METHOD OF PRODUCING PURIFIED GRAPHITE
A two-stage method of producing purified graphite is described. The first stage of the method comprises the steps of subjecting graphite material to a caustic bake and releasing any remaining caustic using water. The graphite material is then subjected to a first acid wash. Neutralising and washing the acid washed graphite material is then performed to deliver an intermediate purified graphite product. In the second stage the intermediate purified graphite product is subjected to a low temperature caustic leach. Any remaining caustic in the intermediate purified graphite product is released using water, and the intermediate purified graphite product is subjected to a second acid wash. Finally, neutralising and washing the intermediate purified graphite product is performed to deliver a final purified graphite product with a purity of 99.95% C and above.
The present invention relates to a method of producing purified graphite and relates particularly, though not exclusively, to such a process for producing battery-grade spherical purified graphite (SPG).
BACKGROUND TO THE INVENTIONSpherical graphite is manufactured from flake graphite concentrates in which the flakes have to be rounded to produce spherical particles of graphite. The spherical graphite can be spread thinly and uniformly during the manufacturing process and is used for the anode material in lithium ion batteries. Spherical purified graphite (SPG) is sold as either a coated or uncoated product. Uncoated SPG is manufactured by micronizing, rounding and purifying flake graphite. The bulk of natural, uncoated SPG is currently manufactured in China due to low labour costs and weak environmental regulations. The micronized, rounded graphite is chemically purified from 94% to 99.95% C using strong hydrofluoric and other acids. Impurities will have a deleterious effect on battery performance.
Apart from the environmental concerns, the hydrofluoric acid typically employed in the prior art purification process is also highly toxic and hazardous to use. A great deal of effort is therefore being expended to find a more cost-effective, non-toxic and environmentally sustainable process for the purification of spherical graphite.
With the widespread use of lithium-ion batteries, there is now also a significant market for the recycling of these kinds of batteries. In typical prior art recycling plants, the lithium-ion batteries are first made safe for further treatment, by separating the plastics, aluminium and copper components and directing them to their own recycling processes. The remaining components of the battery after these processes are the chemical and mineral components. “Black mass” is the residue remaining from existing hydrometallurgical processes that recover the valuable metals. The black mass typically consists of a mixture of carbon, lithium, manganese, cobalt and nickel in various ratios, including anode material which consists of natural battery graphite, synthetic graphite and silicon. As graphite comprises almost 50% of the mass of a typical lithium-ion battery, there is a significant benefit to be gained in being able to purify the black mass material for the recovery of high purity graphite.
The present invention was developed with a view to providing a cost-effective and environmentally sustainable method of producing purified graphite with carbon content higher than 99.9%. Although the present invention is described with particular reference to producing battery-grade SPG it will be understood that the method of producing purified graphite may also have wider applications.
References to prior art in this specification are provided for illustrative purposes only and are not to be taken as an admission that such prior art is part of the common general knowledge in Australia or elsewhere.
SUMMARY OF THE INVENTIONAccording to one aspect of the present invention there is provided a method of producing purified graphite, the method comprising the steps of:
subjecting graphite material to a sodium hydroxide (NaOH) bake;
releasing any remaining NaOH using water;
subjecting the graphite material to a first acid wash;
neutralising and washing the acid washed graphite material to deliver an intermediate purified graphite product;
subjecting the intermediate purified graphite product to a NaOH leach;
releasing any remaining NaOH in the intermediate purified graphite product using water;
subjecting the intermediate purified graphite product to an acid wash; and,
neutralising and washing the intermediate purified graphite product to deliver a final purified graphite product.
Preferably the step of subjecting the graphite material to a NaOH bake comprises mixing the graphite material with liquid NaOH (50%) and heating the mixture in a furnace. Typically the mixture is heated to a temperature of between 450° C. and 550° C. Advantageously the mixture is heated for between approximately 25 to 45 minutes. Preferably the mixture is heated to 500° C. for 30 minutes.
