAGA
4950 2742 AAUCCAAAGUUACAGAAGAAU
4951 2743 UCUUUCGCUUCACGGUGGAAG
4952 2744 AUGCUCAAAGUCUGAAGGAAG
4953 2745 AUGGAACAUGGACACACAAAU
4954 2746 AUCAACUUUCGGACCAUAAGC
4955 2747 AGUUACAACUAAUUUCACAGC
4956 2748 AGAUAACACAUUCUGACAAAA
4957 2749 UCCAAUACAAAUGCAGAAAAA
4958 2750 AGCUCAUGUAUUUCUGGUUGU
4959 2751 UCCCAGGAUUUCAUUGAAUUU
4960 2752 CGCUCUUUCUCCUUCUUCUUA
4961 2753 ACAGGAAAGGAGAAGCUCAAG
4962 2754 AGAAUAAACUGUUAACAAUCU
4963 2755 CACAGGAAAGGAGAAGCUCAA
4964 2756 UUCCUCCUGGUAUGCCUAUUU
4965 2757 CAUCUUUCCUGCAGCAGAGUU
4966 2758 CUAGGCUAGUAUUUAUCCCAC
4967 2759 AGAAGAAUCCUACCUGAAUGA
4968 2760 ACCCUAACACAACUGAUUUCA
4969 2761 ACUCUCAGAAGAUUCAGGAAG
4970 2762 AGAGAUCUCUGGGCGCUCUUU
4971 2763 AAAUAUCAUUUAUAGACAAAU
4972 2764 UCCCAAUGCAUGUUGGGUUAU
4973 2765 GUUCUAAUAGUGACAUCUCCC
4974 2766 AUAUCCUGUUGGACAAGAAAA
4975 2767 AUUAUAGAAUCUCUCAGAACU
4976 2768 UCAGGCUUACAAAUAAAUUAC
4977 2769 AUCUCUGGGCGCUCUUUCUCC
4978 2770 CUCUCUCAUUAGAGCAGUGUG
4979 2771 CUCAGGUGAUCCGCCUGCCUU
4980 2772 AGGAGUGAUCUGGGCACAGAA
4981 2773 AUUUCCCGGCACUAUGAGUGA
4982 2774 CCAAUCUAAAGCAACCACAAA
4983 2775 CUAAGAUCUCCUCAUCUGUCA
4984 2776 UGGAGGUGAUAUCUCAGUUCC
4985 2777 CUUCCACAUGUUCACACAGUA
4986 2778 AGAUGGAUGGAUGUACCUUGG
4987 2779 ACUGCUGGUAUUAUGGGAUAG
4988 2780 UGCUCUGGUCUUGGUGCGAUA
4989 2781 AAUAUCUCAAACUAUCAAAAC
4990 2782 AACUCUAUUAGGGCAUGGACU
4991 2783 GAAUAUUAACUGCAAGUAGCU
4992 2784 CCAUAAAUACCUUUAAUCCAA
4993 2785 AAGGAUCAGGUGGUUAAACUC
4994 2786 CUCUCUGCAGACAGCUGCUAU
4995 2787 GAGGGAGUGUGCAUCUUUGAG
4996 2788 UCUUAUCAUCAAUAAUGAAUA
4997 2789 UAAUGAAUAGGGCUUCCUAAC
4998 2790 CCUAGGCUAGUAUUUAUCCCA
4999 2791 AACUUUCUGUAAUUUACAAAA
5000 2792 AUUGAGCAAAGGAAUAUAAUU
5001 2793 AUUCUGAUAAACAAUGAAAAC
5002 2794 AGGCAGAGACAGUCCUACAUA
5003 2795 ACACAGGUGUGCACAUGGAGG
5004 2796 AUUAGGGCAUGGACUUCCACA
5005 2797 GACCAAGAGAUUCAACCGGGG
5006 2798 AGAAAUGCUAUCUUUGGUUCC
5007 2799 GUAAGUGUUUAGGUUCACUCU
5008 2800 AGCAUGAACACACCAUAUUCC
5009 2801 CCAACAGAAAGAUUAUAUCAA
5010 2802 ACCUGAAUGAUAUACAGUAAU
5011 2803 AAGGGAUGCUAACUAAUGAAU
5012 2804 CACAGGUGUGCACAUGGAGGU
5013 2805 CUUCUCAACAUGUAAGGGAUG
5014 2806 UGCUGGUAUUAUGGGAUAGCA
5015 2807 CUGGAGAGAAUUUCAAGACAU
5016 2808 GAAGAAUCCUACCUGAAUGAU
5017 2809 AUGUAAAGCUCAUGUAUUUCU
5018 2810 AUAGUAUGCUUCAAAUUAAUA
5019 2811 AUGGUGAAAUAGUAGUCAAAU
5020 2812 GUCUCUGUGACCACAUCAGUC
5021 2813 GCAUGAACACACCAUAUUCCG
5022 2814 CUUGGUACAAAGUGGUAGUAA
5023 2815 CAUGGGCUCUGCUAUCUUGUG
5024 2816 GCCUAUGUAACUGAUCUCUUU
5025 2817 AAAGAGAAUAAACUGUUAACA
5026 2818 AGUUAGACAUUGUUUAAUAUU
5027 2819 ACCCACCAAGUAGCUAUCUAA
5028 2820 GAUGCUAACUAAUGAAUAGGG
5029 2821 CUAUUCCUAACUCAGGACAUU
5030 2822 AGGAAGUUAUCCUUUGGUUAG
5031 2823 AUGGUGAGGUGUAAGGCUUGC
5032 2824 UCUGGGCGCUCUUUCUCCUUC
5033 2825 AGCUCACCACAACCUCCGCCU
5034 2826 UCAGUUAGACAUUGUUUAAUA
5035 2827 CAGUCUUUGUCCAUAUGCAUU
5036 2828 UUCAUCCUCAGUGGAGGAGCC
5037 2829 ACUGUAAAUGAAUUGGAAGGC
5038 2830 AGUAAAUGAUGAUUAAUGUAU
5039 2831 AGUAAUAAAGCUCAUAUUAGA
5040 2832 UCCUAGGUUCAGAACCUGAAC
5041 2833 AUGCUACAAGUUGUAUAGAAU
5042 2834 GAUACAAUUCUGAUAAACAAU
5043 2835 CAGAGGGCAGACAACCUGUUU
5044 2836 GCUUGCAGGCACUCUCUGCAG
5045 2837 AGUCACCACCUCAGGUGCCAU
5046 2838 CUGCCCUGCAUGCUCUGCGCU
5047 2839 GGGACCAUCCACUAACUCCCA
5048 2840 CAUUAGUAGCUACAGGAUUCU
5049 2841 AGGCAAUAUCUGCAACAGAUG
5050 2842 AGGAUUAAUUUAGGUAUCAUU
5051 2843 GAUUCAACCACAGAACGAGUA
5052 2844 CAUCACAUUGGGUAAGGAGUU
5053 2845 UGUUGACUGUUUCUUUGGAAU
5054 2846 ACAAAUGCUGAAUUUCAGUCC
5055 2847 UGAGUAUAAUCCCAGUAGACA
5056 2848 UGUGCUGAGUUCACUUCAAAU
5057 2849 ACCACCCUAACACAACUGAUU
5058 2850 CUACUCUCAGAAGAUUCAGGA
5059 2851 CAAAGCUUGCAGGCACUCUCU
5060 2852 GAAACAACUUUCUGUAAUUUA
TABLE 7
Results for TRNP1. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA guide strand/
NO siRNA_id AS Sequence
5061 1 UUUAAUGAGGAAGACUUCCUG
5062 2 UCAAUUCUCAACGUCUUCCUG
5063 3 UUGUUUAAGAAUGAUGACGAU
5064 4 UAAUCUGAUUGCAUCUCAGGG
5065 5 UUAGACUUGAAGCAAUGACAU
5066 6 UUAAUGAGGAAGACUUCCUGA
5067 7 UAAUUCAAUAUACAUUCACUA
5068 8 UAUGGAAAUUUAUUCCUCCUG
5069 9 AACGAAACUAAAUACAAGCUG
5070 10 UAGAGUGGAGGUUCUGAGGAG
5071 11 AUGCUUGCUACGCUUAAUCUG
5072 12 UGUAGCAACAUCUCCAAUUGU
5073 13 UAGGAGUCAAGGUCGGAGUUG
5074 14 UUAAUCUGAUUGCAUCUCAGG
5075 15 UAAUGAGGAAGACUUCCUGAG
5076 16 UAAGGCAGGAGACUAAUUCAA
5077 17 AUCCGUAGUCCUUCCAGCCGG
5078 18 UAGACUUGAAGCAAUGACAUC
5079 19 UGUAAGGUCAAUUCUCAACGU
5080 20 AACAUCUCCAAUUGUACAGUG
5081 21 UAUAUGAAGAAAUUCAGAGCA
5082 22 AAUCUGAUUGCAUCUCAGGGA
5083 23 UCAAUAUACAUUCACUAUGCA
5084 24 ACUAAAUACAAGCUGCUCCAG
5085 25 AAUUCUACAAGUUCUGGGCUA
5086 26 UUGGUCUGCAAAUCAAAGUCA
5087 27 UGCAGAAUUCUACAAGUUCUG
5088 28 UGAAGCAAUGACAUCUAUUAA
5089 29 UGGUCUGCAAAUCAAAGUCAA
5090 30 UUAUGGAAAUUUAUUCCUCCU
5091 31 UAUACAUUCACUAUGCAGAAU
5092 32 UCACUAUGCAGAAUUCUACAA
5093 33 UUGCAUCUCAGGGACCUGUAG
5094 34 AGGAUGACCACAGCACACCCG
5095 35 UAAAGUGAAAGGCUCCUGUGA
5096 36 AAGAAUGAUGACGAUAUCUUG
5097 37 AUAGACACAGAGGAAAGGCAG
5098 38 UGAAGAAAUUCAGAGCAUCAG
5099 39 UGAUUGCAUCUCAGGGACCUG
5100 40 UUAUCAGGAUGUUUAAAUGUG
5101 41 ACUUGAAGCAAUGACAUCUAU
5102 42 AUAUGAAGAAAUUCAGAGCAU
5103 43 UCGGUCGGUCGGCACCUCGGC
5104 44 AUCCAUAGAGUGGAGGUUCUG
5105 45 AAUCCAGAGGUCCAGAUCCAU
5106 46 UGCAAAUCAAAGUCAACAGGG
5107 47 UCUUCCUGAAGGCAGUGCCCA
5108 48 UACAAGCUGCUCCAGGAACCG
5109 49 UUGAAGCAAUGACAUCUAUUA
5110 50 AAGGUCAAUUCUCAACGUCUU
5111 51 AUAUACAUUCACUAUGCAGAA
5112 52 UCAACGUCUUCCUGAAGGCAG
5113 53 AAGCCGAAUCCAGAGGUCCAG
5114 54 AUGAGGAAGACUUCCUGAGGA
5115 55 AUCACAUCCUUUAAUGAGGAA
5116 56 UCCUGCGGAUCCGUAGUCCUU
5117 57 UUGGAAGGAGCUCAGCCUCCU
5118 58 AUAGAGUGGAGGUUCUGAGGA
5119 59 AAUCAAAGUCAACAGGGCCAG
5120 60 AAAUACAAGCUGCUCCAGGAA
5121 61 UCAGUCGGUCGGUCGGCACCU
5122 62 ACAAGCUGCUCCAGGAACCGU
5123 63 UGAGGAAGACUUCCUGAGGAG
5124 64 AAAGUGAACCUCAGAACCCCA
5125 65 CAAUUGUACAGUGUAAGCCAA
5126 66 ACCUCGGCGAAGCUUGUCGGG
5127 67 UGGAAAUUUAUUCCUCCUGAA
5128 68 UAAGAAUGAUGACGAUAUCUU
5129 69 UUAAGAAUGAUGACGAUAUCU
5130 70 UAAAUACAAGCUGCUCCAGGA
5131 71 AAUUUAUUCCUCCUGAAUGUA
5132 72 ACUAAUUCAAUAUACAUUCAC
5133 73 AACGUCUUCCUGAAGGCAGUG
5134 74 AACUAAAUACAAGCUGCUCCA
5135 75 UCCUCCUGAAUGUAUAAGGCA
5136 76 AUUCAAUAUACAUUCACUAUG
5137 77 AAUUCAAUAUACAUUCACUAU
5138 78 UAAUAGACACAGAGGAAAGGC
5139 79 UAUGCAGAAUUCUACAAGUUC
5140 80 AUCUCCAAUUGUACAGUGUAA
5141 81 CAAUAUACAUUCACUAUGCAG
5142 82 UUGCUACGCUUAAUCUGAUUG
5143 83 CUUAAUCUGAUUGCAUCUCAG
5144 84 UUCACUAUGCAGAAUUCUACA
5145 85 ACCGUCAACUUAAAGAGCCAU
5146 86 UUCCUGCGGAUCCGUAGUCCU
5147 87 AUUCUCAACGUCUUCCUGAAG
5148 88 UCAAGGGAGAAUUGGUCUGCA
5149 89 UGCGGAUCCGUAGUCCUUCCA
5150 90 UCUGCAAAUCAAAGUCAACAG
5151 91 UUGCCUUACAUUAUGGAAAUU
5152 92 AGCUGCUCCAGGAACCGUCAA
5153 93 AACCGUCAACUUAAAGAGCCA
5154 94 UGCUCCAGGAACCGUCAACUU
5155 95 UGCCUCUUCCUGCGGAUCCGU
5156 96 ACCUGUAGCAACAUCUCCAAU
5157 97 UCCAGCUCCGACACCAGGCGC
5158 98 UCUGCGGCUGUAGGUGCGCAG
5159 99 AAUUCUCAACGUCUUCCUGAA
5160 100 AGAAAUUCAGAGCAUCAGCCA
5161 101 UAUUCCUCCUGAAUGUAUAAG
5162 102 UGGAGAACAAGGGCAGUGGAU
5163 103 UUAAGAAUGUUGUUUAAGAAU
5164 104 UAAGGUCAAUUCUCAACGUCU
5165 105 GACCUGUAGCAACAUCUCCAA
5166 106 UGCAGCUGCAGCACGCGGCUC
5167 107 CAGAAUUCUACAAGUUCUGGG
5168 108 AUGUUGUUUAAGAAUGAUGAC
5169 109 UGCUUGCUACGCUUAAUCUGA
5170 110 UUCAAUAUACAUUCACUAUGC
5171 111 UAGCAACAUCUCCAAUUGUAC
5172 112 UCCAAUUGUACAGUGUAAGCC
5173 113 UUAUUCCUCCUGAAUGUAUAA
5174 114 UUCUUGAGGCGCGACCCGUGA
5175 115 UGUUGUUUAAGAAUGAUGACG
5176 116 AAAGUGAAAGGCUCCUGUGAG
5177 117 AAAUCAAAGUCAACAGGGCCA
5178 118 AGAAUGUUGUUUAAGAAUGAU
5179 119 UGGAGGUUCUGAGGAGUUGGA
5180 120 ACAUUAUGGAAAUUUAUUCCU
5181 121 AUCUGAUUGCAUCUCAGGGAC
5182 122 UAUGAAGAAAUUCAGAGCAUC
5183 123 UUACAUUAUGGAAAUUUAUUC
5184 124 AAUGAUGACGAUAUCUUGAAA
5185 125 ACAUCUCCAAUUGUACAGUGU
5186 126 UGGAGGUCAGCGCUGCGGGGA
5187 127 GAAAUUCAGAGCAUCAGCCAG
5188 128 UCCACCUCCAGCAGCCGCCGC
5189 129 UCUUGAGGCGCGACCCGUGAG
5190 130 UGCAUUUGCCUUACAUUAUGG
5191 131 AUGCAUUUGCCUUACAUUAUG
5192 132 UACAUUAUGGAAAUUUAUUCC
5193 133 UGUAAAGUGAAAGGCUCCUGU
5194 134 UCCGUAGUCCUUCCAGCCGGC
5195 135 AAACGAAACUAAAUACAAGCU
5196 136 UCUCCAAUUGUACAGUGUAAG
5197 137 UCCGCGAUCAGUCGGUCGGUC
5198 138 UGGAAGGAGCUCAGCCUCCUC
5199 139 AUAAUAGACACAGAGGAAAGG
5200 140 AUGGAAAUUUAUUCCUCCUGA
5201 141 UCUUCCUGCGGAUCCGUAGUC
5202 142 AUUGCAUCUCAGGGACCUGUA
5203 143 UCCUGAAUGUAUAAGGCAGGA
5204 144 UUCUCAACGUCUUCCUGAAGG
5205 145 AGAAUGAUGACGAUAUCUUGA
5206 146 AUUAUCAGGAUGUUUAAAUGU
5207 147 UCCGUCAUCACAUCCUUUAAU
5208 148 CACCCGAACAGCUAGACACGG
5209 149 AAUAGACACAGAGGAAAGGCA
5210 150 UCCUUUAAUGAGGAAGACUUC
5211 151 GUAAGGUCAAUUCUCAACGUC
5212 152 UUCUACAAGUUCUGGGCUAUG
5213 153 AUGCAGAAUUCUACAAGUUCU
5214 154 UCCCUCAAACAGGCCUCCCGG
5215 155 UUCCUGAAGGCAGUGCCCAGG
5216 156 GUAGCAACAUCUCCAAUUGUA
5217 157 UUUAUUCCUCCUGAAUGUAUA
5218 158 AUUCACUAUGCAGAAUUCUAC
5219 159 ACAUUCACUAUGCAGAAUUCU
5220 160 UACGCUUAAUCUGAUUGCAUC
5221 161 CAAUUCUCAACGUCUUCCUGA
5222 162 UCCGACACCAGGCGCCGGCGG
5223 163 CACAGCACACCCGAACAGCUA
5224 164 UCCCACGUGGAGAACAAGGGC
5225 165 AAUGAGGAAGACUUCCUGAGG
5226 166 ACAAGCACACUCCCACGUGGA
5227 167 UCCAGAUCCAUAGAGUGGAGG
5228 168 AAGAAUGUUGUUUAAGAAUGA
5229 169 CUAUGCAGAAUUCUACAAGUU
5230 170 UUCCUCCUGAAUGUAUAAGGC
5231 171 UGAGGAGUUGGAAGGAGCUCA
5232 172 UCCAUAGAGUGGAGGUUCUGA
5233 173 UGUUUAAGAAUGAUGACGAUA
5234 174 UUUAAGAAUGAUGACGAUAUC
5235 175 AUGUAUAAGGCAGGAGACUAA
5236 176 CUACGCUUAAUCUGAUUGCAU
5237 177 UCCUGGUCCUCGGCCGCGCCU
5238 178 ACUUGCAAAGUGAACCUCAGA
5239 179 AUUGGUCUGCAAAUCAAAGUC
5240 180 CAUCUCAGGGACCUGUAGCAA
5241 181 UGAGGCGCGACCCGUGAGCCG
5242 182 UAGGUGCGCAGGGAGGAUGAC
5243 183 AGUCGGUCGGUCGGCACCUCG
5244 184 AAACUAAAUACAAGCUGCUCC
5245 185 CAGAGGUCCAGAUCCAUAGAG
5246 186 UCCAUUAUCAGGAUGUUUAAA
5247 187 ACAGCACACCCGAACAGCUAG
5248 188 UAAGAAUGUUGUUUAAGAAUG
5249 189 AGUUGGAAGGAGCUCAGCCUC
5250 190 UCAGGUCAAGGGAGAAUUGGU
5251 191 UGCGGCUGUAGGUGCGCAGGG
5252 192 UCCUGUGAGGAGGGCGCUGGG
5253 193 UCACAUCCUUUAAUGAGGAAG
5254 194 AUUCUACAAGUUCUGGGCUAU
5255 195 AUUUAUUCCUCCUGAAUGUAU
5256 196 UCGGUCGGCACCUCGGCGAAG
5257 197 GAAACUAAAUACAAGCUGCUC
5258 198 GUCCGCGAUCAGUCGGUCGGU
5259 199 UCUGAGGAGUUGGAAGGAGCU
5260 200 UGAAUGUAUAAGGCAGGAGAC
5261 201 UCCAGGAACCGUCAACUUAAA
5262 202 UAGACACAGAGGAAAGGCAGC
5263 203 AGCUCCGACACCAGGCGCCGG
5264 204 AAAUUUAUUCCUCCUGAAUGU
5265 205 ACCUCUGCUCUGCCGUCCCCU
5266 206 UUGCAAAGUGAACCUCAGAAC
5267 207 UGCAGCUCCUGGUCCUCGGCC
5268 208 CUGUAAAGUGAAAGGCUCCUG
5269 209 UGAAAGGCUCCUGUGAGGAGG
5270 210 AUGAUGACGAUAUCUUGAAAA
5271 211 AUCCUUUAAUGAGGAAGACUU
5272 212 AUUAUGGAAAUUUAUUCCUCC
5273 213 AAUGUAUAAGGCAGGAGACUA
5274 214 AGACUUGAAGCAAUGACAUCU
5275 215 UAUAAGGCAGGAGACUAAUUC
5276 216 AGGUCAAUUCUCAACGUCUUC
5277 217 GAAUUCUACAAGUUCUGGGCU
5278 218 AGAAUUGGUCUGCAAAUCAAA
5279 219 CAAAGUGAACCUCAGAACCCC
5280 220 GAGAAUUGGUCUGCAAAUCAA
5281 221 AGGAACCGUCAACUUAAAGAG
5282 222 ACAGAGGAAAGGCAGCAAGGG
5283 223 CUGCAAAUCAAAGUCAACAGG
5284 224 UCAGGGACCUGUAGCAACAUC
5285 225 UCAUCACAUCCUUUAAUGAGG
5286 226 CAGACUAUCUUUCUGAGGGGC
5287 227 UUUGCCUUACAUUAUGGAAAU
5288 228 AGAAUUCUACAAGUUCUGGGC
5289 229 GAUCCGUAGUCCUUCCAGCCG
5290 230 UACAUUCACUAUGCAGAAUUC
5291 231 AGCAGACUAUCUUUCUGAGGG
5292 232 CUGUGAGUCAGGUCAAGGGAG
5293 233 ACUGUAAAGUGAAAGGCUCCU
5294 234 GACUUGAAGCAAUGACAUCUA
5295 235 CACUUGCAAAGUGAACCUCAG
5296 236 CAGAUCCAUAGAGUGGAGGUU
5297 237 CUCAACGUCUUCCUGAAGGCA
5298 238 AGGUCCAGAUCCAUAGAGUGG
5299 239 GUCAUCACAUCCUUUAAUGAG
5300 240 AGCUCAGCCUCCUCUACUGGG
5301 241 AGAACAAGGGCAGUGGAUGAA
5302 242 GCAGACUAUCUUUCUGAGGGG
5303 243 UCAGCCUCCUCUACUGGGCCC
5304 244 CAUCUCCAAUUGUACAGUGUA
5305 245 CAGUCGGUCGGUCGGCACCUC
5306 246 GUAGGAGUCAAGGUCGGAGUU
5307 247 AAGGCAGCAAGGGCACUUGCA
5308 248 AAUAUACAUUCACUAUGCAGA
5309 249 UAGUCCUUCCAGCCGGCGUCC
5310 250 AGCAAGGGCACUUGCAAAGUG
5311 251 AAAGGCUCCUGUGAGGAGGGC
5312 252 UCUCCAGCUCCGACACCAGGC
5313 253 UCCUCGGCCGCGCCUGCUGAA
5314 254 GUAAAGUGAAAGGCUCCUGUG
5315 255 UGGUCCUCGGCCGCGCCUGCU
5316 256 UCUCAACGUCUUCCUGAAGGC
5317 257 UCCCUCCAUUAUCAGGAUGUU
5318 258 CAUUAUGGAAAUUUAUUCCUC
5319 259 AUAAGGCAGGAGACUAAUUCA
5320 260 UGCUACGCUUAAUCUGAUUGC
5321 261 ACAUCCUUUAAUGAGGAAGAC
5322 262 AAUUGGUCUGCAAAUCAAAGU
5323 263 GAUGACCACAGCACACCCGAA
5324 264 ACCUCCAGCAGCCGCCGCCGU
5325 265 CAAGGGAGAAUUGGUCUGCAA
5326 266 UGCGGCGGAAGGGCGAGUCGG
5327 267 AGUUCUCCAGAACCAGCCCCU
5328 268 UCAGGCUCUCCGCGCGGUGCG
5329 269 UGUAUAAGGCAGGAGACUAAU
5330 270 UGUGAGUCAGGUCAAGGGAGA
5331 271 CAACAUCUCCAAUUGUACAGU
5332 272 UCCUUCCAGCCGGCGUCCGCG
5333 273 AAGAAAUUCAGAGCAUCAGCC
5334 274 GACCACAGCACACCCGAACAG
5335 275 AAAGCCGAAUCCAGAGGUCCA
5336 276 UCUGAUUGCAUCUCAGGGACC
5337 277 GCAACAUCUCCAAUUGUACAG
5338 278 GUCAAUUCUCAACGUCUUCCU
5339 279 AGCUCCUGGUCCUCGGCCGCG
5340 280 ACAAGGGCAGUGGAUGAAGGG
5341 281 AAUGUUGUUUAAGAAUGAUGA
5342 282 AGGGACCUGUAGCAACAUCUC
5343 283 UGUAGGUGCGCAGGGAGGAUG
5344 284 GUUCUGAGGAGUUGGAAGGAG
5345 285 AUACAUUCACUAUGCAGAAUU
5346 286 ACACCCGAACAGCUAGACACG
5347 287 CUGAGGAGUUGGAAGGAGCUC
5348 288 AGACACAGAGGAAAGGCAGCA
5349 289 AGUCAAGGUCGGAGUUGGGGG
5350 290 CUAAAUACAAGCUGCUCCAGG
5351 291 AGCGCUGCAGCUCCUGGUCCU
5352 292 UCCAGAGGUCCAGAUCCAUAG
5353 293 ACGUGGAGAACAAGGGCAGUG
5354 294 CAUCACAUCCUUUAAUGAGGA
5355 295 CGAAACUAAAUACAAGCUGCU
5356 296 AGUCCUUCCAGCCGGCGUCCG
5357 297 AAGUGAAAGGCUCCUGUGAGG
5358 298 AAGGAGCUCAGCCUCCUCUAC
5359 299 AGUGGAGGUUCUGAGGAGUUG
5360 300 GGACCUGUAGCAACAUCUCCA
5361 301 ACGCUUAAUCUGAUUGCAUCU
5362 302 CUCAGGGACCUGUAGCAACAU
5363 303 GGCACUUGCAAAGUGAACCUC
5364 304 CACCUCGGCGAAGCUUGUCGG
5365 305 AAGGCUCCUGUGAGGAGGGCG
5366 306 UCUACAAGUUCUGGGCUAUGU
5367 307 AGCUGCGUCCGGCAGCGGCGG
5368 308 AAGCUGCUCCAGGAACCGUCA
5369 309 AAUGCUUGCUACGCUUAAUCU
5370 310 CUUGCUACGCUUAAUCUGAUU
5371 311 AGGAAGACUUCCUGAGGAGGG
5372 312 CCAAUUGUACAGUGUAAGCCA
5373 313 CACUAUGCAGAAUUCUACAAG
5374 314 CUUGAAGCAAUGACAUCUAUU
5375 315 GUGGAGGUCAGCGCUGCGGGG
5376 316 AGCAACAUCUCCAAUUGUACA
5377 317 ACGAAACUAAAUACAAGCUGC
5378 318 AAGGGCGAGUCGGGCUCGGGG
5379 319 UAAGAGCAGGCGGCUGUGAGU
5380 320 UCCAGCAGCCGCCGCCGUGCU
5381 321 AAGGGCAGUGGAUGAAGGGAA
5382 322 AGUGGAUGAAGGGAACGGGGA
5383 323 CUGAUUGCAUCUCAGGGACCU
5384 324 AUUUGCCUUACAUUAUGGAAA
5385 325 AAACAGGCCUCCCGGCGCCGU
5386 326 UCAAACAGGCCUCCCGGCGCC
5387 327 AAGCACACUCCCACGUGGAGA
5388 328 AAGGGAGAAUUGGUCUGCAAA
5389 329 GAAUGAUGACGAUAUCUUGAA
TABLE 8
Results for APLN. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA guide strand/
NO siRNA_id AS Sequence
5390 1 UUACAAACAUUGAACACAGGG
5391 2 UUUACAAACAUUGAACACAGG
5392 3 UUUCUUAAUGAACAGGGCCUU
5393 4 AUAUUUACACAGAACAAUCUU
5394 5 UAUUUACACAGAACAAUCUUU
5395 6 UAGUAUAAGAAUCAUAAACAA
5396 7 UAUAAAGACAUAUUUACACAG
5397 8 UACAAACAUUGAACACAGGGG
5398 9 UUCAUCAAGCAACUCUACUUU
5399 10 UAGGUCUCCAAAGUCAGUCCA
5400 11 UAUCUUUGUAUAAAUUAGUAU
5401 12 UUAUAUUGAACUCUUUGCAUU
5402 13 UUGACCUAGAACCGAUUUGGG
5403 14 AUAAGAAUCAUAAACAACCAC
5404 15 UCUUGUCUUCUCUUUCUCCCU
5405 16 UAACUAGAGUCUCUCCUUGCU
5406 17 UAUUAGAGUACCCUGGGUCUG
5407 18 UAUCAAAUGUAUUUAUUGCUG
5408 19 UCUUAACUAGAGUCUCUCCUU
5409 20 ACAAUCUUUACAAACAUUGAA
5410 21 UUCUUCAAAUGACACUGCCAA
5411 22 UAUAAGAAUCAUAAACAACCA
5412 23 AACUAGAGUCUCUCCUUGCUU
5413 24 AUGUUCUUAAAUAAACUGCUU
5414 25 UUUAAGCAGCAGCAGCAGCAG
5415 26 AACAGGACAGUUCACAGCCAG
5416 27 UUAUGGAACCUUCCAGCCCAG
5417 28 UGGAGGAGACAUAACCGCCGG
5418 29 AAUCAUCCAAACUACAGCCAG
5419 30 UUUAUUAUAAAGACAUAUUUA
5420 31 AUAAAUUAGUAUAAGAAUCAU
5421 32 UAUAUUGAACUCUUUGCAUUU
5422 33 UUCUGUUCCUUUGCUUUCUUU
5423 34 UUAACUGAGCAAACGCUGAUG
5424 35 UACACAGAACAAUCUUUACAA
5425 36 UAAAGACAUAUUUACACAGAA
5426 37 ACAAACAUUGAACACAGGGGA
5427 38 UCUAACAUUCUGUGAUUCUUG
5428 39 UGAGCCUUUAAGCAGCAGCAG
5429 40 UUAUCAAAUGUAUUUAUUGCU
5430 41 UAUGUUCUUAAAUAAACUGCU
5431 42 UACAAACAAAGUCAUUAUCAA
5432 43 UAAAUUAGUAUAAGAAUCAUA
5433 44 UCAUCAAGCAACUCUACUUUG
5434 45 UGUUCUUAAAUAAACUGCUUU
5435 46 UUGAGCGGUAGUCUCAGUGCC
5436 47 UAAGUGACCUUCAAGGGUCCU
5437 48 UCUUCUGUUCCCUAUCUCCCA
5438 49 UUACACAGAACAAUCUUUACA
5439 50 UUAACUAGAGUCUCUCCUUGC
5440 51 UUCUCUUUCUCCCUCCUGGGA
5441 52 AACAAUUUCUUAAUGAACAGG
5442 53 UAUUGAACUCUUUGCAUUUUA
5443 54 UCAGCUCUAACAUUCUGUGAU
5444 55 AGAAUCAUAAACAACCACUUU
5445 56 UGACCUAGAACCGAUUUGGGA
5446 57 UUGUGAGAGAACGGGAAUCAU
5447 58 UUCCCUUCCUUCUUCUCCCCU
5448 59 UCAAGCAACUCUACUUUGUGA
5449 60 UUCCUGCUGCACUUCCUCCCA
5450 61 AUCUUUACAAACAUUGAACAC
5451 62 UUGGGAGGCACACUAAGGCAA
5452 63 UUGUAUAAAUUAGUAUAAGAA
5453 64 UUCCAGCCCAUUCCCAUCGGG
5454 65 UCUUUCUUUCCUUCCUUCUGU
5455 66 AUAGCAGAAGACACCCACCAA
5456 67 UCAGGCUCUUGUCUUCUCUUU
5457 68 UAAACAACCACUUUAAAUAAG
5458 69 UGUCAGCUCUAACAUUCUGUG
5459 70 UUCUUAAAUAAACUGCUUUAA
5460 71 UAAUAUCUUUGUAUAAAUUAG
5461 72 AUGGAGGAGACAUAACCGCCG
5462 73 UUAAGCAUAGGGAUUCAUUUU
5463 74 UUAAUAUCUUUGUAUAAAUUA
5464 75 AUAUUGAACUCUUUGCAUUUU
5465 76 UCUACCUCUCCCUUAACUGAG
5466 77 AUAUCUUUGUAUAAAUUAGUA
5467 78 AUCAAGCAACUCUACUUUGUG
5468 79 UCAAAUGUAUUUAUUGCUGAA
5469 80 UAGCAGAAGACACCCACCAAG
5470 81 UCCUGCUGCACUUCCUCCCAU
5471 82 UCUCCCAGCUUUCUUAGCCAU
5472 83 AAGAAUCAUAAACAACCACUU
5473 84 AUCUUUCUUUCCUUCCUUCUG
5474 85 AUUCUUGUGAGAGAACGGGAA
5475 86 AUUUACACAGAACAAUCUUUA
5476 87 AUUCUUCAAAUGACACUGCCA
5477 88 UUGUCUUCUCUUUCUCCCUCC
5478 89 UCAGGCUAUCUCAUUCAUCAA
5479 90 UUCUUAAUGAACAGGGCCUUA
5480 91 UUAGAGUACCCUGGGUCUGGG
5481 92 UGGAGCUUGGGCUAGCUGGGG
5482 93 UAGAGUACCCUGGGUCUGGGA
5483 94 UGGACUGGACGGAUUCUUGUG
5484 95 UUGAAGGCUACCUCGGACUCC
5485 96 UCUGCAAUGACUCUGAGCAGG
5486 97 UCAAGGGUCCUGUCAGCUCUA
5487 98 UAAGCAUAGGGAUUCAUUUUG
5488 99 UUGCCUAAGAAGGCUAAGUGA
5489 100 UUUCCUUCCUUCUGUUCCUUU
5490 101 UGAGCGGUAGUCUCAGUGCCU
5491 102 CUUAACUAGAGUCUCUCCUUG
5492 103 UUUACACAGAACAAUCUUUAC
5493 104 UAGUCUCAGUGCCUGAGCCGC
5494 105 UCUAUGGAGGAGACAUAACCG
5495 106 UUCAAGGGUCCUGUCAGCUCU
5496 107 UAUGGAGGAGACAUAACCGCC
5497 108 UGUGACCUGGUCAUUAAGCAU
5498 109 UUCUGCAGCCUCCUCUCCCGC
5499 110 UUUCUUUCCUUCCUUCUGUUC
5500 111 UAAGGGCGAACUGUCAGCUUU
5501 112 UGAGAGAACGGGAAUCAUCCA
5502 113 AUGCAGGCACUUACCUCCCUG
5503 114 UGACCCUCUGGGCUGCACCAG
5504 115 UCAUUCAUCAAGCAACUCUAC
5505 116 UAACUGUUUAUUAUAAAGACA
5506 117 AUUCAUCAAGCAACUCUACUU
5507 118 UUCCUUCUGUUCCUUUGCUUU
5508 119 AUCAAAUGUAUUUAUUGCUGA
5509 120 UAGAACCGAUUUGGGAUGCAG
5510 121 AAGUAGGAGAUGGGAGACCUG
5511 122 UAAGAAUCAUAAACAACCACU
5512 123 UAGCCCACCCACUACCCUCUU
5513 124 AUCAGGCUCUUGUCUUCUCUU
5514 125 UUUCCUCCGACCUCCCUGCCA
5515 126 UUGGGCAUCAGGCUCUUGUCU
5516 127 AACAAUCUUUACAAACAUUGA
5517 128 UCUUUACAAACAUUGAACACA
5518 129 UGUCUUCUCUUUCUCCCUCCU
5519 130 UCAUUAAGCAUAGGGAUUCAU
5520 131 UUAAUCAGUAUGUUCUUAAAU
5521 132 UACCUCUCCCUUAACUGAGCA
5522 133 AUUUCUUAAUGAACAGGGCCU
5523 134 UCCCUUAACUGAGCAAACGCU
5524 135 UUAAGCAGCAGCAGCAGCAGC
5525 136 UUAUAAAGACAUAUUUACACA
5526 137 UCUUUGUAUAAAUUAGUAUAA
5527 138 UUGGGAUGCAGGCACUUACCU
5528 139 UGAGCAAACGCUGAUGCUCCA
5529 140 UAGAGUCUCUCCUUGCUUUUC
5530 141 AAGCAGCAGCAGCAGCAGCAG
5531 142 AGUGACAAAGGACUUCACGGG
5532 143 AAGAGAAGUGACAAAGGACUU
5533 144 UUCAUGCUGCUCCUUGGGCCG
5534 145 UGCUGCACUUCCUCCCAUCUU
5535 146 UCUCAUUCAUCAAGCAACUCU
5536 147 AUCUCAUUCAUCAAGCAACUC
5537 148 AAUUUCUUAAUGAACAGGGCC
5538 149 AGUAUGUUCUUAAAUAAACUG
5539 150 UAAGCAGCAGCAGCAGCAGCA
5540 151 AGACAUAUUUACACAGAACAA
5541 152 UUAGAUGAGACAGGCAGGGAC
5542 153 UGAACAGGGCCUUAAUAUCUU
5543 154 AUAAAGACAUAUUUACACAGA
5544 155 ACACAGAACAAUCUUUACAAA
5545 156 UAGGACACCCAAACAGAUGCC
5546 157 UCCUCCCAUCUUUCUUUCCUU
5547 158 UAGGAGAUGGGAGACCUGGUC
5548 159 UGAACAUGACCUCCAAGAGUA
5549 160 UGCAAUGACUCUGAGCAGGUC
5550 161 UCUCCAAAGUCAGUCCAGGGA
5551 162 AGCAGCAGCAGCAGCAGCGUU
5552 163 UUCAGAAAGGCAUGGGUCCCU
5553 164 UCUUUCCUUCCUUCUGUUCCU
5554 165 AGUGAUUGAAGGCUACCUCGG
5555 166 AUUCCUUGACCCUCUGGGCUG
5556 167 UAAGGCAAGAGAAGUGACAAA
5557 168 UUCCCUCCUUCCUUCUGCCCU
5558 169 UGGAACCUUCCAGCCCAGCUG
5559 170 AGAACAAUCUUUACAAACAUU
5560 171 UCUUCUCUUUCUCCCUCCUGG
5561 172 UUCCUUCCUUCUGUUCCUUUG
5562 173 UUAUUAUAAAGACAUAUUUAC
5563 174 UCUACUUUGUGAAACAUAAAA
5564 175 UGCACGUGCAAUAUGUGGGCA
5565 176 UUCCUCCCAUCUUUCUUUCCU
5566 177 AACUCUACUUUGUGAAACAUA
5567 178 UUCUUGUGAGAGAACGGGAAU
5568 179 UCUCUGCAUUCUUCCCUGGAG
5569 180 ACAAUUUCUUAAUGAACAGGG
5570 181 AUAAACAACCACUUUAAAUAA
5571 182 AGGUCUCCAAAGUCAGUCCAG
5572 183 AGAAGCAGACCAAUCUAUGGA
5573 184 AACAAAGUCAUUAUCAAAUGU
5574 185 AUGCUCCACCCACUUCACCAG
5575 186 AAUCAUAAACAACCACUUUAA
5576 187 UGAUUGAAGGCUACCUCGGAC
5577 188 UAAGAAGGCUAAGUGACCUUC
5578 189 CAGAACAAUCUUUACAAACAU
5579 190 AACUGAGCAAACGCUGAUGCU
5580 191 CUCUUAACUAGAGUCUCUCCU
5581 192 ACAACCACUUUAAAUAAGGCA
5582 193 UAUAAAUUAGUAUAAGAAUCA
5583 194 UUUCUCCCUCCUGGGAACCCU
5584 195 UCUCUUUCUCCCUCCUGGGAA
5585 196 UUUGCCUAAGAAGGCUAAGUG
5586 197 UAUUCCUGCUGCACUUCCUCC
5587 198 ACUAGAGUCUCUCCUUGCUUU
5588 199 AAGAAGGGAGGCUUUCUGGGG
5589 200 AUUGGGAGGCACACUAAGGCA
5590 201 UUCUCCCUCCUGGGAACCCUG
5591 202 UGGGUCUGGGAAUGCUGCCAG
5592 203 UCAGGGACCCUCCACACACCG
5593 204 UGAGUGUGCGCGCUGAGCCCC
5594 205 AAGUGACAAAGGACUUCACGG
5595 206 AAUAUCUUUGUAUAAAUUAGU
5596 207 CUCUGCAAUGACUCUGAGCAG
5597 208 CUUUCCUUCCUUCUGUUCCUU
5598 209 AGAUUCAUGCUGCUCCUUGGG
5599 210 CAACAGGACAGUUCACAGCCA
5600 211 UUAGCAGCAGCAUAGGUAAAG
5601 212 AACUGUUUAUUAUAAAGACAU
5602 213 AAGUGACCUUCAAGGGUCCUG
5603 214 UUCCUCCGACCUCCCUGCCAG
5604 215 GUCUUCUCUUUCUCCCUCCUG
5605 216 CUUAACUGAGCAAACGCUGAU
5606 217 UAUUAUAAAGACAUAUUUACA
5607 218 AUUCCCAUCGGGAAGCGGCAU
5608 219 AUCAUAAACAACCACUUUAAA
5609 220 UAUUGGGAGGCACACUAAGGC
5610 221 AAGGCUACCUCGGACUCCUGA
5611 222 GUGAUUGAAGGCUACCUCGGA
5612 223 UCCCAUCUUUCUUUCCUUCCU
5613 224 UCAUAAAGUAGGAGAUGGGAG
5614 225 ACAAAGUCAUUAUCAAAUGUA
5615 226 UGACCUUCAAGGGUCCUGUCA
5616 227 AAAGUUGGGCAUCAGGCUCUU
5617 228 ACUCUGAGCAGGUCACUCCCC
5618 229 AUCUUUGUAUAAAUUAGUAUA
5619 230 UGAUACAAACAAAGUCAUUAU
5620 231 CUUCCUUCUGUUCCUUUGCUU
5621 232 UCCUGGGAGGGUAUAUAGCCA
5622 233 CAACUCUACUUUGUGAAACAU
