TISSUE MATRICES INCORPORATING MULTIPLE TISSUE TYPES
The present disclosure provides tissue products produced from extracellular tissue matrices. The tissue products can include acellular extracellular matrices including combinations of different tissue types. The combination can harness various properties of the different tissues to provide improved composite structures with desired mechanical and/or biologic properties.
This application is a continuation application of U.S. patent application Ser. No. 16/838,512, filed on Apr. 2, 2020, which is a continuation application of U.S. patent application Ser. No. 15/639,592, filed on Jun. 30, 2017, now U.S. Pat. No. 10,639,398, which claims priority under 35 U.S.C. § 119 to U.S. Provisional Application No. 62/358,347, filed on Jul. 5, 2016. The entire contents of each of the above-referenced applications are incorporated herein by reference in its entirety.
BACKGROUNDThe present disclosure relates to tissue products, and more particularly, to tissue matrices produced from a combination of two or more different tissue types.
Various tissue matrix products (e.g., acellular tissue matrices or similar tissue-derived or tissue regenerative materials) are currently available. Such products can be used to regenerate, reinforce, replace, and/or augment existing tissues, or tissues damaged or lost due to disease, trauma, surgery, radiation, or other events. Such materials can be very effective for treatment of many conditions. For example, acellular tissue matrix products such as ALLODERM®, an acellular human dermal matrix, and STRATTICE™, an acellular porcine dermal matrix (both from LIFECELL® CORPORATION, BRANCHBURG, N.J.), are useful for many surgical procedures, including abdominal wall defect repair and breast reconstruction.
Although currently available acellular tissue matrix products can be very effective at regenerating a range of tissue types, there remains a need for tissue matrix products that harness the beneficial regenerative and structural properties of tissue products derived from multiple tissue types. Accordingly, the present disclosure provides improved tissue matrix products that include combinations of two or more tissue matrix materials (i.e., materials derived from two or more types of tissues). The tissue matrix materials are arranged to provide improved methods of treatment—in some case, taking advantage of the biologic and mechanical properties of each of the component materials.
According to one embodiment, a tissue product is provided. The product can include a first component comprising an intact acellular tissue matrix and a second component comprising a porous acellular tissue matrix sponge covering at least a portion of the intact acellular tissue matrix. The porous acellular tissue matrix sponge comprises a tissue matrix that has been mechanically homogenized, resuspended, and stabilized, and wherein the intact acellular tissue matrix and porous acellular tissue matrix sponge are attached such that the intact acellular tissue matrix provides mechanical support to the porous acellular tissue matrix sponge.
According to one embodiment, a tissue product is provided. The product can include a first component comprising a sheet of acellular tissue matrix, and a second component comprising a porous acellular tissue matrix sponge covering at least a portion of the intact acellular tissue matrix. The second component may consist essentially of adipose tissue matrix.
According to one embodiment, a tissue product is provided. The tissue product can include a first component comprising a sheet of acellular tissue matrix and a second component comprising a sheet of a second acellular tissue matrix derived from a tissue type different than that of the first component. The product can further comprise a third component including a porous acellular tissue matrix sponge, wherein the third component is contained between the first component and the second component.
Reference will now be made in detail to certain exemplary embodiments according to the present disclosure, certain examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
In this disclosure, the use of the singular includes the plural unless specifically stated otherwise. In this disclosure, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including”, as well as other forms, such as “includes” and “included”, is not limiting. Any range described herein will be understood to include the endpoints and all values between the endpoints.
The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this disclosure, including but not limited to patents, patent applications, articles, books, and treatises, are hereby expressly incorporated by reference in their entirety for any purpose.
Various human and animal tissues can be used to produce products for treating patients. For example, various tissue products for regeneration, repair, augmentation, reinforcement, and/or treatment of human tissues that have been damaged or lost due to various diseases and/or structural damage (e.g., from trauma, surgery, atrophy, and/or long-term wear and degeneration) have been produced. Such products can include, for example, acellular tissue matrices, tissue allografts or xenografts, and/or reconstituted tissues (i.e., at least partially decellularized tissues that have been seeded with cells to produce viable materials).
A variety of tissue products have been produced for treating soft and hard tissues. For example, ALLODERM® and STRATTICE™ (LIFECELL CORPORATION, Branchburg, N.J.) are two dermal acellular tissue matrices made from human and porcine dermis, respectively. Although such materials are very useful for treating certain types of conditions, materials having different biological and/or mechanical properties may be desirable for certain applications. For example, ALLODERM® and STRATTICE™ have been used to assist in treatment of structural defects and/or to provide support to tissues (e.g., for abdominal walls or in breast reconstruction), and their strength and biological properties make them well-suited for such uses.