Preferably the step of releasing any remaining NaOH comprises immersing the material in hot water. Preferably after the step of releasing any remaining NaOH, the material is washed and filtered. Typically the material is washed and filtered in a wash neutral step at ambient temperature, for about 5 to 10 minutes, using 2.0 to 7.0 parts H2O.
Preferably the step of subjecting the material to a first acid wash comprises washing the material with a diluted acid mixture comprising water and H2SO4. Typically the diluted acid mixture comprises between 2.0 to 5.0 parts H2O and between 0.15 and 0.25 parts H2SO4 96%. Advantageously the diluted acid mixture comprises 4.0 parts H2O and 0.17 parts H2SO4 96%. Preferably the first acid wash is performed at elevated temperatures in the range of approximately 70° C. to 90° C. to increase reactivity. Typically the first acid wash is performed at an elevated temperature of 80° C. for between about 25 to 45 minutes.
Preferably the step of neutralising and washing the acid washed graphite material comprises filtering the material at ambient temperature and final washing with water at elevated temperatures respectively. Typically the final washing with water occurs at 85° C. for 30 minutes using 20 parts H2O. Preferably the step of neutralising and washing the material comprises washing the acid washed graphite material in 3 to 7 parts H2O for 3 to 7 minutes while stirring, at ambient temperature.
Preferably the step of subjecting the intermediate purified graphite product to a NaOH leach comprises immersing the intermediate purified graphite product in 0.1 to 0.3 parts NaOH (50%) with 2.0 to 4.0 parts H2O at low temperature. Typically the NaOH leach takes place at temperatures in the range of 72° C. to 88° C. Preferably the residence time for the NaOH leach is about 1.5 to 2.5 hours.
Preferably the intermediate purified graphite product is preferably neutralized and washed, before it is subject to the acid wash step.
Advantageously the only reagents used are NaOH in the NaOH bake and NaOH leach steps, and H2SO4 in the acid wash steps.
Preferably the intermediate purified graphite product is finally washed in a water bath and neutralized with water after the acid wash step.
Preferably the acid wash of the intermediate purified graphite product is performed with a diluted acid mixture comprising between 2.0 and 4.0 parts H2O and 0.01 to 0.04 parts H2SO4 96%. Typically the diluted acid mixture comprises 2.5 parts H2O and 0.03 parts H2SO4 96%, and the acid wash is performed at elevated temperatures in the range of approximately 77° C. to 93° C. to increase reactivity. Preferably the acid wash is performed at an elevated temperature of 80° C. for approximately 35 minutes.
By incorporating the second stage NaOH leaching step, with low consumption of chemicals, carbon content of the final purified graphite product can be increased to 99.98%.
Throughout the specification, unless the context requires otherwise, the word “comprise” or variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers but not the exclusion of any other integer or group of integers. Likewise the word “preferably” or variations such as “preferred”, will be understood to imply that a stated integer or group of integers is desirable but not essential to the working of the invention.
The nature of the invention will be better understood from the following detailed description of several specific embodiments of the method of producing purified graphite, given by way of example only, with reference to the accompanying drawings, in which:
The process of manufacturing purified spherical graphite (SPG) involves the steps of micronizing, rounding, homogenising and purifying flake graphite, as illustrated in
A first embodiment of the method 10 of producing purified graphite in accordance with the invention, as illustrated in
The method further comprises the step of releasing any remaining caustic, at step 16, using water. Preferably the step of releasing any remaining caustic comprises immersing the solid material in water and dissolving any remaining caustic for about 10 to 45 minutes. Typically this is done in warm water, for example, water heated to between 40° C. to 85° C. Typically 1 part spherical graphite material is immersed in from between 3 to 20 parts H2O. In this embodiment 1 part spherical graphite material is immersed in 17 parts H2O, at about 85° C., for 30 minutes.