5623 234 UUUGUAUAAAUUAGUAUAAGA
5624 235 CUUGUCUUCUCUUUCUCCCUC
5625 236 UGGGAUGCAGGCACUUACCUC
5626 237 UCUUCUGCAGCCUCCUCUCCC
5627 238 AUGACCUCCAAGAGUAAGGGC
5628 239 AAUUAGUAUAAGAAUCAUAAA
5629 240 UGGGCAUCAGGCUCUUGUCUU
5630 241 UCUCUACCUCUCCCUUAACUG
5631 242 AUUAUAAAGACAUAUUUACAC
5632 243 UAACUGAGCAAACGCUGAUGC
5633 244 UCAUCAAGAGGGAAGAGGGCG
5634 245 UCUGUUCCUUUGCUUUCUUUU
5635 246 AUCUCCCAGCUUUCUUAGCCA
5636 247 UGCUGGAGCCCACAGAAGGGA
5637 248 UUCUGGGCACCGACCAGUCCC
5638 249 UGGAUAGGCAAACAUUGGGGC
5639 250 UCCGCUCUUCUGCAGCCUCCU
5640 251 UGACCUCCAAGAGUAAGGGCG
5641 252 UAGGUCAGGGAGGUGGGAGCA
5642 253 AAGUUGGGCAUCAGGCUCUUG
5643 254 AUUAGGACACCCAAACAGAUG
5644 255 UUUAAUCAGUAUGUUCUUAAA
5645 256 UUAAUGAACAGGGCCUUAAUA
5646 257 GUCAGCUCUAACAUUCUGUGA
5647 258 CCUGUCAGCUCUAACAUUCUG
5648 259 ACCUCUUAACUAGAGUCUCUC
5649 260 UCAACACGAAGGGAAGGCCAU
5650 261 CUAUGGAGGAGACAUAACCGC
5651 262 UCCAAGAGUAAGGGCGAACUG
5652 263 CUUCUGUUCCCUAUCUCCCAG
5653 264 AAUGACUCUGAGCAGGUCACU
5654 265 ACAAACAAAGUCAUUAUCAAA
5655 266 AUUCCUGCUGCACUUCCUCCC
5656 267 ACCGCGGUCAAGGAGAGCCAG
5657 268 GAAUCAUCCAAACUACAGCCA
5658 269 UACAGCAGGUGCGAGGUGAGA
5659 270 AGGAAGGUCCGGUCAACACGA
5660 271 AUGAUACAAACAAAGUCAUUA
5661 272 CUUUACAAACAUUGAACACAG
5662 273 UCAUGCUGCUCCUUGGGCCGC
5663 274 AGCCCUGGAAGGAAGGUCCGG
5664 275 UGAGAGCUGAAUGGACGUGAG
5665 276 UUAAAUAAACUGCUUUAAAAA
5666 277 ACAUUGCCGUCUUCCAGCCCA
5667 278 AAUCUUUACAAACAUUGAACA
5668 279 AUGACUCUGAGCAGGUCACUC
5669 280 AUUAGAGUACCCUGGGUCUGG
5670 281 AAACGCUGAUGCUCCACCCAC
5671 282 AAGCAGACCAAUCUAUGGAGG
5672 283 UCCUUCCUUCUGCCCUUCCCU
5673 284 CUUUCUUUCCUUCCUUCUGUU
5674 285 UUGACCCUCUGGGCUGCACCA
5675 286 UUCCUUGACCCUCUGGGCUGC
5676 287 AACAGGGCCUUAAUAUCUUUG
5677 288 UUCCCUAUCUCCCAGCUUUCU
5678 289 AUCAUCAAGAGGGAAGAGGGC
5679 290 AUCGGGAAGCGGCAUCAGGGA
5680 291 UGAAUGGACGUGAGGCCUCCA
5681 292 CAUUUAAUCAGUAUGUUCUUA
5682 293 AAGAGACUUUCUGGGCACCGA
5683 294 UGAGACAGGCAGGGACUAGGG
5684 295 AUGGACUGGACGGAUUCUUGU
5685 296 AGAAGGCUAAGUGACCUUCAA
5686 297 AAAGUCAUUAUCAAAUGUAUU
5687 298 UGACCUGGUCAUUAAGCAUAG
5688 299 AGCGUUAGCAGCAGCAUAGGU
5689 300 UAGUAGCGAUCCUGCAUUUAA
5690 301 GAACAAUUUCUUAAUGAACAG
5691 302 AACAUGACCUCCAAGAGUAAG
5692 303 UGAAGGCUACCUCGGACUCCU
5693 304 CUGUCAGCUCUAACAUUCUGU
5694 305 UGUAUAAAUUAGUAUAAGAAU
5695 306 ACACACAAAGUUGGGCAUCAG
5696 307 GAGAGAACGGGAAUCAUCCAA
5697 308 UCCAGUGAUUGAAGGCUACCU
5698 309 UAUCUCAUUCAUCAAGCAACU
5699 310 AGAGUAAGGGCGAACUGUCAG
5700 311 UCCCUCCUUCCUUCUGCCCUU
5701 312 UCCUGCUUCAGAAAGGCAUGG
5702 313 UUUCUGGGCACCGACCAGUCC
5703 314 AGGCACUUCAUUUGCUUUGAA
5704 315 UCUGCCCUUCCCUUCCUUCUU
5705 316 CUAACAUUCUGUGAUUCUUGG
5706 317 UAUCUCCCAGCUUUCUUAGCC
5707 318 CAAGCAACUCUACUUUGUGAA
5708 319 AACCGAUUUGGGAUGCAGGCA
5709 320 AUACAAACAAAGUCAUUAUCA
5710 321 UCCUUCUGCCCUUCCCUUCCU
5711 322 ACAUGAGGAAGGAAGGCCCAA
5712 323 GAAGGGAGCACUUCCACCCCG
5713 324 GUAGUCUCAGUGCCUGAGCCG
5714 325 UCCUGUCAGCUCUAACAUUCU
5715 326 UCCCUAUCUCCCAGCUUUCUU
5716 327 CUAAGAAGGCUAAGUGACCUU
5717 328 AGGACACCCAAACAGAUGCCA
5718 329 AAUCAGUAUGUUCUUAAAUAA
5719 330 AGUUGACCUAGAACCGAUUUG
5720 331 CAAACGCUGAUGCUCCACCCA
5721 332 AGCAGCAGCAUAGGUAAAGGG
5722 333 AACCUUCCAGCCCAGCUGGGG
5723 334 CUGGUCAUUAAGCAUAGGGAU
5724 335 UCAUAAACAACCACUUUAAAU
5725 336 AGAGAAGUGACAAAGGACUUC
5726 337 CAGAGCCGCAGAUUCAUGCUG
5727 338 AAGGGAACAAUUUCUUAAUGA
5728 339 CUAGAGUCUCUCCUUGCUUUU
5729 340 UCAGAAAGGCAUGGGUCCCUU
5730 341 UAGCGAUCCUGCAUUUAAUCA
5731 342 UUCUGUUCCCUAUCUCCCAGC
5732 343 UGGAGUCCAGUGAUUGAAGGC
5733 344 AGUCAUUAUCAAAUGUAUUUA
5734 345 GAAUCAUAAACAACCACUUUA
5735 346 AGGUCCGGUCAACACGAAGGG
5736 347 AGUUAUGGAACCUUCCAGCCC
5737 348 GAGAGGGUGCUAUUCCUGCUG
5738 349 AGGAAGAAGGGAGUAUUGGGA
5739 350 CUCUAACAUUCUGUGAUUCUU
5740 351 AGAAGUGACAAAGGACUUCAC
5741 352 UCAGGGAGGUGGGAGCAGCUC
5742 353 AGGAGACACAGAAAGGAAGGG
5743 354 UGCACUUCCUCCCAUCUUUCU
5744 355 AUUGAAGGCUACCUCGGACUC
5745 356 AGAAGGGAGCACUUCCACCCC
5746 357 UCCCUUAUGGGAGAGGCGGGG
5747 358 UGACAAAGGACUUCACGGGCC
5748 359 UGCAAUAUGUGGGCAUGGGGA
5749 360 ACAGGCAGGGACUAGGGCGGA
5750 361 ACUGAGCAAACGCUGAUGCUC
5751 362 UGCGAGGUGAGAGCUGAAUGG
5752 363 ACCUCUCCCUUAACUGAGCAA
5753 364 UGCUCCACCCACUUCACCAGA
5754 365 CUUCUGUUCCUUUGCUUUCUU
5755 366 UCAUUAUCAAAUGUAUUUAUU
5756 367 UGACUCUGAGCAGGUCACUCC
5757 368 AAGGAAGGUCCGGUCAACACG
5758 369 AGUAGGAGAUGGGAGACCUGG
5759 370 UGGUCAUUAAGCAUAGGGAUU
5760 371 GAGCGGUAGUCUCAGUGCCUG
5761 372 UAAUGAACAGGGCCUUAAUAU
5762 373 UCCCUGCACGUGCAAUAUGUG
5763 374 AGCACCUCUUAACUAGAGUCU
5764 375 ACAAAGUUGGGCAUCAGGCUC
5765 376 CAGAGAAGCAGACCAAUCUAU
5766 377 AUGGACGUGAGGCCUCCAGAG
5767 378 AUCAGUAUGUUCUUAAAUAAA
5768 379 AGCGAUCCUGCAUUUAAUCAG
5769 380 UGAGGCAGGAGACACAGAAAG
5770 381 AAGAGUAAGGGCGAACUGUCA
5771 382 UUGCCUCUCCCUUCCCUUCCC
5772 383 CUUCUCUUUCUCCCUCCUGGG
5773 384 CUCAUUCAUCAAGCAACUCUA
5774 385 AGGCAGGAGACACAGAAAGGA
5775 386 UUAGUAUAAGAAUCAUAAACA
5776 387 UUACCUCCCUGCACGUGCAAU
5777 388 AAGCAACUCUACUUUGUGAAA
5778 389 ACCUCCAAGAGUAAGGGCGAA
5779 390 UAAUCAGUAUGUUCUUAAAUA
5780 391 AGUCCUGCUUCAGAAAGGCAU
5781 392 AGGCAGGUGAGAAGAGCUGGG
5782 393 GUGGAUAGGCAAACAUUGGGG
5783 394 GGAUUCUUGUGAGAGAACGGG
5784 395 UCUCAGUGCCUGAGCCGCCCC
5785 396 ACUGUUUAUUAUAAAGACAUA
5786 397 UCCUGCAUUUAAUCAGUAUGU
5787 398 UUCAGUCCUGCUUCAGAAAGG
5788 399 AUUUAAUCAGUAUGUUCUUAA
5789 400 AUUAGUAUAAGAAUCAUAAAC
5790 401 AUAAAGUAGGAGAUGGGAGAC
5791 402 CAAGCAUGAGCCUUUAAGCAG
5792 403 GACAUAUUUACACAGAACAAU
5793 404 UAGAUGAGACAGGCAGGGACU
5794 405 UGUUCCCUAUCUCCCAGCUUU
5795 406 AGCAGGAGCGCCUGCACGCAG
5796 407 UUAGGACACCCAAACAGAUGC
5797 408 UCUUAAAUAAACUGCUUUAAA
5798 409 UCCUUCUGUUCCUUUGCUUUC
5799 410 CCCAUCUUUCUUUCCUUCCUU
5800 411 AAGUCAUUAUCAAAUGUAUUU
5801 412 UUCUUUCCUUCCUUCUGUUCC
5802 413 AUGGAGUCCAGUGAUUGAAGG
5803 414 ACGGAAGCUAGGGCCUCCCGG
5804 415 UACCCUGGGUCUGGGAAUGCU
5805 416 ACAAGGGAUCUGCUGGAGCCC
5806 417 AGAUGGACUGGACGGAUUCUU
5807 418 AUCAAGAGGGAAGAGGGCGUC
5808 419 ACCUGGAGCUUGGGCUAGCUG
5809 420 UCUUAAUGAACAGGGCCUUAA
5810 421 GAUUCUUGUGAGAGAACGGGA
5811 422 AUUGCCGUCUUCCAGCCCAUU
5812 423 AUUAUCAAAUGUAUUUAUUGC
5813 424 AGACAGGCAGGGACUAGGGCG
5814 425 UGCAUUUAAUCAGUAUGUUCU
5815 426 CGCAGAUUCAUGCUGCUCCUU
5816 427 AUUAAGCAUAGGGAUUCAUUU
5817 428 AUUCAUGCUGCUCCUUGGGCC
5818 429 CACCUCUUAACUAGAGUCUCU
5819 430 AACAACCACUUUAAAUAAGGC
5820 431 UCCAAAGUCAGUCCAGGGAGG
5821 432 AGAUGAGACAGGCAGGGACUA
5822 433 GCUAUCUCAUUCAUCAAGCAA
5823 434 AACGGGAAUCAUCCAAACUAC
5824 435 ACUACCCUCUUCUGUUCCCUA
5825 436 AAGAAGGCUAAGUGACCUUCA
5826 437 UCUGUUCCCUAUCUCCCAGCU
5827 438 AGGUGAGAGCUGAAUGGACGU
5828 439 AGGGACCCUCCACACACCGCG
5829 440 CUGAACAUGACCUCCAAGAGU
5830 441 AGUAUUGGGAGGCACACUAAG
5831 442 AGGCUCUUGUCUUCUCUUUCU
5832 443 UGCAUUCUUCCCUGGAGGCCA
5833 444 CACUUCACCAGAGCUCCUGAA
5834 445 CAUCAGGCUCUUGUCUUCUCU
5835 446 GUUAUGGAACCUUCCAGCCCA
5836 447 CAGCAGCAGCAGCAGCAGCAG
5837 448 CUUACCUCCCUGCACGUGCAA
5838 449 GGAGGAGACAUAACCGCCGGG
5839 450 GUAAGGGCGAACUGUCAGCUU
5840 451 CUGACCUGGAGCUUGGGCUAG
5841 452 AGGUGGAUAGGCAAACAUUGG
5842 453 CUCUUGUCUUCUCUUUCUCCC
5843 454 CAUAUUUACACAGAACAAUCU
5844 455 AAGGGCGAACUGUCAGCUUUU
5845 456 AGACUUUCUGGGCACCGACCA
5846 457 AAACAAAGUCAUUAUCAAAUG
5847 458 ACACUAAGGCAAGAGAAGUGA
5848 459 UCCUUGACCCUCUGGGCUGCA
5849 460 CAAUUUCUUAAUGAACAGGGC
5850 461 CAUCAAGCAACUCUACUUUGU
5851 462 AGAAGAAGGGAGGCUUUCUGG
5852 463 CAGCAGCAGCAGCAGCAGCGU
5853 464 GAACAAUCUUUACAAACAUUG
5854 465 AGGCUAAGUGACCUUCAAGGG
5855 466 UCGGGAAGCGGCAUCAGGGAC
5856 467 UAGCAGCAGCAUAGGUAAAGG
5857 468 AAGGCAUGGGUCCCUUAUGGG
5858 469 UCUGCAGCCUCCUCUCCCGCC
5859 470 GAAGCAGACCAAUCUAUGGAG
5860 471 AUGAGCCUUUAAGCAGCAGCA
5861 472 AGCUGAAUGGACGUGAGGCCU
5862 473 GAAGGCUACCUCGGACUCCUG
5863 474 CUGUUCCCUAUCUCCCAGCUU
5864 475 AGCUCUAACAUUCUGUGAUUC
5865 476 AGCAGCGUUAGCAGCAGCAUA
5866 477 UCUGGGCACCGACCAGUCCCC
5867 478 AGGAAGAUGGACUGGACGGAU
5868 479 ACCUGGUCAUUAAGCAUAGGG
5869 480 GAUGCAGGCACUUACCUCCCU
5870 481 AUCUGCUGGAGCCCACAGAAG
5871 482 CUAUUCCUGCUGCACUUCCUC
5872 483 AUCCUGCAUUUAAUCAGUAUG
5873 484 CAGAAGACACCCACCAAGGAU
5874 485 ACAACAGGACAGUUCACAGCC
5875 486 UGCAGCCUCCUCUCCCGCCGC
5876 487 UCAGUCCUGCUUCAGAAAGGC
5877 488 ACGCUGAUGCUCCACCCACUU
5878 489 CAGCAGCAGCGUUAGCAGCAG
5879 490 GAACCUUCCAGCCCAGCUGGG
5880 491 UAUGGAACCUUCCAGCCCAGC
5881 492 AAAUUAGUAUAAGAAUCAUAA
5882 493 CUCCUGAACAUGACCUCCAAG
5883 494 UCCUGACCUGGAGCUUGGGCU
5884 495 CUGUUUAUUAUAAAGACAUAU
5885 496 GCGGACAUUGCCGUCUUCCAG
5886 497 CUCUGAGCAGGUCACUCCCCU
5887 498 CACACACACAAAGUUGGGCAU
5888 499 CCAGAGAAGCAGACCAAUCUA
5889 500 AUGUGACCUGGUCAUUAAGCA
5890 501 AGGAAGGCCCAAAUGAAGGUU
5891 502 UCUCCCUUAACUGAGCAAACG
5892 503 AGCGGUAGUCUCAGUGCCUGA
5893 504 UCUGCAUUCUUCCCUGGAGGC
5894 505 UCCACCCACUUCACCAGAGCU
5895 506 UACUCCUGGGAGGGUAUAUAG
5896 507 CAGUGAUUGAAGGCUACCUCG
5897 508 GACUUUCUGGGCACCGACCAG
5898 509 CUUUGUAUAAAUUAGUAUAAG
5899 510 AUGAACAGGGCCUUAAUAUCU
5900 511 ACCCACUUCACCAGAGCUCCU
5901 512 CUUCUGCAGCCUCCUCUCCCG
5902 513 AAGAUGGACUGGACGGAUUCU
5903 514 UGUGCCCUGUCUGGAUCCCCG
5904 515 AGGCACACUAAGGCAAGAGAA
5905 516 AGUAUAAGAAUCAUAAACAAC
5906 517 UGCGGGCGCAGAGCUCGGGAG
5907 518 AUGUGCCCUGUCUGGAUCCCC
5908 519 AAGAGCUGGGCCCACUGGUGG
5909 520 AGCGCCUGCACGCAGAGCCGC
5910 521 UAAAGUAGGAGAUGGGAGACC
5911 522 AUUUCCUCCGACCUCCCUGCC
5912 523 GACAUUGCCGUCUUCCAGCCC
5913 524 AAAGAAGGCCCAAUCCCUGAU
5914 525 AUGCUGCUCCUUGGGCCGCCG
5915 526 AGGAGACAUAACCGCCGGGGG
5916 527 AAGACAUAUUUACACAGAACA
5917 528 UCCGGGAGCGGCAGCGGCGAG
5918 529 AGAUGGGAGACCUGGUCCCCA
5919 530 UGCCUCUCCCUUCCCUUCCCC
5920 531 AAGAAGGGAGUAUUGGGAGGC
5921 532 CUGGAAGGAAGGUCCGGUCAA
5922 533 GAACAGGGCCUUAAUAUCUUU
5923 534 CCCACUUCACCAGAGCUCCUG
5924 535 AAAGACAUAUUUACACAGAAC
5925 536 GAAUUUCCUCCGACCUCCCUG
5926 537 UGGACGGAUUCUUGUGAGAGA
5927 538 AGGGCAGACAUGAGGAAGGAA
5928 539 GAGGAGACAUAACCGCCGGGG
5929 540 UGCUUCAGAAAGGCAUGGGUC
5930 541 CAAGGGUCCUGUCAGCUCUAA
5931 542 UCUUGUGAGAGAACGGGAAUC
5932 543 AGCAGACCAAUCUAUGGAGGA
5933 544 GAGUCCAGUGAUUGAAGGCUA
5934 545 AGGUGAGAAGAGCUGGGCCCA
5935 546 UCCAGCCCAUUCCCAUCGGGA
5936 547 AGGCGUUUGCCUAAGAAGGCU
5937 548 CCCUUAACUGAGCAAACGCUG
5938 549 CGGCUCUGCAAUGACUCUGAG
5939 550 AGGGAACAAUUUCUUAAUGAA
5940 551 UCCCGGCUCUGCAAUGACUCU
5941 552 CUGGGAACCCUGCUCAAGCAA
5942 553 AGGGCCUUAAUAUCUUUGUAU
5943 554 AGCAUGAGCCUUUAAGCAGCA
5944 555 UGAGAAGAGCUGGGCCCACUG
5945 556 AGUAAGGGCGAACUGUCAGCU
5946 557 AACCACUUUAAAUAAGGCAGC
5947 558 AGGUCAGGGAGGUGGGAGCAG
5948 559 UGCCUAAGAAGGCUAAGUGAC
5949 560 CCACACACCGCGGUCAAGGAG
5950 561 CAGCUCUAACAUUCUGUGAUU
5951 562 UGGGAGGCACACUAAGGCAAG
5952 563 GGUGAGAGCUGAAUGGACGUG
5953 564 GAGGGCGUCAUAAAGUAGGAG
5954 565 AGCUUGCCUCUCCCUUCCCUU
5955 566 UCUUCCCUCCUUCCUUCUGCC
5956 567 AGAAGAGCUGGGCCCACUGGU
5957 568 GGAAGGUCCGGUCAACACGAA
5958 569 CAUUCCUUGACCCUCUGGGCU
5959 570 AUGAGGCAGGAGACACAGAAA
5960 571 GCAUUUAAUCAGUAUGUUCUU
5961 572 CUUCCCUUCCUUCUUCUCCCC
5962 573 CACUACCCUCUUCUGUUCCCU
5963 574 GACAUGAGGAAGGAAGGCCCA
5964 575 UGAUGCUCCACCCACUUCACC
5965 576 AAAGUAGGAGAUGGGAGACCU
5966 577 CACAGAAGGGAGCACUUCCAC
TABLE 9
Results for KIF20A. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA_
NO id AS Sequence
5967 1 UAAUUUAGCUUUAACCUCCUG
5968 2 UUCACAUUGACAAUCAUGCAG
5969 3 UUUGAGUACAUCCUUUACCAU
5970 4 UUCUUGUCCACAUCAAUGGUG
5971 5 UUGACAAUCAUGCAGGAACGG
5972 6 UAGCUCUGCUUUGCACUGCUG
5973 7 UAGGUCAUAAAGCAGUUCGUU
5974 8 AACUACGACAUCGUCAUCGGA
5975 9 UACCUGAAGACUAUGUUCCUU
5976 10 UUGAUGGUACCUUGAAUCGUG
5977 11 UUUCCUGCUUCCUUCAACCGU
5978 12 UAAGAUGUCAUCACAAGUGGU
5979 13 UUACUCACACCUAGUCGCCGA
5980 14 UUGCACAUGAAUCCAGUUGAG
5981 15 UUCGAUGUAGACACUCCUCUU
5982 16 UCUGAUAGCAGGUUCUUGCGU
5983 17 UUCACCACUCUUCUGAUCUUU
5984 18 UCGAUGACUUGUUUCAUCCAG
5985 19 UUUAACCUCCUGAAGCUGCUG
5986 20 UUGUAGAUCUCAAAGAAUGAG
5987 21 UUGAGAUCUUUCACAUAGGGA
5988 22 AAUAUCUUUAAUAUAACUGUU
5989 23 UACGACAUCGUCAUCGGACAG
5990 24 UUCUAAUAGGUCAUAAAGCAG
5991 25 UUUCAACACAGUAUGAUACUG
5992 26 AUGACUUGUUUCAUCCAGCUG
5993 27 UGGAACACUCGAGUCAACUUG
5994 28 UACAUCCUUUACCAUCUCCUU
5995 29 AUCUGCUUGCUGUCUAGCCAG
5996 30 AACACUCGAGUCAACUUGCUG
5997 31 UUCACUGCACCACUGUUCCCG
5998 32 UUAUGCAACUCUUCAGUGGUA
5999 33 UUGGAGGCUAUUGAAGAUCAG
6000 34 UUCAGGAGAGUAGCUGACCCA
6001 35 UAUAAUUCCUGAUAUAUGGUA
6002 36 UUGAUUAAGAUGUCAUCACAA
6003 37 UCACAGAGUGACAGCUCGCUG
6004 38 UUCCACAACUUGUAGGAGCUC
6005 39 UUGUAGAACAAGGGUCUCCAC
6006 40 UUUCACUAGCACCAUGUUGUU
6007 41 UUUACCAUCUCCUUCACAGUU
6008 42 UGUUCUACCAUCUCAUUGCAA
6009 43 UAAUAUCUUUAAUAUAACUGU
6010 44 UUGUCCUCUAGGGAGGUAGAG
6011 45 UUUCUGAAGCUCUGUCCGCAA
6012 46 UUCUUCAUUUCCUCCUGUCGG
6013 47 AUCUCGGAGAUGCAUCUCCAG
6014 48 UACUUAUGCAACUCUUCAGUG
6015 49 UAGCACCAUGUUGUUCUGCAG
6016 50 AUACAUGCUGCCUUCUUCCGA
6017 51 UUAGGUUGAAGAAGGAUGCCU
6018 52 UCUGAUACUUAUGCAACUCUU
6019 53 UUAAGAUGUCAUCACAAGUGG
6020 54 UGCACUGCUGUAAUUUAGCUU
6021 55 UAUACUUUCACCUUCUCCAUA
6022 56 UUUCGAUGUAGACACUCCUCU
6023 57 UUUAGCUCUGCUUUGCACUGC
6024 58 UCGGAGAUGCAUCUCCAGCUG
6025 59 UACUGCUGGUACACUGACUGA
6026 60 UUCGUUGUAGAUCUCAAAGAA
6027 61 UAGAACAAGGGUCUCCACAUU
6028 62 UUCAUCUCGGAGAUGCAUCUC
6029 63 UAACUUCUUGUCCACAUCAAU
6030 64 UUCAGUGGUAGAGUUUAGCUC
6031 65 UCUCAAUACGGACACAACCCU
6032 66 UAGCAGGGACAGCUUCUUCAU
6033 67 UGUCUGAGUAUUGCAUCCUGG
6034 68 AUUUCUUCAGGAGAGUAGCUG
6035 69 AUCCUGAUUGAGAAGAUGCUG
6036 70 UUCUGGUUGAGGUGGGUGCUG
6037 71 UUGUCAGUGACUCCUUGAGGA
6038 72 UUCCUGUCGUUCCAACUCUGA
6039 73 UGACAGCUCGCUGAUCUUGGG
6040 74 UCUGAAGGUAACAAGGGCCUA
6041 75 UAUCUUUAAUAUAACUGUUUU
6042 76 UUAACCUCCUGAAGCUGCUGG
6043 77 UGUCGUUCCAACUCUGAAGGU
6044 78 UAGACACUCCUCUUCAAGGAA
6045 79 UUCCUUGAUGAACGAGUGCAG
6046 80 AUAUCUUUAAUAUAACUGUUU
6047 81 AUCUCAAAGAAUGAGAUCCAG
6048 82 UUUAGCUUUAACCUCCUGAAG
6049 83 UAACCUCCUGAAGCUGCUGGG
6050 84 UACUCACACCUAGUCGCCGAA
6051 85 UUGCAUCUGUUCUACCAUCUC
6052 86 UUCCUGCUUCCUUCAACCGUU
6053 87 UGACUGAUAGAAGAGAGCCCA
6054 88 UCUUCAUUUCCUCCUGUCGGA
6055 89 UAGUCGCCGAAGCUGGACUUU
6056 90 UUGAUGAACGAGUGCAGGGAU
6057 91 UUUCAUCAUAGGUAGAUGCAC
6058 92 UAGGUUGAAGAAGGAUGCCUG
6059 93 UGACUUGUUUCAUCCAGCUGG
6060 94 UUCACUAGCACCAUGUUGUUC
6061 95 UCUUCUGAUCUUUGCAGCGCU
6062 96 UGGUAGAGUUUAGCUCUGCUU
6063 97 UCUGAGUAUUGCAUCCUGGAU
6064 98 AUAAUAUCUUUAAUAUAACUG
6065 99 UAGCAGGUUCUUGCGUACCAC
6066 100 UUCCUCCUGUCGGAUCUGCUU
6067 101 UUAGCUCUGCUUUGCACUGCU
6068 102 AACCCUGAUCUUCCUGUCGUU
6069 103 UAGGCGGUUCUAAUAGGUCAU
6070 104 UCAUCGGACAGCAAGCCCGCU
6071 105 AUUCACAUUGACAAUCAUGCA
6072 106 UAAAUUUCGAAGGAAUGGUUU
6073 107 UCUUGCACAUGAAUCCAGUUG
6074 108 UUGGAGGCCUCCAUUUAGCAG
6075 109 UCCUGUCGGAUCUGCUUGCUG
6076 110 UUGGAGAGACUCACCAAGUUU
6077 111 UCGAUGUAGACACUCCUCUUC
6078 112 UUGCACUGCUGUAAUUUAGCU
6079 113 AAGCUCUCUCUGCUGAUUGGA
6080 114 UACAUGCUGCCUUCUUCCGAA
6081 115 UACUGCUCAGCAAUACAUGCU
6082 116 AUUGAGAAGAUGCUGUGACUG
6083 117 AACUUGUAGGAGCUCCUCUUU
6084 118 UAGAGACGACAGAGCAGUCUG
6085 119 UAAUAGGUCAUAAAGCAGUUC
6086 120 UUGGAGUUUCAACACAGUAUG
6087 121 UUACCAUCUCCUUCACAGUUA
6088 122 UCCAUAUGUAUAGAUGAGCCA
6089 123 UGCAUCUGUUCUACCAUCUCA
6090 124 AUCACAGAGUGACAGCUCGCU
6091 125 UGCUUGUAGAACAAGGGUCUC
6092 126 UUCUUGCGUACCACAGACCCC
6093 127 UAGCCGCAAAGUCUGCCUCUU
6094 128 UUUGUGACCGCCGUAGGGCCA
6095 129 AUGCAUCUCCAGCUGUAGCUU
6096 130 AGCUCUGUCCGCAACAGCCUU
6097 131 UUUGCCGGGACAGGUAGUGGG
6098 132 UACGGACACAACCCUGAUCUU
6099 133 UCUUCCUGUCGUUCCAACUCU
6100 134 UGUUGUUCUGCAGUUCAGCCA
6101 135 UACACUGACUGAUAGAAGAGA
6102 136 AAGAAUGAGAUCCAGAUGGAG
6103 137 AACAGCCUUAUAUUCUUCUGG
6104 138 UCAUAGGUAGAUGCACAGGGA
6105 139 UCUUGCGUACCACAGACCCCA
6106 140 AUCUUUAAUAUAACUGUUUUU
6107 141 UUCUGAUCUUUGCAGCGCUCU
6108 142 AGAAACCUUGGAACACUCGAG
6109 143 UUGGAACACUCGAGUCAACUU
6110 144 AUUGCAAAUUUCAUCUCGGAG
6111 145 UGUAGGAGCUCCUCUUUGCCA
6112 146 UGCAUCUCCAGCUGUAGCUUU
6113 147 UUCUUCAGGAGAGUAGCUGAC
6114 148 UCACCUUCUCCAUACUGUCCU
6115 149 UUAGUGACUCCAUAUGUAUAG
6116 150 UGAAGAAGGAUGCCUGUCCCA
6117 151 AAUUUCAUCUCGGAGAUGCAU
6118 152 AAGCUCUGUCCGCAACAGCCU
6119 153 UCUCAUUGCAAAUUUCAUCUC
6120 154 UCAUUGCAAAUUUCAUCUCGG
6121 155 UUGCCGGGACAGGUAGUGGGG
6122 156 UCGGAUCUGCUUGCUGUCUAG
6123 157 ACAUUGACAAUCAUGCAGGAA
6124 158 UAUGCAACUCUUCAGUGGUAG
6125 159 UACCUCAUUGGAGAGCAAGGG
6126 160 AAGUUUCUGAAGCUCUGUCCG
6127 161 AAGAAACCUUGGAACACUCGA
6128 162 UAUUUCUUCAGGAGAGUAGCU
6129 163 AUGUGAACAAUAAUAUCUUUA
6130 164 UGAUAGAAGAGAGCCCAGCAA
6131 165 UCUAACUUCUUGUCCACAUCA
6132 166 AAUAUCAUCAUCAAGGCCUGU
6133 167 UCUGAUCUUUGCAGCGCUCUG
6134 168 UCUUCUAACUUCUUGUCCACA
6135 169 UGGUACCUUGAAUCGUGUGGG
6136 170 UUUCUUCAGGAGAGUAGCUGA
6137 171 ACACAGUAUGAUACUGCUCAG
6138 172 UUUAGCAGGGACAGCUUCUUC
6139 173 UAGCUUUAACCUCCUGAAGCU
6140 174 AUCUGUUCUACCAUCUCAUUG
6141 175 AUCGAUGACUUGUUUCAUCCA
6142 176 UGAUCUUUGCAGCGCUCUGAG
6143 177 UCCUCCUGUCGGAUCUGCUUG
6144 178 UUUGAUUAAGAUGUCAUCACA
6145 179 AUGAAUCCAGUUGAGAUCUUU
6146 180 AGCUUCUAGCUCUUCAAUCUU
6147 181 UUGUAGGAGCUCCUCUUUGCC
6148 182 AUCUCCUUCACAGUUAGGUUG
6149 183 UGUCAGUGACUCCUUGAGGAU
6150 184 UUCUCCAUACUGUCCUCAGAU
6151 185 AUCUUGCACAUGAAUCCAGUU
6152 186 AGCAUCUUGCACAUGAAUCCA
6153 187 UUCACAGUUAGGUUGAAGAAG
6154 188 AGUGACAGCUCGCUGAUCUUG
6155 189 UAACAAGGGCCUAACCCUCAA
6156 190 UAGAGUUUAGCUCUGCUUUGC
6157 191 AUGAAGAGUUUCAUCAUAGGU
6158 192 ACUGCUGGUACACUGACUGAU
6159 193 UGCUGCUUGUCCUCUAGGGAG
6160 194 UCAUCAUAGGUAGAUGCACAG
6161 195 UUGAGUACAUCCUUUACCAUC
6162 196 UGGACUUUCGCAGCCGCAGAG
6163 197 AACUCUGAAGGUAACAAGGGC
6164 198 UGAGAAGAUGCUGUGACUGCG
6165 199 UGCAACUCUUCAGUGGUAGAG
6166 200 UUGUCCACAUCAAUGGUGAAG
6167 201 ACCAGGUUCUGCUUUGACCGG
6168 202 AUAGGUCAUAAAGCAGUUCGU
6169 203 UUAGCAGGGACAGCUUCUUCA
6170 204 UUCAACACAGUAUGAUACUGC
6171 205 AAGUGGUCAAGGCUUGACGAA
6172 206 CUAACUUCUUGUCCACAUCAA
6173 207 AGCUUUAACCUCCUGAAGCUG
6174 208 UAGAUGCACAGGGAUUCACAU
6175 209 AUUAAGAUGUCAUCACAAGUG
6176 210 UGGUUGUUGGUUUGGUUGCUG
6177 211 UAAGGGCUGCAGUCUGUUGAG
6178 212 AUACCUGAAGACUAUGUUCCU
6179 213 UGAAGAGUUUCAUCAUAGGUA
6180 214 AAGACUAUGUUCCUUGAUGAA
6181 215 UGCUUUGACCGGUUCUGCUGG
6182 216 UGGAGUUUCAACACAGUAUGA
6183 217 UCAUAAAGCAGUUCGUUGUAG
6184 218 ACUUUCGAUGUAGACACUCCU
6185 219 AUCAUAGGUAGAUGCACAGGG
6186 220 UCCAGUUUCACUAGCACCAUG
6187 221 AAACAUGGGAGAAACUACGAC
6188 222 AACCUUGGAACACUCGAGUCA
6189 223 AACAACAUGAGAUUACAUAGG
6190 224 UGCCUUCUUCCGAAGGUCCAG
6191 225 UUUCGCAGCCGCAGAGCACAA
6192 226 AUACUUAUGCAACUCUUCAGU
6193 227 UCCUGAUAUAUGGUAAAGCAU
6194 228 AAUGUUUCCUGCUUCCUUCAA
6195 229 UGGAACCUGCUGCUUGUCCUC
6196 230 AAACCUUGGAACACUCGAGUC
6197 231 AACAUGAGAUUACAUAGGUGG
6198 232 AUGACUGCUCUUCUCUUUCCC
6199 233 AGGUGUAGGAUCCUGAUUGAG
6200 234 UCAAGGAAGUGGACAGCUCCU
6201 235 UUAAUGUUUCCUGCUUCCUUC
6202 236 CAACAUGAGAUUACAUAGGUG
6203 237 AAGCAGUUCGUUGUAGAUCUC
6204 238 UGAGAUCUUUCACAUAGGGAU
6205 239 UGAAGGUGUAGGAUCCUGAUU
6206 240 AACAAUAAUAUCUUUAAUAUA
6207 241 AUUUAGCAGGGACAGCUUCUU
6208 242 UUGAAGAAGGAUGCCUGUCCC
6209 243 UACAUGGAGAUGUCAGCUUCA
6210 244 AUAUAAUUCCUGAUAUAUGGU
6211 245 UGCAAGAGAGCUUCUAGCUCU
6212 246 UAACCCUCAAGUAUACUUUCA
6213 247 CUGAUCUUCCUGUCGUUCCAA
6214 248 UGCAGCUGUGGACUCAAACAU
6215 249 UAGGGAGGUAGAGACGACAGA
6216 250 AAAUGUUCACUGCACCACUGU
6217 251 UUGUGACCGCCGUAGGGCCAA
6218 252 UCCAUUUAGCAGGGACAGCUU
6219 253 UCCAGUUGAGAUCUUUCACAU
6220 254 UGAUGGUACCUUGAAUCGUGU
6221 255 UUGACCGGUUCUGCUGGUUUU
6222 256 ACAACAUGAGAUUACAUAGGU
6223 257 UGGACAGCUCCUCCUCUUGGA
6224 258 AGUGUCUGAGUAUUGCAUCCU
6225 259 UCCUGUCGUUCCAACUCUGAA
6226 260 UGUCGGAUCUGCUUGCUGUCU
6227 261 UACCAUCUCCUUCACAGUUAG
6228 262 UGCCCUUUGAGUACAUCCUUU
6229 263 AAUACAUGCUGCCUUCUUCCG
6230 264 UCUUUGCAGCGCUCUGAGCCA
6231 265 UCACAUUGACAAUCAUGCAGG
6232 266 UCAACACAGUAUGAUACUGCU
6233 267 AAGUGGACAGCUCCUCCUCUU
6234 268 UUUCACCUUCUCCAUACUGUC
6235 269 UGCUGGUACCUAUCCGACUUU
6236 270 UCGGCCUGUGAAGAAACCUUG
6237 271 UAAUGUUUCCUGCUUCCUUCA
6238 272 AACAAGGGUCUCCACAUUCUC
6239 273 AUCCUGGAUAUAAUUCCUGAU
6240 274 AAUCCCUCCAUCCUUGAUGGU
6241 275 CUUGAUGGUACCUUGAAUCGU
6242 276 AAAGUCUGCCUCUUGCGCUGU
6243 277 UCAGAUGGAACCUGCUGCUUG
6244 278 AACCGUUCACCACUCUUCUGA
6245 279 UUUCCUCCAAUAGUUCCUUUU
6246 280 UGCACCACUGUUCCCGCUGUU
6247 281 AAUGUUCACUGCACCACUGUU
6248 282 UGCAGGAACGGCCUCGGCCUG
6249 283 AAUUUAGCUUUAACCUCCUGA
6250 284 CUUACUCACACCUAGUCGCCG
6251 285 CUAUGUUCCUUGAUGAACGAG
6252 286 UUGUUGGUUUGGUUGCUGAUU
6253 287 AGUUUCACUAGCACCAUGUUG
6254 288 UCGUCAUCGGACAGCAAGCCC
6255 289 UUCUAACUUCUUGUCCACAUC
6256 290 UCUGCUUUGACCGGUUCUGCU
6257 291 UGAUUGGAGAGACUCACCAAG
6258 292 UCAGUGGUAGAGUUUAGCUCU
6259 293 UCAAUAUCAUCAUCAAGGCCU
6260 294 CUCAAUACGGACACAACCCUG
6261 295 UGAGUUAGUGACUCCAUAUGU
6262 296 UGGAGUUCUGGUUGAGGUGGG
6263 297 ACAACUUGUAGGAGCUCCUCU
6264 298 UACUGUCCUCAGAUGGAACCU
6265 299 AAAUCUGCAGCUGUGGACUCA
6266 300 CUUCUUGUCCACAUCAAUGGU
6267 301 UGCUUGUCCUCUAGGGAGGUA
6268 302 UCUAAUAGGUCAUAAAGCAGU
6269 303 UGCAUAGAAAUCAUAUAAGUA
6270 304 AGUUUCUGAAGCUCUGUCCGC
6271 305 ACAGAGUGACAGCUCGCUGAU
6272 306 UGAUACUGCUCAGCAAUACAU
6273 307 ACACUCGAGUCAACUUGCUGU
6274 308 UGAUACUUAUGCAACUCUUCA
6275 309 CAACCGUUCACCACUCUUCUG
6276 310 UCCUUGAGGAUAUUUAGUUUU
6277 311 UUCUAGCUCUUCAAUCUUUUC
6278 312 GUGUCUGAGUAUUGCAUCCUG
6279 313 ACUUAUGCAACUCUUCAGUGG
6280 314 CUUCCUGUCGUUCCAACUCUG
6281 315 ACUUGUAGGAGCUCCUCUUUG
6282 316 UAUCCGACUUUCGAUGUAGAC
6283 317 AAACUACGACAUCGUCAUCGG
6284 318 ACUGCUCAGCAAUACAUGCUG
6285 319 AUUCAGACCCUGAUUGCUGAU
6286 320 UGUAAUUUAGCUUUAACCUCC
6287 321 UCCUGUUUGAUUAAGAUGUCA
6288 322 UCGCAUAGCCGCAAAGUCUGC
6289 323 UGGGUGCUUGUAGAACAAGGG
6290 324 AACUCUUCAGUGGUAGAGUUU
6291 325 AUUGGAGAGACUCACCAAGUU
6292 326 AUUUCCUCCAAUAGUUCCUUU
6293 327 UUCUGCUUUGACCGGUUCUGC
6294 328 UCCAACUCUGAAGGUAACAAG
6295 329 UGACUGCUCUUCUCUUUCCCC
6296 330 UUUCCUCCUGUCGGAUCUGCU
6297 331 GACACAACCCUGAUCUUCCUG
6298 332 UUGCAAAUUUCAUCUCGGAGA
6299 333 AUGUAGACACUCCUCUUCAAG