Such materials, however, may not be ideal for regeneration, repair, replacement, and/or augmentation of certain soft-tissue defects. For example, improved tissue fillers for replacing lost or damaged tissues, including adipose or other soft tissues in the form of porous sponges, may be beneficial for some patients. Such porous sponges, however, may lack sufficient structural integrity for certain uses.
For example, tissue matrix sponges may have insufficient tensile strength, burst strength, or suture retention strength to provide needed support in various procedures such as breast reconstruction, breast augmentation, abdominal wall defect treatment, or treatment of soft tissues that are subjected to repeated movements, or even occasionally experience relatively high mechanical stresses. In addition, some materials may have less than optimal compressive elasticity and strength, bending rigidity, kink resistance, or abrasion resistance. Accordingly, improved devices and methods are provided herein.
The improved devices incorporate combinations of tissue matrix sponges (e.g., adipose tissue matrix sponges) along with intact acellular tissue matrices, such as dermal, fascial, or muscle tissue matrices. The improved devices are joined to harness properties of the different tissue matrices, thereby providing improved regenerative biologic and mechanic properties for certain uses.
As used herein, the term “intact acellular tissue matrix” refers to an extracellular tissue matrix having a shape and form substantially similar to the tissue from which the matrix is derived, although it will be understood that production of the acellular matrix (e.g., by removing cells) will produce a matrix that is modified from the original tissue matrix, by for example, changing the microstructure of the matrix. For example, an “intact acellular tissue matrix” produced from elongated, sheet-like tissue such as dermis, bladder, intestinal layer(s), stomach layer(s), dura, pericardium, or fascia may be in the form of a sheet formed by the original protein structure. Such “intact acellular tissue matrices”, however, can include openings, meshes, or holes, as discussed further below, and may be modified, e.g., by cross-linking, enzymatic treatment, or chemical modification. “Intact acellular tissue matrices” would not include tissues that have been ground, cut, homogenized, or otherwise processed to form small tissue fragments or particles, even if such fragments or particles are resuspended or otherwise processed to produce a sheet or other form.
Accordingly, in various embodiments, tissue products for treatment or regeneration of tissue are provided. The tissue products can include a first component comprising an intact acellular tissue matrix and a second component comprising a porous acellular tissue matrix sponge. The porous acellular tissue matrix may cover at least a portion of the intact acellular tissue matrix, or alternatively or additionally, the porous acellular tissue matrix can be positioned near the intact acellular tissue matrix during a surgical procedure. The porous acellular tissue matrix sponge can be produced in a variety of ways, as discussed further below.
As shown, the products of
The first component (12, 22, 32, 42) can include a variety of suitable acellular tissue matrices in the form of a sheet, or other suitable three-dimensional structure, including for example, folded shapes, boxes, cup-like shapes, tubes, irregular or repeating patterned shapes, spheres or other rounded 3-D shapes. The intact tissue matrix (first component) can be formed from a variety of different tissue sources and can be processed and configured to provide structure support or mechanical stability to the devices (10, 20, 30, 40).
The tissue matrices used to produce the first component (12, 22, 32, 42) can include a variety of suitable tissue matrix materials. Examples of the tissues that may be used to construct the tissue matrices for the first component can include, but are not limited to, skin, parts of skin (e.g., dermis), fascia, muscle (striated, smooth, or cardiac), pericardial tissue, dura, umbilical cord tissue, placental tissue, cardiac valve tissue, ligament tissue, tendon tissue, blood vessel tissue, such as arterial and venous tissue, cartilage, bone, neural connective tissue, urinary bladder tissue, ureter tissue, and intestinal tissue. For example, a number of biological scaffold materials that may be used for the first component are described by Badylak et al., Badylak et al., “Extracellular Matrix as a Biological Scaffold Material: Structure and Function,” Acta Biomaterialia (2008), doi:10.1016/j.actbio.2008.09.013. In some cases, the first component includes a sheet of acellular tissue matrix derived from human or porcine dermis. Suitable human and porcine dermal materials include, for example, ALLODERM® and STRATTICE™, respectively.
The first component (12, 22, 32, 42) can be selected based on both biologic and mechanical properties. For example, suitable tissue matrix materials used to produce the first component will generally be capable of providing a regenerative tissue scaffold suitable for supporting the ingrowth of native cells and formation of tissue without excessive inflammation and with minimal scar formation.
In addition, the first component (12, 22, 32, 42) can be selected based on its ability to provide a desired amount of structural support. For example, the first component (12, 22, 32, 42) may possess sufficient tensile strength, burst strength, and suture retention strength to allow use of the device for treatment of such conditions as complex or simple abdominal wall defects, defects associated with surgical oncology for treatment of breast cancer, treatment of structural defects in connective tissues (e.g., fascia, tendons, or ligaments), and/or to provide structural support around breast implants or tissue expanders used in augmentation or reconstruction.
