AGGREGATION METHODS, GNODEBS, USER EQUIPMENTS AND STORAGE MEDIUM
A gNodeB (gNB) and user equipment (UE) are provided. The gNB includes a transceiver configured to receive physical uplink control channel (PUCCH) via a plurality of slots. The PUCCH occupies at least one physical resource block (PRB) within each of the plurality of slots. The plurality of slots are determined based on a number of slots configured for a transmission of the PUCCH and a slot structure.
This is a continuation of U.S. patent application Ser. No. 17/329,295 filed on May 25, 2021, which is a continuation of U.S. patent application Ser. No. 16/493,200 filed on Sep. 11, 2019, now issued as U.S. Pat. No. 11,076,390, which is a national phase application of PCT Application No. PCT/CN2018/076733 filed on Feb. 13, 2018, which claims the priority of the U.S. Provisional Application No. 62/471,002, filed on Mar. 14, 2017. The disclosures of these applications are hereby incorporated by reference in their entirety.
TECHNICAL FIELDThe present disclosure generally relates to the field of communications, and in particular, to slot/physical resource block (PRB) aggregation methods, gNodeBs (gNBs), user equipments (UEs) and storage medium.
BACKGROUNDIn 5th Generation New Radio (5G NR) system, some new design requirements emerge. For example, a slot may be split into uplink and downlink portions. The downlink portion consists of one or several symbols and may be transmitted from gNB, which is similar to eNodeB (eNB) in the 4th Generation Long term evolution (LTE), to the UEs at the beginning of the slot. The downlink portion may be followed by a switching period (or a guard period (GP)) where the UEs complete the switching from downlink reception to uplink transmission. The switching period is followed by an uplink portion where UEs transmit one or several symbols in uplink. This new structure may make the turnaround time less than that of LTE and thus achieve the goal of low latency for NR system. However, as uplink symbols in such slots are less than that of a full uplink slot where all the symbols are for uplink transmission, it may impose some challenges in other aspects of the system design, for example, the physical uplink control channel (PUCCH) coverage.
The information disclosed in the background is only configured to enhance an understanding to the background of the present disclosure, and thus may include information not forming a conventional art known by those skilled in the art.
SUMMARYIn order to solve the problem in related technology, the present disclosure provides a gNB and UE, which may achieve at least the same coverage of PUCCH as compared with LTE.
According to a first aspect of the disclosure, there is provided a gNB, including: a transceiver configured to receive physical uplink control channel (PUCCH) via a plurality of slots, the PUCCH occupying at least one physical resource block (PRB) within each of the plurality of slots, the plurality of slots being determined based on a number of slots configured for a transmission of the PUCCH and a slot structure.
According to a second aspect of the disclosure, there is provided a UE, including: a transceiver configured to send physical uplink control channel (PUCCH) via a plurality of slots, the PUCCH occupying at least one physical resource block (PRB) within each of the plurality of slots, the plurality of slots being determined based on a number of slots configured for a transmission of the PUCCH and a slot structure. The slot structure is sent via a common control channel.
It is to be understood that the above general descriptions and detailed descriptions below are only exemplary and explanatory and not intended to limit the present disclosure.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments consistent with the present disclosure and, together with the specification, serve to explain the principles of the present disclosure.
Exemplary implementation modes will now be described more comprehensively with reference to the accompanying drawings. However, the exemplary implementation modes may be implemented in various forms, but should not be understood to be limited to examples elaborated herein; and instead, providing these implementation modes enables the present disclosure to convey the concept of the exemplary implementation modes to those skilled in the art more comprehensively and completely. The accompanying drawings only schematic diagrammatize the present disclosure, and may not be drawn to scale. The same accompanying drawing reference signs in the drawings represent the same or similar parts, so that repeated descriptions about them are eliminated.
In addition, the described characteristics, structures or features may be combined to one or more implementation modes in any proper manner. In descriptions made below, many specific details are provided for completely understanding the implementation modes of the present disclosure. However, those skilled in the art realize that the technical solutions of the present disclosure may be practiced with one or more of the specified details eliminated, or another method, component, device, operation and the like may be adopted. Under other conditions, a known structure, method, device, implementation, material or operation is not shown or described in detail so as to avoid distraction and obscuring of each aspect of the present disclosure.