6300 334 AAGGGAACCAGGUUCUGCUUU
6301 335 UUCAUUGCUCUUCAGGGCAAA
6302 336 AAGUCUGCCUCUUGCGCUGUU
6303 337 AAUCCCAGUUGCAUAGGUGGG
6304 338 ACUAUGUUCCUUGAUGAACGA
6305 339 ACAGUUAGGUUGAAGAAGGAU
6306 340 UUCCUGCAAGAGAGCUUCUAG
6307 341 UGUAGGAUCCUGAUUGAGAAG
6308 342 UUCCAACUCUGAAGGUAACAA
6309 343 UAGGAUCCUGAUUGAGAAGAU
6310 344 AUCAGGUGUUGGAUGAAGUUG
6311 345 AACACAGUAUGAUACUGCUCA
6312 346 UCCUUGAUGAACGAGUGCAGG
6313 347 UAGAUCUCAAAGAAUGAGAUC
6314 348 ACUGUCCUCAGAUGGAACCUG
6315 349 ACCUUGGAACACUCGAGUCAA
6316 350 AACCUCCUGAAGCUGCUGGGU
6317 351 UCUGGUUCUUACGACCCACUU
6318 352 UCAAUACGGACACAACCCUGA
6319 353 UACCUUGAAUCGUGUGGGUUU
6320 354 GAUACUUAUGCAACUCUUCAG
6321 355 UAGUGUCUGAGUAUUGCAUCC
6322 356 UCGUUGUAGAUCUCAAAGAAU
6323 357 AACCUGCUGCUUGUCCUCUAG
6324 358 AUCCCAGUUGCAUAGGUGGGG
6325 359 AGAGCAGUCUGAUAGCAGGUU
6326 360 UGUAGAGAGGUGUUAAUGUUU
6327 361 UCUCCACAUUCUCAAUACGGA
6328 362 UCCCUGAGUUAGUGACUCCAU
6329 363 AUCACAAGUGGUCAAGGCUUG
6330 364 ACUUUCACCUUCUCCAUACUG
6331 365 CUUUGCAGCGCUCUGAGCCAG
6332 366 AAGAUGCUGUGACUGCGGCUG
6333 367 AUGGUACCUUGAAUCGUGUGG
6334 368 CAACACAGUAUGAUACUGCUC
6335 369 AUCCUUUACCAUCUCCUUCAC
6336 370 UCUUCAUACAUUUCCUCCAAU
6337 371 UUCAAGGAAGUGGACAGCUCC
6338 372 UACCUAUCCGACUUUCGAUGU
6339 373 CUGCCCUUUGAGUACAUCCUU
6340 374 UUGAGAAGAUGCUGUGACUGC
6341 375 UCAAAGAAUGAGAUCCAGAUG
6342 376 UUGGUUUGGUUGCUGAUUUUC
6343 377 AUAGCCGCAAAGUCUGCCUCU
6344 378 UGCAAAUUUCAUCUCGGAGAU
6345 379 UCAGGAGAGUAGCUGACCCAC
6346 380 UGUAGAACAAGGGUCUCCACA
6347 381 CUGAUUGGAGAGACUCACCAA
6348 382 UCUUUCACAUAGGGAUUGCCA
6349 383 UCAAGUAUACUUUCACCUUCU
6350 384 AUUUAGCUUUAACCUCCUGAA
6351 385 AUCCCUUGCGACAUGACGGCA
6352 386 UGCUGGUACACUGACUGAUAG
6353 387 AAUCCAGUUGAGAUCUUUCAC
6354 388 CUGAAGACUAUGUUCCUUGAU
6355 389 AGCAGUUCGUUGUAGAUCUCA
6356 390 UUGGGUGCUUGUAGAACAAGG
6357 391 UACAUUUGGAAUUCAAUAAAA
6358 392 UCCUGAAUCUCUUCUUGGUAA
6359 393 UGAACGAGUGCAGGGAUGGGA
6360 394 UGCAUCCUGGAUAUAAUUCCU
6361 395 AUUUCGAAGGAAUGGUUUCUU
6362 396 UGUUAAUGUUUCCUGCUUCCU
6363 397 ACUCUUCUGAUCUUUGCAGCG
6364 398 UGUUCCUUGAUGAACGAGUGC
6365 399 CUGUAAUUUAGCUUUAACCUC
6366 400 GAACACUCGAGUCAACUUGCU
6367 401 UGGUACCUAUCCGACUUUCGA
6368 402 UCAACCGUUCACCACUCUUCU
6369 403 UCCACAUCAAUGGUGAAGGGC
6370 404 UCGAGUCAACUUGCUGUCACG
6371 405 UUCUCAAUACGGACACAACCC
6372 406 ACAGCUUCUUCAUUUCCUCCU
6373 407 CAACUUGUAGGAGCUCCUCUU
6374 408 UGAAGCUGCUGGGUGGAGGCA
6375 409 UGGGAGAAACUACGACAUCGU
6376 410 UAGGUGGUUAUAAUACAAAAG
6377 411 GACAGCUCGCUGAUCUUGGGG
6378 412 ACCAAGUUUCUGAAGCUCUGU
6379 413 UAAAGCAGUUCGUUGUAGAUC
6380 414 ACUUGUCAGUGACUCCUUGAG
6381 415 UUCACCUUCUCCAUACUGUCC
6382 416 GUAUACUUUCACCUUCUCCAU
6383 417 CAGUGGUAGAGUUUAGCUCUG
6384 418 UCCAAAUGUUCACUGCACCAC
6385 419 AUGGUUUCUUCCCUGGUGGUU
6386 420 AGAGACGACAGAGCAGUCUGA
6387 421 UGUGAAGAAACCUUGGAACAC
6388 422 UUCAACCGUUCACCACUCUUC
6389 423 UGCACAGGGAUUCACAUUGAC
6390 424 UGACAAUCAUGCAGGAACGGC
6391 425 AUACAUGGAGAUGUCAGCUUC
6392 426 AUAAAGCAGUUCGUUGUAGAU
6393 427 CAUGAGAUUACAUAGGUGGUU
6394 428 CUCUUCUAACUUCUUGUCCAC
6395 429 CACACCUAGUCGCCGAAGCUG
6396 430 GACAUCGUCAUCGGACAGCAA
6397 431 ACUAGCACCAUGUUGUUCUGC
6398 432 UAGCUGACCCACCUCAGGGCC
6399 433 ACUCGAGUCAACUUGCUGUCA
6400 434 AAGGGCUUCAGAUCAGGUGUU
6401 435 AACCAGGUUCUGCUUUGACCG
6402 436 UGAACAAUAAUAUCUUUAAUA
6403 437 UUCAUCAUAGGUAGAUGCACA
6404 438 UGAGGGUGGUGGUUCUAACAU
6405 439 UCAGAUCAGGUGUUGGAUGAA
6406 440 UUCCUCCAAUAGUUCCUUUUG
6407 441 AGCUUCUUCAUUUCCUCCUGU
6408 442 ACAUCGUCAUCGGACAGCAAG
6409 443 AGAGAGCUUCUAGCUCUUCAA
6410 444 CAUUGCAAAUUUCAUCUCGGA
6411 445 AAGAGUUUCAUCAUAGGUAGA
6412 446 AAGCUGGACUUUCGCAGCCGC
6413 447 AUCGUCAUCGGACAGCAAGCC
6414 448 UUUCGAAGGAAUGGUUUCUUC
6415 449 UCCUUUACCAUCUCCUUCACA
6416 450 CAGCUUCUUCAUUUCCUCCUG
6417 451 CAACUCUGAAGGUAACAAGGG
6418 452 UGGGUGUCCAAAUGUUCACUG
6419 453 UAGGAUCCGGGCAUAAGGGCU
6420 454 ACAUGAGAUUACAUAGGUGGU
6421 455 ACCACUCUUCUGAUCUUUGCA
6422 456 UACCAUCUCAUUGCAAAUUUC
6423 457 ACAUCCUUUACCAUCUCCUUC
6424 458 UGAAGAAACCUUGGAACACUC
6425 459 UCUUGUCCACAUCAAUGGUGA
6426 460 UAGUGACUCCAUAUGUAUAGA
6427 461 UCAUCACAAGUGGUCAAGGCU
6428 462 CACAACUUGUAGGAGCUCCUC
6429 463 AAGAUGUCAUCACAAGUGGUC
6430 464 AAUCUGCAGCUGUGGACUCAA
6431 465 UCCAUCCUUGAUGGUACCUUG
6432 466 UGGAGAAGCGAAUGUUUGCCG
6433 467 UACAUUUCCUCCAAUAGUUCC
6434 468 UCGAAGCUGGUGCUGGUACCU
6435 469 AUGAACGAGUGCAGGGAUGGG
6436 470 AGCUGUGGACUCAAACAUGGG
6437 471 UCUGCUGAUUGGAGAGACUCA
6438 472 ACCUUUGUGACCGCCGUAGGG
6439 473 CACAUUGACAAUCAUGCAGGA
6440 474 CAGUAUGAUACUGCUCAGCAA
6441 475 UGACCGGUUCUGCUGGUUUUG
6442 476 UGAGAUUACAUAGGUGGUUAU
6443 477 AAAGAAUGAGAUCCAGAUGGA
6444 478 AUGUUCCUUGAUGAACGAGUG
6445 479 UCUCCUUCACAGUUAGGUUGA
6446 480 UCUCUCUGCUGAUUGGAGAGA
6447 481 UCACAAGUGGUCAAGGCUUGA
6448 482 CUGUUGCAUCUGUUCUACCAU
6449 483 UUUCAUCUCGGAGAUGCAUCU
6450 484 UAUUGCAUCCUGGAUAUAAUU
6451 485 CUGCUUUGACCGGUUCUGCUG
6452 486 AGCUCUGGUUCUUACGACCCA
6453 487 AAGUAUACUUUCACCUUCUCC
6454 488 ACACUGACUGAUAGAAGAGAG
6455 489 ACAUAGGUGGUUAUAAUACAA
6456 490 GCAUCUUGCACAUGAAUCCAG
6457 491 UCUGCCCUUUGAGUACAUCCU
6458 492 UUGGAGAGCAAGGGCUUCAGA
6459 493 AGGUGUUAAUGUUUCCUGCUU
6460 494 CUCCUGAAUCUCUUCUUGGUA
6461 495 UGAAGCUCUGUCCGCAACAGC
6462 496 UCCUGAUUGAGAAGAUGCUGU
6463 497 UUCUGAAGCUCUGUCCGCAAC
6464 498 AUGGAACCUGCUGCUUGUCCU
6465 499 AGGAAGUGGACAGCUCCUCCU
6466 500 CUGAUCUUUGCAGCGCUCUGA
6467 501 UAUGAUACUGCUCAGCAAUAC
6468 502 CAUAGGUAGAUGCACAGGGAU
6469 503 ACCUAUCCGACUUUCGAUGUA
6470 504 AAGGUGUAGGAUCCUGAUUGA
6471 505 UGUCCUCAGAUGGAACCUGCU
6472 506 AUAUCAUCAUCAAGGCCUGUG
6473 507 UCUUCAAGGAAGUGGACAGCU
6474 508 UGUUUGAUUAAGAUGUCAUCA
6475 509 UGAUUAAGAUGUCAUCACAAG
6476 510 UCUGGUUGAGGUGGGUGCUGG
6477 511 UUUGACCGGUUCUGCUGGUUU
6478 512 UAAUUCCUGAUAUAUGGUAAA
6479 513 UGACUCCUUGAGGAUAUUUAG
6480 514 AGCUAGUGUCUGAGUAUUGCA
6481 515 UCGCCGAAGCUGGACUUUCGC
6482 516 UCACACCUAGUCGCCGAAGCU
6483 517 CUUUCGAUGUAGACACUCCUC
6484 518 UGUUGCAUCUGUUCUACCAUC
6485 519 UCCCUUGCGACAUGACGGCAG
6486 520 UGUCACGGAAGGGAACCAGGU
6487 521 ACAUGGAGAUGUCAGCUUCAU
6488 522 ACUGCUGUAAUUUAGCUUUAA
6489 523 AAUGGUUUCUUCCCUGGUGGU
6490 524 ACAACAACAUGAGAUUACAUA
6491 525 UCAUGCAGGAACGGCCUCGGC
6492 526 UUGCUCCUCCUGGGAUACUGG
6493 527 UGGUGCUGGUACCUAUCCGAC
6494 528 UGUGAACAAUAAUAUCUUUAA
6495 529 ACCUUCUCCAUACUGUCCUCA
6496 530 ACUUCUUGUCCACAUCAAUGG
6497 531 UGCACAUGAAUCCAGUUGAGA
6498 532 UAGGAGCUUCCAGGCCUCCUC
6499 533 CUUCCUGCAAGAGAGCUUCUA
6500 534 UCUUCCCUGGUGGUUGUUGGU
6501 535 AUAAUUCCUGAUAUAUGGUAA
6502 536 GUACCUUGAAUCGUGUGGGUU
6503 537 AUGUCAUCACAAGUGGUCAAG
6504 538 ACAGCUCGCUGAUCUUGGGGA
6505 539 UACAUAGGUGGUUAUAAUACA
6506 540 UGAUAUAUGGUAAAGCAUAAA
6507 541 AGAGUAGCUGACCCACCUCAG
6508 542 UCAUUGGAGAGCAAGGGCUUC
6509 543 UGGAGAUGUCAGCUUCAUUUU
6510 544 UGACUCCAUAUGUAUAGAUGA
6511 545 CUGAUAGCAGGUUCUUGCGUA
6512 546 AUAAGGGCUGCAGUCUGUUGA
6513 547 AGAUCUUUCACAUAGGGAUUG
6514 548 UGAUUGAGAAGAUGCUGUGAC
6515 549 UGUUUGCCGGGACAGGUAGUG
6516 550 UCAACUUGCUGUCACGGAAGG
6517 551 AGCUCUGCUUUGCACUGCUGU
6518 552 UAGAAAUCAUAUAAGUAAAUA
6519 553 ACAUUCUCAAUACGGACACAA
6520 554 AUGCACAGGGAUUCACAUUGA
6521 555 GUCCAGUUUCACUAGCACCAU
6522 556 CUCAUUGCAAAUUUCAUCUCG
6523 557 GUUGAGAUCUUUCACAUAGGG
6524 558 CAGUCUGAUAGCAGGUUCUUG
6525 559 AGUCAACUUGCUGUCACGGAA
6526 560 UUUCUUCCCUGGUGGUUGUUG
6527 561 ACACCUAGUCGCCGAAGCUGG
6528 562 AUACAUUUCCUCCAAUAGUUC
6529 563 AUCCAGUUGAGAUCUUUCACA
6530 564 GAUGGUACCUUGAAUCGUGUG
6531 565 AACAAGCUCUCUCUGCUGAUU
6532 566 UUAGCUUUAACCUCCUGAAGC
6533 567 ACAAUCAUGCAGGAACGGCCU
6534 568 CAAAUGUUCACUGCACCACUG
6535 569 ACAAGGGUCUCCACAUUCUCA
6536 570 AUCUUCCUGUCGUUCCAACUC
6537 571 AACUUCUUGUCCACAUCAAUG
6538 572 AUGAGAUUACAUAGGUGGUUA
6539 573 AAUCAUGCAGGAACGGCCUCG
6540 574 UUCAGAUCAGGUGUUGGAUGA
6541 575 CUGAUUGAGAAGAUGCUGUGA
6542 576 CAACUUGCUGUCACGGAAGGG
6543 577 AUUACCUCAUUGGAGAGCAAG
6544 578 GUAAUUUAGCUUUAACCUCCU
6545 579 UCAAACAUGGGAGAAACUACG
6546 580 UCCACAACUUGUAGGAGCUCC
6547 581 UGGUCAAGGCUUGACGAAGUU
6548 582 CUGUUCUACCAUCUCAUUGCA
6549 583 UGCUUUGCACUGCUGUAAUUU
6550 584 UGGUACACUGACUGAUAGAAG
6551 585 UGAUCCUCGCAUAGCCGCAAA
6552 586 CUCAGCAAUACAUGCUGCCUU
6553 587 AGAUCACAGAGUGACAGCUCG
6554 588 CCACUCUUCUGAUCUUUGCAG
6555 589 UUCAUACAUUUCCUCCAAUAG
6556 590 AGUGACUCCAUAUGUAUAGAU
6557 591 UCUACCAUCUCAUUGCAAAUU
6558 592 CAACAAGCUCUCUCUGCUGAU
6559 593 CAACAGCCUUAUAUUCUUCUG
6560 594 CAAAGUCUGCCUCUUGCGCUG
6561 595 UGGUCCUGUUUGAUUAAGAUG
6562 596 CACAGAGUGACAGCUCGCUGA
6563 597 UGGUGGUUGUUGGUUUGGUUG
6564 598 UUCCUUCAACCGUUCACCACU
6565 599 AUCCUUGAUGGUACCUUGAAU
6566 600 ACAACCCUGAUCUUCCUGUCG
6567 601 UCAUACAUUUCCUCCAAUAGU
6568 602 CUCAGAUGGAACCUGCUGCUU
6569 603 AGAAACUACGACAUCGUCAUC
6570 604 UCGAAGGAAUGGUUUCUUCCC
6571 605 AAUGUUUGCCGGGACAGGUAG
6572 606 UCAUCUCGGAGAUGCAUCUCC
6573 607 AUAGCAGGUUCUUGCGUACCA
6574 608 GAUGUAGACACUCCUCUUCAA
6575 609 UGGUUCUUACGACCCACUUUU
6576 610 UUCCUGAUAUAUGGUAAAGCA
6577 611 AUGCUGUGACUGCGGCUGGAG
6578 612 AACUUGCUGUCACGGAAGGGA
6579 613 UCCAUACUGUCCUCAGAUGGA
6580 614 AGUCCUUGGGUGCUUGUAGAA
6581 615 UGACGAAGGGCAGCAAUACAG
6582 616 AUGUUCACUGCACCACUGUUC
6583 617 ACUACGACAUCGUCAUCGGAC
6584 618 UGACUGCGGCUGGAGUUCUGG
6585 619 ACGGAAGGGAACCAGGUUCUG
6586 620 ACAUCAAUGGUGAAGGGCUUG
6587 621 GUAGAGUUUAGCUCUGCUUUG
6588 622 UUCAGACCCUGAUUGCUGAUG
6589 623 UCACCACUCUUCUGAUCUUUG
6590 624 UAGAGAGGUGUUAAUGUUUCC
6591 625 AGAGUUUCAUCAUAGGUAGAU
6592 626 CCAGGUUCUGCUUUGACCGGU
6593 627 AAGAGAGCUUCUAGCUCUUCA
6594 628 UCAGGUGUUGGAUGAAGUUGG
6595 629 UUCUACCAUCUCAUUGCAAAU
6596 630 UUCGCAGCCGCAGAGCACAAC
6597 631 CUGGUUGGUACCAAGGCGCUU
6598 632 AUCCCUCCAUCCUUGAUGGUA
6599 633 UGUGCAUAGAAAUCAUAUAAG
6600 634 ACUCCUUGAGGAUAUUUAGUU
6601 635 AGCAAUACAUGCUGCCUUCUU
6602 636 UUCUUCCGAAGGUCCAGUUUC
6603 637 GUUUCUGAAGCUCUGUCCGCA
6604 638 GAUCUGCUUGCUGUCUAGCCA
6605 639 GUCGUUCCAACUCUGAAGGUA
6606 640 AAGGAAUGGUUUCUUCCCUGG
6607 641 GAAGCUGGACUUUCGCAGCCG
6608 642 AAUUCAGACCCUGAUUGCUGA
6609 643 UCCAGGCCUCCUCAGCAUCUU
6610 644 CAGAGCAGUCUGAUAGCAGGU
6611 645 ACAUUUCCUCCAAUAGUUCCU
6612 646 AGCUGGACUUUCGCAGCCGCA
6613 647 AUUUCCUCCUGUCGGAUCUGC
6614 648 ACGGACACAACCCUGAUCUUC
6615 649 AUUGGAGAGCAAGGGCUUCAG
6616 650 UCCUUCAACCGUUCACCACUC
6617 651 UACUUUCACCUUCUCCAUACU
6618 652 UCACCAAGUUUCUGAAGCUCU
6619 653 AGUAGCUGACCCACCUCAGGG
6620 654 UCCUGAAGCUGCUGGGUGGAG
6621 655 UUGCAUCCUGGAUAUAAUUCC
6622 656 AGAGUUUAGCUCUGCUUUGCA
6623 657 CUUCAUUUCCUCCUGUCGGAU
6624 658 ACUGUCGAAGCUGGUGCUGGU
6625 659 AAGUAAAUUUCGAAGGAAUGG
6626 660 UCAGCAAUACAUGCUGCCUUC
6627 661 UUCCCUGGUGGUUGUUGGUUU
6628 662 CUGUCGAAGCUGGUGCUGGUA
6629 663 AGUAAAUUUCGAAGGAAUGGU
6630 664 CUGCAAGAGAGCUUCUAGCUC
6631 665 UCCUGGUUGGUACCAAGGCGC
6632 666 AAGGUCCAGUUUCACUAGCAC
6633 667 UUACAUAGGUGGUUAUAAUAC
6634 668 AUAGGUAGAUGCACAGGGAUU
6635 669 CUUGAUGAACGAGUGCAGGGA
6636 670 CCAUAUGUAUAGAUGAGCCAG
6637 671 CUGCUGCUUGUCCUCUAGGGA
6638 672 UCUCCAUACUGUCCUCAGAUG
6639 673 CUGGUGCUGGUACCUAUCCGA
6640 674 UGCUCAGCAAUACAUGCUGCC
6641 675 ACAUGGGAGAAACUACGACAU
6642 676 CUACUGCUGGUACACUGACUG
6643 677 AGUGGUAGAGUUUAGCUCUGC
6644 678 UCCGAAGGUCCAGUUUCACUA
6645 679 UGUUCCCGCUGUUGCAUCUGU
6646 680 ACAGGGAUUCACAUUGACAAU
6647 681 UGAUGAACGAGUGCAGGGAUG
6648 682 AGGAAUGGUUUCUUCCCUGGU
6649 683 CUCUUCUGAUCUUUGCAGCGC
6650 684 ACACUCCUCUUCAAGGAAGUG
6651 685 UGUGCCCAUCGAUGACUUGUU
6652 686 UCUGUCCGCAACAGCCUUAUA
6653 687 AAUAGGUCAUAAAGCAGUUCG
6654 688 CUCCUCAGCAUCUUGCACAUG
6655 689 CUUAUGCAACUCUUCAGUGGU
6656 690 GUACACUGACUGAUAGAAGAG
6657 691 UGAAGACUAUGUUCCUUGAUG
6658 692 GAGGUAGAGACGACAGAGCAG
6659 693 CUUGUCCACAUCAAUGGUGAA
6660 694 UGAGUAUUGCAUCCUGGAUAU
6661 695 CUUCUGAUCUUUGCAGCGCUC
6662 696 UCUAGGGAGGUAGAGACGACA
6663 697 UCCCGCUCCUGAAUCUCUUCU
6664 698 UAGGUAGAUGCACAGGGAUUC
6665 699 CAUUUCCUCCAAUAGUUCCUU
6666 700 AGCAGGGACAGCUUCUUCAUU
6667 701 UCUGCUUUGCACUGCUGUAAU
6668 702 UGUAGAUCUCAAAGAAUGAGA
6669 703 GCUAGUGUCUGAGUAUUGCAU
6670 704 ACUGCACCACUGUUCCCGCUG
6671 705 AAUAAUAUCUUUAAUAUAACU
6672 706 AUCGGACAGCAAGCCCGCUGG
6673 707 UCCUGCUUCCUUCAACCGUUC
6674 708 UAUGUUCCUUGAUGAACGAGU
6675 709 AGGUUGAAGAAGGAUGCCUGU
6676 710 CAAUAUCAUCAUCAAGGCCUG
6677 711 AGACCUAUUUCUUCAGGAGAG
6678 712 GUUGUUCUGCAGUUCAGCCAG
6679 713 CUGCAGUCUGUUGAGCUUUGG
6680 714 AGUACAUCCUUUACCAUCUCC
6681 715 CAUGAAUCCAGUUGAGAUCUU
6682 716 CAUCGGACAGCAAGCCCGCUG
6683 717 CUCCUGUCGGAUCUGCUUGCU
6684 718 AUCUUUGCAGCGCUCUGAGCC
6685 719 AAGGGUCUCCACAUUCUCAAU
6686 720 AAUACGGACACAACCCUGAUC
6687 721 CAUUUCCUCCUGUCGGAUCUG
6688 722 UCACUGCACCACUGUUCCCGC
6689 723 AGUUAGUGACUCCAUAUGUAU
6690 724 AUCUUUCACAUAGGGAUUGCC
6691 725 AGAUGGAACCUGCUGCUUGUC
6692 726 AUAGAAAUCAUAUAAGUAAAU
6693 727 AGAGACCUAUUUCUUCAGGAG
6694 728 UGAGCGUAGGAUCCGGGCAUA
6695 729 UCGUUCCAACUCUGAAGGUAA
6696 730 CAAGGGUCUCCACAUUCUCAA
6697 731 GAACCUGCUGCUUGUCCUCUA
6698 732 AGGCUAUUGAAGAUCAGCGCC
6699 733 CUAGUCGCCGAAGCUGGACUU
6700 734 AUGGGAGAAACUACGACAUCG
6701 735 CUUCCUUCAACCGUUCACCAC
6702 736 AUGCUGCCUUCUUCCGAAGGU
6703 737 CUUCUAACUUCUUGUCCACAU
6704 738 AGAAGAUGCUGUGACUGCGGC
6705 739 UUCCCGCUGUUGCAUCUGUUC
6706 740 CAACCCUGAUCUUCCUGUCGU
6707 741 AAUUUCGAAGGAAUGGUUUCU
6708 742 AGAGAGGUGUUAAUGUUUCCU
6709 743 GAUGUCAUCACAAGUGGUCAA
6710 744 AAGGGCAGCAAUACAGCGGCC
6711 745 AUCAUGCAGGAACGGCCUCGG
6712 746 GCAUCCUGGAUAUAAUUCCUG
6713 747 CAACUCUUCAGUGGUAGAGUU
6714 748 UCUGUUCUACCAUCUCAUUGC
6715 749 ACGCCGUGAGCGUAGGAUCCG
6716 750 AAUGAGAUCCAGAUGGAGAAG
6717 751 ACAAGCUCUCUCUGCUGAUUG
6718 752 UCUCAAAGAAUGAGAUCCAGA
6719 753 UGGUUGGUACCAAGGCGCUUU
6720 754 AGUAUACUUUCACCUUCUCCA
6721 755 AAAUUUCAUCUCGGAGAUGCA
6722 756 UCUCGGAGAUGCAUCUCCAGC
6723 757 CUGAAGCUCUGUCCGCAACAG
6724 758 GUUAAUGUUUCCUGCUUCCUU
6725 759 UUCGAAGGAAUGGUUUCUUCC
6726 760 CUGAAGGUGUAGGAUCCUGAU
6727 761 AAUACAGCGGCCCAGGGUGUG
6728 762 GUAGGAGCUCCUCUUUGCCAU
6729 763 ACGAAGGGCAGCAAUACAGCG
6730 764 AGAAGCGAAUGUUUGCCGGGA
6731 765 CACUAGCACCAUGUUGUUCUG
6732 766 GAGAAGAUGCUGUGACUGCGG
6733 767 AGACUCACCAAGUUUCUGAAG
6734 768 AGUAUGAUACUGCUCAGCAAU
6735 769 CAGCCUAGGUCCGAAGACGUG
6736 770 CAUCAUAGGUAGAUGCACAGG
6737 771 CUGCUUGUCCUCUAGGGAGGU
6738 772 ACAGAGCAGUCUGAUAGCAGG
6739 773 UCCGACUUUCGAUGUAGACAC
6740 774 AGGGAGGUAGAGACGACAGAG
6741 775 AGAGCAAGGGCUUCAGAUCAG
6742 776 CAAACAUGGGAGAAACUACGA
6743 777 AUACUGCUCAGCAAUACAUGC
6744 778 ACUCUGAAGGUAACAAGGGCC
6745 779 ACACAACCCUGAUCUUCCUGU
6746 780 CAUCCUUGAUGGUACCUUGAA
6747 781 CACUGCACCACUGUUCCCGCU
6748 782 UGGAGAGCAAGGGCUUCAGAU
6749 783 GUAGACACUCCUCUUCAAGGA
6750 784 CUUGGGUGCUUGUAGAACAAG
6751 785 GUCGGAUCUGCUUGCUGUCUA
6752 786 UAGAAGAGAGCCCAGCAAUGC
6753 787 UCCUUCACAGUUAGGUUGAAG
6754 788 UCUUCCGAAGGUCCAGUUUCA
6755 789 CUCGCAUAGCCGCAAAGUCUG
6756 790 CUAAUAGGUCAUAAAGCAGUU
6757 791 ACUGCGGCUGGAGUUCUGGUU
6758 792 CAUCACAAGUGGUCAAGGCUU
6759 793 CCUCUUCUAACUUCUUGUCCA
6760 794 ACUCAAACAUGGGAGAAACUA
6761 795 AUGCAGGAACGGCCUCGGCCU
6762 796 GGCAACAAGCUCUCUCUGCUG
6763 797 GUCAUAAAGCAGUUCGUUGUA
6764 798 GUCCUCAGAUGGAACCUGCUG
6765 799 GAAGGAAUGGUUUCUUCCCUG
6766 800 CUUCUAGCUCUUCAAUCUUUU
6767 801 UCCUGGAUAUAAUUCCUGAUA
6768 802 UCCCGCUGUUGCAUCUGUUCU
6769 803 CAAUACGGACACAACCCUGAU
6770 804 AGUCUGGUCCUGUUUGAUUAA
6771 805 UCACGGAAGGGAACCAGGUUC
6772 806 UGCCGGGACAGGUAGUGGGGC
6773 807 CACUGCUGUAAUUUAGCUUUA
6774 808 UGGAUAUAAUUCCUGAUAUAU
6775 809 AGGAUGCCUGUCCCACUUCUG
6776 810 UGAUAGCAGGUUCUUGCGUAC
6777 811 ACUUUCGCAGCCGCAGAGCAC
6778 812 UUCAUUUCCUCCUGUCGGAUC
6779 813 GAAGGGAACCAGGUUCUGCUU
6780 814 UCCUCAGCAUCUUGCACAUGA
6781 815 GAGUACAUCCUUUACCAUCUC
6782 816 CAUCUCGGAGAUGCAUCUCCA
6783 817 GUGAACAAUAAUAUCUUUAAU
6784 818 CUGUCGGAUCUGCUUGCUGUC
6785 819 UCCUCUAGGGAGGUAGAGACG
6786 820 AGAAGGAUGCCUGUCCCACUU
6787 821 GAGUCAACUUGCUGUCACGGA
6788 822 UGUUGGUUUGGUUGCUGAUUU
6789 823 AGAUGCUGUGACUGCGGCUGG
6790 824 AGUGGACAGCUCCUCCUCUUG
6791 825 UGCUGCCUUCUUCCGAAGGUC
6792 826 CAAGGAAGUGGACAGCUCCUC
6793 827 GACAGAGCAGUCUGAUAGCAG
6794 828 CUGUGGACUCAAACAUGGGAG
6795 829 UGAAUCUCUUCUUGGUAAAAA
6796 830 ACCUCCUGAAGCUGCUGGGUG
6797 831 CUCAAGUAUACUUUCACCUUC
6798 832 GCUAUUGAAGAUCAGCGCCAG
6799 833 ACCGUUCACCACUCUUCUGAU
6800 834 UCCUCCUCUUGGAGGCCUCCA
6801 835 UCCUCAGAUGGAACCUGCUGC
6802 836 AUAGGUGGUUAUAAUACAAAA
6803 837 CACAUCAAUGGUGAAGGGCUU
6804 838 CAAGAGAGCUUCUAGCUCUUC
6805 839 GCUUCUAGCUCUUCAAUCUUU
6806 840 UCCGCAACAGCCUUAUAUUCU
6807 841 UCCCUGGUGGUUGUUGGUUUG
6808 842 CACUCGAGUCAACUUGCUGUC
6809 843 GACUGCUCUUCUCUUUCCCCA
6810 844 GAGAGACUCACCAAGUUUCUG
6811 845 GAGACGACAGAGCAGUCUGAU
6812 846 UUCUUCCCUGGUGGUUGUUGG
6813 847 UCAGUGACUCCUUGAGGAUAU
6814 848 AGGAGAGUAGCUGACCCACCU
6815 849 CUGACUGAUAGAAGAGAGCCC
6816 850 AUCCCGCUCCUGAAUCUCUUC
6817 851 GUAAAUUUCGAAGGAAUGGUU
6818 852 CUUUGCACUGCUGUAAUUUAG
6819 853 AACAAGGGCCUAACCCUCAAG
6820 854 CUCUGCUUUGCACUGCUGUAA
6821 855 CUUGUCAGUGACUCCUUGAGG
6822 856 AUGGAGAUGUCAGCUUCAUUU
6823 857 GAAACUACGACAUCGUCAUCG
6824 858 AGUCUGCCUCUUGCGCUGUUG
6825 859 GAGUUAGUGACUCCAUAUGUA
6826 860 ACAAUAAUAUCUUUAAUAUAA
6827 861 UCCUCUUCAAGGAAGUGGACA
6828 862 GUGUAGAGAGGUGUUAAUGUU
6829 863 CACCAAGUUUCUGAAGCUCUG
6830 864 ACUCACACCUAGUCGCCGAAG
6831 865 GUUCACCACUCUUCUGAUCUU
6832 866 ACCUAUUUCUUCAGGAGAGUA
6833 867 CGAGUCAACUUGCUGUCACGG
6834 868 AGAGACUCACCAAGUUUCUGA
6835 869 ACCUUGAAUCGUGUGGGUUUU
6836 870 CACAGUUAGGUUGAAGAAGGA
6837 871 AGGUCAUAAAGCAGUUCGUUG
6838 872 UCCUCUUGGAGGCCUCCAUUU
6839 873 AACAUGGGAGAAACUACGACA
6840 874 GUCUGAGUAUUGCAUCCUGGA
6841 875 CUUCAACCGUUCACCACUCUU
6842 876 CAGUUUCACUAGCACCAUGUU
6843 877 CACCUUCUCCAUACUGUCCUC
6844 878 AACCUUUGUGACCGCCGUAGG
6845 879 CAUAGCCGCAAAGUCUGCCUC
6846 880 CUUUCACAUAGGGAUUGCCAU
6847 881 AACCCUCAAGUAUACUUUCAC
6848 882 CAUCUGUUCUACCAUCUCAUU
6849 883 GUCUGAUAGCAGGUUCUUGCG
6850 884 AUGGAGAAGCGAAUGUUUGCC
6851 885 GUCUCCACAUUCUCAAUACGG
6852 886 AUUACAUAGGUGGUUAUAAUA
6853 887 UGCGGCUGGAGUUCUGGUUGA
6854 888 CAAGUGGUCAAGGCUUGACGA
6855 889 UGAUCUUCCUGUCGUUCCAAC
6856 890 ACCUAGUCGCCGAAGCUGGAC
6857 891 CUCCUUCACAGUUAGGUUGAA
6858 892 AGGAUCCUGAUUGAGAAGAUG
6859 893 CGUCAUCGGACAGCAAGCCCG
6860 894 AUCUGCAGCUGUGGACUCAAA
6861 895 UCACUAGCACCAUGUUGUUCU
6862 896 UCAUCCCGCUCCUGAAUCUCU
6863 897 UCUGAAGCUCUGUCCGCAACA
6864 898 GCAUCUGUUCUACCAUCUCAU
6865 899 AGAUGCACAGGGAUUCACAUU
6866 900 AGCUCUCUCUGCUGAUUGGAG
6867 901 GUUUAGCUCUGCUUUGCACUG
6868 902 GAGUGACAGCUCGCUGAUCUU
6869 903 AGGUAACAAGGGCCUAACCCU
6870 904 GAAGAAACCUUGGAACACUCG
6871 905 AUAUAUGGUAAAGCAUAAAAG
6872 906 GAGAUCCAGAUGGAGAAGCGA
6873 907 CAUACAUUUCCUCCAAUAGUU
6874 908 ACCACUGUUCCCGCUGUUGCA
6875 909 CUCACCAAGUUUCUGAAGCUC
6876 910 AUCUCAUUGCAAAUUUCAUCU
6877 911 CUGUUCCCGCUGUUGCAUCUG
6878 912 GAGAAACUACGACAUCGUCAU
6879 913 AGCACCAUGUUGUUCUGCAGU
6880 914 AUACGGACACAACCCUGAUCU
6881 915 AAGAGAGCCCAGCAAUGCCAC
6882 916 CUCGAGUCAACUUGCUGUCAC
6883 917 AAGGAUGCCUGUCCCACUUCU
6884 918 UUGCGACAUGACGGCAGGGGC
6885 919 GAGAGGUGUUAAUGUUUCCUG
6886 920 AAUCAUAUAAGUAAAUAAAAA
6887 921 CAAUCAUGCAGGAACGGCCUC
6888 922 GGGAUUCACAUUGACAAUCAU
6889 923 AGGUUCUUGCGUACCACAGAC
6890 924 UCAUUUCCUCCUGUCGGAUCU
6891 925 CAUCCCGCUCCUGAAUCUCUU
6892 926 GUUCUGCUUUGACCGGUUCUG
6893 927 UGCUACAUUUGGAAUUCAAUA
6894 928 CUUGUAGAACAAGGGUCUCCA
6895 929 AGGUAGAGACGACAGAGCAGU
6896 930 UGCUGUCACGGAAGGGAACCA
6897 931 CUUUGACCGGUUCUGCUGGUU
6898 932 GAAGAUGCUGUGACUGCGGCU
6899 933 CAAGUAUACUUUCACCUUCUC
6900 934 GGGUGCUUGUAGAACAAGGGU
6901 935 CACCUAGUCGCCGAAGCUGGA
6902 936 AGCCGCAAAGUCUGCCUCUUG
6903 937 GGUACCUAUCCGACUUUCGAU
6904 938 CGACUUUCGAUGUAGACACUC
6905 939 GAUGCUGUGACUGCGGCUGGA
6906 940 CAGACCCUGAUUGCUGAUGGG
6907 941 AUACUUUCACCUUCUCCAUAC
6908 942 AGGGCUUCAGAUCAGGUGUUG
6909 943 AGAUCCAGAUGGAGAAGCGAA
6910 944 ACUUGCUGUCACGGAAGGGAA
6911 945 AGAGGUGUUAAUGUUUCCUGC
6912 946 GAAACCUUGGAACACUCGAGU
6913 947 CAAAGCUCUGGUUCUUACGAC
6914 948 CUCAUUGGAGAGCAAGGGCUU
6915 949 CAUCUUGCACAUGAAUCCAGU
6916 950 UGAGUACAUCCUUUACCAUCU
6917 951 UGUGGACUCAAACAUGGGAGA
6918 952 CUGCUGAUUGGAGAGACUCAC
6919 953 ACGACAUCGUCAUCGGACAGC
6920 954 CAGUUCGUUGUAGAUCUCAAA
6921 955 CUCCUUGAGGAUAUUUAGUUU
6922 956 GAGAAGCGAAUGUUUGCCGGG
6923 957 AGAAAGGAUCCCUUGCGACAU
6924 958 CGACAGAGCAGUCUGAUAGCA
6925 959 UGUAGACACUCCUCUUCAAGG
6926 960 CGAAGGAAUGGUUUCUUCCCU
6927 961 UGGAGGCCUCCAUUUAGCAGG
6928 962 AUGUUUGCCGGGACAGGUAGU
6929 963 GAUCACAGAGUGACAGCUCGC
6930 964 CCGCUCCUGAAUCUCUUCUUG
6931 965 AGCAAUACAGCGGCCCAGGGU
6932 966 AAAGGAUCCCUUGCGACAUGA
6933 967 UCACAGUUAGGUUGAAGAAGG
6934 968 AGUUGAGAUCUUUCACAUAGG
6935 969 AUUGACAAUCAUGCAGGAACG
6936 970 CUGAUACUUAUGCAACUCUUC
6937 971 ACUCUUCAGUGGUAGAGUUUA
6938 972 CCUGAUUGAGAAGAUGCUGUG
6939 973 UGAAUCCAGUUGAGAUCUUUC
6940 974 GCAAGAGAGCUUCUAGCUCUU
6941 975 CCUCAAGUAUACUUUCACCUU
6942 976 AAGCUCUGGUUCUUACGACCC
6943 977 GACUGAUAGAAGAGAGCCCAG
6944 978 AAAUCAUAUAAGUAAAUAAAA
6945 979 CUGGUUCUUACGACCCACUUU
6946 980 CGAAGGGCAGCAAUACAGCGG
6947 981 CUUCACAGUUAGGUUGAAGAA
6948 982 AGCAGUCUGAUAGCAGGUUCU
6949 983 GUAGAGACGACAGAGCAGUCU
6950 984 GGAGUUUCAACACAGUAUGAU
6951 985 UGCCCAUCGAUGACUUGUUUC
6952 986 UCCACAUUCUCAAUACGGACA
6953 987 ACCUGAAGACUAUGUUCCUUG
6954 988 UGUCAUCACAAGUGGUCAAGG
6955 989 CCUUGGAGUUUCAACACAGUA
6956 990 CUGAGUAUUGCAUCCUGGAUA
6957 991 CUUUGAGUACAUCCUUUACCA
6958 992 GUGAGCGUAGGAUCCGGGCAU
6959 993 GUACAUCCUUUACCAUCUCCU
6960 994 CUUCUUCCGAAGGUCCAGUUU
6961 995 GGUACCUUGAAUCGUGUGGGU
6962 996 AUCCGGGCAUAAGGGCUGCAG
6963 997 CUUGGAGUUUCAACACAGUAU
6964 998 AAGGUAACAAGGGCCUAACCC
6965 999 GUGCUGGUACCUAUCCGACUU
6966 1000 UUACCUCAUUGGAGAGCAAGG
6967 1001 UGAGAUCCAGAUGGAGAAGCG
6968 1002 CUGGAGUUCUGGUUGAGGUGG
6969 1003 CAGCUGUGGACUCAAACAUGG
6970 1004 CUGAGUUAGUGACUCCAUAUG
6971 1005 ACCAUCUCCUUCACAGUUAGG
6972 1006 GACUCCAUAUGUAUAGAUGAG
6973 1007 GUUGUUGGUUUGGUUGCUGAU
6974 1008 GCAACAAGCUCUCUCUGCUGA
TABLE 10
Results for LTB. Score threshold: 70.