Preferably, after the step of releasing any remaining caustic, the material is washed and filtered at step 18. Typically this is done at ambient temperature for about 30 minutes using ten parts H2O.
The method further comprises the step of subjecting the material to an acid wash at step 20. Typically the step of subjecting the material to an acid wash comprises washing the material with a diluted acid mixture comprising water and H2SO4. Typically the diluted acid mixture comprises 4 parts H2O, and 0.17 parts H2SO4. Preferably the acid wash is performed at elevated temperatures in the range of approximately 77° C. to 93° C. to increase reactivity. More preferably the acid wash is performed at an elevated temperature of 85° C. Typically the material is subjected to an acid wash for about 30 minutes.
The method further comprises the step 22 of filtering and the step 24 of final washing the material to deliver an intermediate spherical purified graphite (SPG) product 28. Preferably the steps of filtering and washing the material comprise filtering the material at ambient temperature and washing with water at elevated temperatures respectively. Typically the final washing with water occurs at 85° C. for 30 minutes using 20 parts H2O.
Advantageously this process delivers an intermediate spherical purified graphite (SPG) product at step 28 with a final purity of 99.96% C.
The method of
The method further comprises the step of releasing any remaining caustic, at step 36, using water. Preferably the step of releasing any remaining caustic comprises immersing the material in H2O for about 30 minutes at ambient temperature.
Preferably, after the step of releasing any remaining caustic, the material is washed and filtered at step 38. Preferably the neutral wash at step 38 is done at ambient temperature for about 30 minutes, using ten parts H2O.
The method further comprises the step of subjecting the intermediate SPG product to a second acid wash at step 40. Typically the step of subjecting the material to a second acid wash comprises washing the material with a diluted acid mixture comprising water and H2SO4, where a very low concentration of H2SO4 is sufficient (preferably between 0.01 to 0.04 parts H2SO4 and 4 parts water). Typically the diluted acid mixture comprises 4 parts H2O and 0.03 parts H2SO4. Preferably the second acid wash is performed at elevated temperatures in the range of approximately 77° C. to 93° C. to increase reactivity. More preferably the second acid wash is performed at an elevated temperature of 85° C. for approximately 35 minutes.
The method further comprises the step of filtering the intermediate SPG product, at 42, and final washing and neutralization with water at step 44, to deliver a final SPG product at 46. Preferably the steps of filtering and washing the material comprise filtering the material at ambient temperature and washing with water at elevated temperatures respectively. Typically the final washing with water occurs at 85° C. for 30 minutes using 10 parts H2O.
By incorporating the second stage caustic leaching step 34, with low consumption of chemicals, the carbon content of the final SPG product at 46 can be increased to 99.98%.
Test Work
The parameters listed in Table 1 are for the first embodiment of the method 30 of purifying SPG illustrated in
The method of
As with the first embodiment, the second embodiment of method 50 of
The caustic bake step 14 is followed by a caustic release step 16 of dissolving any remaining caustic in a water bath, in order to cool down and to release the impurities, which are soluble in water. Preferably the caustic release step 16 in this embodiment comprises immersing the solid material in water and dissolving any remaining caustic for about 5 to 15 minutes. Typically this is done in warm water, for example, water heated to between 35° C. to 45° C. Typically 1 part spherical graphite material is immersed in from between 2 to parts H2O. In this embodiment 1 part spherical graphite material is immersed in 3.3 parts H2O, at about 40° C., for 10 minutes.