Some block diagrams shown in the accompanying drawings are functional entities, and are not required to physically or logically correspond to independent entities. These functional entities may be implemented in a software form, or these functional entities may be implemented in one or more hardware modules or integrated circuits, or these functional entities may be implemented in different networks and/or processor devices and/or microcontroller devices.
In the 4th Generation Long term evolution (4G LTE) system, PUCCH is used to carry UCI from a UE to a base station called eNodeB (eNB). The UCI includes Ack/Nack for the downlink physical downlink shared channel (PDSCH) transmission, the channel state information (CSI) measured by a UE, and scheduling request (SR). The PUCCH may be transmitted in assigned physical resource blocks (PRBs) which are located at the edges of the bandwidth. The UCI may also be carried by the physical uplink shared channel (PUSCH) along with the uplink data.
To achieve at least the same coverage of PUCCH as compared with LTE, 5G NR introduces PUCCH with long duration (or PUCCH with long format, or simply long PUCCH, and hereinafter referred to as long format PUCCH) which targets the same or better coverage of PUCCH as that of LTE. Since the uplink symbols in some slots in 5G NR may be less than that in LTE, how to achieve the same or better coverage of PUCCH brings up some challenges. Slot aggregation is one way to overcome this. Slot aggregation is to aggregate multiple slots for carrying long format PUCCH so as to reach the same or better coverage as that of LTE.
In block S102, the gNB signals information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots to a UE.
In block S104, the gNB receives from the UE a long format PUCCH carried in the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots, which is aggregated according to the aggregation configuration.
The aggregation configuration may be about one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots.
In an embodiment, the aggregation configuration may be of a set of slots.
As illustrated in
In block S102′, the gNB may signal information on at least one of: a total number of slots to be aggregated for carrying UCI, and a structure of each slot to UE.
In block S104′, the gNB may receive PUCCH from the UE via a plurality of slots aggregated according to the information on the at least one of the total number of slots to be aggregated and the structure of each slot. In an embodiment, the PUCCH may be long format PUCCH. Alternatively, the PUCCH may be not long format PUCCH.
In an embodiment, the gNB may further signals information on the first slot of the slots to be aggregated. In such case, the plurality of slots may be aggregated according to the information on the at least one of the total number of slots to be aggregated, the structure of each slot, and the information on the first slot of the slots to be aggregated.
In an embodiment, the gNB may receive PUCCH from the UE via aggregated slots which are aggregated by aggregating a plurality of slots by aggregating one or more PRBs of each slot. In an embodiment, the one or more PRBs may be positioned in a same manner in the slots. For example, three slots are aggregated, and each slot has four PRBs to be aggregated, and the four PRBs are arranged in the same manner in each slot. Specifically, for example, in each of the three slots, the four PRBs may include the 2nd, 3rd, 4th, 6th PRBs. In another embodiment, the one or more PRBs may be positioned in different manners in the slots. For example, three slots are aggregated, and some PRBs of each slot may be aggregated. For example, the 1st, 2nd and 3rd PRBs in a first slot of the three slots may be aggregated, the 2nd and 4th PRBs in a second slot of the three slots may be aggregated, and the 5th and 6th PRBs in a third slot of the three slots may be aggregated. It will be understood that the above are only examples, more or less than three may be aggregated, and more or less PRBs may be aggregated for each slot.
In an embodiment, when the long format PUCCH supports 1 PR×N symbols time-frequency resources for carrying UCI, the plurality of slots may be aggregated to support about 1 PRB×N symbols time-frequency resources for carrying UCI, where N is a positive integer.
Alternatively, the aggregation configuration may be of a set of PRBs in a single slot or of a set of PRBs across at least two slots (e.g. two slots, three slots, or the like). A set of PRBs in a single slot is intended to means that two or more PRBs (e.g. two PRBs, three PRBs, or the like) are in the same slot.