Design: siRNA 21 nt.
SEQ
ID siRNA_ siRNA guide strand/
NO id AS Sequence
6975 1 UUAUCGGCAGCACUGAAGCUU
6976 2 UGUUCCUUCGUCGUCUCCCAG
6977 3 UCAAUUUCCAAACAGUCUCCU
6978 4 UUUCCAAACAGUCUCCUACAU
6979 5 UUGACGUACACCCUCUCGCCC
6980 6 UUUAUCGGCAGCACUGAAGCU
6981 7 UUCUGAAACCCAGUCCUCCCU
6982 8 UAAUAGAGGCCGUCCUGCGGG
6983 9 UCGUGUACCAGAGAGGCCCGU
6984 10 UACAGAGAGCUGCGCAGCGUG
6985 11 UCCUUCGUCGUCUCCCAGCCU
6986 12 UCGAGCAGCAGCUCGGGAGUG
6987 13 UCUGAAACCCAGUCCUCCCUG
6988 14 UUCACGCACUCGCACCACGCA
6989 15 UUCCAAACAGUCUCCUACAUU
6990 16 AAGAAGGUCUUCCCUCUCGCG
6991 17 AUAUUCACGCACUCGCACCAC
6992 18 UCCAGCACUGGAGUCACCGUC
6993 19 ACUGAUGUUGACGUACACCCU
6994 20 UCGCGAAGUCCACCAUAUCGG
6995 21 UAGCCGACGAGACAGUAGAGG
6996 22 UCACGCACUCGCACCACGCAC
6997 23 AAGCUUUCCAUUCUUUAUUUU
6998 24 UAUCGGCAGCACUGAAGCUUU
6999 25 AUGUUGACGUACACCCUCUCG
7000 26 AGAAGGUCUUCCCUCUCGCGA
7001 27 AACAAGGUCACCAGAGAAGUG
7002 28 AACGCCUGUUCCUUCGUCGUC
7003 29 UCGUCUCCCAGCCUAGCCCCU
7004 30 UCGGCGUCCGAGAACUGCGUC
7005 31 AAUAUUCACGCACUCGCACCA
7006 32 UCGUCAGAAACGCCUGUUCCU
7007 33 UACCAGAGAGGCCCGUACCCU
7008 34 ACUGGAGUCACCGUCUCGGCG
7009 35 UAUGAGGUGGGCAGCUGGGAG
7010 36 UGAUGUUGACGUACACCCUCU
7011 37 AUCAAUUUCCAAACAGUCUCC
7012 38 UGACGUACACCCUCUCGCCCC
7013 39 AGUAGAGGUAAUAGAGGCCGU
7014 40 UGAAGCUUUCCAUUCUUUAUU
7015 41 CUGAUGUUGACGUACACCCUC
7016 42 UCCCGCUCGUCAGAAACGCCU
7017 43 AGCACUGGAGUCACCGUCUCG
7018 44 CAAUUUCCAAACAGUCUCCUA
7019 45 AAACGCCUGUUCCUUCGUCGU
7020 46 UAUUCACGCACUCGCACCACG
7021 47 AUAGAGGCCGUCCUGCGGGAG
7022 48 GACAGUGAUAGGCACCGCCAG
7023 49 AGCUUCUGAAACCCAGUCCUC
7024 50 AGCAACAAGGUCACCAGAGAA
7025 51 UUCCUUCGUCGUCUCCCAGCC
7026 52 UCCGAGAACUGCGUCCCGCUC
7027 53 AGAGCUGCGCAGCGUGACCGA
7028 54 CUGCGCAGCGUGACCGAGCGG
7029 55 AAUAGAGGCCGUCCUGCGGGA
7030 56 UGAAACCCAGUCCUCCCUGAU
7031 57 UGUUGACGUACACCCUCUCGC
7032 58 ACCCAGUCCUCCCUGAUCCUG
7033 59 ACAAGGUCACCAGAGAAGUGG
7034 60 UGGAGUCACCGUCUCGGCGCC
7035 61 AUCGGCAGCACUGAAGCUUUC
7036 62 AAUUUCCAAACAGUCUCCUAC
7037 63 AGAAACGCCUGUUCCUUCGUC
7038 64 UUCAGCGGAGCGCCUAUGAGG
7039 65 UCACCGUCUCGGCGCCCUCGA
7040 66 AACUGCGUCCCGCUCGUCAGA
7041 67 AUUCACGCACUCGCACCACGC
7042 68 AAAGAAGGUCUUCCCUCUCGC
7043 69 GUACAGAGAGCUGCGCAGCGU
7044 70 AGACAGUAGAGGUAAUAGAGG
7045 71 CAGUAGAGGUAAUAGAGGCCG
7046 72 UCCAAACAGUCUCCUACAUUU
7047 73 CAAACAGUCUCCUACAUUUUU
7048 74 GUAAUAGAGGCCGUCCUGCGG
7049 75 UUCGUCGUCUCCCAGCCUAGC
7050 76 AAGGUCUUCCCUCUCGCGAAG
7051 77 CUGUUCCUUCGUCGUCUCCCA
7052 78 CCUUCGUCGUCUCCCAGCCUA
7053 79 UGACUGAUGUUGACGUACACC
7054 80 UGCACCAGGCCGCCGAACCCC
7055 81 GAGGUAAUAGAGGCCGUCCUG
7056 82 UCUUCCCUCUCGCGAAGUCCA
7057 83 AGAGGUAAUAGAGGCCGUCCU
7058 84 AUUUCCAAACAGUCUCCUACA
7059 85 ACAGUAGAGGUAAUAGAGGCC
7060 86 CAGCUUCUGAAACCCAGUCCU
7061 87 AACCCAGUCCUCCCUGAUCCU
7062 88 UCCGGAGCUGCACCAGGCCGC
7063 89 UCAGAAACGCCUGUUCCUUCG
7064 90 UCGUCGUCUCCCAGCCUAGCC
7065 91 CAGCACUGGAGUCACCGUCUC
7066 92 CAGUCCUCCCUGAUCCUGGGG
7067 93 ACUGAAGCUUUCCAUUCUUUA
7068 94 UGCGCAGCGUGACCGAGCGGC
7069 95 UCAGCGGAGCGCCUAUGAGGU
7070 96 UCCCUCUCGCGAAGUCCACCA
7071 97 AGCACUGAAGCUUUCCAUUCU
7072 98 UAGAGGUAAUAGAGGCCGUCC
7073 99 ACUCGCACCACGCACUCAUAU
7074 100 CUCGGCGUCCGAGAACUGCGU
7075 101 AGGACAGUGAUAGGCACCGCC
7076 102 GCGAAGUCCACCAUAUCGGGG
7077 103 GAGCUGCGCAGCGUGACCGAG
7078 104 GAGAACUGCGUCCCGCUCGUC
7079 105 ACGCACUCGCACCACGCACUC
7080 106 GCACUGAAGCUUUCCAUUCUU
7081 107 ACAGCUAGCAGGAGGGAACCC
7082 108 ACGCCUGUUCCUUCGUCGUCU
7083 109 CACCACGCACUCAUAUUCCCU
7084 110 GUAGAGGUAAUAGAGGCCGUC
7085 111 ACAGAGAGCUGCGCAGCGUGA
7086 112 GAGACAGUAGAGGUAAUAGAG
7087 113 ACUGCGUCCCGCUCGUCAGAA
7088 114 CGCGAAGUCCACCAUAUCGGG
7089 115 GUAGCCGACGAGACAGUAGAG
7090 116 CACUGAAGCUUUCCAUUCUUU
7091 117 UCGGCAGCACUGAAGCUUUCC
TABLE 11
GalNAC-siRNA conjugates.
SEQ Passenger SEQ guide
ID strand ID strand
NO siRNA_id (sense) NO (antisense)
7092 Mfap4.1356 GCUACUGCUC 7141 UUCAGAGUUG
AACUCUGAA AGCAGUAGCC
G
7093 Mfap4.760 GCUUCUAUUA 7142 UUGAGGGAGU
CUCCCUCAA AAUAGAAGCC
U
7094 Grhpr.361 GACAGAUGCC 7143 UUCUGCAGUG
ACUGCAGAA GCAUCUGUCA
G
7095 lftg1.698 CGACAUUGAC 7144 UUAGAGGCAG
UGCCUCUAA UCAAUGUCGU
G
7096 ltfg1.680 CACUGAUUAU 7145 UUGAAGUCCA
GGACUUCAA UAAUCAGUGG
U
7146 Mfap4.1356 5′-cscsaGf 7151 5′-UfsUfsc
modified cUfaCfuGfc AfgAfgUfuG
UfcAfaCfuC faGfcAfgUf
fuGfaAfs aGfcsdTsdT
(NHC6)(Gal -3′
NAc3)-3′
7147 Mfap4.760 5′-cscsaGf 7152 5′-UfsUfsg
modified cUfuCfuAfu AfgGfgAfgU
UfaCfuCfcC faAfuAfgAf
fuCfaAfs aGfcsdTsdT
(NHC6)(Gal -3′
NAc3)-3′
7148 Grhpr.361 5′-cscsaGf 7153 5′-UfsUfsc
modified aCfaGfaUfg UfgCfaGfuG
CfcAfcUfgC fgCfaUfcUf
faGfaAfs gUfcsdTsdT
(NHC6)(Gal -3′
NAc3)-3′
7149 Iftg1.698 5′-cscsaCf 7154 5′-UfsUfsa
modified gAfcAfuUfg GfaGfgCfaG
AfcUfgCfcU fuCfaAfuGf
fcUfaAfs uCfgsdTsdT
(NHC6)(Gal -3′
NAc3)-3′
7150 Itfg1.680 5′-cscsaCf 7155 5′-UfsUfsg
modified aCfuGfaUfu AfaGfuCfcA
AfuGfgAfcU fuAfaUfcAf
fuCfaAfs gUfgsdTsdT
(NHC6)(Gal -3′
NAc3)-3′
n: 2′-O-methyl residues
Nf: 2′-Fluoro residues
s: phosphorothioate backbone modification
dN: DNA residue
(NHC6): Aminohexyl linker
(GalNAc3): Trinatennary GalNAc cluster
TABLE 12
Human shRNAs sequences
(sense-loop-antisense sequences)
SEQ
ID shRNA-
NO: id Nucleic acid sequence
7097 huMfap4.1602 TGCTGTTGACAGTGAGCGATAGGGA
CTGAAGGTCTCAATATAGTGAAGCC
ACAGATGTATATTGAGACCTTCAGT
CCCTACTGCCTACTGCCTCGGA
7098 huMfap4.1603 TGCTGTTGACAGTGAGCGCAGGGAC
TGAAGGTCTCAATAATAGTGAAGCC
ACAGATGTATTATTGAGACCTTCAG
TCCCTATGCCTACTGCCTCGGA
7099 huMfap4.1642 TGCTGTTGACAGTGAGCGAAACTGG
CTTCATACACACAAATAGTGAAGCC
ACAGATGTATTTGTGTGTATGAAGC
CAGTTCTGCCTACTGCCTCGGA
7100 huMfap4.1812 TGCTGTTGACAGTGAGCGCCAGTGT
AATAATAACATAATATAGTGAAGCC
ACAGATGTATATTATGTTATTATTA
CACTGTTGCCTACTGCCTCGGA
7101 huMfap4.318 TGCTGTTGACAGTGAGCGACAGAAG
AGATTCAATGGCTCATAGTGAAGCC
ACAGATGTATGAGCCATTGAATCTC
TTCTGGTGCCTACTGCCTCGGA
7102 huMfap4.350 TGCTGTTGACAGTGAGCGCCCGCGG
CTGGAATGACTACAATAGTGAAGC
CACAGATGTATTGTAGTCATTCCAG
CCGCGGATGCCTACTGCCTCGGA
7103 huGrhpr.1125 TGCTGTTGACAGTGAGCGAAAGGTG
TGATTCTCTGAGGAATAGTGAAGCC
ACAGATGTATTCCTCAGAGAATCAC
ACCTTCTGCCTACTGCCTCGGA
7104 huGrhpr.1172 TGCTGTTGACAGTGAGCGCCACATT
GGTGTTGGACACATTTAGTGAAGCC
ACAGATGTAAATGTGTCCAACACCA
ATGTGATGCCTACTGCCTCGGA
7105 huGrhpr.626 TGCTGTTGACAGTGAGCGCTCCAGG
CAGAGTTTGTGTCTATAGTGAAGCC
ACAGATGTATAGACACAAACTCTGC
CTGGAATGCCTACTGCCTCGGA
7106 huGrhpr.750 TGCTGTTGACAGTGAGCGCAACAGC
TGTGTTCATCAACATTAGTGAAGCC
ACAGATGTAATGTTGATGAACACAG
CTGTTTTGCCTACTGCCTCGGA
7107 huGrhpr.752 TGCTGTTGACAGTGAGCGCCAGCTG
TGTTCATCAACATCATAGTGAAGCC
ACAGATGTATGATGTTGATGAACAC
AGCTGTTGCCTACTGCCTCGGA
7108 huGrhpr.954 TGCTGTTGACAGTGAGCGACATGTC
CTTGTTGGCAGCTAATAGTGAAGCC
ACAGATGTATTAGCTGCCAACAAGG
ACATGGTGCCTACTGCCTCGGA
7109 hultfg1.1364 TGCTGTTGACAGTGAGCGAAAGCAG
ATGCTTATTTTGTTATAGTGAAGCC
ACAGATGTATAACAAAATAAGCATC
TGCTTCTGCCTACTGCCTCGGA
7110 hultfg1.1683 TGCTGTTGACAGTGAGCGACCAGCT
AATTGTCATTCCATATAGTGAAGCC
ACAGATGTATATGGAATGACAATTA
GCTGGGTGCCTACTGCCTCGGA
7111 hultfg1.2162 TGCTGTTGACAGTGAGCGATCCAGT
GTTTGTGTATTTATATAGTGAAGCC
A
CAGATGTATATAAATACACAAACAC
TGGAGTGCCTACTGCCTCGGA
7112 hultfg1.2163 TGCTGTTGACAGTGAGCGCCCAGTG
TTTGTGTATTTATAATAGTGAAGCC
ACAGATGTATTATAAATACACAAAC
ACTGGATGCCTACTGCCTCGGA
7113 hultfg 1.641 TGCTGTTGACAGTGAGCGACAGCAT
TGACCACTACAAGTATAGTGAAGCC
ACAGATGTATACTTGTAGTGGTCAA
TGCTGGTGCCTACTGCCTCGGA
7114 hultfg1.971 TGCTGTTGACAGTGAGCGATCCTAC
AAGATTTCAGCAATATAGTGAAGCC
ACAGATGTATATTGCTGAAATCTTG
TAGGACTGCCTACTGCCTCGGA
TABLE 13
Mouse shRNA sequences (sense-loop-
antisense sequences)
SEQ
ID
NO shRNA_id Nucleic acid sequence
7115 Mfap4.1073 TGCTGTTGACAGTGAGCGAAAAGCC
AGAAGCTACCTTCTATAGTGAAGCC
ACAGATGTATAGAAGGTAGCTTCTG
GCTTTCTGCCTACTGCCTCGGA
7116 Mfap4.1118 TGCTGTTGACAGTGAGCGCCAGCAG
TTTCCTTACTGCAGATAGTGAAGCC
ACAGATGTATCTGCAGTAAGGAAAC
TGCTGATGCCTACTGCCTCGGA
7117 Mfap4.1321 TGCTGTTGACAGTGAGCGCTCCCTC
AAAATTCACCACCAATAGTGAAGCC
ACAGATGTATTGGTGGTGAATTTTG
AGGGATTGCCTACTGCCTCGGA
7118 Mfap4.1356 TGCTGTTGACAGTGAGCGCCGGCTA
CTGCTCAACTCTGAATAGTGAAGCC
ACAGATGTATTCAGAGTTGAGCAGT
AGCCGTTGCCTACTGCCTCGGA
7119 Mfap4.274 TGCTGTTGACAGTGAGCGACAAGTG
GACGGTTTTCCAGAATAGTGAAGCC
ACAGATGTATTCTGGAAAACCGTCC
ACTTGCTGCCTACTGCCTCGGA
7120 Mfap4.760 TGCTGTTGACAGTGAGCGCAGGCTT
CTATTACTCCCTCAATAGTGAAGCC
ACAGATGTATTGAGGGAGTAATAGA
AGCCTTTGCCTACTGCCTCGGA
7121 Grhpr.1009 TGCTGTTGACAGTGAGCGACCCAGC
GAACTCAAGCTGTAATAGTGAAGCC
ACAGATGTATTACAGCTTGAGTTCG
CTGGGCTGCCTACTGCCTCGGA
7122 Grhpr.1187 TGCTGTTGACAGTGAGCGCTGCCAA
AAGCCTGTAATTCTATAGTGAAGCC
ACAGATGTATAGAATTACAGGCTTT
TGGCAATGCCTACTGCCTCGGA
7123 Grhpr.1193 TGCTGTTGACAGTGAGCGCAAGCCT
GTAATTCTAGCATTATAGTGAAGCC
ACAGATGTATAATGCTAGAATTACA
GGCTTTTGCCTACTGCCTCGGA
7124 Grhpr.720 TGCTGTTGACAGTGAGCGACAGCAA
GGATTTCTTCCAGAATAGTGAAGCC
ACAGATGTATTCTGGAAGAAATCCT
TGCTGCTGCCTACTGCCTCGGA
7125 Grhpr.361 TGCTGTTGACAGTGAGCGACTGACA
GATGCCACTGCAGAATAGTGAAGC
CACAGATGTATTCTGCAGTGGCATC
TGTCAGGTGCCTACTGCCTCGGA
7126 Grhpr.787 TGCTGTTGACAGTGAGCGCCAGCAG
AGGAGATGTGGTAAATAGTGAAGC
CACAGATGTATTTACCACATCTCCT
CTGCTGATGCCTACTGCCTCGGA
7127 Grhpr.736 TGCTGTTGACAGTGAGCGACAGCAA
GGATTTCTTCCAGAATAGTGAAGCC
ACAGATGTATTCTGGAAGAAATCCT
TGCTGCTGCCTACTGCCTCGGA
7128 Grhpr.1024 TGCTGTTGACAGTGAGCGCGCCCAG
CGAACTCAAGCTGTATAGTGAAGC
CACAGATGTATACAGCTTGAGTTCG
CTGGGCATGCCTACTGCCTCGGA
7129 Grhpr.1025 TGCTGTTGACAGTGAGCGACCCAGC
GAACTCAAGCTGTAATAGTGAAGCC
ACAGATGTATTACAGCTTGAGTTCG
CTGGGCTGCCTACTGCCTCGGA
7130 lftg1.698 TGCTGTTGACAGTGAGCGCCACGAC
ATTGACTGCCTCTAATAGTGAAGCC
ACAGATGTATTAGAGGCAGTCAATG
TCGTGATGCCTACTGCCTCGGA
7131 Itfg1.376 TGCTGTTGACAGTGAGCGCGCCATC
CATACACTCAAAAAATAGTGAAGCC
ACAGATGTATTTTTTGAGTGTATGG
ATGGCATGCCTACTGCCTCGGA
7132 Itfg1.448 TGCTGTTGACAGTGAGCGCGACGCC
ATAGTTGCCACCTTATAGTGAAGCC
ACAGATGTATAAGGTGGCAACTATG
GCGTCTTGCCTACTGCCTCGGA
7133 Itfg1.694 TGCTGTTGACAGTGAGCGCGAGGCA
GATGCTTACTTTGTATAGTGAAGCC
ACAGATGTATACAAAGTAAGCATCT
GCCTCATGCCTACTGCCTCGGA
7134 Itfg1.2450 TGCTGTTGACAGTGAGCGACCAGAT
AAAGTTATTCAAGTATAGTGAAGCC
ACAGATGTATACTTGAATAACTTTA
TCTGGCTGCCTACTGCCTCGGA
7135 Itfg1.2451 TGCTGTTGACAGTGAGCGACAGATA
AAGTTATTCAAGTAATAGTGAAGCC
ACAGATGTATTACTTGAATAACTTT
ATCTGGTGCCTACTGCCTCGGA
7136 Itfg1.2802 TGCTGTTGACAGTGAGCGCTGGATT
GTCACCGAAGACATATAGTGAAGCC
ACAGATGTATATGTCTTCGGTGACA
ATCCATTGCCTACTGCCTCGGA
7137 Itfg1.2921 TGCTGTTGACAGTGAGCGCAAGCTG
GTATTTGAATACTAATAGTGAAGCC
ACAGATGTATTAGTATTCAAATACC
AGCTTTTGCCTACTGCCTCGGA
7138 Itfg1.680 TGCTGTTGACAGTGAGCGCACCACT
GATTATGGACTTCAATAGTGAAGCC
ACAGATGTATTGAAGTCCATAATCA
GTGGTTTGCCTACTGCCTCGGA
7139 Itfg1.875 TGCTGTTGACAGTGAGCGCCACGAC
ATTGACTGCCTCTAATAGTGAAGCC
ACAGATGTATTAGAGGCAGTCAATG
TCGTGATGCCTACTGCCTCGGA
7140 Itfg1.503 TGCTGTTGACAGTGAGCGCACCACT
GATTATGGACTTCAATAGTGAAGCC
ACAGATGTATTGAAGTCCATAATCA
GTGGTTTGCCTACTGCCTCGGA
TABLE 14
Target sequences.