Preferably, after the caustic release step 16, the material is washed and filtered at wash neutral step 18. Typically this is done at ambient temperature, for about 5 to 10 minutes, using 2.0 to 7 parts H2O. In the illustrated example, the wash neutral step 18 is done at ambient temperature, for about 5 minutes stirring, using 2.3 parts H2O. After 10 minutes the slurry is filtered until the pH value is neutral. After the caustic bake the material has a solid consistency, which is then subject to a first acid wash at step 20. The filter cake material is put in a moist condition into a stirred reactor, filled with diluted acid. Gentle stirring supports the process of dissolving impurities. The first acid wash is preferably performed with a mixture of between 2.0 to 5.0 parts H2O and between 0.15 and 0.25 parts H2SO4 96% at elevated temperatures. Preferably the filter cake material remains in the stirred reactor for 25 to 45 minutes, and the temperature is kept at between 70° C. and 90° C. More preferably the first acid wash step 20 is performed with 4.0 parts H2O and 0.17 parts H2SO4 96% at 80° C. for 35 minutes.
Wash neutralization of the material at step 22 is used to separate the acid and the dissolved impurities. The wash neutralization step 22 preferably comprises washing the acid washed graphite material in 3 to 7 parts H2O for 3 to 7 minutes while stirring, at ambient temperature. Typically the wash neutralization step 22 comprises washing the acid washed graphite material in parts H2O for 5 minutes, while stirring at ambient temperature. Afterwards the material is subject to a water bath, having between 2 to 8 parts H2O, for 20 to 40 minutes, at ambient temperature, to further eliminate impurities, at step 24. Preferably the water bath 24 is performed with 7 parts H2O, for 40 minutes, at ambient temperature. The wash neutralization step 22 should be repeated until the pulp is pH neutral. The end result of this first stage of the method 50 is to deliver an intermediate spherical purified graphite (SPG) product 28 with a purity of 99.4% C to 99.9% C.
The first stage of method 50 is basically the same as in the first embodiment (method 30 in
In the second stage, the method 50 of
After the caustic leach, the caustic water with the dissolved impurities needs to be neutralised by washing and filtering at step 35. The wash neutralisation step 35 preferably comprises washing the leached graphite material in 3 to 7 parts H2O for 3 to 7 minutes while stirring, at ambient temperature. Typically the wash neutralization step 35 comprises washing the acid washed graphite material in 5 parts de-ionised H2O for 5 minutes, while stirring at ambient temperature. Afterwards the material is subject to a water bath, having between 2 to 8 parts H2O, for 20 to 40 minutes, at elevated temperatures, to further eliminate impurities, at step 36. Preferably the water bath 36 is performed with 3.5 parts H2O, for 30 minutes, at 80° C. The water bath 36 supports the dissolution of more-slowly dissolving impurities and the releasing of any remaining caustic. The wash neutralization step may need to be repeated until the pulp is pH neutral (see further wash neutralization step 38).
The method 50 further comprises the step of subjecting the intermediate SPG product to a second acid wash at step 40. Typically the second acid wash step comprises washing the material with a diluted acid mixture comprising water and H2SO4, where a very low concentration of H2SO4 is sufficient. The filter cake is put in a moist condition into a stirred reactor, filled with diluted acid. The acid concentration is very low, as the amount of impurities to dissolve is very low. Stirring supports the process of dissolving impurities. Preferably the diluted acid mixture comprises between 2.0 and 4.0 parts H2O and 0.01 to 0.04 parts H2SO4 96%. Typically the diluted acid mixture comprises 2.5 parts H2O and 0.03 parts H2SO4 96%. Preferably the second acid wash is performed at elevated temperatures in the range of approximately 77° C. to 93° C. to increase reactivity. More preferably the second acid wash is performed at an elevated temperature of 85° C. for approximately 35 minutes.
The method 50 further comprises a further step of wash neutralization of the intermediate SPG product, at 42, and final washing and neutralization with water at steps 44 and 45, to deliver a final SPG product at 46 with a purity of 99.95% C and above. Preferably the steps of neutralization and washing the material comprise a wash neutralising step 42 of the material at ambient temperature and a water bath 44 at elevated temperatures respectively. The wash neutralisation step 42 preferably comprises washing the graphite material in 3 to 10 parts H2O, 3×10/3 each 1 minute stirring, at ambient temperature. Typically the wash neutralization step 42 comprises washing the acid washed graphite material in 3.5 parts H2O for 5 minutes, while stirring at ambient temperature. Afterwards the material is subject to another water bath 44, having between 2 to 10 parts H2O, for 20 to 40 minutes, at elevated temperatures, to further eliminate impurities. Preferably the water bath 42 is performed with 3.5 parts H2O, for 30 minutes, at 80° C.