As noted above, however, the devices can include a second component (11, 21, 31, 41), and the second component can be selected to provide specific biologic and mechanical properties. For example, in one embodiment, the second component includes a tissue matrix derived from adipose tissue. The tissue matrix derived from adipose tissue can be selected based on its ability to support regeneration of certain tissue types, including regeneration of adipose tissue, or predominantly adipose tissue; and may be selected to produce a desired feel, compressibility, size, shape, or other mechanical features. As such, the second component can support a desired level of adipose regeneration, which may be desirable for various anatomic sites, including, for example, the breast (e.g., after surgical removal of tumors or for augmentation), the buttocks, thighs, neck, face, or any other site where adipose tissue may be desirable to produce a certain feel, cosmetic appearance, biologic property, or other intended result.
The first component (12, 22, 32, 42) and second component (11, 21, 31, 41) can be arranged in a variety of ways to produce desired mechanical and biologic properties when implanted in vivo. For example,
As shown in
The textured surface 15 can facilitate joining between the first component 12 and the tissue fibers in a slurry or suspension used for form the second component 11 (discussed below). The textures can be grooves or holes, or can include a roughened surface such that it creates jagged edges or textures with some loose collagen fibers that facilitate cross-linking. The textured surface 15 can include a surface roughening (e.g., formed by scraping or other mechanical process). In addition, the textured surface 15 can include indentations 14 and/or protrusions 13 that allow interdigitaion of the first and second components. Alternatively, as shown in
Furthermore, although the embodiments described above with respect to
In other embodiments, the first component can be in the form of a sheet having openings or a mesh structure in which the second component can be positioned. For example,
It should be noted, that the pattern of openings or meshwork in the devices of
The devices illustrated in
The devices illustrated in
In some embodiments, the second component may cover or be applied to only a portion of a surface of the first component, and/or may be applied as a bulk material having a desired shape. For example,
Similar to the device of
The devices and methods described herein can also include more than two types of tissue matrices. Specifically, in some cases, the devices include a first component comprising a sheet of acellular tissue matrix and a second component comprising a sheet of a second acellular tissue matrix derived from a tissue type different than that of the first component. In addition, the devices can include a third component comprising a porous acellular tissue matrix sponge, wherein the third component is contained between the first component and the second component. Embodiments including such structures as well as their uses and methods of use are discussed further below.
Furthermore, the configuration of
In some cases, the device 70 of
The device 80 is illustrated having the shape of a typical breast implant, such as a rounded or teardrop implant. The devices 80, however, of the present disclosure need not have typical breast implant (teardrop or rounded) shapes. For example, the devices can have other shapes including, for example, irregular shapes, spherical shapes, ovoid shapes, or custom-made shapes based on patient anatomy or treatment site. For example, a surgeon may select a spherical or custom-made shape for implantation in a lumpectomy site or based on patient-specific factors. In addition, the surgeon may select two-or more implants to be implanted next to one another or in different locations. In addition, although described in particular with respect to breast implants the presenting disclosed implants, systems, and methods can be used at other sites where synthetic implants may be used (e.g., gluteal implants).
As discussed above, the two sheets 82, 83 can include intact acellular tissue matrix, but can be formed from tissue matrix derived from different tissue types. For example, in one embodiment, the first sheet 82, which may form an anterior or frontal portion of the implant 80 can be formed from a tissue matrix selected to allow cellular ingrowth and tissue regeneration, while also providing sufficient mechanical properties (e.g., tensile strength, burst strength, suture retention strength) to allow the sheet 82 to provide structural support and load-bearing capacity, as may be needed to support a mass of the tissue matrix sponge 81 and surrounding breast structures. In some embodiments, the sheet 82 is a dermal acellular tissue matrix such as ALLODERM® or STRATTICE™. The sheet can include other tissue such as bladder, intestinal layer(s), stomach layer(s), dura, pericardium, skeletal muscle, nerve, peritoneum, or fascia.
The second sheet 83 can be produced from a different tissue. For example, one suitable tissue can include a muscle tissue matrix. Suitable muscle matrix materials are described in U.S. Patent Publication Number 2015/0282925A1 (application Ser. No. 14/410,204), which was filed on Jul. 1, 2013 to Xu et al.
As shown in
As discussed above, the devices described herein in each of the figures can include acellular tissue matrix sponge (11, 21, 31, 41, 51, 61, 71, 81). As used herein, tissue matrix sponge will be understood to refer to a tissue matrix material that has been processed to produce a sponge-like matrix. The sponge-like matrix can be formed of an extracellular tissue matrix (ECM) that retains ECM components including extracellular collagen, glycoproteins, and other molecules important for supporting cellular ingrowth and tissue regeneration.