SEQ ID
NO: Description Sequence
7156 Human MFAP4 MKALLALPLLLLLSTPPCAPQVSGIRGDALERFCLQQPLDCDDIYAQGYQSDGVYLIYPSGPSVPVPV
isoform 1 FCDMTTEGGKWTVFQKRFNGSVSFFRGWNDYKLGFGRADGEYWLGLQNMHLLTLKQKYELRVDLEDFE
(UniProtKB: NNTAYAKYADFSISPNAVSAEEDGYTLFVAGFEDGGAGDSLSYHSGQKFSTFDRDQDLFVQNCAALSS
P55083-1, v2) GAFWFRSCHFANLNGFYLGGSHLSYANGINWAQWKGFYYSLKRTEMKIRRA
7157 Human MFAP4 MGELSPLQRPLATEGTMKAQGVLLKLALLALPLLLLLSTPPCAPQVSGIRGDALERFCLQQPLDCDDI
isoform 2 YAQGYQSDGVYLIYPSGPSVPVPVFCDMTTEGGKWTVFQKRFNGSVSFFRGWNDYKLGFGRADGEYWL
(UniProtKB: GLQNMHLLTLKQKYELRVDLEDFENNTAYAKYADFSISPNAVSAEEDGYTLFVAGFEDGGAGDSLSYH
P55083-2) SGQKFSTFDRDQDLFVQNCAALSSGAFWFRSCHFANLNGFYLGGSHLSYANGINWAQWKGFYYSLKRT
EMKIRRA
7158 Human GRHPR MRPVRLMKVFVTRRIPAEGRVALARAADCEVEQWDSDEPIPAKELERGVAGAHGLLCLLSDHVDKRIL
isoform 1 DAAGANLKVISTMSVGIDHLALDEIKKRGIRVGYTPDVLTDTTAELAVSLLLTTCRRLPEAIEEVKNG
(UniProtKB: GWTSWKPLWLCGYGLTQSTVGIIGLGRIGQAIARRLKPFGVQRFLYTGRQPRPEEAAEFQAEFVSTPE
Q9UBQ7-1, v1) LAAQSDFIVVACSLTPATEGLCNKDFFQKMKETAVFINISRGDVVNQDDLYQALASGKIAAAGLDVTS
PEPLPTNHPLLTLKNCVILPHIGSATHRTRNTMSLLAANNLLAGLRGEPMPSELKL
7159 Human GRHPR MLGGVPTLCGTGNETWTLLALGQAIARRLKPFGVQRFLYTGRQPRPEEAAEFQAEFVSTPELAAQSDF
isoform 2 IVVACSLTPATEGLCNKDFFQKMKETAVFINISRYPRATLPSKPGEEPSPLLPSGDFLPRGLLVRPQA
(UniProtKB: ELAGFHKPNNQLRNSWEYTRPPYREEEPSEWAWPVCFSAVAPTRRGLAHSSVASGSVPREPLQAHYPP
Q9UBQ7-2) PQRAGLEDLKGPLEAASHTAEPGFVWLWFSDTLNLMLLGGQTLKLTWS
7160 Human ITFG1 MAAAGRLPSSWALFSPLLAGLALLGVGPVPARALHNVTAELFGAEAWGTLAAFGDLNSDKQTDLFVLR
(UniProtKB ERNDLIVFLADQNAPYFKPKVKVSFKNHSALITSVVPGDYDGDSQMDVLLTYLPKNYAKSELGAVIFW
Q8TB96-1, v1) GQNQTLDPNNMTILNRTFQDEPLIMDFNGDLIPDIFGITNESNQPQILLGGNLSWHPALTTTSKMRIP
HSHAFIDLTEDFTADLFLTTLNATTSTFQFEIWENLDGNFSVSTILEKPQNMMVVGQSAFADFDGDGH
MDHLLPGCEDKNCQKSTIYLVRSGMKQWVPVLQDFSNKGTLWGFVPFVDEQQPTEIPIPITLHIGDYN
MDGYPDALVILKNTSGSNQQAFLLENVPCNNASCEEARRMFKVYWELTDLNQIKDAMVATFFDIYEDG
ILDIWLSKGYTKNDFAIHTLKNNFEADAYFVKVIVLSGLCSNDCPRKITPFGVNQPGPYIMYTTVDA
NGYLKNGSAGQLSQSAHLALQLPYNVLGLGRSANFLDHLYVGIPRPSGEKSIRKQEWTAIIPNSQLIV
IPYPHNVPRSWSAKLYLTPSNIVLLTAIALIGVCVFILAIIGILHWQEKKADDREKRQEAHRFHFDAM
7161 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV
isoform 1 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIQPIFLGKIINYFENYDPMDSVALNTAYA
(UniProtKB: YATVLTFCTLILAILHHLYFYHVQCAGMRLRVAMCHMIYRKALRLSNMAMGKTTTGQIVNLLSNDVNK
015439-1, v3) FDQVTVFLHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDAR
IRTMNEVITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYV
LLGSVITASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKK
MVHVQDFTAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIA
YVSQQPWVFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVN
LARAVYQDADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMV
QKGTYTEFLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVWSQQSSRPSLKDGALESQDTE
NVPVTLSEENRSEGKVGFQAYKNYFRAGAHWIVFIFLILLNTAAQVAYVLQDWWLSYWANKQSMLNVT
VNGGGNVTEKLDLNWYLGIYSGLTVATVLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRN
PIGRILNRFSKDIGHLDDLLPLTFLDFIQTLLQVVGVVSVAVAVIPWIAIPLVPLGIIFIFLRRYFLE
TSRDVKRLESTTRSPVFSHLSSSLQGLWTIRAYKAEERCQELFDAHQDLHSEAWFLFLTTSRWFAVRL
DAICAMFVIIVAFGSLILAKTLDAGQVGLALSYALTLMGMFQWCVRQSAEVENMMISVERVIEYTDLE
KEAPWEYQKRPPPAWPHEGVIIFDNVNFMYSPGGPLVLKHLTALIKSQEKVGIVGRTGAGKSSLISAL
FRLSEPEGKIWIDKILTTEIGLHDLRKKMSIIPQEPVLFTGTMRKNLDPFNEHTDEELWNALQEVQLK
ETIEDLPGKMDTELAESGSNFSVGQRQLVCLARAILRKNQILIIDEATANVDPRTDELIQKKIREKFA
HCTVLTIAHRLNTIIDSDKIMVLDSGRLKEYDEPYVLLQNKESLFYKMVQQLGKAEAAALTETAKQVY
FKRNYPHIGHTDHMVTNTSNGQPSTLTIFETAL
7162 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV
isoform 2 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIQPIFLGKIINYFENYDPMDSVALNTAYA
(UniProtKB: YATVLTFCTLILAILHHLYFYHVQCAGMRLRVAMCHMIYRKALRLSNMAMGKTTTGQIVNLLSNDVNK
O15439-2) FDQVTVFLHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDAR
IRTMNEVITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYV
LLGSVITASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKK
MVHVQDFTAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIA
YVSQQPWVFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVN
LARAVYQDADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMV
QKGTYTEFLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVW
SQQSSRPSLKDGALESQDVAYVLQDWWLSYWANKQSMLNVTVNGGGNVTEKLDLNWYLGIYSGLTVAT
VLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRNPIGRILNRFSKDIGHLDDLLPLTFLDF
IQTLLQVVGVVSVAVAVIPWIAIPLVPLGIIFIFLRRYFLETSRDVKRLESTTRSPVFSHLSSSLQGL
WTIRAYKAEERCQELFDAHQDLHSEAWFLFLTTSRWFAVRLDAICAMFVIIVAFGSLILAKTLDAGQV
GLALSYALTLMGMFQWCVRQSAEVENMMISVERVIEYTDLEKEAPWEYQKRPPPAWPHEGVIIFDNVN
FMYSPGGPLVLKHLTALIKSQEKVGIVGRTGAGKSSLISALFRLSEPEGKIWIDKILTTEIGLHDLRK
KMSIIPQEPVLFTGTMRKNLDPFNEHTDEELWNALQEVQLKETIEDLPGKMDTELAESGSNFSVGQRQ
LVCLARAILRKNQILIIDEATANVDPRTDELIQKKIREKFAHCTVLTIAHRLNTIIDSDKIMVLDSGR
LKEYDEPYVLLQNKESLFYKMVQQLGKAEAAALTETAKQVYFKRNYPHIGHTDHMVTNTSNGQPSTLT
IFETAL
7163 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV
isoform 3 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEESAKVIQPIFLGKIINYFENYDPMDSVALNTAYA
(UniProtKB: YATVLTFCTLILAILHHLYFYHVQCAGMRLRVAMCHMIYRKALRLSNMAMGKTTTGQIVNLLSNDVNK
O15439-3) FDQVTVFLHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDAR
IRTMNEVITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYV
LLGSVITASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKK
MVHVQDFTAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIA
YVSQQPWVFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVN
LARAVYQDADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMV
QKGTYTEFLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVWSQQSSRPSLKDGALESQDTE
NVPVTLSEENRSEGKVGFQAYKNYFRAGAHWIVFIFLILLNTAAQVAYVLQDWWLSYWANKQSMLNVT
VNGGGNVTEKLDLNWYLGIYSGLTVATVLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRN
PIGRILNRFSKDIGHLDDLLPLTFLDFIQRWDLAVLSWLVSNS
7164 Human ABCC4 MLPVYQEVKPNPLQDANLCSRVFFWWLNPLFKIGHKRRLEEDDMYSVLPEDRSQHLGEELQGFWDKEV
isoform 4 LRAENDAQKPSLTRAIIKCYWKSYLVLGIFTLIEALRLSNMAMGKTTTGQIVNLLSNDVNKFDQVTVF
(UniProtKB: LHFLWAGPLQAIAVTALLWMEIGISCLAGMAVLIILLPLQSCFGKLFSSLRSKTATFTDARIRTMNEV
O15439-4) ITGIRIIKMYAWEKSFSNLITNLRKKEISKILRSSCLRGMNLASFFSASKIIVFVTFTTYVLLGSVIT
ASRVFVAVTLYGAVRLTVTLFFPSAIERVSEAIVSIRRIQTFLLLDEISQRNRQLPSDGKKMVHVQDF
TAFWDKASETPTLQGLSFTVRPGELLAVVGPVGAGKSSLLSAVLGELAPSHGLVSVHGRIAYVSQQPW
VFSGTLRSNILFGKKYEKERYEKVIKACALKKDLQLLEDGDLTVIGDRGTTLSGGQKARVNLARAVYQ
DADIYLLDDPLSAVDAEVSRHLFELCICQILHEKITILVTHQLQYLKAASQILILKDGKMVQKGTYTE
FLKSGIDFGSLLKKDNEESEQPPVPGTPTLRNRTFSESSVWSQQSSRPSLKDGALESQDTENVPVTLS
EENRSEGKVGFQAYKNYFRAGAHWIVFIFLILLNTAAQVAYVLQDWWLSYWANKQSMLNVTVNGGGNV
TEKLDLNWYLGIYSGLTVATVLFGIARSLLVFYVLVNSSQTLHNKMFESILKAPVLFFDRNPIGRILN
RFSKDIGHLDDLLPLTFLDFIQRWDLAVLSWLVSNS
7165 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP
isoform 1 EISLPSDFEHTIHVGFDAVTGEFTPDLYGSQMCPGKLPEGIPEQWARLLQTSNITKLEQKKNPQAVLD
(UniProtKB: VLKFYDSKETVNNQKYMSFTSGDKSAHGYIAAHPSSTKTASEPPLAPPVSEEEDEEEEEEEDENEPPP
075914-1, v2) VIAPRPEHTKSIYTRSWESIASPAVPNKEVTPPSAENANSSTLYRNTDRQRKKSKMTDEEILEKLRS
IVSVGDPKKKYTRFEKIGQGASGTVYTALDIATGQEVAIKQMNLQQQPKKELIINEILVMRENKNPNI
VNYLDSYLVGDELWVVMEYLAGGSLTDVVTETCMDEGQIAAVCRECLQALDFLHSNQVIHRDIKSDNI
LLGMDGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPP
YLNENPLRALYLIATNGTPELQNPERLSAVFRDFLNRCLEMDVDRRGSAKELLQHPFLKLAKPLSSLT
PLIIAAKEAIKNSSR
7166 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP
isoform 2 EISLPSDFEHTIHVGFDAVTGEFTGIPEQWARLLQTSNITKLEQKKNPQAVLDVLKFYDSKETVNNQK
(UniProtKB: YMSFTSGDKSAHGYIAAHPSSTKTASEPPLAPPVSEEEDEEEEEEEDENEPPPVIAPRPEHTKSIYTR
075914-2) SVVESIASPAVPNKEVTPPSAENANSSTLYRNTDRQRKKSKMTDEEILEKLRSIVSVGDPKKKYTRFE
KIGQGASGTVYTALDIATGQEVAIKQMNLQQQPKKELIINEILVMRENKNPNIVNYLDSYLVGDELWV
VMEYLAGGSLTDVVTETCMDEGQIAAVCRECLQALDFLHSNQVIHRDIKSDNILLGMDGSVKLTDFGF
CAQITPEQSKRSTMVGTPYWMAPEVVTRKAYGPKVDIWSLGIMAIEMVEGEPPYLNENPLRALYLIAT
NGTPELQNPERLSAVFRDFLNRCLEMDVDRRGSAKELLQHPFLKLAKPLSSLTPLIIAAKEAIKNSSR
7167 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP
isoform 3 EISLPSDFEHTIHVGFDAVTGEFTNSPFQTSRPVTVASSQSEGKMPDLYGSQMCPGKLPEGIPEQWAR
(UniProtKB: LLQTSNITKLEQKKNPQAVLDVLKFYDSKETVNNQKYMSFTSGDKSAHGYIAAHPSSTKTASEPPLAP
075914-3) PVSEEEDEEEEEEEDENEPPPVIAPRPEHTKSIYTRSVVESIASPAVPNKEVTPPSAENANSSTLYRN
TDRQRKKSKMTDEEILEKLRSIVSVGDPKKKYTRFEKIGQGASGTVYTALDIATGQEVAIKQMNLQQQ
PKKELIINEILVMRENKNPNIVNYLDSYLVGDELWVVMEYLAGGSLTDVVTETCMDEGQIAAVCRECL
QALDFLHSNQVIHRDIKSDNILLGMDGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEVVTRKAYG
PKVDIWSLGIMAIEMVEGEPPYLNENPLRALYLIATNGTPELQNPERLSAVFRDFLNRCLEMDVDRRG
SAKELLQHPFLKLAKPLSSLTPLIIAAKEAIKNSSR
7168 Human PAK3 MSDGLDNEEKPPAPPLRMNSNNRDSSALNHSSKPLPMAPEEKNKKARLRSIFPGGGDKTNKKKEKERP
isoform 4 EISLPSDFEHTIHVGFDAVTGEFTNSPFQTSRPVTVASSQSEGKMGIPEQWARLLQTSNITKLEQKKN
(UniProtKB: PQAVLDVLKFYDSKETVNNQKYMSFTSGDKSAHGYIAAHPSSTKTASEPPLAPPVSEEEDEEEEEEED
075914-4) ENEPPPVIAPRPEHTKSIYTRSVVESIASPAVPNKEVTPPSAENANSSTLYRNTDRQRKKSKMTDEEI
LEKLRSIVSVGDPKKKYTRFEKIGQGASGTVYTALDIATGQEVAIKQMNLQQQPKKELIINEILVMRE
NKNPNIVNYLDSYLVGDELWVVMEYLAGGSLTDVVTETCMDEGQIAAVCRECLQALDFLHSNQVIHRD
IKSDNILLGMDGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEWTRKAYGPKVDIWSLGIMAIEM
VEGEPPYLNENPLRALYLIATNGTPELQNPERLSAVFRDFLNRCLEMDVDRRGSAKELLQHPFLKLAK
PLSSLTPLIIAAKEAIKNSSR
7169 Human TRNP1 MPGCRISACGPGAQEGTAEQRSPPPPWDPMPSSQPPPPTPTLTPTPTPGQSPPLPDAAGASAGAAEDQ
(UniProtKB: ELQRWRQGASGIAGLAGPGGGSGAAAGAGGRALELAEARRRLLEVEGRRRLVSELESRVLQLHRVFLA
Q6NT89-1, v2) AELRLAHRAESLSRLSGGVAQAELYLAAHGSRLKKGPRRGRRGRPPALLASALGLGGCVPWGAGRLRR
GHGPEPDSPFRRSPPRGPASPQR
7170 Human APLN MNLRLCVQALLLLWLSLTAVCGGSLMPLPDGNGLEDGNVRHLVQPRGSRNGPGPWQGGRRKFRRQRPR
(UniProtKB: LSHKGPMPF
Q9ULZ1-1, v1)
7171 Apelin-36 LVQPRGSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF
(UniProtKB:
Q9ULZ1-1, v1
positions 42-77)
7172 Apelin-31 GSRNGPGPWQGGRRKFRRQRPRLSHKGPMPF
(UniProtKB:
Q9ULZ1-1, v1
positions 47-77)
7173 Apelin-28 NGPGPWQGGRRKFRRQRPRLSHKGPMPF
(UniProtKB:
Q9ULZ1-1, v1
positions 50-77)
7174 Apelin-13 QRPRLSHKGPMPF
(UniProtKB:
Q9ULZ1-1, v1
positions 65-77)
7175 Human KIF20A MSQGILSPPAGLLSDDDVVVSPMFESTAADLGSVVRKNLLSDCSVVSTSLEDKQQVPSEDSMEKVKVY
isoform 1 LRVRPLLPSELERQEDQGCVRIENVETLVLQAPKDSFALKSNERGIGQATHRFTFSQIFGPEVGQASF
(UniProtKB: FNLTVKEMVKDVLKGQNWLIYTYGVTNSGKTHTIQGTIKDGGILPRSLALIFNSLQGQLHPTPDLKPL
095235-1, v1) LSNEVIWLDSKQIRQEEMKKLSLLNGGLQEEELSTSLKRSVYIESRIGTSTSFDSGIAGLSSISQCTS
SSQLDETSHRWAQPDTAPLPVPANIRFSIWISFFEIYNELLYDLLEPPSQQRKRQTLRLCEDQNGNPY
VKDLNWIHVQDAEEAWKLLKVGRKNQSFASTHLNQNSSRSHSIFSIRILHLQGEGDIVPKISELSLCD
LAGSERCKDQKSGERLKEAGNINTSLHTLGRCIAALRQNQQNRSKQNLVPFRDSKLTRVFQGFFTGRG
RSCMIVNVNPCASTYDETLHVAKFSAIASQLVHAPPMQLGFPSLHSFIKEHSLQVSPSLEKGAKADTG
LDDDIENEADISMYGKEELLQVVEAMKTLLLKERQEKLQLEMHLRDEICNEMVEQMQQREQWCSEHLD
TQKELLEEMYEEKLNILKESLTSFYQEEIQERDEKIEELEALLQEARQQSVAHQQSGSELALRRSQRL
AASASTQQLQEVKAKLQQCKAELNSTTEELHKYQKMLEPPPSAKPFTIDVDKKLEEGQKNIRLLRTEL
QKLGESLQSAERACCHSTGAGKLRQALTTCDDILIKQDQTLAELQNNMVLVKLDLRKKAACIAEQYHT
VLKLQGQVSAKKRLGTNQENQQPNQQPPGKKPFLRNLLPRTPTCQSSTDCSPYARILRSRRSPLLKSG
PFGKKY
7176 Human KIF20A MSQGILSPPAGLLSDDDVVVSPMFESTAADLGSVVRKNLLSDCSVVSTSLEDKQQVPSEDSMEKEDQG
isoform 2 CVRIENVETLVLQAPKDSFALKSNERGIGQATHRFTFSQIFGPEVGQASFFNLTVKEMVKDVLKGQNW
(UniProtKB: LIYTYGVTNSGKTHTIQGTIKDGGILPRSLALIFNSLQGQLHPTPDLKPLLSNEVIWLDSKQIRQEEM
095235-2) KKLSLLNGGLQEEELSTSLKRSVYIESRIGTSTSFDSGIAGLSSISQCTSSSQLDETSHRWAQPDTAP
LPVPANIRFSIWISFFEIYNELLYDLLEPPSQQRKRQTLRLCEDQNGNPYVKDLNWIHVQDAEEAWKL
LKVGRKNQSFASTHLNQNSSRSHSIFSIRILHLQGEGDIVPKISELSLCDLAGSERCKDQKSGERLKE
AGNINTSLHTLGRCIAALRQNQQNRSKQNLVPFRDSKLTRVFQGFFTGRGRSCMIVNVNPCASTYDET
LHVAKFSAIASQLVHAPPMQLGFPSLHSFIKEHSLQVSPSLEKGAKADTGLDDDIENEADISMYGKEE
LLQVVEAMKTLLLKERQEKLQLEMHLRDEICNEMVEQMQQREQWCSEHLDTQKELLEEMYEEKLNILK
ESLTSFYQEEIQERDEKIEELEALLQEARQQSVAHQQSGSELALRRSQRLAASASTQQLQEVKAKLQQ
CKAELNSTTEELHKYQKMLEPPPSAKPFTIDVDKKLEEGQKNIRLLRTELQKLGESLQSAERACCHST
GAGKLRQALTTCDDILIKQDQTLAELQNNMVLVKLDLRKKAACIAEQYHTVLKLQGQVSAKKRLGTNQ
ENQQPNQQPPGKKPFLRNLLPRTPTCQSSTDCSPYARILRSRRSPLLKSGPFGKKY
7177 Human LTB MGALGLEGRGGRLQGRGSLLLAVAGATSLVTLLLAVPITVLAVLALVPQDQGGLVTETADPGAQAQQG
isoform 1 LGFQKLPEEEPETDLSPGLPAAHLIGAPLKGQGLGWETTKEQAFLTSGTQFSDAEGLALPQDGLYYLY
(UniProtKB: CLVGYRGRAPPGGGDPQGRSVTLRSSLYRAGGAYGPGTPELLLEGAETVTPVLDPARRQGYGPLWYTS
Q06643-1, v1) VGFGGLVQLRRGERVYVNISHPDMVDFARGKTFFGAVMVG
7178 Human LTB MGALGLEGRGGRLQGRGSLLLAVAGATSLVTLLLAVPITVLAVLALVPQDQGGLGFRSCQRRSQKQIS
isoform 2 APGSQLPTS
(UniProtKB:
Q06643-2)
7179 Human MFAP4 GCAGACACCCAGCCACTCTGAGCAGAACTGACAGCATGAAGGTACGGGGCCCAGGGTCGGGGGACTCA
transcript TAGCATGGGGGAACTGAGCCCACTCCAGAGGCCCCTGGCCACAGAGGGCACTATGAAGGCACAAGGAG
variant 1 mRNA TTCTCTTGAAACTCGCACTCCTGGCCCTGCCGCTGCTGCTGCTTCTCTCCACGCCCCCGTGTGCCCCC
NM_001198695. CAGGTCTCCGGGATCCGAGGAGATGCTCTGGAGAGGTTTTGCCTTCAGCAACCCCTGGACTGTGACGA
2 CATCTATGCCCAGGGCTACCAGTCAGACGGCGTGTACCTCATCTACCCCTCGGGCCCCAGTGTGCCTG
(GI:1677501926 TGCCCGTCTTCTGTGACATGACCACCGAGGGCGGGAAGTGGACGGTTTTCCAGAAGAGATTCAATGGC
version 2) TCAGTAAGTTTCTTCCGCGGCTGGAATGACTACAAGCTGGGCTTCGGCCGTGCTGATGGAGAGTACTG
GCTGGGGCTGCAGAACATGCACCTCCTGACACTGAAGCAGAAGTATGAGCTGCGAGTGGACTTGGAGG
ACTTTGAGAACAACACGGCCTATGCCAAGTACGCTGACTTCTCCATCTCCCCGAACGCGGTCAGCGCA
GAGGAGGATGGCTACACCCTCTTTGTGGCAGGCTTTGAGGATGGCGGGGCAGGTGACTCCCTGTCCTA
CCACAGTGGCCAGAAGTTCTCTACCTTCGACCGGGACCAGGACCTCTTTGTGCAGAACTGCGCAGCTC
TCTCCTCAGGAGCCTTCTGGTTCCGCAGCTGCCACTTTGCCAACCTCAATGGCTTCTACCTAGGTGGC
TCCCACCTCTCTTATGCCAATGGCATCAACTGGGCCCAGTGGAAGGGCTTCTACTACTCCCTCAAACG
CACTGAGATGAAAATCCGCCGGGCCTGAAGGGCTGGCCCCCTCAGGCACCTTTCCTCCCCTGGACACC
CATGGTCTCCATGAGTGCTCCCTCTGCTGCCCCTGATGCATGCTTCTGCTGATTCCCGAGCACCAACT
CCTTACAAGGGGGCCTTGTGGCTCTCAGCCATGCCACATCCCTGTCACACACCCAGGGCATCCATTCC
TAAGCCAGACCCGGCTCCCCTACACCTGAAGTTACACTGCCAGCAGTTCCCCAGGCCTCTTCCGAGAG
GCACATGGTTCTAGCCTGGACCTGGCTGGGCTCCATGAGAATGAGTTGCCTCCAACCTGTCCCAACAG
CTGACAGCCAGGAGCCACTCTCCCAGCTGCAGGCCTTTGTGGTCCATCTTGTCCTGCTTCCTCACTGT
GGACCCCTGTCTGGGCCACCCTAGTGTGCTAAGCTGAGCAGTGCAGTGTGAACAGGGCCCATGGTGTA
TTCTAGGCCACAGCCCAGCACTCCTCTGGGCTGCTCTCAAACCATGTCCCATCTTCAGCATCCCTCCC
ACCAACTTACTCCCCTGTGGTGAGTACCGTGGAACCCCAGCCCACCTCACTATCATACTCAGCTTCCC
CTGATGGCCCATCCCAGCCCCTGAAGCTCTATGCCAAGAACACAGCTACCGCACACCACCCTGAAACA
GCCACAGCCAAGGTAGGCATGCATATGAGGTCTTCCCCATACCCTCTGGGTGTTGAGAGGTTTAGCCA
CATGAGGGAGCAGAGGACAATCTCTGCAGGGCTGGGAGTGGGTAGGGACTGAAGGTCTCAATAAACCT
TCAGAACCTGAATGAACTGGCTTCATACACACAAACATATTTGTTTATCCCCCAAATGTAGGCACCTG
GCTCCTCCTTGCTCCCCTGCTGATGGTGTCCTACCCCGAACTCCAAAAATTACACCTGGAGTCAGGTG
CAGAAGGGAACCTTGTATTTCACAGGCCTCATTTTGATGGCAAAAAGACAGTGTAATAATAACATAAT
AATAATAAAAATATAATACTGAAAA
7180 Human MFAP4 GCAGACACCCAGCCACTCTGAGCAGAACTGACAGCATGAAGGCACTCCTGGCCCTGCCGCTGCTGCTG
transcript CTTCTCTCCACGCCCCCGTGTGCCCCCCAGGTCTCCGGGATCCGAGGAGATGCTCTGGAGAGGTTTTG
variant CCTTCAGCAACCCCTGGACTGTGACGACATCTATGCCCAGGGCTACCAGTCAGACGGCGTGTACCTCA
2 mRNA TCTACCCCTCGGGCCCCAGTGTGCCTGTGCCCGTCTTCTGTGACATGACCACCGAGGGCGGGAAGTGG
NM_002404.3 ACGGTTTTCCAGAAGAGATTCAATGGCTCAGTAAGTTTCTTCCGCGGCTGGAATGACTACAAGCTGGG
(GI:1677501522 CTTCGGCCGTGCTGATGGAGAGTACTGGCTGGGGCTGCAGAACATGCACCTCCTGACACTGAAGCAGA
version 3) AGTATGAGCTGCGAGTGGACTTGGAGGACTTTGAGAACAACACGGCCTATGCCAAGTACGCTGACTTC
TCCATCTCCCCGAACGCGGTCAGCGCAGAGGAGGATGGCTACACCCTCTTTGTGGCAGGCTTTGAGGA
TGGCGGGGCAGGTGACTCCCTGTCCTACCACAGTGGCCAGAAGTTCTCTACCTTCGACCGGGACCAGG
ACCTCTTTGTGCAGAACTGCGCAGCTCTCTCCTCAGGAGCCTTCTGGTTCCGCAGCTGCCACTTTGCC
AACCTCAATGGCTTCTACCTAGGTGGCTCCCACCTCTCTTATGCCAATGGCATCAACTGGGCCCAGTG
GAAGGGCTTCTACTACTCCCTCAAACGCACTGAGATGAAAATCCGCCGGGCCTGAAGGGCTGGCCCCC
TCAGGCACCTTTCCTCCCCTGGACACCCATGGTCTCCATGAGTGCTCCCTCTGCTGCCCCTGATGCAT
GCTTCTGCTGATTCCCGAGCACCAACTCCTTACAAGGGGGCCTTGTGGCTCTCAGCCATGCCACATCC
CTGTCACACACCCAGGGCATCCATTCCTAAGCCAGACCCGGCTCCCCTACACCTGAAGTTACACTGCC
AGCAGTTCCCCAGGCCTCTTCCGAGAGGCACATGGTTCTAGCCTGGACCTGGCTGGGCTCCATGAGAA
TGAGTTGCCTCCAACCTGTCCCAACAGCTGACAGCCAGGAGCCACTCTCCCAGCTGCAGGCCTTTGTG
GTCCATCTTGTCCTGCTTCCTCACTGTGGACCCCTGTCTGGGCCACCCTAGTGTGCTAAGCTGAGCAG
TGCAGTGTGAACAGGGCCCATGGTGTATTCTAGGCCACAGCCCAGCACTCCTCTGGGCTGCTCTCAAA
CCATGTCCCATCTTCAGCATCCCTCCCACCAACTTACTCCCCTGTGGTGAGTACCGTGGAACCCCAGC
CCACCTCACTATCATACTCAGCTTCCCCTGATGGCCCATCCCAGCCCCTGAAGCTCTATGCCAAGAAC
ACAGCTACCGCACACCACCCTGAAACAGCCACAGCCAAGGTAGGCATGCATATGAGGTCTTCCCCATA
CCCTCTGGGTGTTGAGAGGTTTAGCCACATGAGGGAGCAGAGGACAATCTCTGCAGGGCTGGGAGTGG
GTAGGGACTGAAGGTCTCAATAAACCTTCAGAACCTGAATGAACTGGCTTCATACACACAAACATATT
TGTTTATCCCCCAAATGTAGGCACCTGGCTCCTCCTTGCTCCCCTGCTGATGGTGTCCTACCCCGAAC
TCCAAAAATTACACCTGGAGTCAGGTGCAGAAGGGAACCTTGTATTTCACAGGCCTCATTTTGATGGC
AAAAAGACAGTGTAATAATAACATAATAATAATAAAAATATAATACTGAAAA
7181 Human GRHPR ACATTCCCGGGCCAGCTTCTGTACTGCCAGGTCCGGGTCGGCGGCTGCACTGCGGATGAGACCGGTGC
transcript GACTCATGAAGGTGTTCGTCACCCGCAGGATACCCGCCGAGGGTAGGGTCGCGCTCGCCCGGGCGGCA
variant GACTGTGAGGTGGAGCAGTGGGACTCGGATGAGCCCATCCCTGCCAAGGAGCTAGAGCGAGGTGTGGC
1 mRNA GGGGGCCCACGGCCTGCTCTGCCTCCTCTCCGACCACGTGGACAAGAGGATCCTGGATGCTGCAGGGG
NM_012203.2 CCAATCTCAAAGTCATCAGCACCATGTCTGTGGGCATCGACCACTTGGCTTTGGATGAAATCAAGAAG
(GI:1519473711 CGTGGGATCCGAGTTGGCTACACCCCAGATGTCCTGACAGATACCACCGCCGAACTCGCAGTCTCCCT
version 2) GCTACTTACCACCTGCCGCCGGTTGCCGGAGGCCATCGAGGAAGTGAAGAATGGTGGCTGGACCTCGT
GGAAGCCCCTCTGGCTGTGTGGCTATGGACTCACGCAGAGCACTGTCGGCATCATCGGGCTGGGGCGC
ATAGGCCAGGCCATTGCTCGGCGTCTGAAACCATTCGGTGTCCAGAGATTTCTGTACACAGGGCGCCA
GCCCAGGCCTGAGGAAGCAGCAGAATTCCAGGCAGAGTTTGTGTCTACCCCTGAGCTGGCTGCCCAAT
CTGATTTCATCGTCGTGGCCTGCTCCTTAACACCTGCAACCGAGGGACTCTGCAACAAGGACTTCTTC
CAGAAGATGAAGGAAACAGCTGTGTTCATCAACATCAGCAGGGGCGACGTCGTAAACCAGGACGACCT
GTACCAGGCCTTGGCCAGTGGTAAGATTGCAGCTGCTGGACTGGATGTGACGAGCCCAGAACCACTGC
CTACAAACCACCCTCTCCTGACCCTGAAGAACTGTGTGATTCTGCCCCACATTGGCAGTGCCACCCAC
AGAACCCGCAACACCATGTCCTTGTTGGCAGCTAACAACTTGCTGGCTGGCCTGAGAGGGGAGCCGAT
GCCTAGTGAACTCAAGCTGTAGCCAAACAGTAGAGATGGAGGGCCGGGAAGCAAACCGTGCCCTGGTA
TTGTCAGACACACCCAGGCTTGATTTGGATCCACAGGCAGAGCCAAGGGAAGGTGTGATTCTCTGAGG
AAAGAGTGATTCTGATATATGTACTTGTCACATTGGTGTTGGACACATTTGCGCCAAAAGTATGGTAA
TTCTATTATTAAATAATTCTCTGAGA
7182 Human ITFG1 GGGGGCTGAGGGGCTGCCATGGCGGCGGCGGGCCGGCTCCCGAGCTCCTGGGCCCTCTTCTCGCCGCT
transcript CCTCGCAGGGCTTGCACTACTGGGAGTCGGGCCGGTCCCAGCGCGGGCGCTGCACAACGTCACGGCCG
variant AGCTCTTTGGGGCCGAGGCCTGGGGCACCCTTGCGGCTTTCGGGGACCTCAACTCCGACAAGCAGACG
1 mRNA GATCTCTTCGTGCTGCGGGAAAGAAATGACTTAATCGTCTTTTTGGCAGACCAGAATGCACCCTATTT
NM_030790.5 TAAACCCAAAGTAAAGGTATCTTTCAAGAATCACAGTGCATTGATAACAAGTGTAGTCCCTGGGGATT
(GI:1653961895 ATGATGGAGATTCTCAAATGGATGTCCTTCTGACATATCTTCCCAAAAATTATGCCAAGAGTGAATTA
version 5) GGAGCTGTTATCTTCTGGGGACAAAATCAAACATTAGATCCTAACAATATGACCATACTCAATAGGAC
TTTTCAAGATGAGCCACTAATTATGGATTTCAATGGTGATCTAATTCCTGATATTTTTGGTATCACAA
ATGAATCCAACCAGCCACAGATACTATTAGGAGGGAATTTATCATGGCATCCAGCATTGACCACTACA
AGTAAAATGCGAATTCCACATTCTCATGCATTTATTGATCTGACTGAAGATTTTACAGCAGATTTATT
CCTGACGACATTGAATGCCACCACTAGTACCTTCCAGTTTGAAATATGGGAAAATTTGGATGGAAACT
TCTCTGTCAGTACTATATTGGAAAAACCTCAAAATATGATGGTGGTTGGACAGTCAGCATTTGCAGAC
TTTGATGGAGATGGACACATGGATCATTTACTGCCAGGCTGTGAAGATAAAAATTGCCAAAAGAGTAC
CATCTACTTAGTGAGATCTGGGATGAAGCAGTGGGTTCCAGTCCTACAAGATTTCAGCAATAAGGGCA
CACTCTGGGGCTTTGTGCCATTTGTGGATGAACAGCAACCAACTGAAATACCAATTCCAATTACCCTT
CATATTGGAGACTACAATATGGATGGCTATCCAGACGCTCTGGTCATACTAAAGAACACATCTGGAAG
CAACCAGCAGGCCTTTTTACTGGAGAACGTCCCTTGTAATAATGCAAGCTGTGAAGAGGCGCGTCGAA
TGTTTAAAGTCTACTGGGAGCTGACAGACCTAAATCAAATTAAGGATGCCATGGTTGCCACCTTCTTT
GACATTTACGAAGATGGAATCTTGGACATTGTAGTGCTAAGTAAAGGATATACAAAGAATGATTTTGC
CATTCATACACTAAAAAATAACTTTGAAGCAGATGCTTATTTTGTTAAAGTTATTGTTCTTAGTGGTC
TGTGTTCTAATGACTGTCCTCGTAAGATAACACCCTTTGGAGTGAATCAACCTGGACCTTATATCATG
TATACAACTGTAGATGCAAATGGGTATCTGAAAAATGGATCAGCTGGCCAACTCAGCCAATCCGCACA
TTTAGCTCTCCAACTACCATACAACGTGCTTGGTTTAGGTCGGAGCGCAAATTTTCTTGACCATCTCT
ACGTTGGTATTCCCCGTCCATCTGGAGAAAAATCTATACGAAAACAAGAGTGGACTGCAATCATTCCA
AATTCCCAGCTAATTGTCATTCCATACCCTCACAATGTCCCTCGAAGTTGGAGTGCCAAACTGTATCT
TACACCAAGTAATATTGTTCTGCTTACTGCTATAGCTCTCATCGGTGTCTGTGTTTTCATCTTGGCAA
TAATTGGCATTTTACATTGGCAGGAAAAGAAAGCAGATGATAGAGAAAAACGACAAGAAGCCCACCGG
TTTCATTTTGATGCTATGTGACTTGCCTTTAATATTACATAATGGAATGGCTGTTCACTTGATTAGTT
GAAACACAAATTCTGGCTTGAAAAAATAGGGGAGATTAAATATTATTTATAAATGATGTATCCCATGG
TAATTATTGGAAAGTATTCAAATAAATATGGTTTGAATATGTCACAAGGTCTTTTTTTTTAAAGCACT
TTGTATATAAAAATTTGGGTTCTCTATTCTGTAGTGCTGTACATTTTTGTTCCTTTGTGGAATGTGTT
GCATGTACTCCAGTGTTTGTGTATTTATAATCTTATTTGCATCATGATGATGGAAAAAGTTGTGTAAA
TAAAAATAATTAAATGAGCAGGAATTTTTGTGTCCACTTGACTTGGTCTTGCTTCTTATTCTAATGAT
GCAAATTATACTTTTGTGAATATATCACGGAGTCATTAGGCATTCAGCTTCATCACAGCAGGTCAGGG
GTCTCACTGATGGCATACAATATAGTGATCGGGTACTCTGACTTGGTAGCACAGTAAGACAGACTTGC
CTTAAACTCCTAATTCAACCACTTACAAAGTCATTGTTTGAACTTGGCTCTTGTTTAACCTCTGTAAA
CCTCAGTTTTCTTGTTTATTCAGTGGGGCTAATACTTGAGTTACTGTAAACATTAAATGGGATGATGT
ATGTGAAGTGCTTAGCTTGGTGCCTAGCACAGAGTAAGTGGTCAATATGTGGTAGTTGTCATTATTAA
TATTTTAGATGATCTTATTAGACTTATACATCTAATTATAGAAATACATAGACTTGATAGAATTTTAT
TTTCAGGCATGAAGAAATATTCTTTGGAAAAGCTAAATTTTTGGTGATTGACATAAAGATTTACTTGC
TCATATTAACTAAAAATTATAGTACTCTCCAAGAATTAATGTGCCCTAAAAATTTTCCTCCAAAAACT
TATCCTTATCATGTGATAATGAAGAACATTTGATTTCTTGAAAGGAAACTGCTGTAGGCAGCATCTGG
GAATGCAAATCTTCAATCACATTTCTATTCTCAAACACTTGGAGAAGTCTATAATTTACATTCAGACT
TCAATGCAAATTTTGTATTGTGAACTTCACATTTCCAAAAAGTTACTTTAAAAAGACTTTAAGACTGA
AAAAAAAAAGTTTATCAATGCTAATAATTTTCTAGTATGCAAATGGACATGTGATGCCTATAAAACAC
AAAAATTTCTCTGAAAACAATTTTGTTCTTATTTTTTTCTTTATAGTTCACTGAGATTGGCATGTGTT
TTTACTTTGTATCTAAGCATGTTAACATGTCTTCTTAATAAATATTCCTTATTGAAA
7183 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA
transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA
variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT
1 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT
NM_005845.5 TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT
(GI:1813751621 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT
version 5) CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGAAAGTGCCAAAGTAATCCAGCCCATATTTTTG
GGAAAAATTATTAATTATTTTGAAAATTATGATCCCATGGATTCTGTGGCTTTGAACACAGCGTACGC
CTATGCCACGGTGCTGACTTTTTGCACGCTCATTTTGGCTATACTGCATCACTTATATTTTTATCACG
TTCAGTGTGCTGGGATGAGGTTACGAGTAGCCATGTGCCATATGATTTATCGGAAGGCACTTCGTCTT
AGTAACATGGCCATGGGGAAGACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAA
GTTTGATCAGGTGACAGTGTTCTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTG
CCCTACTCTGGATGGAGATAGGAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCC
TTGCAAAGCTGTTTTGGGAAGTTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAG
GATCAGGACCATGAATGAAGTTATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCAT
TTTCAAATCTTATTACCAATTTGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGA
GGGATGAATTTGGCTTCATTTTTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGT
GCTCCTCGGCAGTGTGATCACAGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGC
TGACGGTTACCCTCTTCTTCCCCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGA
ATCCAGACCTTTTTGCTACTTGATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAA
GATGGTGCATGTGCAGGATTTTACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCC
TTTCCTTTACTGTCAGACCTGGCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCA
CTGTTAAGTGCCGTGCTCGGGGAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGC
CTATGTGTCTCAGCAGCCCTGGGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAAT
ACGAAAAGGAACGATATGAAAAAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAG
GATGGTGATCTGACTGTGATAGGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAA
CCTTGCAAGAGCAGTGTATCAAGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATG
CGGAAGTTAGCAGACACTTGTTCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTA
GTGACTCATCAGTTGCAGTACCTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGT
GCAGAAGGGGACTTACACTGAGTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATA
ATGAGGAAAGTGAACAACCTCCAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCT
TCGGTTTGGTCTCAACAATCTTCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATACAGA
GAATGTCCCAGTTACACTATCAGAGGAGAACCGTTCTGAAGGAAAAGTTGGTTTTCAGGCCTATAAGA
ATTACTTCAGAGCTGGTGCTCACTGGATTGTCTTCATTTTCCTTATTCTCCTAAACACTGCAGCTCAG
GTTGCCTATGTGCTTCAAGATTGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTCAC
TGTAAATGGAGGAGGAAATGTAACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGGTT
TAACTGTAGCTACCGTTCTTTTTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACTCT
TCACAAACTTTGCACAACAAAATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGAAA
TCCAATAGGAAGAATTTTAAATCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCTGA
CGTTTTTAGATTTCATCCAGACATTGCTACAAGTGGTTGGTGTGGTCTCTGTGGCTGTGGCCGTGATT
CCTTGGATCGCAATACCCTTGGTTCCCCTTGGAATCATTTTCATTTTTCTTCGGCGATATTTTTTGGA
AACGTCAAGAGATGTGAAGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTTATCATCTT
CTCTCCAGGGGCTCTGGACCATCCGGGCATACAAAGCAGAAGAGAGGTGTCAGGAACTGTTTGATGCA
CACCAGGATTTACATTCAGAGGCTTGGTTCTTGTTTTTGACAACGTCCCGCTGGTTTGCCGTCCGTCT
GGATGCCATCTGTGCCATGTTTGTCATCATCGTTGCCTTTGGGTCCCTGATTCTGGCAAAAACTCTGG
ATGCCGGGCAGGTTGGTTTGGCACTGTCCTATGCCCTCACGCTCATGGGGATGTTTCAGTGGTGTGTT
CGACAAAGTGCTGAAGTTGAGAATATGATGATCTCAGTAGAAAGGGTCATTGAATACACAGACCTTGA
AAAAGAAGCACCTTGGGAATATCAGAAACGCCCACCACCAGCCTGGCCCCATGAAGGAGTGATAATCT
TTGACAATGTGAACTTCATGTACAGTCCAGGTGGGCCTCTGGTACTGAAGCATCTGACAGCACTCATT
AAATCACAAGAAAAGGTTGGCATTGTGGGAAGAACCGGAGCTGGAAAAAGTTCCCTCATCTCAGCCCT
TTTTAGATTGTCAGAACCCGAAGGTAAAATTTGGATTGATAAGATCTTGACAACTGAAATTGGACTTC
ACGATTTAAGGAAGAAGATGTCAATCATACCTCAGGAACCTGTTTTGTTCACTGGAACAATGAGGAAA
AACCTGGATCCCTTTAATGAGCACACGGATGAGGAACTGTGGAATGCCTTACAAGAGGTACAACTTAA
AGAAACCATTGAAGATCTTCCTGGTAAAATGGATACTGAATTAGCAGAATCAGGATCCAATTTTAGTG
TTGGACAAAGACAACTGGTGTGCCTTGCCAGGGCAATTCTCAGGAAAAATCAGATATTGATTATTGAT
GAAGCGACGGCAAATGTGGATCCAAGAACTGATGAGTTAATACAAAAAAAAATCCGGGAGAAATTTGC
CCACTGCACCGTGCTAACCATTGCACACAGATTGAACACCATTATTGACAGCGACAAGATAATGGTTT
TAGATTCAGGAAGACTGAAAGAATATGATGAGCCGTATGTTTTGCTGCAAAATAAAGAGAGCCTATTT
TACAAGATGGTGCAACAACTGGGCAAGGCAGAAGCCGCTGCCCTCACTGAAACAGCAAAACAGGTATA
CTTCAAAAGAAATTATCCACATATTGGTCACACTGACCACATGGTTACAAACACTTCCAATGGACAGC
CCTCGACCTTAACTATTTTCGAGACAGCACTGTGAATCCAACCAAAATGTCAAGTCCGTTCCGAAGGC
ATTTTCCACTAGTTTTTGGACTATGTAAACCACATTGTACTTTTTTTTACTTTGGCAACAAATATTTA
TACATACAAGATGCTAGTTCATTTGAATATTTCTCCCAACTTATCCAAGGATCTCCAGCTCTAACAAA
ATGGTTTATTTTTATTTAAATGTCAATAGTTGTTTTTTAAAATCCAAATCAGAGGTGCAGGCCACCAG
TTAAATGCCGTCTATCAGGTTTTGTGCCTTAAGAGACTACAGAGTCAAAGCTCATTTTTAAAGGAGTA
GGACAAAGTTGTCACAGGTTTTTGTTGTTGTTTTTATTGCCCCCAAAATTACATGTTAATTTCCATTT
ATATCAGGGATTCTATTTACTTGAAGACTGTGAAGTTGCCATTTTGTCTCATTGTTTTCTTTGACATA
ACTAGGATCCATTATTTCCCCTGAAGGCTTCTTGTTAGAAAATAGTACAGTTACAACCAATAGG
AACAACAAAAAGAAAAAGTTTGTGACATTGTAGTAGGGAGTGTGTACCCCTTACTCCCCATCAAAAAA
AAAAATGGATACATGGTTAAAGGATAGAAGGGCAATATTTTATCATATGTTCTAAAAGAGAAGGAAGA
GAAAATACTACTTTCTCAAAATGGAAGCCCTTAAAGGTGCTTTGATACTGAAGGACACAAATGTGACC
GTCCATCCTCCTTTAGAGTTGCATGACTTGGACACGGTAACTGTTGCAGTTTTAGACTCAGCATTGTG
ACACTTCCCAAGAAGGCCAAACCTCTAACCGACATTCCTGAAATACGTGGCATTATTCTTTTTTGGAT
TTCTCATTTATGGAAGGCTAACCCTCTGTTGACTGTAAGCCTTTTGGTTTGGGCTGTATTGAAATCCT
TTCTAAATTGCATGAATAGGCTCTGCTAACGTGATGAGACAAACTGAAAATTATTGCAAGCATTGACT
ATAATTATGCAGTACGTTCTCAGGATGCATCCAGGGGTTCATTTTCATGAGCCTGTCCAGGTTAGTTT
ACTCCTGACCACTAATAGCATTGTCATTTGGGCTTTCTGTTGAATGAATCAACAAACCACAATACTTC
CTGGGACCTTTTGTACTTTATTTGAACTATGAGTCTTTAATTTTTCCTGATGATGGTGGCTGTAATAT
GTTGAGTTCAGTTTACTAAAGGTTTTACTATTATGGTTTGAAGTGGAGTCTCATGACCTCTCAGAATA
AGGTGTCACCTCCCTGAAATTGCATATATGTATATAGACATGCACACGTGTGCATTTGTTTGTATACA
TATATTTGTCCTTCGTATAGCAAGTTTTTTGCTCATCAGCAGAGAGCAACAGATGTTTTATTGAGTGA
AGCCTTAAAAAGCACACACCACACACAGCTAACTGCCAAAATACATTGACCGTAGTAGCTGTTCAACT
CCTAGTACTTAGAAATACACGTATGGTTAATGTTCAGTCCAACAAACCACACACAGTAAATGTTTATT
AATAGTCATGGTTCGTATTTTAGGTGACTGAAATTGCATCAGTGATCATAATGAGGTTTGTTAAAACG
ATAGCTATATTCAAAATGTCTATATGTTTATTTGGACTTTTGAGGTTAAAGACAGTCATATAAACGTC
CTGTTTCTGTTTTAATGTTATCATAGAATTTTTTAATGAAACTAAATTCAATTGAAATAAATGATAGT
TTTCATCTCCA
7184 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA
transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA
variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT
2 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT
NM_001105515. TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT
3 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT
(GI:1677498821 CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGAAAGTGCCAAAGTAATCCAGCCCATATTTTTG
version 3) GGAAAAATTATTAATTATTTTGAAAATTATGATCCCATGGATTCTGTGGCTTTGAACACAGCGTACGC
CTATGCCACGGTGCTGACTTTTTGCACGCTCATTTTGGCTATACTGCATCACTTATATTTTTATCACG
TTCAGTGTGCTGGGATGAGGTTACGAGTAGCCATGTGCCATATGATTTATCGGAAGGCACTTCGTCTT
AGTAACATGGCCATGGGGAAGACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAA
GTTTGATCAGGTGACAGTGTTCTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTG
CCCTACTCTGGATGGAGATAGGAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCC
TTGCAAAGCTGTTTTGGGAAGTTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAG
GATCAGGACCATGAATGAAGTTATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCAT
TTTCAAATCTTATTACCAATTTGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGA
GGGATGAATTTGGCTTCATTTTTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGT
GCTCCTCGGCAGTGTGATCACAGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGC
TGACGGTTACCCTCTTCTTCCCCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGA
ATCCAGACCTTTTTGCTACTTGATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAA
GATGGTGCATGTGCAGGATTTTACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCC
TTTCCTTTACTGTCAGACCTGGCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCA
CTGTTAAGTGCCGTGCTCGGGGAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGC
CTATGTGTCTCAGCAGCCCTGGGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAAT
ACGAAAAGGAACGATATGAAAAAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAG
GATGGTGATCTGACTGTGATAGGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAA
CCTTGCAAGAGCAGTGTATCAAGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATG
CGGAAGTTAGCAGACACTTGTTCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTA
GTGACTCATCAGTTGCAGTACCTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGT
GCAGAAGGGGACTTACACTGAGTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATA
ATGAGGAAAGTGAACAACCTCCAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCT
TCGGTTTGGTCTCAACAATCTTCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATACAGA
GAATGTCCCAGTTACACTATCAGAGGAGAACCGTTCTGAAGGAAAAGTTGGTTTTCAGGCCTATAAGA
ATTACTTCAGAGCTGGTGCTCACTGGATTGTCTTCATTTTCCTTATTCTCCTAAACACTGCAGCTC
AGGTTGCCTATGTGCTTCAAGATTGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTC
ACTGTAAATGGAGGAGGAAATGTAACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGG
TTTAACTGTAGCTACCGTTCTTTTTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACT
CTTCACAAACTTTGCACAACAAAATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGA
AATCCAATAGGAAGAATTTTAAATCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCT
GACGTTTTTAGATTTCATCCAGAGATGGGATCTCGCTGTGTTGTCCTGGCTGGTCTCAAACTCCTAGG
CTCAAGCAATCCTCCTCCCTCCTCAAGCAAACCTCAGTGCTGGGATTATAGGCATGAGCCACTGTACC
TGGCTAAATGTTGTTTTTTTGATATTCAATTTTTGTTTATAGAATTTTCATTTGTTTTGCTCTTATAC
TTTTCATCTTTTTATGTTTATTGACCAATTAAATATCATTTGGGTAAGCACCTATTTAAGTGTCTTAA
CAATTTTTCTATTGAGTACTCTGGGTTTTTGTTTTGTTTTTCTTACTGATTTGTAGAATTCTTTATGT
ATTCTGAATTGCAGATACCTTCCTTCTGTACTAATGCTTATCTTTTTAGCCCTGTAATATTGTGTTTT
CATAAACATACTTATCAATCTTT
7185 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA
transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA
variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT
3 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT
NM_001301829. TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT
2 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT
(GI:1677530022 CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGAAAGTGCCAAAGTAATCCAGCCCATATTTTTG
version 2) GGAAAAATTATTAATTATTTTGAAAATTATGATCCCATGGATTCTGTGGCTTTGAACACAGCGTACGC
CTATGCCACGGTGCTGACTTTTTGCACGCTCATTTTGGCTATACTGCATCACTTATATTTTTATCACG
TTCAGTGTGCTGGGATGAGGTTACGAGTAGCCATGTGCCATATGATTTATCGGAAGGCACTTCGTCTT
AGTAACATGGCCATGGGGAAGACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAA
GTTTGATCAGGTGACAGTGTTCTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTG
CCCTACTCTGGATGGAGATAGGAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCC
TTGCAAAGCTGTTTTGGGAAGTTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAG
GATCAGGACCATGAATGAAGTTATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCAT
TTTCAAATCTTATTACCAATTTGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGA
GGGATGAATTTGGCTTCATTTTTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGT
GCTCCTCGGCAGTGTGATCACAGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGC
TGACGGTTACCCTCTTCTTCCCCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGA
ATCCAGACCTTTTTGCTACTTGATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAA
GATGGTGCATGTGCAGGATTTTACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCC
TTTCCTTTACTGTCAGACCTGGCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCA
CTGTTAAGTGCCGTGCTCGGGGAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGC
CTATGTGTCTCAGCAGCCCTGGGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAAT
ACGAAAAGGAACGATATGAAAAAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAG
GATGGTGATCTGACTGTGATAGGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAA
CCTTGCAAGAGCAGTGTATCAAGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATG
CGGAAGTTAGCAGACACTTGTTCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTA
GTGACTCATCAGTTGCAGTACCTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGT
GCAGAAGGGGACTTACACTGAGTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATA
ATGAGGAAAGTGAACAACCTCCAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCT
TCGGTTTGGTCTCAACAATCTTCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATGTTGC
CTATGTGCTTCAAGATTGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTCACTGTAA
ATGGAGGAGGAAATGTAACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGGTTTAACT
GTAGCTACCGTTCTTTTTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACTCTTCACA
AACTTTGCACAACAAAATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGAAATCCAA
TAGGAAGAATTTTAAATCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCTGACGTTT
TTAGATTTCATCCAGACATTGCTACAAGTGGTTGGTGTGGTCTCTGTGGCTGTGGCCGTGATTCCTTG
GATCGCAATACCCTTGGTTCCCCTTGGAATCATTTTCATTTTTCTTCGGCGATATTTTTTGGAAACGT
CAAGAGATGTGAAGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTTATCATCTTCTCTC
CAGGGGCTCTGGACCATCCGGGCATACAAAGCAGAAGAGAGGTGTCAGGAACTGTTTGATGCACACCA
GGATTTACATTCAGAGGCTTGGTTCTTGTTTTTGACAACGTCCCGCTGGTTTGCCGTCCGTCTGGATG
CCATCTGTGCCATGTTTGTCATCATCGTTGCCTTTGGGTCCCTGATTCTGGCAAAAACTCTGGATGCC
GGGCAGGTTGGTTTGGCACTGTCCTATGCCCTCACGCTCATGGGGATGTTTCAGTGGTGTGTTCGACA
AAGTGCTGAAGTTGAGAATATGATGATCTCAGTAGAAAGGGTCATTGAATACACAGACCTTGAAAAAG
AAGCACCTTGGGAATATCAGAAACGCCCACCACCAGCCTGGCCCCATGAAGGAGTGATAATCTTTGAC
AATGTGAACTTCATGTACAGTCCAGGTGGGCCTCTGGTACTGAAGCATCTGACAGCACTCATTAAATC
ACAAGAAAAGGTTGGCATTGTGGGAAGAACCGGAGCTGGAAAAAGTTCCCTCATCTCAGCCCTTTTTA
GATTGTCAGAACCCGAAGGTAAAATTTGGATTGATAAGATCTTGACAACTGAAATTGGACTTCACGAT
TTAAGGAAGAAGATGTCAATCATACCTCAGGAACCTGTTTTGTTCACTGGAACAATGAGGAAAAACCT
GGATCCCTTTAATGAGCACACGGATGAGGAACTGTGGAATGCCTTACAAGAGGTACAACTTAAAGAAA
CCATTGAAGATCTTCCTGGTAAAATGGATACTGAATTAGCAGAATCAGGATCCAATTTTAGTGTTGGA
CAAAGACAACTGGTGTGCCTTGCCAGGGCAATTCTCAGGAAAAATCAGATATTGATTATTGATGAAGC
GACGGCAAATGTGGATCCAAGAACTGATGAGTTAATACAAAAAAAAATCCGGGAGAAATTTGCCCACT
GCACCGTGCTAACCATTGCACACAGATTGAACACCATTATTGACAGCGACAAGATAATGGTTTTAGAT
TCAGGAAGACTGAAAGAATATGATGAGCCGTATGTTTTGCTGCAAAATAAAGAGAGCCTATTTTACAA
GATGGTGCAACAACTGGGCAAGGCAGAAGCCGCTGCCCTCACTGAAACAGCAAAACAGGTATACTTCA
AAAGAAATTATCCACATATTGGTCACACTGACCACATGGTTACAAACACTTCCAATGGACAGCCCTCG
ACCTTAACTATTTTCGAGACAGCACTGTGAATCCAACCAAAATGTCAAGTCCGTTCCGAAGGCATTTT
CCACTAGTTTTTGGACTATGTAAACCACATTGTACTTTTTTTTACTTTGGCAACAAATATTTATACAT
ACAAGATGCTAGTTCATTTGAATATTTCTCCCAACTTATCCAAGGATCTCCAGCTCTAACAAAATGGT
TTATTTTTATTTAAATGTCAATAGTTGTTTTTTAAAATCCAAATCAGAGGTGCAGGCCACCAGTTAAA
TGCCGTCTATCAGGTTTTGTGCCTTAAGAGACTACAGAGTCAAAGCTCATTTTTAAAGGAGTAGGACA
AAGTTGTCACAGGTTTTTGTTGTTGTTTTTATTGCCCCCAAAATTACATGTTAATTTCCATTTATATC
AGGGATTCTATTTACTTGAAGACTGTGAAGTTGCCATTTTGTCTCATTGTTTTCTTTGACATAACTAG
GATCCATTATTTCCCCTGAAGGCTTCTTGTTAGAAAATAGTACAGTTACAACCAATAGGAACAACAAA
AAGAAAAAGTTTGTGACATTGTAGTAGGGAGTGTGTACCCCTTACTCCCCATCAAAAAAAAAAATGGA
TACATGGTTAAAGGATAGAAGGGCAATATTTTATCATATGTTCTAAAAGAGAAGGAAGAGAAAATACT
ACTTTCTCAAAATGGAAGCCCTTAAAGGTGCTTTGATACTGAAGGACACAAATGTGACCGTCCATCCT
CCTTTAGAGTTGCATGACTTGGACACGGTAACTGTTGCAGTTTTAGACTCAGCATTGTGACACTTCCC
AAGAAGGCCAAACCTCTAACCGACATTCCTGAAATACGTGGCATTATTCTTTTTTGGATTTCTCATTT
ATGGAAGGCTAACCCTCTGTTGACTGTAAGCCTTTTGGTTTGGGCTGTATTGAAATCCTTTCTAAATT
GCATGAATAGGCTCTGCTAACGTGATGAGACAAACTGAAAATTATTGCAAGCATTGACTATAATTATG
CAGTACGTTCTCAGGATGCATCCAGGGGTTCATTTTCATGAGCCTGTCCAGGTTAGTTTACTCCTGAC
CACTAATAGCATTGTCATTTGGGCTTTCTGTTGAATGAATCAACAAACCACAATACTTCCTGGGACCT
TTTGTACTTTATTTGAACTATGAGTCTTTAATTTTTCCTGATGATGGTGGCTGTAATATGTTGAGTTC
AGTTTACTAAAGGTTTTACTATTATGGTTTGAAGTGGAGTCTCATGACCTCTCAGAATAAGGTGTCAC
CTCCCTGAAATTGCATATATGTATATAGACATGCACACGTGTGCATTTGTTTGTATACATATATTTGT
CCTTCGTATAGCAAGTTTTTTGCTCATCAGCAGAGAGCAACAGATGTTTTATTGAGTGAAGCCTTAAA
AAGCACACACCACACACAGCTAACTGCCAAAATACATTGACCGTAGTAGCTGTTCAACTCCTAGTACT
TAGAAATACACGTATGGTTAATGTTCAGTCCAACAAACCACACACAGTAAATGTTTATTAATAGTCAT
GGTTCGTATTTTAGGTGACTGAAATTGCATCAGTGATCATAATGAGGTTTGTTAAAACGATAGCTATA
TTCAAAATGTCTATATGTTTATTTGGACTTTTGAGGTTAAAGACAGTCATATAAACGTCCTGTTTCTG
TTTTAATGTTATCATAGAATTTTTTAATGAAACTAAATTCAATTGAAATAAATGATAGTTTTCATCTC
CA
7186 Human ABCC4 GCTTCACAGGCTCCAGCCGAGCGGACAGGCGTGGCGGCCGGAGCCCCAGCATCCCTGCTTGAGGTCCA
transcript GGAGCGGAGCCCGCGGCCACCGCCGCCTGATCAGCGCGACCCCGGCCCGCGCCCGCCCCGCCCGGCAA
variant GATGCTGCCCGTGTACCAGGAGGTGAAGCCCAACCCGCTGCAGGACGCGAACCTCTGCTCACGCGTGT
4 mRNA TCTTCTGGTGGCTCAATCCCTTGTTTAAAATTGGCCATAAACGGAGATTAGAGGAAGATGATATGTAT
NM_001301830. TCAGTGCTGCCAGAAGACCGCTCACAGCACCTTGGAGAGGAGTTGCAAGGGTTCTGGGATAAAGAAGT
2 TTTAAGAGCTGAGAATGACGCACAGAAGCCTTCTTTAACAAGAGCAATCATAAAGTGTTACTGGAAAT
(GI:1677498275 CTTATTTAGTTTTGGGAATTTTTACGTTAATTGAGGCACTTCGTCTTAGTAACATGGCCATGGGGAAG
version 2) ACAACCACAGGCCAGATAGTCAATCTGCTGTCCAATGATGTGAACAAGTTTGATCAGGTGACAGTGTT
CTTACACTTCCTGTGGGCAGGACCACTGCAGGCGATTGCAGTGACTGCCCTACTCTGGATGGAGATAG
GAATATCGTGCCTTGCTGGGATGGCAGTTCTAATCATTCTCCTGCCCTTGCAAAGCTGTTTTGGGAAG
TTGTTCTCATCACTGAGGAGTAAAACTGCAACTTTCACGGATGCCAGGATCAGGACCATGAATGAAGT
TATAACTGGTATAAGGATAATAAAAATGTACGCCTGGGAAAAGTCATTTTCAAATCTTATTACCAATT
TGAGAAAGAAGGAGATTTCCAAGATTCTGAGAAGTTCCTGCCTCAGAGGGATGAATTTGGCTTCATTT
TTCAGTGCAAGCAAAATCATCGTGTTTGTGACCTTCACCACCTACGTGCTCCTCGGCAGTGTGATCAC
AGCCAGCCGCGTGTTCGTGGCAGTGACGCTGTATGGGGCTGTGCGGCTGACGGTTACCCTCTTCTTCC
CCTCAGCCATTGAGAGGGTGTCAGAGGCAATCGTCAGCATCCGAAGAATCCAGACCTTTTTGCTACTT
GATGAGATATCACAGCGCAACCGTCAGCTGCCGTCAGATGGTAAAAAGATGGTGCATGTGCAGGATTT
TACTGCTTTTTGGGATAAGGCATCAGAGACCCCAACTCTACAAGGCCTTTCCTTTACTGTCAGACCTG
GCGAATTGTTAGCTGTGGTCGGCCCCGTGGGAGCAGGGAAGTCATCACTGTTAAGTGCCGTGCTCGGG
GAATTGGCCCCAAGTCACGGGCTGGTCAGCGTGCATGGAAGAATTGCCTATGTGTCTCAGCAGCCCTG
GGTGTTCTCGGGAACTCTGAGGAGTAATATTTTATTTGGGAAGAAATACGAAAAGGAACGATATGAAA
AAGTCATAAAGGCTTGTGCTCTGAAAAAGGATTTACAGCTGTTGGAGGATGGTGATCTGACTGTGATA
GGAGATCGGGGAACCACGCTGAGTGGAGGGCAGAAAGCACGGGTAAACCTTGCAAGAGCAGTGTATCA
AGATGCTGACATCTATCTCCTGGACGATCCTCTCAGTGCAGTAGATGCGGAAGTTAGCAGACACTTGT
TCGAACTGTGTATTTGTCAAATTTTGCATGAGAAGATCACAATTTTAGTGACTCATCAGTTGCAGTAC
CTCAAAGCTGCAAGTCAGATTCTGATATTGAAAGATGGTAAAATGGTGCAGAAGGGGACTTACACTGA
GTTCCTAAAATCTGGTATAGATTTTGGCTCCCTTTTAAAGAAGGATAATGAGGAAAGTGAACAACCTC
CAGTTCCAGGAACTCCCACACTAAGGAATCGTACCTTCTCAGAGTCTTCGGTTTGGTCTCAACAATCT
TCTAGACCCTCCTTGAAAGATGGTGCTCTGGAGAGCCAAGATACAGAGAATGTCCCAGTTACACTATC
AGAGGAGAACCGTTCTGAAGGAAAAGTTGGTTTTCAGGCCTATAAGAATTACTTCAGAGCTGGTGCTC
ACTGGATTGTCTTCATTTTCCTTATTCTCCTAAACACTGCAGCTCAGGTTGCCTATGTGCTTCAAGAT
TGGTGGCTTTCATACTGGGCAAACAAACAAAGTATGCTAAATGTCACTGTAAATGGAGGAGGAAATGT
AACCGAGAAGCTAGATCTTAACTGGTACTTAGGAATTTATTCAGGTTTAACTGTAGCTACCGTTCTTT
TTGGCATAGCAAGATCTCTATTGGTATTCTACGTCCTTGTTAACTCTTCACAAACTTTGCACAACAAA
ATGTTTGAGTCAATTCTGAAAGCTCCGGTATTATTCTTTGATAGAAATCCAATAGGAAGAATTTTAAA
TCGTTTCTCCAAAGACATTGGACACTTGGATGATTTGCTGCCGCTGACGTTTTTAGATTTCATCCAGA
GATGGGATCTCGCTGTGTTGTCCTGGCTGGTCTCAAACTCCTAGGCTCAAGCAATCCTCCTCCCTCCT
CAAGCAAACCTCAGTGCTGGGATTATAGGCATGAGCCACTGTACCTGGCTAAATGTTGTTTTTTTGAT
ATTCAATTTTTGTTTATAGAATTTTCATTTGTTTTGCTCTTATACTTTTCATCTTTTTATGTTTATTG
ACCAATTAAATATCATTTGGGTAAGCACCTATTTAAGTGTCTTAACAATTTTTCTATTGAGTACTCTG
GGTTTTTGTTTTGTTTTTCTTACTGATTTGTAGAATTCTTTATGTATTCTGAATTGCAGATACCTTCC
TTCTGTACTAATGCTTATCTTTTTAGCCCTGTAATATTGTGTTTTCATAAACATACTTATCAATCTTT
7187 Human PAK3 AGAGCATCCTCAGCAGCTGCCACCGAAGCAGCCTCCTCCTTCTCTCTTCCTCCTCCTCCTACCACGGC
transcript CGCCGCCACCACCGCTGCGGCTGTGATCTCCTATCCCCTCTGGTCCTCCTTCCTCCCCCAGTTCCTGC
variant TCCTCCTCCCATCCCCTGCTCCTCCTGCCCAGCAGCGAAGGGCAGAACCCTCGGCTGCCGCCCTCCTT
1 mRNA CGCTCTGACCAAGAAGAGGCTGGAACAGAATAACATACAGAGGACAGCTTTCTCTTCTGAGGAGTCAG
NM_ AAGTTCAGTTCGCCCAACATGGAATGACTTGAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGA
001128166.3 CGGTCTGGATAATGAAGAGAAACCCCCGGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTT
(GI:1889680926 CAGCACTCAACCACAGCTCCAAACCACTTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTT
version 3) CGCTCTATCTTCCCAGGAGGAGGGGATAAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTC
TCTTCCTTCAGACTTTGAGCATACGATTCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTGGAA
TTCCAGAGCAATGGGCACGATTACTCCAAACTTCCAACATAACAAAATTGGAACAGAAGAAGAACCCA
CAAGCTGTTCTAGATGTTCTCAAATTCTATGATTCCAAAGAAACAGTCAACAACCAGAAATACATGAG
CTTTACATCAGGAGATAAAAGTGCACATGGATACATAGCAGCCCATCCTTCGAGTACAAAAACAGCAT
CTGAGCCTCCATTGGCCCCTCCTGTGTCTGAAGAAGAAGATGAAGAGGAAGAAGAAGAAGAAGATGAA
AATGAGCCACCACCAGTTATCGCACCAAGACCAGAGCATACAAAATCAATCTATACTCGTTCTGTGGT
TGAATCCATTGCTTCACCAGCAGTACCAAATAAAGAGGTCACACCACCCTCTGCTGAAAATGCCAATT
CCAGTACTTTGTACAGGAACACAGATCGGCAAAGAAAAAAATCCAAGATGACAGATGAGGAGATCTTA
GAGAAGCTAAGAAGCATTGTGAGTGTTGGGGACCCAAAGAAAAAATACACAAGATTTGAAAAAATTGG
TCAAGGGGCATCAGGTACTGTTTATACAGCACTAGACATTGCAACAGGACAAGAGGTGGCCATAAAGC
AGATGAACCTTCAACAGCAACCCAAGAAGGAATTAATTATTAATGAAATTCTGGTCATGAGGGAAAAT
AAGAACCCTAATATTGTTAATTATTTAGATAGCTACTTGGTGGGTGATGAACTATGGGTAGTCATGGA
ATACTTGGCTGGTGGCTCTCTGACTGATGTGGTCACAGAGACCTGTATGGATGAAGGACAGATAGCAG
CTGTCTGCAGAGAGTGCCTGCAAGCTTTGGATTTCCTGCACTCAAACCAGGTGATCCATAGAGATATA
AAGAGTGACAATATTCTTCTCGGGATGGATGGCTCTGTTAAATTGACTGACTTTGGGTTCTGTGCCCA
GATCACTCCTGAGCAAAGTAAACGAAGCACTATGGTGGGAACCCCATATTGGATGGCACCTGAGGTGG
TGACTCGAAAAGCTTATGGTCCGAAAGTTGATATCTGGTCTCTTGGAATTATGGCAATTGAAATGGTG
GAAGGTGAACCCCCTTACCTTAATGAAAATCCACTCAGGGCATTGTATCTGATAGCCACTAATGGAAC
TCCAGAGCTCCAGAATCCTGAGAGACTGTCAGCTGTATTCCGTGACTTTTTAAATCGCTGTCTTGAGA
TGGATGTGGATAGGCGAGGATCTGCCAAGGAGCTTTTGCAGCATCCATTTTTAAAATTAGCCAAGCCT
CTCTCCAGCCTGACTCCTCTGATTATCGCTGCAAAGGAAGCAATTAAGAACAGCAGCCGCTAAGACTG
CAAGCCTTACACCTCACCATCTCCCTCATGAGTAAGACTGAAATAAAACTCTGCTGCAGGAAAGATGG
AAGAAAAGACAGTCAAATGGGGTGGGGGTTCTTTACCTTTCAAATGAATAGAAACTTCTTATAAGCCT
TTTTCCTACTCCCTCAGATTATGTAATTTATTTGTAAGCCTGAATCGCAGCCCAAACAGGGCAGCAAT
GTTGAAGTGACCATAAAGTGGTCACTTCCACCGTGAAGCGAAAGAGCCAGTAGTGAATCCCCTCATTT
TGTGCATTCACTTTGAAGAAAAAGGTTTCTCAAAGATGCACACTCCCTCTTCATAGTGTTGTGTTTGT
TTTTAAGTTAGAGAGTAGTCCCTCTTGCATTCAAACCTCCTTCAAAACTCCTTACCCAATGTGATGTT
TTTCACTTGCATTGTCATTAGATGTCCAGAAAAAAAAAAGATGTCAAAATGTTTTTCTAAAAAAAGAA
AGCAAAAAAAGCAAGGCAAAAAAAAAAAAAAAAACAAACAAAAACAAAAACAAAACAAAAACAAGCAA
ACAAAAAATACCAGAGCAAGTACTGTGTGAACATGTGGAAGTCCATGCCCTAATAGAGTTGCAATTTT
TTATTCTTCTTCTATAGTGGTGGCTTGGTTTGTGTACCTATTTTTCTGCATTTGTATTGGAAAAGGTT
TCTTTTAAGACATTTTCCAAAAGTGGAGAGGAATATGTGTGTTCAGGAAGGGCTTTCAAAAAACTGTA
TATCTAAATAAAGCTCAAACGGTGAAATCCTGTCACATTTTCACAATGATGCTTAAAAGATAATTGAG
TAAACCAGGTTGTTAATCTCCTTAATACCTGAAAGAGGACACACTGAAACTGAAACTGTGACATCCTG
CTAGGTGAGTTCAGGTTCTGAACCTAGGAAATCCTCATAGGAGAAACCACATTTAAACAAAGATGGGA
CTTTCTCTGAGAGCCAAAACCAGATAAATGTAGAATACTGAAATCCTTGTTGGACATTAAGTAAACAA
AGATAATGATACCTAAATTAATCCTCTCTTGTGCTTATGAAACATATGCACTGTAAAATAGGCATACC
AGGAGGAAATAGATACATTAATCATCATTTACTTATGATACAAATTATTTATTTTGACAATTTATAAC
GTTTAAAAAAGTTTTTTAAAGATCTAGAGAAAGGTGATATAGTAAACATTCAACTCTGTAAGAAATGG
GAGGTCAGTGAAGGCTACATCCCAATCAATATTTGGCTCTAAGTACCTCTTCCCATTTTTCCTATGTA
TCACCTATTTCTGTTTCGGAATATGGTGTGTTCATGCTTAGTTCTTTGGGCTTTTGAATATCAAAAGC
ATATTCATAAATGTCTTGAAATTCTCTCCAGTGGAAAATAATTTTAACTTACAATCATATCCCAAGAA
ATGTCAGTCCGACAGAATTCCTTATATGACTTGGGGAAAATAACAAAATTTGACTACTATTTCACCAT
ATATCTATTTATTAAAAAATTCAACAGTTGGCACTTCCTGAATCTTCTGAGAGTAGAAAAATATCTGC
GGAGTGTCTGTGTAGAAAAGGATATGCCTCTCTTTTGAGTGTATTGACAATTTTGTAAATTACAGAAA
GTTGTTTCTCTAAGCCTTTGAAAAACTAACAATTTGTGTTATAGAAGGCTTCTTAATTTGCAGTATAA
AAGAATCTAAACAGAACTTATGTACATTCAGCCAGAAGGGGAAAGAGATCAGTTACATAGGCCTCTCT
CCTTCTTTGCCAAGGTACATCCATCCATCTAACCATCCATATATCCACATCTTAAAATGAAAGCACTT
TCTTTAGAGTTTCAGCAAACTATATAGTGTACGTGTTTATGTTCAGGAGATGACCCCACTGGTGTATT
TCCTATTTTCCCTATTGTTTTCTTTGACTGTAAAAGTTGGGAGAGGCTTGACCTCCTCCCCTTGAAAA