A set of PRBs across at least two slots is intended to means that two or more PRBs are distributed in two or more slots. For example, the set of PRBs across at least two slots totally includes 4 PRBs, and the 4 PRBs are distributed in 3 slots. Specifically, 1 PRB is located in a first slot of the 3 slots, and 2 PRBs are located in a second slot of the 3 slots, and 1 PRB is located in a third slot of the 3 slots. However, it is to be understood that the total number of the PRBs and the total number of the slots are provided as examples, and the total number of the PRBs and the total number of the slots may be configured in another manner as desired, and the total number of PRB in each slot also may be configured in another manner as desired.
At least part of aggregation configuration is intended to means entire aggregation configuration or only a part of aggregation configuration.
In an embodiment, information on at least part of aggregation configuration may be intended to refer to at least part of aggregation configuration per se.
In such a case, when a set of slots is aggregated for carrying the long format PUCCH, the gNB may signal in block S102 at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, and total number of symbols to be aggregated for carrying UCI to the UE. In a preferred embodiment, the gNB may signal in block S102 the total number of slots to be aggregated and the total number of symbols to be aggregated for carrying UCI to the UE, and the structure of each slot to be aggregated may be signaled to the UE via a common control channel.
Alternatively, the gNB may signal in block S102 the total number of slots to be aggregated to the UE. In such a case, both the structure of each slot to be aggregated and total number of symbols to be aggregated for carrying UCI may be pre-configured in the UE, or signaled to the UE via a higher layer signaling, or one of the structure of each slot to be aggregated and total number of symbols to be aggregated may be pre-configured in the UE or signaled to the UE, and the other one may be derived by the UE.
When a set of PRBs in a single slot is aggregated for carrying the long format PUCCH, in block S102, the gNB may signal at least one of the total number of PRBs to be aggregated in the single slot, location of each of PRBs to be aggregated in the single slot, and total number of symbols to be aggregated for carrying UCI to the UE. Similar to the case where the a set of slots is aggregated for carrying the long format PUCCH, the gNB may signal all of the total number of PRBs to be aggregated in the single slot, location of each of PRBs to be aggregated in the single slot, and total number of symbols to be aggregated for carrying UCI to the UE, or signal a part of the total number of PRBs to be aggregated in the single slot, location of each of PRBs to be aggregated in the single slot, and total number of symbols to be aggregated for carrying UCI to the UE. For example, the gNB may signal the total number of PRBs to be aggregated in a single slot, total number of symbols to be aggregated for carrying UCI to the UE, and the location of each of PRBs to be aggregated may be signaled to the UE via a higher signaling or pre-configured in the UE or derived by the UE.
When a set of PRBs across at least two slots is aggregated for carrying the long format PUCCH, in block S102, the gNB may signal information of at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, the total number of PRBs to be aggregated in each slot, location of each of PRBs to be aggregated in each slot, and total number of symbols to be aggregated for carrying UCI to the UE.
Similar to the case where the a set of slots is aggregated for carrying the long format PUCCH, the gNB may signal all of the total number of slots to be aggregated, structure of each slot to be aggregated, the total number of PRBs to be aggregated in each slot, location of each of PRBs to be aggregated in each slot, and total number of symbols to be aggregated for carrying UCI to the UE, or signal a part of the total number of slots to be aggregated, structure of each slot to be aggregated, the total number of PRBs to be aggregated in each slot, location of each of PRBs to be aggregated in each slot, and total number of symbols to be aggregated for carrying UCI to the UE. When the gNB signals a part of the total number of slots to be aggregated, structure of each slot to be aggregated, the total number of PRBs to be aggregated in each slot, location of each of PRBs to be aggregated in each slot, and total number of symbols to be aggregated for carrying UCI to the UE, the remaining part may be signaled to the UE via a higher signaling or pre-configured in the UE or derived by the UE.
Alternatively, information on at least part of aggregation configuration may be intended to refer to a signal, such as code, bit, or the like, associated with at least part of aggregation configuration. For example, the information on at least part of aggregation configuration may be an index of a look-up table to the UE. Here, the look-up table may be pre-configured in the UE or sent to the UE via signaling of a higher layer and may contain aggregation configurations and their respective indices. In such case, in block S102, the gNB may signal the index of the look-up table to the UE. Accordingly, the index is received by the UE, the UE may look up the look-up table, which is pre-configured in the UE or sent to the UE via signaling of a higher layer and contains aggregation configurations and their respective indices. Then, the UE can obtain a corresponding aggregation configuration according to the index.