A further wash neutralization step 45 may be needed until the graphite material is pH neutral. The wash neutralisation step 45 preferably comprises washing the graphite material in 3 to 10 parts H2O, 2×10/2 each 5 minute stirring, at ambient temperature.
The final filtration is also the dewatering step before the graphite is put into a dryer. Recommended temperatures for drying are relatively low (below 150° C.) to prevent any damage to the particles which could occur if higher temperatures are applied.
The second stage of this method 50 is basically the same as for the first method 30 above, except that additional wash neutralization steps 35, 42 and have been introduced.
Although the above described embodiments describe a method of purifying graphite using purified spherical graphite (SPG) as the starting material, the same chemical purification process can also be used with flake graphite as the starting material or for purifying black mass, a residue produced in the recycling of Lithium-ion batteries. Black mass is the residue remaining from existing hydrometallurgical processes that recover the valuable metals. The purification process increases the grade from 30-50% carbon to +99% carbon to re-use in graphite markets.
Now that preferred embodiments of the method of purifying SPG have been described in detail, it will be apparent that the described embodiments provide a number of advantages over the prior art, including the following:
-
- (i) The method is relatively simple, using standard industrial process steps, and yet is capable of achieving a purity of 99.95% C and above.
- (ii) The amount of caustic and acid used for the purification process is significantly reduced compared to prior art methods, and the process time is also shortened.
- (iii) The chemicals used in the method are more environmentally sustainable than prior art methods and do not harm the spherical graphite product.
It will be readily apparent to persons skilled in the relevant arts that various modifications and improvements may be made to the foregoing embodiments, in addition to those already described, without departing from the basic inventive concepts of the present invention. For example, the method comprises a multi-step and multi-parameter (temperatures, residence time, concentration of acids and caustic, volume of wash water, etc.) process, and therefore sophisticated optimization will undoubtedly yield further improvements in purity and cost savings. Furthermore although the process is described applied unpurified SPG, it is not limited to spherical graphite but could also be applied using other types of flake graphite as a precursor material, such as screened fractions of a flake graphite concentrate or a by-product from spherical graphite production. Therefore, it will be appreciated that the scope of the invention is not limited to the specific embodiments described.
Claims
1. A method of producing purified graphite, the method comprising the steps of:
- subjecting graphite material to a sodium hydroxide (NaOH) bake;
- releasing any remaining NaOH using water;
- subjecting the graphite material to a first acid wash;
- neutralising and washing the acid washed graphite material to deliver an intermediate purified graphite product;
- subjecting the intermediate purified graphite product to a NaOH leach;
- releasing any remaining NaOH in the intermediate purified graphite product using water;
- subjecting the intermediate purified graphite product to an acid wash; and,
- neutralising and washing the intermediate purified graphite product to deliver a final purified graphite product.
2. A method of producing purified graphite as defined in claim 1, wherein the step of subjecting the graphite material to a NaOH bake comprises mixing the graphite material with liquid NaOH (50%) and heating the mixture in a furnace.
3. A method of producing purified graphite as defined in claim 2, wherein the mixture is heated to a temperature of between 450° C. and 550° C.
4. A method of producing purified graphite as defined in claim 3, wherein the mixture is heated for between approximately 25 to 45 minutes.
5. A method of producing purified graphite as defined in claim 4, wherein the mixture is heated to 500° C. for 30 minutes.
6. A method of producing purified graphite as defined in claim 1, wherein the step of releasing any remaining NaOH comprises immersing the material in hot water.