TGTCCACAGTGGGATAAAACAACAAATGTGAAAAGAAAATGAAACGGTAATATTAATTTGAAGCATAC
TATGTTATACTTTGCAAAAACGAATCTGGGCCTGTAATTTTTAATGCCACACTGCTCTAATGAGAGAG
AGAGGCCTTAATTTTGATTTCATTTAAAAATAAGTACTTTAAAAAATTTTTCACTCATAGTGCCGGGA
AATTCAATGAAATCCTGGGATGCAAATAAAAATCAGTACATTAGTGACTGTGTCCTGCCAGTGGAGAG
AGCCCAATACCTGGTTAGGAAGCCCTATTCATTAGTTAGCATCCCTTACATGTTGAGAAGGCCTTTTT
TTTGTTGTTATTTTGGAGACCTTGGAGCAGTGACCCTTCAGATCACTGTAGGCAGAGAAATGGCTTCT
CTCTTATGCTTTCAGTTCAGCATATTAACAATGAGGAGCCAGGTACTTCTTTACTACCACTTTGTACC
AAGATTTGATAATAATATATCCCAGGAGGCATTACTTTTATAAATTTGTATTCATGTAAATTTTCAAA
TGAGAACAGCTTCTAAAGCCCCTTCCCTGTATTGGAGAGTTATGTATATTTCTAATAAGTATTAGAAA
GAAGCTGTTTCTCATGCCACAGTGATGCTGAAGGATTCACATTTGGTACAATCGAGTAACTTGAACGC
CAGATTGTTAACAGTTTATTCTCTTTCCCTGGATTTTTAAGCTCATCTTGACACAGGTGAGTCTATCC
AAATCTTTGATGTTGCTAGTGTGCCCTGAGATAACGAGGGCACATCTTTCAATGTTGATTCCAAAATG
TCCTGAGTTAGGAATAGGGCAGTGGGAAAGTCAGGGAAGGGTGAGAAGCACAGTAGAGATTATTTATT
TAAAAAAGGAAAGAACGTTAATGTTGTTAGCAAGGATCCAGTGCGTTGTCATAATCCCATGAGGATTT
TCAGATGACACAATCCCCTCAAATCAGTCACCATGTTGGGTAATGACTTCGTTCTTGCTGATCTCGTG
TGTGTGTCATTGTAAATATTTGTGTGTCCATGTTCCATTTTGGCTACTGGATGGCCAAGCCATGTAAG
AAGATTTAACTCAAGTATTTATTCTTTATGTTATTCAGATTTCTTTCAGGCTTGTGAACTGCACCCCA
ATGTTTGAGTTTAACCACCTGATCCTTACATCTATCCCTCCCCGGTGAAGCACATTCCATTGCTAAAA
GAAAAAGAAACACGAAATTGCTTCCTGTTGTCTGTATAACTGTTTTGATAGTTTGAGATATTTGTCTA
TAAATGATATTTCTCAGCTCAAAGATCGTGTAAATAATTATATTCCTTTGCTCAATGGGTTTATTTCT
AATGAGGCTGCCAGTTCTGAGAGATTCTATAATATCACTTTTAAATAACATAAACAGGGATTACAACT
ATGTAAAAAGAAATGCATATGGACAAAGACTGGGAACACAGATAATTGAAATCAGTTGTGTTAGGGTG
GTGGAATTATGTGAATTTTTTTTTCTTTTTAAAATTTTATTTGATATTGTTATAATATTGCTTTACAA
TAAATAAACAGCAGAAAGGGAACTATAGACACATAGAAAAGATGCCAGAAGCAGATGCCTTCTGGCCA
GAGCGCAGAGCATGCAGGGCAGAGATATTTGCTAGTTACAATTATTCCATAGGCTTTATGCTTGCCTG
GGTGCTGAGGTTGGCACACGCTCGGGTATGGCACACGCTTTCTTAGGAGACTATTATCTATAAGTTAA
AGCTAGGGAGATGTCACTATTAGAACTCCAAACACACTCTTCTGCTTTAAAACAGGTTGTCTGCCCTC
TGCTTTGGTATGGCATTCGGGTGTCTGTTTTGTGGTTGCTTTAGATTGGAGGGGTGACCATTTTATTA
GCCCCCTTGATAACATCTGTTGCAGATATTGCCTTTCTGGAACGTTTTAACAGACTCTCAGGTTGAAT
TTTGGAGGACTAGAAGGATAAAATCCCCAGCTCCCACCATTTTCTTGTCCAACAGGATATTACTGTAT
ATCATTCAGGTAGGATTCTTCTTTTAATAACCAATAGGGCAAGTCCCACTAATTTCAATAGAAGTTAT
GACTTGCAATTAAAAGCTGACTTTGAAATCATTAAACAAATATGTAGGACTGTCTCTGCCTGTTGGCA
TTCAGTTATAGTTCTGTTAATTTTGGCTTGGGATGGTCTCCATGTGCTTTTTTCTGCCTATTTATAGG
TTGTTTGCAGTAGTTGTGATTTTTAAAGAGCAAGGGAGACCATCTAACCAAAGGATAACTTCCTTCTA
ACTCACCAAAGAAATTTTAGGTGAGAACTTTAATAATGAGGTAGTCACCTCAGATATGCTGCTTAGTT
TCACTAAAAGCAGACCCTATACCTAGAGAAGTCACTGGCTTTTTATTGGTCATTCTCAATACAGAAAT
ACTTAGGGGAGTCTTAACCCTGCCATCCCCGGTTGAATCTCTTGGTCTTTATCTAAGCTACTTGCAGT
TAATATTCAGTTAAGCAAAGGTATGGCCAGTAGTGCAAGTATCTCCCAGTCTCTGAGCTCTGAACAAG
AGGACTGAAATTCAGCATTTGTAAACTGACAGTTTGATGGGCCTGGGATTTGAAGTGAACTCAGCACA
CAATTCTGAACGTGTATTTGCATGTGGACTGGGAAGGAAATAAATGGGAACTTGGAAATAATGGAATA
TTTCTCCTATGAAAGAATTTTTCGTAGAAGATTTGTTTTTGATATAATCTTTCTGTTGGTTAGCTTTT
AGTGTTTTCATTCCTTTTCTGATCCACACTCCTTTAAGTGACCAAATGAATATAACCCAACATGCATT
GGGAATGTGTTTAATATTAAACAATGTCTAACTGAATCTGCAAATGCGGGAACTGAGATATCACCTCC
ATGTGCACACCTGTGTGTACGAGTATTCTATACAACTTGTAGCATTTACTGCCACTTAATTG
GGTTGAACTTGCAAGATAAACTTTTGGAAACTGCTTAGTGCCATCGGAGTCTCCTTTAGAAGCTGCCA
TCAGGCAAATGCTATCCCATAATACCAGCAGTAAGCCTGGCAACATGTTCAACAGATTTAGTACCCAA
GAGGAAATCAACAGCGATAGTAGAGAATGAGTCAGATGTAGTGGGATAAATACTAGCCTAGGAAGAAG
GAGCCCCGGAGTCTAATATGAGCTTTATTACTAAATTGCTATGTGACGCTAGGCAAGTCACTTAACCT
CTCCATGGCTGTTTCCTCATCTGTAAAATAAGTGTATTGGACTAGATGATCCTTAGGGTCTTTCCAAA
AGTCTAACATTCTATGGCATTATAGGTTGCCTTGCAAATTCAGCCTGCTATAGTGATGGCAAATATCA
CGTTTAAGCCTGAGTCTCTTATGTTGCAGTTAAATAAAAGAACTATGTAAGATGATTTTTAAAATTCA
AGCAAATGGGCCGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGA
TCACCTGAGGTCAGGAGTTCGAGACCAGCCTGACCAACATAGAGAAACCCCATCTCTACTAAAAATAC
AAAATTAGCCGGGTGTGGTGGCGGGCGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGTGGGAGAATC
GCTTGAACCCAGGAGGCGGAGGTTGTGGTGAGCTGAGATCATGCCATTGCACTCCAGCCTCGGCAACA
AGAGTGAAACTTCGTCTCCAAAAAAAAAAACTCAAGCAAATGAAGTTCATAATAATAGGGGATGTTGA
TAAAACTTGTGGCAGCCTTCCAATTCATTTACAGTTGTTTCGTTTTGTTTTTGTTTTAATGTCCATTT
TCTGTTGACTGTTCCCAGTTTTCATTTTCCATACAGTCTGTATGTAAAGTCTGGTTTTCATTAAGCTG
TGGCCAGTATTTGCCACTACAACAGAAACACACTGTCACACTTGCTAGAATATAACTGTACTTGAGCT
TCTCCTTTCCTGTGAAGTAGTGCTGGGCTTTCTAGAGTTTAATTCTCAAGTGGCACAAGATAGCAGAG
CCCATGCATTTTAATGGCTGAGACTGCTAAGAGTGAACCTAAACACTTACAAGTTGCAGAGAGAAATG
AAAAAGTAATTACATGCTATTAGCATTGAGAAATGTTGACAAATTAATTTGTTGGGAACCAAAGATAG
CATTTCTGATGACAACTCCCACAGTGATTGGCCAGTTGTATGATGAGTACACTGCTGGAAAGAGGGTA
AACTGGGAGTTAGTGGATGGTCCCAATGCCCTGCCTACAGCAGAGTGCCAACCAGCCCTGAGTGCAAA
ATTCAAGTTCAATGTGTGTGCTTGTGTGTGGTGTGCTTTATGGACCCGCAAATACCATATTCATTATT
GATGATAAGATCTTCACAGAATCCTGTAGCTACTAATGCATTGAGTTTTTAATCTCAGTACATCAGCC
AGGAGGAGCCAGATCACAGGGTAGTGATGTCTACTGGGATTATACTCATAACATCTACACAAAACAAG
TTGAGAAGGATCCACGTTTTCATTGTTTATCAGAATTGTATCTCATTTGGCTGAGCATTACTTTTGTC
AGAATGTGTTATCTGTAAACCATGTGTAGTGAAATTCTTCTGTAACTTTGGATTAAAGGTATTTATGG
TCTTTTTGTTTGTTTGATTTTTAAGTAAGTTATTTCTTTTGTAGACCTGCTGATGGTATGGTTCCATC
CTTCTGACCTCAGCATCCAATCTTTTTAAGGATTTTTGTTTTCAATATTGTTATTTTAAATTGTGGTT
GAAGCAATAGAAAATTGAAATATGGATTGTGCATGACTGTGTCTTGAGTGTAAAAATATTGCAGTTTG
AAACTTGGACCTAAAGTATTGCAAATAAAAATGACAAACATCAATGA
7188 Human PAK3 ACCGCGGGCGGGCAGCTGTGCCAGCTAACCGTCTGGGATCTCGCACTGGGGGCTGCAGCTTTTCCCCG
transcript CCTCGAGCCAGTGTGCGGGGGCGGGAGAAGAGCCAGGGGGAGCGGGCTGGGCCCGGGGCTGCGGCTGC
variant GGCCGCGGGGCTGCGGCTCCCCAGCCCCGCCAGCTGGAGCGCTCGGAGGTAGAGGAAAGGTCTTGACG
2 mRNA GGGTGGCTGGATCCGTGGCAGAATCCAGTTCCAGATTCTAGACTTGAGGGTTCTGGGCTGTTGGTCTG
NM_002578.5 TAGAAGCGAAGGAGAGAAGGACTCAAATCCAGGCCAAGTGTATGGCTGTCTGAGGTATTGGAACAGAA
(GI:1519316149 GGAGGTCCATTCCTGTTGGTGACAACACCGTGGCCCTGTTCTGGGATGAGCAAGGTGTAAAGGTTTCC
version 5) CCCAAGAAAGAGCAGCTGAGTCCTTGCATCTTGTGGCAGCTGGTGTGCCCAGCACTGAGTCTGTAGGA
GCTGAAGCCAGCCCGGACCCTTCTCATGGGCAGTGCCCACCTGTGCTGAAGTCCTGCAGCGGTGGCGG
TGTGAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGACGGTCTGGATAATGAAGAGAAACCCCC
GGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTTCAGCACTCAACCACAGCTCCAAACCAC
TTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTTCGCTCTATCTTCCCAGGAGGAGGGGAT
AAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTCTCTTCCTTCAGACTTTGAGCATACGAT
TCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTGGAATTCCAGAGCAATGGGCACGATTACTCC
AAACTTCCAACATAACAAAATTGGAACAGAAGAAGAACCCACAAGCTGTTCTAGATGTTCTCAAATTC
TATGATTCCAAAGAAACAGTCAACAACCAGAAATACATGAGCTTTACATCAGGAGATAAAAGTGCACA
TGGATACATAGCAGCCCATCCTTCGAGTACAAAAACAGCATCTGAGCCTCCATTGGCCCCTCCTGTGT
CTGAAGAAGAAGATGAAGAGGAAGAAGAAGAAGAAGATGAAAATGAGCCACCACCAGTTATCGCACCA
AGACCAGAGCATACAAAATCAATCTATACTCGTTCTGTGGTTGAATCCATTGCTTCACCAGCAGTACC
AAATAAAGAGGTCACACCACCCTCTGCTGAAAATGCCAATTCCAGTACTTTGTACAGGAACACAGATC
GGCAAAGAAAAAAATCCAAGATGACAGATGAGGAGATCTTAGAGAAGCTAAGAAGCATTGTGAGTGTT
GGGGACCCAAAGAAAAAATACACAAGATTTGAAAAAATTGGTCAAGGGGCATCAGGTACTGTTTATAC
AGCACTAGACATTGCAACAGGACAAGAGGTGGCCATAAAGCAGATGAACCTTCAACAGCAACCCAAGA
AGGAATTAATTATTAATGAAATTCTGGTCATGAGGGAAAATAAGAACCCTAATATTGTTAATTATTTA
GATAGCTACTTGGTGGGTGATGAACTATGGGTAGTCATGGAATACTTGGCTGGTGGCTCTCTGACTGA
TGTGGTCACAGAGACCTGTATGGATGAAGGACAGATAGCAGCTGTCTGCAGAGAGTGCCTGCAAGCTT
TGGATTTCCTGCACTCAAACCAGGTGATCCATAGAGATATAAAGAGTGACAATATTCTTCTCGGGATG
GATGGCTCTGTTAAATTGACTGACTTTGGGTTCTGTGCCCAGATCACTCCTGAGCAAAGTAAACGAAG
CACTATGGTGGGAACCCCATATTGGATGGCACCTGAGGTGGTGACTCGAAAAGCTTATGGTCCGAAAG
TTGATATCTGGTCTCTTGGAATTATGGCAATTGAAATGGTGGAAGGTGAACCCCCTTACCTTAATGAA
AATCCACTCAGGGCATTGTATCTGATAGCCACTAATGGAACTCCAGAGCTCCAGAATCCTGAGAGACT
GTCAGCTGTATTCCGTGACTTTTTAAATCGCTGTCTTGAGATGGATGTGGATAGGCGAGGATCTGCCA
AGGAGCTTTTGCAGCATCCATTTTTAAAATTAGCCAAGCCTCTCTCCAGCCTGACTCCTCTGATTATC
GCTGCAAAGGAAGCAATTAAGAACAGCAGCCGCTAAGACTGCAAGCCTTACACCTCACCATCTCCCTC
ATGAGTAAGACTGAAATAAAACTCTGCTGCAGGAAAGATGGAAGAAAAGACAGTCAAATGGGGTGG
GGGTTCTTTACCTTTCAAATGAATAGAAACTTCTTATAAGCCTTTTTCCTACTCCCTCAGATTATGTA
ATTTATTTGTAAGCCTGAATCGCAGCCCAAACAGGGCAGCAATGTTGAAGTGACCATAAAGTGGTCAC
TTCCACCGTGAAGCGAAAGAGCCAGTAGTGAATCCCCTCATTTTGTGCATTCACTTTGAAGAAAAAGG
TTTCTCAAAGATGCACACTCCCTCTTCATAGTGTTGTGTTTGTTTTTAAGTTAGAGAGTAGTCCCTCT
TGCATTCAAACCTCCTTCAAAACTCCTTACCCAATGTGATGTTTTTCACTTGCATTGTCATTAGATGT
CCAGAAAAAAAAAAGATGTCAAAATGTTTTTCTAAAAAAAGAAAGCAAAAAAAGCAAGGCAAAAAAAA
AAAAAAAAACAAACAAAAACAAAAACAAAACAAAAACAAGCAAACAAAAAATACCAGAGCAAGTACTG
TGTGAACATGTGGAAGTCCATGCCCTAATAGAGTTGCAATTTTTTATTCTTCTTCTATAGTGGTGGCT
TGGTTTGTGTACCTATTTTTCTGCATTTGTATTGGAAAAGGTTTCTTTTAAGACATTTTCCAAAAGTG
GAGAGGAATATGTGTGTTCAGGAAGGGCTTTCAAAAAACTGTATATCTAAATAAAGCTCAAACGGTGA
AATCCTGTCACATTTTCACAATGATGCTTAAAAGATAATTGAGTAAACCAGGTTGTTAATCTCCTTAA
TACCTGAAAGAGGACACACTGAAACTGAAACTGTGACATCCTGCTAGGTGAGTTCAGGTTCTGAACCT
AGGAAATCCTCATAGGAGAAACCACATTTAAACAAAGATGGGACTTTCTCTGAGAGCCAAAACCAGAT
AAATGTAGAATACTGAAATCCTTGTTGGACATTAAGTAAACAAAGATAATGATACCTAAATTAATCCT
CTCTTGTGCTTATGAAACATATGCACTGTAAAATAGGCATACCAGGAGGAAATAGATACATTAATCAT
CATTTACTTATGATACAAATTATTTATTTTGACAATTTATAACGTTTAAAAAAGTTTTTTAAAGATCT
AGAGAAAGGTGATATAGTAAACATTCAACTCTGTAAGAAATGGGAGGTCAGTGAAGGCTACATCCCAA
TCAATATTTGGCTCTAAGTACCTCTTCCCATTTTTCCTATGTATCACCTATTTCTGTTTCGGAATATG
GTGTGTTCATGCTTAGTTCTTTGGGCTTTTGAATATCAAAAGCATATTCATAAATGTCTTGAAATTCT
CTCCAGTGGAAAATAATTTTAACTTACAATCATATCCCAAGAAATGTCAGTCCGACAGAATTCCTTAT
ATGACTTGGGGAAAATAACAAAATTTGACTACTATTTCACCATATATCTATTTATTAAAAAATTCAAC
AGTTGGCACTTCCTGAATCTTCTGAGAGTAGAAAAATATCTGCGGAGTGTCTGTGTAGAAAAGGATAT
GCCTCTCTTTTGAGTGTATTGACAATTTTGTAAATTACAGAAAGTTGTTTCTCTAAGCCTTTGAAAAA
CTAACAATTTGTGTTATAGAAGGCTTCTTAATTTGCAGTATAAAAGAATCTAAACAGAACTTATGTAC
ATTCAGCCAGAAGGGGAAAGAGATCAGTTACATAGGCCTCTCTCCTTCTTTGCCAAGGTACATCCATC
CATCTAACCATCCATATATCCACATCTTAAAATGAAAGCACTTTCTTTAGAGTTTCAGCAAACTATAT
AGTGTACGTGTTTATGTTCAGGAGATGACCCCACTGGTGTATTTCCTATTTTCCCTATTGTTTTCTTT
GACTGTAAAAGTTGGGAGAGGCTTGACCTCCTCCCCTTGAAAATGTCCACAGTGGGATAAAACAACAA
ATGTGAAAAGAAAATGAAACGGTAATATTAATTTGAAGCATACTATGTTATACTTTGCAAAAACGAAT
CTGGGCCTGTAATTTTTAATGCCACACTGCTCTAATGAGAGAGAGAGGCCTTAATTTTGATTTCATTT
AAAAATAAGTACTTTAAAAAATTTTTCACTCATAGTGCCGGGAAATTCAATGAAATCCTGGGATGCAA
ATAAAAATCAGTACATTAGTGACTGTGTCCTGCCAGTGGAGAGAGCCCAATACCTGGTTAGGAAGCCC
TATTCATTAGTTAGCATCCCTTACATGTTGAGAAGGCCTTTTTTTTGTTGTTATTTTGGAGACCTTGG
AGCAGTGACCCTTCAGATCACTGTAGGCAGAGAAATGGCTTCTCTCTTATGCTTTCAGTTCAGCATAT
TAACAATGAGGAGCCAGGTACTTCTTTACTACCACTTTGTACCAAGATTTGATAATAATATATCCCAG
GAGGCATTACTTTTATAAATTTGTATTCATGTAAATTTTCAAATGAGAACAGCTTCTAAAGCCCCTTC
CCTGTATTGGAGAGTTATGTATATTTCTAATAAGTATTAGAAAGAAGCTGTTTCTCATGCCACAGTGA
TGCTGAAGGATTCACATTTGGTACAATCGAGTAACTTGAACGCCAGATTGTTAACAGTTTATTCTCTT
TCCCTGGATTTTTAAGCTCATCTTGACACAGGTGAGTCTATCCAAATCTTTGATGTTGCTAGTGTGCC
CTGAGATAACGAGGGCACATCTTTCAATGTTGATTCCAAAATGTCCTGAGTTAGGAATAGGGCAGTGG
GAAAGTCAGGGAAGGGTGAGAAGCACAGTAGAGATTATTTATTTAAAAAAGGAAAGAACGTTAATGTT
GTTAGCAAGGATCCAGTGCGTTGTCATAATCCCATGAGGATTTTCAGATGACACAATCCCCTCAAATC
AGTCACCATGTTGGGTAATGACTTCGTTCTTGCTGATCTCGTGTGTGTGTCATTGTAAATATTTGTGT
GTCCATGTTCCATTTTGGCTACTGGATGGCCAAGCCATGTAAGAAGATTTAACTCAAGTATTTATTCT
TTATGTTATTCAGATTTCTTTCAGGCTTGTGAACTGCACCCCAATGTTTGAGTTTAACCACCTGATCC
TTACATCTATCCCTCCCCGGTGAAGCACATTCCATTGCTAAAAGAAAAAGAAACACGAAATTGCTTCC
TGTTGTCTGTATAACTGTTTTGATAGTTTGAGATATTTGTCTATAAATGATATTTCTCAGCTCAAAGA
TCGTGTAAATAATTATATTCCTTTGCTCAATGGGTTTATTTCTAATGAGGCTGCCAGTTCTGAGAGAT
TCTATAATATCACTTTTAAATAACATAAACAGGGATTACAACTATGTAAAAAGAAATGCATATGGACA
AAGACTGGGAACACAGATAATTGAAATCAGTTGTGTTAGGGTGGTGGAATTATGTGAATTTTTTTTTC
TTTTTAAAATTTTATTTGATATTGTTATAATATTGCTTTACAATAAATAAACAGCAGAAAGGGAACTA
TAGACACATAGAAAAGATGCCAGAAGCAGATGCCTTCTGGCCAGAGCGCAGAGCATGCAGGGCAGAGA
TATTTGCTAGTTACAATTATTCCATAGGCTTTATGCTTGCCTGGGTGCTGAGGTTGGCACACGCTCGG
GTATGGCACACGCTTTCTTAGGAGACTATTATCTATAAGTTAAAGCTAGGGAGATGTCACTATTAGAA
CTCCAAACACACTCTTCTGCTTTAAAACAGGTTGTCTGCCCTCTGCTTTGGTATGGCATTCGGGTGTC
TGTTTTGTGGTTGCTTTAGATTGGAGGGGTGACCATTTTATTAGCCCCCTTGATAACATCTGTTGCAG
ATATTGCCTTTCTGGAACGTTTTAACAGACTCTCAGGTTGAATTTTGGAGGACTAGAAGGATAAAATC
CCCAGCTCCCACCATTTTCTTGTCCAACAGGATATTACTGTATATCATTCAGGTAGGATTCTTCTTTT
AATAACCAATAGGGCAAGTCCCACTAATTTCAATAGAAGTTATGACTTGCAATTAAAAGCTGACTTTG
AAATCATTAAACAAATATGTAGGACTGTCTCTGCCTGTTGGCATTCAGTTATAGTTCTGTTAATTTTG
GCTTGGGATGGTCTCCATGTGCTTTTTTCTGCCTATTTATAGGTTGTTTGCAGTAGTTGTGATTTTTA
AAGAGCAAGGGAGACCATCTAACCAAAGGATAACTTCCTTCTAACTCACCAAAGAAATTTTAGGTGAG
AACTTTAATAATGAGGTAGTCACCTCAGATATGCTGCTTAGTTTCACTAAAAGCAGACCCTATACCTA
GAGAAGTCACTGGCTTTTTATTGGTCATTCTCAATACAGAAATACTTAGGGGAGTCTTAACCCTGCCA
TCCCCGGTTGAATCTCTTGGTCTTTATCTAAGCTACTTGCAGTTAATATTCAGTTAAGCAAAGGTATG
GCCAGTAGTGCAAGTATCTCCCAGTCTCTGAGCTCTGAACAAGAGGACTGAAATTCAGCATTTGTAAA
CTGACAGTTTGATGGGCCTGGGATTTGAAGTGAACTCAGCACACAATTCTGAACGTGTATTTGCATGT
GGACTGGGAAGGAAATAAATGGGAACTTGGAAATAATGGAATATTTCTCCTATGAAAGAATTTTTCGT
AGAAGATTTGTTTTTGATATAATCTTTCTGTTGGTTAGCTTTTAGTGTTTTCATTCCTTTTCTGATCC
ACACTCCTTTAAGTGACCAAATGAATATAACCCAACATGCATTGGGAATGTGTTTAATATTAAACAAT
GTCTAACTGAATCTGCAAATGCGGGAACTGAGATATCACCTCCATGTGCACACCTGTGTGTACGAGTA
TTCTATACAACTTGTAGCATTTACTGCCACTTAATTGGGTTGAACTTGCAAGATAAACTTTTGGAAAC
TGCTTAGTGCCATCGGAGTCTCCTTTAGAAGCTGCCATCAGGCAAATGCTATCCCATAATACCAGCAG
TAAGCCTGGCAACATGTTCAACAGATTTAGTACCCAAGAGGAAATCAACAGCGATAGTAGAGAATGAG
TCAGATGTAGTGGGATAAATACTAGCCTAGGAAGAAGGAGCCCCGGAGTCTAATATGAGCTTTATTAC
TAAATTGCTATGTGACGCTAGGCAAGTCACTTAACCTCTCCATGGCTGTTTCCTCATCTGTAAAATAA
GTGTATTGGACTAGATGATCCTTAGGGTCTTTCCAAAAGTCTAACATTCTATGGCATTATAGGTTGCC
TTGCAAATTCAGCCTGCTATAGTGATGGCAAATATCACGTTTAAGCCTGAGTCTCTTATGTTGCAGTT
AAATAAAAGAACTATGTAAGATGATTTTTAAAATTCAAGCAAATGGGCCGGGTGCGGTGGCTCATACC
TGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCT
GACCAACATAGAGAAACCCCATCTCTACTAAAAATACAAAATTAGCCGGGTGTGGTGGCGGGCGCCTG
TAATCCCAGCTACTTGGGAGGCTGAGGTGGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGTGGTGA
GCTGAGATCATGCCATTGCACTCCAGCCTCGGCAACAAGAGTGAAACTTCGTCTCCAAAAAAAAAAAC
TCAAGCAAATGAAGTTCATAATAATAGGGGATGTTGATAAAACTTGTGGCAGCCTTCCAATTCATTTA
CAGTTGTTTCGTTTTGTTTTTGTTTTAATGTCCATTTTCTGTTGACTGTTCCCAGTTTTCATTTTCCA
TACAGTCTGTATGTAAAGTCTGGTTTTCATTAAGCTGTGGCCAGTATTTGCCACTACAACAGAAACAC
ACTGTCACACTTGCTAGAATATAACTGTACTTGAGCTTCTCCTTTCCTGTGAAGTAGTGCTGGGCTTT
CTAGAGTTTAATTCTCAAGTGGCACAAGATAGCAGAGCCCATGCATTTTAATGGCTGAGACTGCTAAG
AGTGAACCTAAACACTTACAAGTTGCAGAGAGAAATGAAAAAGTAATTACATGCTATTAGCATTGAGA
AATGTTGACAAATTAATTTGTTGGGAACCAAAGATAGCATTTCTGATGACAACTCCCACAGTGATTGG
CCAGTTGTATGATGAGTACACTGCTGGAAAGAGGGTAAACTGGGAGTTAGTGGATGGTCCCAATGCCC
TGCCTACAGCAGAGTGCCAACCAGCCCTGAGTGCAAAATTCAAGTTCAATGTGTGTGCTTGTGTGTGG
TGTGCTTTATGGACCCGCAAATACCATATTCATTATTGATGATAAGATCTTCACAGAATCCTGTAGCT
ACTAATGCATTGAGTTTTTAATCTCAGTACATCAGCCAGGAGGAGCCAGATCACAGGGTAGTGATGTC
TACTGGGATTATACTCATAACATCTACACAAAACAAGTTGAGAAGGATCCACGTTTTCATTGTTTATC
AGAATTGTATCTCATTTGGCTGAGCATTACTTTTGTCAGAATGTGTTATCTGTAAACCATGTGTAGTG
AAATTCTTCTGTAACTTTGGATTAAAGGTATTTATGGTCTTTTTGTTTGTTTGATTTTTAAGTAAGTT
ATTTCTTTTGTAGACCTGCTGATGGTATGGTTCCATCCTTCTGACCTCAGCATCCAATCTTTTTAAGG
ATTTTTGTTTTCAATATTGTTATTTTAAATTGTGGTTGAAGCAATAGAAAATTGAAATATGGATTGTG
CATGACTGTGTCTTGAGTGTAAAAATATTGCAGTTTGAAACTTGGACCTAAAGTATTGCAAATAAAAA
TGACAAACATCAATGA
7189 Human PAK3 AGAGCATCCTCAGCAGCTGCCACCGAAGCAGCCTCCTCCTTCTCTCTTCCTCCTCCTCCTACCACGGC
transcript CGCCGCCACCACCGCTGCGGCTGTGATCTCCTATCCCCTCTGGTCCTCCTTCCTCCCCCAGTTCCTGC
variant TCCTCCTCCCATCCCCTGCTCCTCCTGCCCAGCAGCGAAGGGCAGAACCCTCGGCTGCCGCCCTCCTT
3 mRNA CGCTCTGACCAAGAAGAGGCTGGAACAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGACGGTC
NM_001128167. TGGATAATGAAGAGAAACCCCCGGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTTCAGCA
3 CTCAACCACAGCTCCAAACCACTTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTTCGCTC
(GI:1890283404 TATCTTCCCAGGAGGAGGGGATAAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTCTCTTC
version 3) CTTCAGACTTTGAGCATACGATTCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTGGAATTCCA
GAGCAATGGGCACGATTACTCCAAACTTCCAACATAACAAAATTGGAACAGAAGAAGAACCCACAAGC
TGTTCTAGATGTTCTCAAATTCTATGATTCCAAAGAAACAGTCAACAACCAGAAATACATGAGCTTTA
CATCAGGAGATAAAAGTGCACATGGATACATAGCAGCCCATCCTTCGAGTACAAAAACAGCATCTGAG
CCTCCATTGGCCCCTCCTGTGTCTGAAGAAGAAGATGAAGAGGAAGAAGAAGAAGAAGATGAAAATGA
GCCACCACCAGTTATCGCACCAAGACCAGAGCATACAAAATCAATCTATACTCGTTCTGTGGTTGAAT
CCATTGCTTCACCAGCAGTACCAAATAAAGAGGTCACACCACCCTCTGCTGAAAATGCCAATTCCAGT
ACTTTGTACAGGAACACAGATCGGCAAAGAAAAAAATCCAAGATGACAGATGAGGAGATCTTAGAGAA
GCTAAGAAGCATTGTGAGTGTTGGGGACCCAAAGAAAAAATACACAAGATTTGAAAAAATTGGTCAAG
GGGCATCAGGTACTGTTTATACAGCACTAGACATTGCAACAGGACAAGAGGTGGCCATAAAGCAGATG
AACCTTCAACAGCAACCCAAGAAGGAATTAATTATTAATGAAATTCTGGTCATGAGGGAAAATAAGAA
CCCTAATATTGTTAATTATTTAGATAGCTACTTGGTGGGTGATGAACTATGGGTAGTCATGGAATACT
TGGCTGGTGGCTCTCTGACTGATGTGGTCACAGAGACCTGTATGGATGAAGGACAGATAGCAGCTGTC
TGCAGAGAGTGCCTGCAAGCTTTGGATTTCCTGCACTCAAACCAGGTGATCCATAGAGATATAAAGAG
TGACAATATTCTTCTCGGGATGGATGGCTCTGTTAAATTGACTGACTTTGGGTTCTGTGCCCAGATCA
CTCCTGAGCAAAGTAAACGAAGCACTATGGTGGGAACCCCATATTGGATGGCACCTGAGGTGGTGACT
CGAAAAGCTTATGGTCCGAAAGTTGATATCTGGTCTCTTGGAATTATGGCAATTGAAATGGTGGAAGG
TGAACCCCCTTACCTTAATGAAAATCCACTCAGGGCATTGTATCTGATAGCCACTAATGGAACTCCAG
AGCTCCAGAATCCTGAGAGACTGTCAGCTGTATTCCGTGACTTTTTAAATCGCTGTCTTGAGATGGAT
GTGGATAGGCGAGGATCTGCCAAGGAGCTTTTGCAGCATCCATTTTTAAAATTAGCCAAGCCTCTCTC
CAGCCTGACTCCTCTGATTATCGCTGCAAAGGAAGCAATTAAGAACAGCAGCCGCTAAGACTGCAAGC
CTTACACCTCACCATCTCCCTCATGAGTAAGACTGAAATAAAACTCTGCTGCAGGAAAGATGGAAGAA
AAGACAGTCAAATGGGGTGGGGGTTCTTTACCTTTCAAATGAATAGAAACTTCTTATAAGCCTTTTTC
CTACTCCCTCAGATTATGTAATTTATTTGTAAGCCTGAATCGCAGCCCAAACAGGGCAGCAATGTTGA
AGTGACCATAAAGTGGTCACTTCCACCGTGAAGCGAAAGAGCCAGTAGTGAATCCCCTCATTTTGTGC
ATTCACTTTGAAGAAAAAGGTTTCTCAAAGATGCACACTCCCTCTTCATAGTGTTGTGTTTGTTTTTA
AGTTAGAGAGTAGTCCCTCTTGCATTCAAACCTCCTTCAAAACTCCTTACCCAATGTGATGTTTTTCA
CTTGCATTGTCATTAGATGTCCAGAAAAAAAAAAGATGTCAAAATGTTTTTCTAAAAAAAGAAAGCAA
AAAAAGCAAGGCAAAAAAAAAAAAAAAAACAAACAAAAACAAAAACAAAACAAAAACAAGCAAACAAA
AAATACCAGAGCAAGTACTGTGTGAACATGTGGAAGTCCATGCCCTAATAGAGTTGCAATTTTTTATT
CTTCTTCTATAGTGGTGGCTTGGTTTGTGTACCTATTTTTCTGCATTTGTATTGGAAAAGGTTTCTTT
TAAGACATTTTCCAAAAGTGGAGAGGAATATGTGTGTTCAGGAAGGGCTTTCAAAAAACTGTATATCT
AAATAAAGCTCAAACGGTGAAATCCTGTCACATTTTCACAATGATGCTTAAAAGATAATTGAGTAAAC
CAGGTTGTTAATCTCCTTAATACCTGAAAGAGGACACACTGAAACTGAAACTGTGACATCCTGCTAGG
TGAGTTCAGGTTCTGAACCTAGGAAATCCTCATAGGAGAAACCACATTTAAACAAAGATGGGACTTTC
TCTGAGAGCCAAAACCAGATAAATGTAGAATACTGAAATCCTTGTTGGACATTAAGTAAACAAAGATA
ATGATACCTAAATTAATCCTCTCTTGTGCTTATGAAACATATGCACTGTAAAATAGGCATACCAGGAG
GAAATAGATACATTAATCATCATTTACTTATGATACAAATTATTTATTTTGACAATTTATAACGTTTA
AAAAAGTTTTTTAAAGATCTAGAGAAAGGTGATATAGTAAACATTCAACTCTGTAAGAAATGGGAGGT
CAGTGAAGGCTACATCCCAATCAATATTTGGCTCTAAGTACCTCTTCCCATTTTTCCTATGTATCACC
TATTTCTGTTTCGGAATATGGTGTGTTCATGCTTAGTTCTTTGGGCTTTTGAATATCAAAAGCATATT
CATAAATGTCTTGAAATTCTCTCCAGTGGAAAATAATTTTAACTTACAATCATATCCCAAGAAATGTC
AGTCCGACAGAATTCCTTATATGACTTGGGGAAAATAACAAAATTTGACTACTATTTCACCATATATC
TATTTATTAAAAAATTCAACAGTTGGCACTTCCTGAATCTTCTGAGAGTAGAAAAATATCTGCGGAGT
GTCTGTGTAGAAAAGGATATGCCTCTCTTTTGAGTGTATTGACAATTTTGTAAATTACAGAAAGTTGT
TTCTCTAAGCCTTTGAAAAACTAACAATTTGTGTTATAGAAGGCTTCTTAATTTGCAGTATAAAAGAA
TCTAAACAGAACTTATGTACATTCAGCCAGAAGGGGAAAGAGATCAGTTACATAGGCCTCTCTCCTTC
TTTGCCAAGGTACATCCATCCATCTAACCATCCATATATCCACATCTTAAAATGAAAGCACTTTCTTT
AGAGTTTCAGCAAACTATATAGTGTACGTGTTTATGTTCAGGAGATGACCCCACTGGTGTATTTCCTA
TTTTCCCTATTGTTTTCTTTGACTGTAAAAGTTGGGAGAGGCTTGACCTCCTCCCCTTGAAAATGTCC
ACAGTGGGATAAAACAACAAATGTGAAAAGAAAATGAAACGGTAATATTAATTTGAAGCATACTATGT
TATACTTTGCAAAAACGAATCTGGGCCTGTAATTTTTAATGCCACACTGCTCTAATGAGAGAGAGAGG
CCTTAATTTTGATTTCATTTAAAAATAAGTACTTTAAAAAATTTTTCACTCATAGTGCCGGGAAATTC
AATGAAATCCTGGGATGCAAATAAAAATCAGTACATTAGTGACTGTGTCCTGCCAGTGGAGAGAGCCC
AATACCTGGTTAGGAAGCCCTATTCATTAGTTAGCATCCCTTACATGTTGAGAAGGCCTTTTTTTTGT
TGTTATTTTGGAGACCTTGGAGCAGTGACCCTTCAGATCACTGTAGGCAGAGAAATGGCTTCTCTCTT
ATGCTTTCAGTTCAGCATATTAACAATGAGGAGCCAGGTACTTCTTTACTACCACTTTGTACCAAGAT
TTGATAATAATATATCCCAGGAGGCATTACTTTTATAAATTTGTATTCATGTAAATTTTCAAATGAGA
ACAGCTTCTAAAGCCCCTTCCCTGTATTGGAGAGTTATGTATATTTCTAATAAGTATTAGAAAGAAGC
TGTTTCTCATGCCACAGTGATGCTGAAGGATTCACATTTGGTACAATCGAGTAACTTGAACGCCAGAT
TGTTAACAGTTTATTCTCTTTCCCTGGATTTTTAAGCTCATCTTGACACAGGTGAGTCTATCCAAATC
TTTGATGTTGCTAGTGTGCCCTGAGATAACGAGGGCACATCTTTCAATGTTGATTCCAAAATGTCCTG
AGTTAGGAATAGGGCAGTGGGAAAGTCAGGGAAGGGTGAGAAGCACAGTAGAGATTATTTATTTAAAA
AAGGAAAGAACGTTAATGTTGTTAGCAAGGATCCAGTGCGTTGTCATAATCCCATGAGGATTTTCAGA
TGACACAATCCCCTCAAATCAGTCACCATGTTGGGTAATGACTTCGTTCTTGCTGATCTCGTGTGTGT
GTCATTGTAAATATTTGTGTGTCCATGTTCCATTTTGGCTACTGGATGGCCAAGCCATGTAAGAAGAT
TTAACTCAAGTATTTATTCTTTATGTTATTCAGATTTCTTTCAGGCTTGTGAACTGCACCCCAATGTT
TGAGTTTAACCACCTGATCCTTACATCTATCCCTCCCCGGTGAAGCACATTCCATTGCTAAAAGAAAA
AGAAACACGAAATTGCTTCCTGTTGTCTGTATAACTGTTTTGATAGTTTGAGATATTTGTCTATAAAT
GATATTTCTCAGCTCAAAGATCGTGTAAATAATTATATTCCTTTGCTCAATGGGTTTATTTCTAATGA
GGCTGCCAGTTCTGAGAGATTCTATAATATCACTTTTAAATAACATAAACAGGGATTACAACTATGTA
AAAAGAAATGCATATGGACAAAGACTGGGAACACAGATAATTGAAATCAGTTGTGTTAGGGTGGTGGA
ATTATGTGAATTTTTTTTTCTTTTTAAAATTTTATTTGATATTGTTATAATATTGCTTTACAATAAAT
AAACAGCAGAAAGGGAACTATAGACACATAGAAAAGATGCCAGAAGCAGATGCCTTCTGGCCAGAGCG
CAGAGCATGCAGGGCAGAGATATTTGCTAGTTACAATTATTCCATAGGCTTTATGCTTGCCTGGGTGC
TGAGGTTGGCACACGCTCGGGTATGGCACACGCTTTCTTAGGAGACTATTATCTATAAGTTAAAGCTA
GGGAGATGTCACTATTAGAACTCCAAACACACTCTTCTGCTTTAAAACAGGTTGTCTGCCCTCTGCTT
TGGTATGGCATTCGGGTGTCTGTTTTGTGGTTGCTTTAGATTGGAGGGGTGACCATTTTATTAGCCCC
CTTGATAACATCTGTTGCAGATATTGCCTTTCTGGAACGTTTTAACAGACTCTCAGGTTGAATTTTGG
AGGACTAGAAGGATAAAATCCCCAGCTCCCACCATTTTCTTGTCCAACAGGATATTACTGTATATCAT
TCAGGTAGGATTCTTCTTTTAATAACCAATAGGGCAAGTCCCACTAATTTCAATAGAAGTTATGACTT
GCAATTAAAAGCTGACTTTGAAATCATTAAACAAATATGTAGGACTGTCTCTGCCTGTTGGCATTCAG
TTATAGTTCTGTTAATTTTGGCTTGGGATGGTCTCCATGTGCTTTTTTCTGCCTATTTATAGGTTGTT
TGCAGTAGTTGTGATTTTTAAAGAGCAAGGGAGACCATCTAACCAAAGGATAACTTCCTTCTAACTCA
CCAAAGAAATTTTAGGTGAGAACTTTAATAATGAGGTAGTCACCTCAGATATGCTGCTTAGTTTCACT
AAAAGCAGACCCTATACCTAGAGAAGTCACTGGCTTTTTATTGGTCATTCTCAATACAGAAATACTTA
GGGGAGTCTTAACCCTGCCATCCCCGGTTGAATCTCTTGGTCTTTATCTAAGCTACTTGCAGTTAATA
TTCAGTTAAGCAAAGGTATGGCCAGTAGTGCAAGTATCTCCCAGTCTCTGAGCTCTGAACAAGAGGAC
TGAAATTCAGCATTTGTAAACTGACAGTTTGATGGGCCTGGGATTTGAAGTGAACTCAGCACACAATT
CTGAACGTGTATTTGCATGTGGACTGGGAAGGAAATAAATGGGAACTTGGAAATAATGGAATATTTCT
CCTATGAAAGAATTTTTCGTAGAAGATTTGTTTTTGATATAATCTTTCTGTTGGTTAGCTTTTAGTGT
TTTCATTCCTTTTCTGATCCACACTCCTTTAAGTGACCAAATGAATATAACCCAACATGCATTGGGAA
TGTGTTTAATATTAAACAATGTCTAACTGAATCTGCAAATGCGGGAACTGAGATATCACCTCCATGTG
CACACCTGTGTGTACGAGTATTCTATACAACTTGTAGCATTTACTGCCACTTAATTGGGTTGAACTTG
CAAGATAAACTTTTGGAAACTGCTTAGTGCCATCGGAGTCTCCTTTAGAAGCTGCCATCAGGCAAATG
CTATCCCATAATACCAGCAGTAAGCCTGGCAACATGTTCAACAGATTTAGTACCCAAGAGGAAATCAA
CAGCGATAGTAGAGAATGAGTCAGATGTAGTGGGATAAATACTAGCCTAGGAAGAAGGAGCCCCGGAG