As used herein, the term “tissue matrix sponge” will be understood to refer to a tissue matrix material that includes extracellular tissue matrix (ECM) (including collagen and important non-collagenous proteins), wherein the ECM has been mechanically processed to form fragments or particles, and has been resuspended or reformed (e.g., by casting and drying) to form a porous sponge-like material. The sponge properties can be tailored by selecting an appropriate tissue type (e.g., using adipose, dermis, muscle, fascia, nerve, vascular tissue, intestinal components, skeletal muscle, peritoneum, tendon, ligament, or other appropriate tissue).
Further, the tissue properties can be modified by controlling solid content of the sponge (i.e., the about of tissue matrix present in suspension). Higher solid content will generally form higher modulus and stronger materials. Additional modifications to the material to adjust mechanical properties can include chemical cross linking, particle or fiber sizes, increasing solid content per volume through compression, and pattern molding with fiber alignment for directional properties.
The tissue matrix sponge can be formed from a number of tissue matrix types and with a number of processes. For example, in some embodiments, the tissue matrix sponge is formed from adipose tissue. Suitable adipose tissues are described generally is number U.S. Patent Publication Number 2012/0310367A1 (Application number U.S Ser. No. 13/483,674, filed May 30, 2012, to Connor). Such adipose materials can be formed generally by mechanical homogenization, washing, resuspension, and stabilization of the material. The material may be dried (e.g. by freeze drying before or after stabilization), and stabilization can be by dehydrothermal treatment (DHT), cross-linking (UV, radiation, or chemical cross-linking). The stabilization can further be used to bond or attach the sponge to the other material. For example, DHT treatment can cause some degree of cross-linking, which can be improved by surface roughening to texturing (see e.g.,
In addition, although the devices shown above have a number of layers or components, it will be appreciate that the structures can include additional layers. For example, devices including multiple layers of the components shown in the figures may be used. And multiple layers of the tissue matrix components can be added, for example, to improve device strength.
As noted above, the products discussed herein can be used for treatment of breast. And, in varying embodiments, the intact acellular tissue matrix component and porous tissue matrix sponge can be provided either as a single premanufactured article, or as separate components to be implanted by a surgeon, or as combinations of single articles and separate components (e.g., for different section of a treatment site).
For example,
As shown, the products of the present disclosure can be implanted at a breast 85 treatment site, e.g., for augmentation or reconstructive procedures. As such, the products can be used in conjunction with various implants 102 or similar devices (e.g., tissue expanders) and can be used for a variety of implant procedures and location (e.g., subcutaneous or subpectoral). And the products of the present disclosure, including an intact acellular tissue matrix sheet 104 can be implanted to support the implant or tissue expander and/or to facilitate other goals (e.g., provide tissue coverage, restore blood flow, etc.
In some breast treatment procedures, however, in addition to the benefits provided by the intact tissue matrix sheets, it is desirable to implant other tissue, such as adipose tissue matrix sponge, to provide additional implant coverage. For example, in some cases, e.g., with thin patients, the implant may cause undesirable effects such as skin rippling or less than desirable shapes (e.g., due to the bulk of the implant at the superior portion or other areas with insufficient breast tissue coverage).
Accordingly, in various embodiments, a surgeon may use a sheet of tissue matrix 104 and a tissue matrix sponge such as adipose matrix 110. The adipose matrix can be provided as a separate component and implanted where needed, or can be provided preassembled and attached to the sheet of tissue matrix (as shown in
The sponge 110 or 134 can be implanted at a variety of sites around the breast to prevent rippling, reduce undesired shapes (e.g., reduce appearance of the superior portion of the implant as illustrated in
The above description and embodiments are exemplary only and should not be construed as limiting the intent and scope of the invention.
Claims
1. A tissue product, comprising:
- a first component comprising an intact acellular tissue matrix; and
- a second component comprising a porous acellular tissue matrix sponge covering at least a portion of the intact acellular tissue matrix, wherein the porous acellular tissue matrix sponge comprises a tissue matrix that has been mechanically homogenized, resuspended, and stabilized, and wherein the intact acellular tissue matrix comprises a group of openings in which the porous acellular tissue matrix sponge is positioned such that the intact acellular tissue matrix provides mechanical support to the porous acellular tissue matrix sponge.
Type: Application
Filed: Mar 6, 2023
Publication Date: Jun 29, 2023
Inventors: Sangwook Park (Virginia Beach, VA), Hui Xu (Plainsboro, NJ), Aaron M. Barere (Hoboken, NJ), Israel James Jessop (Garden Ridge, TX), Mrinal Shah (Parsippany, NJ), Nathaniel Bachrach (Clifton, NJ)
Application Number: 18/117,782