7. A method of producing purified graphite as defined in claim 1, wherein, after the step of releasing any remaining NaOH, the material is washed and filtered.
8. A method of producing purified graphite as defined in claim 7, wherein the material is washed and filtered in a wash neutral step at ambient temperature, for about 5 to 10 minutes, using 2.0 to 7.0 parts H2O.
9. A method of producing purified graphite as defined in claim 1, wherein the step of subjecting the material to a first acid wash comprises washing the material with a diluted acid mixture comprising water and H2SO4.
10. A method of producing purified graphite as defined in claim 9, wherein the diluted acid mixture comprises between 2.0 to 5.0 parts H2O and between 0.15 and 0.25 parts H2SO4 96%.
11. A method of producing purified graphite as defined in claim 10, wherein the diluted acid mixture comprises 4.0 parts H2O and 0.17 parts H2SO4 96%.
12. A method of producing purified graphite as defined in claim 9, wherein the first acid wash is performed at elevated temperatures in the range of approximately 70° C. to 90° C. to increase reactivity.
13. A method of producing purified graphite as defined in claim 12, wherein the first acid wash is performed at an elevated temperature of 80° C. for between about 25 to 45 minutes.
14. A method of producing purified graphite as defined in claim 1, wherein the step of neutralising and washing the acid washed graphite material comprises filtering the material at ambient temperature and final washing with water at elevated temperatures respectively.
15. A method of producing purified graphite as defined in claim 14, wherein the final washing with water occurs at 85° C. for 30 minutes using 20 parts H2O.
16. A method of producing purified graphite as defined in claim 1, wherein the step of neutralising and washing the material comprises washing the acid washed graphite material in 3 to 7 parts H2O for 3 to 7 minutes while stirring, at ambient temperature.
17. A method of producing purified graphite as defined in claim 1, wherein the step of subjecting the intermediate purified graphite product to a NaOH leach comprises immersing the intermediate purified graphite product in 0.1 to 0.3 parts NaOH (50%) with 2.0 to 4.0 parts H2O at low temperature.
18. A method of producing purified graphite as defined in claim 17, wherein the NaOH leach takes place at temperatures in the range of 72° C. to 88° C.
19. A method of producing purified graphite as defined in claim 18, wherein the residence time for the NaOH leach is about 1.5 to 2.5 hours.
20. A method of producing purified graphite as defined in claim 1, wherein the intermediate purified graphite product is preferably neutralized and washed, before it is subject to the acid wash step.
21. A method of producing purified graphite as defined in claim 1, wherein the only reagents used are NaOH in the NaOH bake and NaOH leach steps, and H2SO4 in the acid wash steps.
22. A method of producing purified graphite as defined in claim 21, wherein, the intermediate purified graphite product is finally washed in a water bath and neutralized with water after the acid wash step.
23. A method of producing purified graphite as defined in claim 1, wherein the acid wash of the intermediate purified graphite product is performed with a diluted acid mixture comprising between 2.0 and 4.0 parts H2O and 0.01 to 0.04 parts H2SO4 96%.
24. A method of producing purified graphite as defined in claim 23, wherein the diluted acid mixture comprises 2.5 parts H2O and 0.03 parts H2SO4 96%, and the acid wash is performed at elevated temperatures in the range of approximately 77° C. to 93° C. to increase reactivity.
25. A method of producing purified graphite as defined in claim 24, wherein, the acid wash is performed at an elevated temperature of 80° C. for approximately 35 minutes.
26. A graphite product produced according to the method of claim 1.
27. The graphite product as defined in claim 26, wherein the graphite product has a purity of at least 99%.
28. A battery or battery product including a graphite product, the graphite product produced according to the method of claim 1.
29. The battery or battery product as defined in claim 28, wherein the graphite product has a purity of at least 99%.
Type: Application
Filed: May 18, 2023
Publication Date: Sep 28, 2023
Inventor: Christoph FREY (West Perth)
Application Number: 18/319,845