TCTAATATGAGCTTTATTACTAAATTGCTATGTGACGCTAGGCAAGTCACTTAACCTCTCCATGGCTG
TTTCCTCATCTGTAAAATAAGTGTATTGGACTAGATGATCCTTAGGGTCTTTCCAAAAGTCTAACATT
CTATGGCATTATAGGTTGCCTTGCAAATTCAGCCTGCTATAGTGATGGCAAATATCACGTTTAAGCCT
GAGTCTCTTATGTTGCAGTTAAATAAAAGAACTATGTAAGATGATTTTTAAAATTCAAGCAAATGGGC
CGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCAAGGCAGGCGGATCACCTGAGGT
CAGGAGTTCGAGACCAGCCTGACCAACATAGAGAAACCCCATCTCTACTAAAAATACAAAATTAGCCG
GGTGTGGTGGCGGGCGCCTGTAATCCCAGCTACTTGGGAGGCTGAGGTGGGAGAATCGCTTGAACCCA
GGAGGCGGAGGTTGTGGTGAGCTGAGATCATGCCATTGCACTCCAGCCTCGGCAACAAGAGTGAAACT
TCGTCTCCAAAAAAAAAAACTCAAGCAAATGAAGTTCATAATAATAGGGGATGTTGATAAAACTTGTG
GCAGCCTTCCAATTCATTTACAGTTGTTTCGTTTTGTTTTTGTTTTAATGTCCATTTTCTGTTGACTG
TTCCCAGTTTTCATTTTCCATACAGTCTGTATGTAAAGTCTGGTTTTCATTAAGCTGTGGCCAGTATT
TGCCACTACAACAGAAACACACTGTCACACTTGCTAGAATATAACTGTACTTGAGCTTCTCCTTTCCT
GTGAAGTAGTGCTGGGCTTTCTAGAGTTTAATTCTCAAGTGGCACAAGATAGCAGAGCCCATGCATTT
TAATGGCTGAGACTGCTAAGAGTGAACCTAAACACTTACAAGTTGCAGAGAGAAATGAAAAAGTAATT
ACATGCTATTAGCATTGAGAAATGTTGACAAATTAATTTGTTGGGAACCAAAGATAGCATTTCTGATG
ACAACTCCCACAGTGATTGGCCAGTTGTATGATGAGTACACTGCTGGAAAGAGGGTAAACTGGGAGTT
AGTGGATGGTCCCAATGCCCTGCCTACAGCAGAGTGCCAACCAGCCCTGAGTGCAAAATTCAAGTTCA
ATGTGTGTGCTTGTGTGTGGTGTGCTTTATGGACCCGCAAATACCATATTCATTATTGATGATAAGAT
CTTCACAGAATCCTGTAGCTACTAATGCATTGAGTTTTTAATCTCAGTACATCAGCCAGGAGGAGCCA
GATCACAGGGTAGTGATGTCTACTGGGATTATACTCATAACATCTACACAAAACAAGTTGAGAAGGAT
CCACGTTTTCATTGTTTATCAGAATTGTATCTCATTTGGCTGAGCATTACTTTTGTCAGAATGTGTTA
TCTGTAAACCATGTGTAGTGAAATTCTTCTGTAACTTTGGATTAAAGGTATTTATGGTCTTTTTGTTT
GTTTGATTTTTAAGTAAGTTATTTCTTTTGTAGACCTGCTGATGGTATGGTTCCATCCTTCTGACCTC
AGCATCCAATCTTTTTAAGGATTTTTGTTTTCAATATTGTTATTTTAAATTGTGGTTGAAGCAATAGA
AAATTGAAATATGGATTGTGCATGACTGTGTCTTGAGTGTAAAAATATTGCAGTTTGAAACTTGGACC
TAAAGTATTGCAAATAAAAATGACAAACATCAATGA
7190 Human PAK3 ACCGCGGGCGGGCAGCTGTGCCAGCTAACCGTCTGGGATCTCGCACTGGGGGCTGCAGCTTTTCCCCG
transcript CCTCGAGCCAGTGTGCGGGGGCGGGAGAAGAGCCAGGGGGAGCGGGCTGGGCCCGGGGCTGCGGCTGC
variant GGCCGCGGGGCTGCGGCTCCCCAGCCCCGCCAGCTGGAGCGCTCGGAGGTAGAGGAAAGGTCTTGACG
4 mRNA GGGTGGCTGGATCCGTGGCAGAATCCAGTTCCAGATTCTAGACTTGAGGGTTCTGGGCTGTTGGTCTG
NM_001128168. TAGAAGCGAAGGAGAGAAGGACTCAAATCCAGGCCAAGTGTATGGCTGTCTGAGGTATTGGAACAGAA
3 GGAGGTCCATTCCTGTTGGTGACAACACCGTGGCCCTGTTCTGGGATGAGCAAGGTGTAAAGCAGGTT
(GI:1676441496 TCCCCCAAGAAAGAGCAGCTGAGTCCTTGCATCTTGTGGCAGCTGGTGTGCCCAGCACTGAGTCTGTA
version 3) GGAGCTGAAGCCAGCCCGGACCCTTCTCATGGGCAGTGCCCACCTGTGCTGAAGTCCTGCAGCGGTGG
CGGTGTGAGGAGCTGTGAAATTAGTTGTAACTGAAAATGTCTGACGGTCTGGATAATGAAGAGAAACC
CCCGGCTCCTCCACTGAGGATGAATAGTAACAACCGGGATTCTTCAGCACTCAACCACAGCTCCAAAC
CACTTCCCATGGCCCCTGAAGAGAAGAATAAGAAAGCCAGGCTTCGCTCTATCTTCCCAGGAGGAGGG
GATAAAACCAATAAGAAGAAGGAGAAAGAGCGCCCAGAGATCTCTCTTCCTTCAGACTTTGAGCATAC
GATTCATGTGGGGTTTGATGCAGTCACCGGGGAATTCACTAACTCCCCTTTCCAGACCTCTAGACCTG
TGACGGTCGCTTCAAGTCAATCAGAGGGAAAAATGCCAGATCTCTATGGCTCACAGATGTGCCCAGGG
AAGCTCCCAGAGGGAATTCCAGAGCAATGGGCACGATTACTCCAAACTTCCAACATAACAAAATTGGA
ACAGAAGAAGAACCCACAAGCTGTTCTAGATGTTCTCAAATTCTATGATTCCAAAGAAACAGTCAACA
ACCAGAAATACATGAGCTTTACATCAGGAGATAAAAGTGCACATGGATACATAGCAGCCCATCCTTCG
AGTACAAAAACAGCATCTGAGCCTCCATTGGCCCCTCCTGTGTCTGAAGAAGAAGATGAAGAGGAAGA
AGAAGAAGAAGATGAAAATGAGCCACCACCAGTTATCGCACCAAGACCAGAGCATACAAAATCAATCT
ATACTCGTTCTGTGGTTGAATCCATTGCTTCACCAGCAGTACCAAATAAAGAGGTCACACCACCCTCT
GCTGAAAATGCCAATTCCAGTACTTTGTACAGGAACACAGATCGGCAAAGAAAAAAATCCAAGATGAC
AGATGAGGAGATCTTAGAGAAGCTAAGAAGCATTGTGAGTGTTGGGGACCCAAAGAAAAAATACACAA
GATTTGAAAAAATTGGTCAAGGGGCATCAGGTACTGTTTATACAGCACTAGACATTGCAACAGGACAA
GAGGTGGCCATAAAGCAGATGAACCTTCAACAGCAACCCAAGAAGGAATTAATTATTAATGAAATTCT
GGTCATGAGGGAAAATAAGAACCCTAATATTGTTAATTATTTAGATAGCTACTTGGTGGGTGATGAAC
TATGGGTAGTCATGGAATACTTGGCTGGTGGCTCTCTGACTGATGTGGTCACAGAGACCTGTATGGAT
GAAGGACAGATAGCAGCTGTCTGCAGAGAGTGCCTGCAAGCTTTGGATTTCCTGCACTCAAACCAGGT
GATCCATAGAGATATAAAGAGTGACAATATTCTTCTCGGGATGGATGGCTCTGTTAAATTGACTGACT
TTGGGTTCTGTGCCCAGATCACTCCTGAGCAAAGTAAACGAAGCACTATGGTGGGAACCCCATATTGG
ATGGCACCTGAGGTGGTGACTCGAAAAGCTTATGGTCCGAAAGTTGATATCTGGTCTCTTGGAATTAT
GGCAATTGAAATGGTGGAAGGTGAACCCCCTTACCTTAATGAAAATCCACTCAGGGCATTGTATCTGA
TAGCCACTAATGGAACTCCAGAGCTCCAGAATCCTGAGAGACTGTCAGCTGTATTCCGTGACTTTTTA
AATCGCTGTCTTGAGATGGATGTGGATAGGCGAGGATCTGCCAAGGAGCTTTTGCAGCATCCATTTTT
AAAATTAGCCAAGCCTCTCTCCAGCCTGACTCCTCTGATTATCGCTGCAAAGGAAGCAATTAAGAACA
GCAGCCGCTAAGACTGCAAGCCTTACACCTCACCATCTCCCTCATGAGTAAGACTGAAATAAAACTCT
GCTGCAGGAAAGATGGAAGAAAAGACAGTCAAATGGGGTGGGGGTTCTTTACCTTTCAAATGAATAGA
AACTTCTTATAAGCCTTTTTCCTACTCCCTCAGATTATGTAATTTATTTGTAAGCCTGAATCGCAGCC
CAAACAGGGCAGCAATGTTGAAGTGACCATAAAGTGGTCACTTCCACCGTGAAGCGAAAGAGCCAGTA
GTGAATCCCCTCATTTTGTGCATTCACTTTGAAGAAAAAGGTTTCTCAAAGATGCACACTCCCTCTTC
ATAGTGTTGTGTTTGTTTTTAAGTTAGAGAGTAGTCCCTCTTGCATTCAAACCTCCTTCAAAACTCCT
TACCCAATGTGATGTTTTTCACTTGCATTGTCATTAGATGTCCAGAAAAAAAAAAGATGTCAAAATGT
TTTTCTAAAAAAAGAAAGCAAAAAAAGCAAGGCAAAAAAAAAAAAAAAAACAAACAAAAACAAAAACA
AAACAAAAACAAGCAAACAAAAAATACCAGAGCAAGTACTGTGTGAACATGTGGAAGTCCATGCCCTA
ATAGAGTTGCAATTTTTTATTCTTCTTCTATAGTGGTGGCTTGGTTTGTGTACCTATTTTTCTGCATT
TGTATTGGAAAAGGTTTCTTTTAAGACATTTTCCAAAAGTGGAGAGGAATATGTGTGTTCAGGAAGGG
CTTTCAAAAAACTGTATATCTAAATAAAGCTCAAACGGTGAAATCCTGTCACATTTTCACAATGATGC
TTAAAAGATAATTGAGTAAACCAGGTTGTTAATCTCCTTAATACCTGAAAGAGGACACACTGAAACTG
AAACTGTGACATCCTGCTAGGTGAGTTCAGGTTCTGAACCTAGGAAATCCTCATAGGAGAAACCACAT
TTAAACAAAGATGGGACTTTCTCTGAGAGCCAAAACCAGATAAATGTAGAATACTGAAATCCTTGTTG
GACATTAAGTAAACAAAGATAATGATACCTAAATTAATCCTCTCTTGTGCTTATGAAACATATGCACT
GTAAAATAGGCATACCAGGAGGAAATAGATACATTAATCATCATTTACTTATGATACAAATTATTTAT
TTTGACAATTTATAACGTTTAAAAAAGTTTTTTAAAGATCTAGAGAAAGGTGATATAGTAAACATTCA
ACTCTGTAAGAAATGGGAGGTCAGTGAAGGCTACATCCCAATCAATATTTGGCTCTAAGTACCTCTTC
CCATTTTTCCTATGTATCACCTATTTCTGTTTCGGAATATGGTGTGTTCATGCTTAGTTCTTTGGGCT
TTTGAATATCAAAAGCATATTCATAAATGTCTTGAAATTCTCTCCAGTGGAAAATAATTTTAACTTAC
AATCATATCCCAAGAAATGTCAGTCCGACAGAATTCCTTATATGACTTGGGGAAAATAACAAAATTTG
ACTACTATTTCACCATATATCTATTTATTAAAAAATTCAACAGTTGGCACTTCCTGAATCTTCTGAGA
GTAGAAAAATATCTGCGGAGTGTCTGTGTAGAAAAGGATATGCCTCTCTTTTGAGTGTATTGACAATT
TTGTAAATTACAGAAAGTTGTTTCTCTAAGCCTTTGAAAAACTAACAATTTGTGTTATAGAAGGCTTC
TTAATTTGCAGTATAAAAGAATCTAAACAGAACTTATGTACATTCAGCCAGAAGGGGAAAGAGATCAG
TTACATAGGCCTCTCTCCTTCTTTGCCAAGGTACATCCATCCATCTAACCATCCATATATCCACATCT
TAAAATGAAAGCACTTTCTTTAGAGTTTCAGCAAACTATATAGTGTACGTGTTTATGTTCAGGAGATG
ACCCCACTGGTGTATTTCCTATTTTCCCTATTGTTTTCTTTGACTGTAAAAGTTGGGAGAGGCTTGAC
CTCCTCCCCTTGAAAATGTCCACAGTGGGATAAAACAACAAATGTGAAAAGAAAATGAAACGGTAATA
TTAATTTGAAGCATACTATGTTATACTTTGCAAAAACGAATCTGGGCCTGTAATTTTTAATGCCACAC
TGCTCTAATGAGAGAGAGAGGCCTTAATTTTGATTTCATTTAAAAATAAGTACTTTAAAAAATTTTTC
ACTCATAGTGCCGGGAAATTCAATGAAATCCTGGGATGCAAATAAAAATCAGTACATTAGTGACTGTG
TCCTGCCAGTGGAGAGAGCCCAATACCTGGTTAGGAAGCCCTATTCATTAGTTAGCATCCCTTACATG
TTGAGAAGGCCTTTTTTTTGTTGTTATTTTGGAGACCTTGGAGCAGTGACCCTTCAGATCACTGTAGG
CAGAGAAATGGCTTCTCTCTTATGCTTTCAGTTCAGCATATTAACAATGAGGAGCCAGGTACTTCTTT
ACTACCACTTTGTACCAAGATTTGATAATAATATATCCCAGGAGGCATTACTTTTATAAATTTGTATT
CATGTAAATTTTCAAATGAGAACAGCTTCTAAAGCCCCTTCCCTGTATTGGAGAGTTATGTATATTTC
TAATAAGTATTAGAAAGAAGCTGTTTCTCATGCCACAGTGATGCTGAAGGATTCACATTTGGTACAAT
CGAGTAACTTGAACGCCAGATTGTTAACAGTTTATTCTCTTTCCCTGGATTTTTAAGCTCATCTTGAC
ACAGGTGAGTCTATCCAAATCTTTGATGTTGCTAGTGTGCCCTGAGATAACGAGGGCACATCTTTCAA
TGTTGATTCCAAAATGTCCTGAGTTAGGAATAGGGCAGTGGGAAAGTCAGGGAAGGGTGAGAAGCACA
GTAGAGATTATTTATTTAAAAAAGGAAAGAACGTTAATGTTGTTAGCAAGGATCCAGTGCGTTGTCAT
AATCCCATGAGGATTTTCAGATGACACAATCCCCTCAAATCAGTCACCATGTTGGGTAATGACTTCGT
TCTTGCTGATCTCGTGTGTGTGTCATTGTAAATATTTGTGTGTCCATGTTCCATTTTGGCTACTGGAT
GGCCAAGCCATGTAAGAAGATTTAACTCAAGTATTTATTCTTTATGTTATTCAGATTTCTTTCAGGCT
TGTGAACTGCACCCCAATGTTTGAGTTTAACCACCTGATCCTTACATCTATCCCTCCCCGGTGAAGCA
CATTCCATTGCTAAAAGAAAAAGAAACACGAAATTGCTTCCTGTTGTCTGTATAACTGTTTTGATAGT
TTGAGATATTTGTCTATAAATGATATTTCTCAGCTCAAAGATCGTGTAAATAATTATATTCCTTTGCT
CAATGGGTTTATTTCTAATGAGGCTGCCAGTTCTGAGAGATTCTATAATATCACTTTTAAATAACATA
AACAGGGATTACAACTATGTAAAAAGAAATGCATATGGACAAAGACTGGGAACACAGATAATTGAAAT
CAGTTGTGTTAGGGTGGTGGAATTATGTGAATTTTTTTTTCTTTTTAAAATTTTATTTGATATTGTTA
TAATATTGCTTTACAATAAATAAACAGCAGAAAGGGAACTATAGACACATAGAAAAGATGCCAGAAGC
AGATGCCTTCTGGCCAGAGCGCAGAGCATGCAGGGCAGAGATATTTGCTAGTTACAATTATTCCATAG
GCTTTATGCTTGCCTGGGTGCTGAGGTTGGCACACGCTCGGGTATGGCACACGCTTTCTTAGGAGACT
ATTATCTATAAGTTAAAGCTAGGGAGATGTCACTATTAGAACTCCAAACACACTCTTCTGCTTTAAAA
CAGGTTGTCTGCCCTCTGCTTTGGTATGGCATTCGGGTGTCTGTTTTGTGGTTGCTTTAGATTGGAGG
GGTGACCATTTTATTAGCCCCCTTGATAACATCTGTTGCAGATATTGCCTTTCTGGAACGTTTTAACA
GACTCTCAGGTTGAATTTTGGAGGACTAGAAGGATAAAATCCCCAGCTCCCACCATTTTCTTGTCCAA
CAGGATATTACTGTATATCATTCAGGTAGGATTCTTCTTTTAATAACCAATAGGGCAAGTCCCACTAA
TTTCAATAGAAGTTATGACTTGCAATTAAAAGCTGACTTTGAAATCATTAAACAAATATGTAGGACTG
TCTCTGCCTGTTGGCATTCAGTTATAGTTCTGTTAATTTTGGCTTGGGATGGTCTCCATGTGCTTTTT
TCTGCCTATTTATAGGTTGTTTGCAGTAGTTGTGATTTTTAAAGAGCAAGGGAGACCATCTAACCAAA
GGATAACTTCCTTCTAACTCACCAAAGAAATTTTAGGTGAGAACTTTAATAATGAGGTAGTCACCTCA
GATATGCTGCTTAGTTTCACTAAAAGCAGACCCTATACCTAGAGAAGTCACTGGCTTTTTATTGGTCA
TTCTCAATACAGAAATACTTAGGGGAGTCTTAACCCTGCCATCCCCGGTTGAATCTCTTGGTCTTTAT
CTAAGCTACTTGCAGTTAATATTCAGTTAAGCAAAGGTATGGCCAGTAGTGCAAGTATCTCCCAGTCT
CTGAGCTCTGAACAAGAGGACTGAAATTCAGCATTTGTAAACTGACAGTTTGATGGGCCTGGGATTTG
AAGTGAACTCAGCACACAATTCTGAACGTGTATTTGCATGTGGACTGGGAAGGAAATAAATGGGAACT
TGGAAATAATGGAATATTTCTCCTATGAAAGAATTTTTCGTAGAAGATTTGTTTTTGATATAATCTTT
CTGTTGGTTAGCTTTTAGTGTTTTCATTCCTTTTCTGATCCACACTCCTTTAAGTGACCAAATGAATA
TAACCCAACATGCATTGGGAATGTGTTTAATATTAAACAATGTCTAACTGAATCTGCAAATGCGGGAA
CTGAGATATCACCTCCATGTGCACACCTGTGTGTACGAGTATTCTATACAACTTGTAGCATTTACTGC
CACTTAATTGGGTTGAACTTGCAAGATAAACTTTTGGAAACTGCTTAGTGCCATCGGAGTCTCCTTTA
GAAGCTGCCATCAGGCAAATGCTATCCCATAATACCAGCAGTAAGCCTGGCAACATGTTCAACAGATT
TAGTACCCAAGAGGAAATCAACAGCGATAGTAGAGAATGAGTCAGATGTAGTGGGATAAATACTAGCC
TAGGAAGAAGGAGCCCCGGAGTCTAATATGAGCTTTATTACTAAATTGCTATGTGACGCTAGGCAAGT
CACTTAACCTCTCCATGGCTGTTTCCTCATCTGTAAAATAAGTGTATTGGACTAGATGATCCTTAGGG
TCTTTCCAAAAGTCTAACATTCTATGGCATTATAGGTTGCCTTGCAAATTCAGCCTGCTATAGTGATG
GCAAATATCACGTTTAAGCCTGAGTCTCTTATGTTGCAGTTAAATAAAAGAACTATGTAAGATGATTT
TTAAAATTCAAGCAAATGGGCCGGGTGCGGTGGCTCATACCTGTAATCCCAGCACTTTGGGAGGCCAA
GGCAGGCGGATCACCTGAGGTCAGGAGTTCGAGACCAGCCTGACCAACATAGAGAAACCCCATCTCTA
CTAAAAATACAAAATTAGCCGGGTGTGGTGGCGGGCGCCTGTAATCCCAGCTACTTGGGAGGCTGAGG
TGGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGTGGTGAGCTGAGATCATGCCATTGCACTCCAGC
CTCGGCAACAAGAGTGAAACTTCGTCTCCAAAAAAAAAAACTCAAGCAAATGAAGTTCATAATAATAG
GGGATGTTGATAAAACTTGTGGCAGCCTTCCAATTCATTTACAGTTGTTTCGTTTTGTTTTTGTTTTA
ATGTCCATTTTCTGTTGACTGTTCCCAGTTTTCATTTTCCATACAGTCTGTATGTAAAGTCTGGTTTT
CATTAAGCTGTGGCCAGTATTTGCCACTACAACAGAAACACACTGTCACACTTGCTAGAATATAACTG
TACTTGAGCTTCTCCTTTCCTGTGAAGTAGTGCTGGGCTTTCTAGAGTTTAATTCTCAAGTGGCACAA
GATAGCAGAGCCCATGCATTTTAATGGCTGAGACTGCTAAGAGTGAACCTAAACACTTACAAGTTGCA
GAGAGAAATGAAAAAGTAATTACATGCTATTAGCATTGAGAAATGTTGACAAATTAATTTGTTGGGAA
CCAAAGATAGCATTTCTGATGACAACTCCCACAGTGATTGGCCAGTTGTATGATGAGTACACTGCTGG
AAAGAGGGTAAACTGGGAGTTAGTGGATGGTCCCAATGCCCTGCCTACAGCAGAGTGCCAACCAGCCC
TGAGTGCAAAATTCAAGTTCAATGTGTGTGCTTGTGTGTGGTGTGCTTTATGGACCCGCAAATACCAT
ATTCATTATTGATGATAAGATCTTCACAGAATCCTGTAGCTACTAATGCATTGAGTTTTTAATCTCAG
TACATCAGCCAGGAGGAGCCAGATCACAGGGTAGTGATGTCTACTGGGATTATACTCATAACATCTAC
ACAAAACAAGTTGAGAAGGATCCACGTTTTCATTGTTTATCAGAATTGTATCTCATTTGGCTGAGCAT
TACTTTTGTCAGAATGTGTTATCTGTAAACCATGTGTAGTGAAATTCTTCTGTAACTTTGGATTAAAG
GTATTTATGGTCTTTTTGTTTGTTTGATTTTTAAGTAAGTTATTTCTTTTGTAGACCTGCTGATGGTA
TGGTTCCATCCTTCTGACCTCAGCATCCAATCTTTTTAAGGATTTTTGTTTTCAATATTGTTATTTTA
AATTGTGGTTGAAGCAATAGAAAATTGAAATATGGATTGTGCATGACTGTGTCTTGAGTGTAAAAATA
TTGCAGTTTGAAACTTGGACCTAAAGTATTGCAAATAAAAATGACAAACATCAATGA
7191 Human TRNP1 GGGGTGGGGGCTGTGGCCGTGTCTAGCTGTTCGGGTGTGCTGTGGTCATCCTCCCTGCGCACCTACAG
mRNA CCGCAGACCGCCGGTGGGGGGCGGGGGATGCCGGGCTGCCGCATCAGCGCCTGCGGCCCGGGGGCCCA
NM_001013642. GGAGGGGACGGCAGAGCAGAGGTCGCCGCCGCCGCCCTGGGATCCCATGCCGTCCTCTCAGCCCCCGC
3 CCCCAACTCCGACCTTGACTCCTACCCCGACCCCGGGTCAGTCCCCGCCGCTGCCGGACGCAGCTGGG
(GI:1519242294 GCTTCAGCAGGCGCGGCCGAGGACCAGGAGCTGCAGCGCTGGCGCCAGGGCGCTAGCGGGATCGCGGG
version 3) GCTCGCCGGCCCCGGAGGGGGCTCTGGCGCGGCTGCGGGGGCGGGGGGCCGCGCGCTGGAGCTGGCCG
AAGCACGGCGGCGGCTGCTGGAGGTGGAGGGCCGCCGGCGCCTGGTGTCGGAGCTGGAGAGCCGCGTG
CTGCAGCTGCACCGCGTTTTCTTGGCGGCCGAGCTGCGCCTGGCGCACCGCGCGGAGAGCCTGAGCCG
CCTGAGCGGCGGCGTGGCGCAGGCCGAGCTCTACCTGGCGGCTCACGGGTCGCGCCTCAAGAAGGGCC
CGCGCCGCGGCCGCCGCGGCCGACCCCCCGCGCTGCTGGCCTCGGCGCTGGGCCTGGGCGGCTGCGTG
CCCTGGGGTGCCGGGCGACTGCGGCGCGGCCACGGCCCCGAGCCCGACTCGCCCTTCCGCCGCAGCCC
GCCCCGCGGCCCCGCCTCCCCGCAGCGCTGACCTCCACGCCCGGACCCCTGGCCACCCCGACAAGCTT
CGCCGAGGTGCCGACCGACCGACTGATCGCGGACGCCGGCTGGAAGGACTACGGATCCGCAGGAAGAG
GCAGTTGGGGGCCAGGGGCCCAGTAGAGGAGGCTGAGCTCCTTCCAACTCCTCAGAACCTCCACTCTA
TGGATCTGGACCTCTGGATTCGGCTTTCTCCCTGGGCACTGCCTTCAGGAAGACGTTGAGAATTGACC
TTACACAATCCCAGCGCCCTCCTCACAGGAGCCTTTCACTTTACAGTGGCAAGGGGCTGGTTCTGGAG
AACTGGCTGATGCTCTGAATTTCTTCATATACCCCACATTTGACTTTGGCTTACACTGTACAATTGGA
GATGTTGCTACAGGTCCCTGAGATGCAATCAGATTAAGCGTAGCAAGCATTGCCAATGGGAAAGTCAA
AATAATTTATTTTTTTTCCCTTTCCCCCTACCCCATCCCCAGCCAAGAATTTCTTTTCAAGATATCGT
CATCATTCTTAAACAACATTCTTAACCCCCAGCTGGGGTCCCCATTTTAATAGATGTCATTGCTTCAA
GTCTAACGGCGCCGGGAGGCCTGTTTGAGGGAAAACATTAGTTTGAAAAATCCCCGTTCCCTTCATCC
ACTGCCCTTGTTCTCCACGTGGGAGTGTGCTTGTGGCCCCTCAGAAAGATAGTCTGCTGGCTCCTAGG
GGTTGGGGTGGGGGACACACCTTTTTCTCAGGAAGAGGTGATGGCAATGTAAAACATCTAAGCAAAGT
TTTAAATGAAAAAAAGGAAACACATTTAAACATCCTGATAATGGAGGGAAGGGGGGCACATTTACACA
TAGCCCAGAACTTGTAGAATTCTGCATAGTGAATGTATATTGAATTAGTCTCCTGCCTTATACATTCA
GGAGGAATAAATTTCCATAATGTAAGGCAAATGCATGGGGTTCTGAGGTTCACTTTGCAAGTGCCCTT
GCTGCCTTTCCTCTGTGTCTATTATGGCTCTTTAAGTTGACGGTTCCTGGAGCAGCTTGTATTTAGTT
TCGTTTGGCAGTCTGGCCCTGTTGACTTTGATTTGCAGACCAATTCTCCCTTGACCTGACTCACAGCC
GCCTGCTCTTACCCCCCTCCTCAGGAAGTCTTCCTCATTAAAGGATGTGATGACGGA
7192 Human APLN GAGCATTCTCTCTGGCAGCCGGGGTCACGGGCAGTTGCAGCCGCGGCCGAGCAGCCAGCCGCTAAGAA
mRNA AGAGCTCGCCGCTGCCGCTCCCGGAGCCGCCGAGGCCAGCTTCGCGGCGCTGCCCCGCGGCGGGAGAG
NM_017413.5 GAGGCTGCAGAAGAGCGGAGGCGGCCAGCGGGAGCGGCGGGGCTCAGCGCGCACACTCAGCGGCCGGG
(GI:1519315208 GAGCCTCCCGAGCTCTGCGCCCGCACGCGCCAGCCGCGGCTCGCGCCTTTCTTGGCCTCCGGGCGCCC
version 5) GACCTCTCCTCCCCCGCGCCGGCTCGCCGGGGCCGCGGCGGCCCAAGGAGCAGCATGAATCTGCGGCT
CTGCGTGCAGGCGCTCCTGCTGCTCTGGCTCTCCTTGACCGCGGTGTGTGGAGGGTCCCTGATGCCGC
TTCCCGATGGGAATGGGCTGGAAGACGGCAATGTCCGCCACCTGGTGCAGCCCAGAGGGTCAAGGAAT
GGGCCAGGGCCCTGGCAGGGAGGTCGGAGGAAATTCCGCCGCCAGCGGCCCCGCCTCTCCCATAAGGG
ACCCATGCCTTTCTGAAGCAGGACTGAAGGGGCCCCCAAGTGCCCACCCCCGGCGGTTATGTCTCCTC
CATAGATTGGTCTGCTTCTCTGGAGGCCTCACGTCCATTCAGCTCTCACCTCGCACCTGCTGTAGCCA
CCAGTGGGCCCAGCTCTTCTCACCTGCCTGCTTCCCCCAGTGGCGTGCTCCTGGCTGTAGTTTGGATG
ATTCCCGTTCTCTCACAAGAATCCGTCCAGTCCATCTTCCTGGCCCCTCCCTGGACTGACTTTGGAGA
CCTAGCCCCAGAAAGCCTCCCTTCTTCTCCAGGTCCCCTCCGCCCTAGTCCCTGCCTGTCTCATCTAA
CGCCCCAAACCTTCATTTGGGCCTTCCTTCCTCATGTCTGCCCTGAGCGCGGGGTGGAAGTGCTCCCT
TCTGTGGGCTCCAGCAGATCCCTTGTTTTCCTGTCAGTTGGACCCCTCACCTGGCCTCCAGGGAAGAA
TGCAGAGAAAAGCAAGGAGAGACTCTAGTTAAGAGGTGCTGGCTGCGGGGATCCAGACAGGGCACATT
GGGGGCATGGAAGTGCCAGGGTGGTTTTCAGGAGCTCTGGTGAAGTGGGTGGAGCATCAGCGTTTGCT
CAGTTAAGGGAGAGGTAGAGAGGGGCCCGTGAAGTCCTTTGTCACTTCTCTTGCCTTAGTGTGCCTCC
CAATACTCCCTTCTTCCTGCCCCCACACCCCATCCCCAGCTAGCCCAAGCTCCAGGTCAGGAGGGGAG
GGTGCTGGGCCTGACATGGCTATATACCCTCCCAGGAGTAAAAGCCAAGCAAGAGGTTGTTTTTGCCA
AGAATCACAGAATGTTAGAGCTGACAGGACCCTTGAAGGTCACTTAGCCTTCTTAGGCAAACGCCTGC
AAAACAGAAGCCTGGAGAGGGGAGTGACCTGCTCAGAGTCATTGCAGAGCCGGGATGGGGACCAGGTC
TCCCATCTCCTACTTTATGACGCCCTCTTCCCTCTTGATGATGTCTTTTCAAAGCAAATGAAGTGCCT
TTTCCCGAGGCTGGGGCTGGGGGTGGCTGGGAGGGGAAGGGAAGGGAGAGGCAAGCTGGCTGTGAACT
GTCCTGTTGTGGGGCTGGAGCTGCTCCCACCTCCCTGACCTACCCCTGCTGCACCATTCCCCCAGCTG
GGCTGGAAGGTTCCATAACTGGCCAGCTGCCCCCATAACTGGCAGCATTCCCAGACCCAGGGTACTCT
AATAGGGGCGGCTCAGGCACTGAGACTACCGCTCAACCCCAGGGTGGTTTTCAGGAGTCCGAGGTAGC
CTTCAATCACTGGACTCCATGGCCTTCCCTTCGTGTTGACCGGACCTTCCTTCCAGGGCTTTTCCTTT
GGGGGAGGCGGAGAGGGGAGAAGAAGGAAGGGAAGGGCAGAAGGAAGGAGGGAAGAAAAGAAAGCAAA
GGAACAGAAGGAAGGAAAGAAAGATGGGAGGAAGTGCAGCAGGAATAGCACCCTCTCCCCGGGAGGCC
CTAGCTTCCGTGAGGGGCCATCACCAGCCATTCCTTGGAGGGGGCTTTCTCCCCTTTTGCTTGAGCAG
GGTTCCCAGGAGGGAGAAAGAGAAGACAAGAGCCTGATGCCCAACTTTGTGTGTGTGGGGACGGGGGA
GTCAGGGCCCCCCAAGTCCCACAATAGCCCCAATGTTTGCCTATCCACCTCCCCCAAGCCCCTTTACC
TATGCTGCTGCTAACGCTGCTGCTGCTGCTGCTGCTGCTTAAAGGCTCATGCTTGGAGTGGGGACT
GGTCGGTGCCCAGAAAGTCTCTTCTGCCACTGACGCCCCCATCAGGGATTGGGCCTTCTTTCCCCCTT
CCTTTCTGTGTCTCCTGCCTCATCGGCCTGCCATGACCTGCAGCCAAGCCCAGCCCCGTGGGGAAGGG
GAGAAAGTGGGGGATGGCTAAGAAAGCTGGGAGATAGGGAACAGAAGAGGGTAGTGGGTGGGCTAGGG
GGGCTGCCTTATTTAAAGTGGTTGTTTATGATTCTTATACTAATTTATACAAAGATATTAAGGCCCTG
TTCATTAAGAAATTGTTCCCTTCCCCTGTGTTCAATGTTTGTAAAGATTGTTCTGTGTAAATATGTCT
TTATAATAAACAGTTAAAAGCTGACAGTTCGCCCTTACTCTTGGAGGTCATGTTCAGGAGGGGCATTC
CTTTCCCCTGGGGGTCATGGGTGTCCCCATGCCCACATATTGCACGTGCAGGGAGGTAAGTGCCTGCA
TCCCAAATCGGTTCTAGGTCAACTGGCCTCAAACTGATTTGCCATGAGCTCACAAAATGAATCCCTAT
GCTTAATGACCAGGTCACATAAAATCCAGCCCACTTACAGGTTTTCTGGCATCTGTTTGGGTGTCCTA
ATTTTTTTGGCAGTGTCATTTGAAGAATTTTTTTAAAGCAGTTTATTTAAGAACATACTGATTAAATG
CAGGATCGCTACTAAAAATTGTTTTGTATCCTTGGTGGGTGTCTTCTGCTATTTTATCTACTTTTGAA
CACTTTCAGGACTTTTTAGCCAGTTTGCCTTTCTTGAAAAATGTTATGTTTTCAGCAATAAATACATT
TGATAATGACTTTGTTTGTATCATTTTATGTTTCACAAAGTAGAGTTGCTTGATGAATGAGATAGCCT
GAAAAATAAAATGCAAAGAGTTCAATATAA
7193 Human KIF20A GGAGTTGTGCTCTGCGGCTGCGAAAGTCCAGCTTCGGCGACTAGGTGTGAGTAAGCCAGTATCCCAGG
transcript AGGAGCAAGTGGCACGTCTTCGGACCTAGGCTGCCCCTGCCGTCATGTCGCAAGGGATCCTTTCTCCG
variant CCAGCGGGCTTGCTGTCCGATGACGATGTCGTAGTTTCTCCCATGTTTGAGTCCACAGCTGCAGATTT
1 mRNA GGGGTCTGTGGTACGCAAGAACCTGCTATCAGACTGCTCTGTCGTCTCTACCTCCCTAGAGGACAAGC
NM_005733.3 AGCAGGTTCCATCTGAGGACAGTATGGAGAAGGTGAAAGTATACTTGAGGGTTAGGCCCTTGTTACCT
(GI:1519313609 TCAGAGTTGGAACGACAGGAAGATCAGGGTTGTGTCCGTATTGAGAATGTGGAGACCCTTGTTCTACA
version 3) AGCACCCAAGGACTCTTTTGCCCTGAAGAGCAATGAACGGGGAATTGGCCAAGCCACACACAGGTTCA
CCTTTTCCCAGATCTTTGGGCCAGAAGTGGGACAGGCATCCTTCTTCAACCTAACTGTGAAGGAGATG
GTAAAGGATGTACTCAAAGGGCAGAACTGGCTCATCTATACATATGGAGTCACTAACTCAGGGAAAAC
CCACACGATTCAAGGTACCATCAAGGATGGAGGGATTCTCCCCCGGTCCCTGGCGCTGATCTTCAATA
GCCTCCAAGGCCAACTTCATCCAACACCTGATCTGAAGCCCTTGCTCTCCAATGAGGTAATCTGGCTA
GACAGCAAGCAGATCCGACAGGAGGAAATGAAGAAGCTGTCCCTGCTAAATGGAGGCCTCCAAGAGGA
GGAGCTGTCCACTTCCTTGAAGAGGAGTGTCTACATCGAAAGTCGGATAGGTACCAGCACCAGCTTCG
ACAGTGGCATTGCTGGGCTCTCTTCTATCAGTCAGTGTACCAGCAGTAGCCAGCTGGATGAAACAAGT
CATCGATGGGCACAGCCAGACACTGCCCCACTACCTGTCCCGGCAAACATTCGCTTCTCCATCTGGAT
CTCATTCTTTGAGATCTACAACGAACTGCTTTATGACCTATTAGAACCGCCTAGCCAACAGCGCAAGA
GGCAGACTTTGCGGCTATGCGAGGATCAAAATGGCAATCCCTATGTGAAAGATCTCAACTGGATTCAT
GTGCAAGATGCTGAGGAGGCCTGGAAGCTCCTAAAAGTGGGTCGTAAGAACCAGAGCTTTGCCAGCAC
CCACCTCAACCAGAACTCCAGCCGCAGTCACAGCATCTTCTCAATCAGGATCCTACACCTTCAGGGGG
AAGGAGATATAGTCCCCAAGATCAGCGAGCTGTCACTCTGTGATCTGGCTGGCTCAGAGCGCTGCAAA
GATCAGAAGAGTGGTGAACGGTTGAAGGAAGCAGGAAACATTAACACCTCTCTACACACCCTGGGCCG
CTGTATTGCTGCCCTTCGTCAAAACCAGCAGAACCGGTCAAAGCAGAACCTGGTTCCCTTCCGTGACA
GCAAGTTGACTCGAGTGTTCCAAGGTTTCTTCACAGGCCGAGGCCGTTCCTGCATGATTGTCAATGTG
AATCCCTGTGCATCTACCTATGATGAAACTCTTCATGTGGCCAAGTTCTCAGCCATTGCTAGCCAGCT
TGTGCATGCCCCACCTATGCAACTGGGATTCCCATCCCTGCACTCGTTCATCAAGGAACATAGTCTTC
AGGTATCCCCCAGCTTAGAGAAAGGGGCTAAGGCAGACACAGGCCTTGATGATGATATTGAAAATGAA
GCTGACATCTCCATGTATGGCAAAGAGGAGCTCCTACAAGTTGTGGAAGCCATGAAGACACTGCTTTT
GAAGGAACGACAGGAAAAGCTACAGCTGGAGATGCATCTCCGAGATGAAATTTGCAATGAGATGGTAG
AACAGATGCAACAGCGGGAACAGTGGTGCAGTGAACATTTGGACACCCAAAAGGAACTATTGGAGGAA
ATGTATGAAGAAAAACTAAATATCCTCAAGGAGTCACTGACAAGTTTTTACCAAGAAGAGATTCAGGA
GCGGGATGAAAAGATTGAAGAGCTAGAAGCTCTCTTGCAGGAAGCCAGACAACAGTCAGTGGCCCATC
AGCAATCAGGGTCTGAATTGGCCCTACGGCGGTCACAAAGGTTGGCAGCTTCTGCCTCCACCCAGCAG
CTTCAGGAGGTTAAAGCTAAATTACAGCAGTGCAAAGCAGAGCTAAACTCTACCACTGAAGAGTTGCA
TAAGTATCAGAAAATGTTAGAACCACCACCCTCAGCCAAGCCCTTCACCATTGATGTGGACAAGAAGT
TAGAAGAGGGCCAGAAGAATATAAGGCTGTTGCGGACAGAGCTTCAGAAACTTGGTGAGTCTCTCCAA
TCAGCAGAGAGAGCTTGTTGCCACAGCACTGGGGCAGGAAAACTTCGTCAAGCCTTGACCACTTGTGA
TGACATCTTAATCAAACAGGACCAGACTCTGGCTGAACTGCAGAACAACATGGTGCTAGTGAAACTGG
ACCTTCGGAAGAAGGCAGCATGTATTGCTGAGCAGTATCATACTGTGTTGAAACTCCAAGGCCAGGTT
TCTGCCAAAAAGCGCCTTGGTACCAACCAGGAAAATCAGCAACCAAACCAACAACCACCAGGGAAGAA
ACCATTCCTTCGAAATTTACTTCCCCGAACACCAACCTGCCAAAGCTCAACAGACTGCAGCCCTTATG
CCCGGATCCTACGCTCACGGCGTTCCCCTTTACTCAAATCTGGGCCTTTTGGCAAAAAGTACTAAGGC
TGTGGGGAAAGAGAAGAGCAGTCATGGCCCTGAGGTGGGTCAGCTACTCTCCTGAAGAAATAGGTCTC
TTTTATGCTTTACCATATATCAGGAATTATATCCAGGATGCAATACTCAGACACTAGCTTTTTTCTCA
CTTTTGTATTATAACCACCTATGTAATCTCATGTTGTTGTTTTTTTTTATTTACTTATATGATTTCTA
TGCACACAAAAACAGTTATATTAAAGATATTATTGTTCACATTTTTTATTGAATTCCAAATGTAGCAA
AATCATTAAAACAAATTATAAAAGGGACAGAAAAA
7194 Human LTB AGTCTCAATGGGGGCACTGGGGCTGGAGGGCAGGGGTGGGAGGCTCCAGGGGAGGGGTTCCCTCCTGC
transcript TAGCTGTGGCAGGAGCCACTTCTCTGGTGACCTTGTTGCTGGCGGTGCCTATCACTGTCCTGGCTGTG
variant CTGGCCTTAGTGCCCCAGGATCAGGGAGGACTGGTAACGGAGACGGCCGACCCCGGGGCACAGGCCCA
1 mRNA GCAAGGACTGGGGTTTCAGAAGCTGCCAGAGGAGGAGCCAGAAACAGATCTCAGCCCCGGGCTCCCAG
NM_002341.2 CTGCCCACCTCATAGGCGCTCCGCTGAAGGGGCAGGGGCTAGGCTGGGAGACGACGAAGGAACAGGCG
(GI:1720810086 TTTCTGACGAGCGGGACGCAGTTCTCGGACGCCGAGGGGCTGGCGCTCCCGCAGGACGGCCTCTATTA
version 2) CCTCTACTGTCTCGTCGGCTACCGGGGCCGGGCGCCCCCTGGCGGCGGGGACCCCCAGGGCCGCTCGG
TCACGCTGCGCAGCTCTCTGTACCGGGCGGGGGGCGCCTACGGGCCGGGCACTCCCGAGCTGCTGCTC
GAGGGCGCCGAGACGGTGACTCCAGTGCTGGACCCGGCCAGGAGACAAGGGTACGGGCCTCTCTGGTA
CACGAGCGTGGGGTTCGGCGGCCTGGTGCAGCTCCGGAGGGGCGAGAGGGTGTACGTCAACATCAGTC
ACCCCGATATGGTGGACTTCGCGAGAGGGAAGACCTTCTTTGGGGCCGTGATGGTGGGGTGAGGGAAT
ATGAGTGCGTGGTGCGAGTGCGTGAATATTGGGGGCCCGGACGCCCAGGACCCCATGGCAGTGGGAAA
AATGTAGGAGACTGTTTGGAAATTGATTTTGAACCTGATGAAAATAAAGAATGGAAAGCTTCAGTGCT
GCCGATAAA
7195 Human LTB CAGTCTCAATGGGGGCACTGGGGCTGGAGGGCAGGGGTGGGAGGCTCCAGGGGAGGGGTTCCCTCCTG
transcript CTAGCTGTGGCAGGAGCCACTTCTCTGGTGACCTTGTTGCTGGCGGTGCCTATCACTGTCCTGGCTGT
variant GCTGGCCTTAGTGCCCCAGGATCAGGGAGGACTGGGTTTCAGAAGCTGCCAGAGGAGGAGCCAGAAAC
2 mRNA AGATCTCAGCCCCGGGCTCCCAGCTGCCCACCTCATAGGCGCTCCGCTGAAGGGGCAGGGGCTAGGCT
NM_009588.1 GGGAGACGACGAAGGAACAGGCGTTTCTGACGAGCGGGACGCAGTTCTCGGACGCCGAGGGGCTGGCG
(GI:6996015, CTCCCGCAGGACGGCCTCTATTACCTCTACTGTCTCGTCGGCTACCGGGGCCGGGCGCCCCCTGGCGG
version 1) CGGGGACCCCCAGGGCCGCTCGGTCACGCTGCGCAGCTCTCTGTACCGGGCGGGGGGCGCCTACGGGC
CGGGCACTCCCGAGCTGCTGCTCGAGGGCGCCGAGACGGTGACTCCAGTGCTGGACCCGGCCAGGAGA
CAAGGGTACGGGCCTCTCTGGTACACGAGCGTGGGGTTCGGCGGCCTGGTGCAGCTCCGGAGGGGCGA
GAGGGTGTACGTCAACATCAGTCACCCCGATATGGTGGACTTCGCGAGAGGGAAGACCTTCTTTGGGG
CCGTGATGGTGGGGTGAGGGAATATGAGTGCGTGGTGCGAGTGCGTGAATATTGGGGGCCCGGACGCC
CAGGACCCCATGGCAGTGGGAAAAATGTAGGAGACTGTTTGGAAATTGATTTTGAACCTGATGAAAAT
AAAGAATGGAAAGCTTCAGTGCTGCCGATAAA