When the information on at least part of aggregation configuration is about a set of slots, the gNB receives in block S104 from the UE a long format PUCCH carried in the set of slots which is aggregated by the UE according to the aggregation configuration. When the information on at least part of aggregation configuration is about a set of PRBs in a single slot, the gNB receives in block S104 from the UE a long format PUCCH carried in the set of PRBs in a single slot, which is aggregated by the UE according to the aggregation configuration. When the information on at least part of aggregation configuration is about a set of PRBs across at least two slots, the gNB receives in block S104 from the UE a long format PUCCH carried in the set of PRBs across at least two slots, which is aggregated by the UE according to the aggregation configuration.
As described above, the long format PUCCH refers to the PUCCH with long duration (or PUCCH with long format, or simply long PUCCH) in 5G NR.
In block S102, the gNB may signal information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots to a UE dynamically via lower layer signaling, semi-statically via combination of higher layer signaling, or via a combination of lower layer signaling and higher layer signaling.
In other words, the signaling may be either of higher layer signaling or lower layer of signaling or combination of both. Some of such information like slot structure may also be conveyed through common channels such as common control channel. Some of the information may be pre-configured in a UE or may be implicitly derived by a UE. Such slot aggregation combinations for long PUCCH may be configured and signaled to UE. As the slot structures allocated in the system may be determined more dynamically, such configuration of slot aggregation may be signaled dynamically, for example, using DCI. Alternatively, if the slot formats may be allocated in a more semi-static way, such slot aggregation configuration may also be signaled semi-statically by using higher layer signals.
When the long format PUCCH supports 1 PRB×N symbols time-frequency resources for carrying UCI, the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots may be aggregated to support about 1 PRB×N symbols time-frequency resources for carrying UCI, where N is a positive integer.
Specifically, when a set of slots is aggregated, the aggregated set of slots may support about 1 PRB×N symbols time-frequency resources for carrying UCI. When a set of PRBs in a single slot is aggregated, the aggregated set of slots may support about 1 PRB×N symbols time-frequency resources for carrying UCI. When a set of slots is aggregated, the aggregated set of PRBs across at least two slots may support about 1 PRB×N symbols time-frequency resources for carrying UCI.
Here, N may vary depending on long format PUCCH.
Similar to LTE, a couple of PUCCH formats may be defined in 5G NR. Each of the defined PUCCH formats may carry different type of UCI and have different payload. For example, a first long format PUCCH (hereafter also referred to as NR PUCCH of format 1) similar as PUCCH format 1/1a/1b in LTE may be defined which may carry 1-2 bits of Ack/Nack for downlink PDSCH transmission. In LTE, PUCCH format 1/1a/1b is transmitted in a subframe of 14 symbols, in which 6 symbols of 14 symbols are used to carry RS, and 8 symbols of the 14 symbols are used to carry UCI (specifically, Ack/Nack). To match that, the NR PUCCH of format 1 supports about 8 symbols for carrying UCI.
In addition to the NR PUCCH of format 1, other types of PUCCH formats also need to be supported which may carry more payload than 1-2 bits. For example, a NR PUCCH of format 2 may be defined which may carry a payload of about 20 coded bits. The content of the NR PUCCH of format 2 may include Ack/Nack for multiple codewords and/or other types of UCI such as CSI. For LTE PUCCH format 1/1a/1b, 10 symbols are used to carry UCI and 4 symbols are used to carry RS. Therefore, to match that, the NR PUCCH of format 2 supports about 10 symbols for carrying UCI.
When the long format PUCCH is NR PUCCH of format 1, N may be 8, and when the long format PUCCH is NR PUCCH of format 2, N may be 10. It is to be understood that the long format PUCCH may be another long format PUCCH, and accordingly, N may be another value at least partially depending on the long format PUCCH.
The technical solutions provided in the present disclosure may achieve the following beneficial effects. According to some embodiments of the present disclosure, the gNB signals information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots to a UE, and then the gNB receives from the UE a long format PUCCH carried in the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots, which is aggregated according to the aggregation configuration. As such, the aggregation method may achieve at least the same coverage of PUCCH as compared with LTE.
Various embodiments will be provided below with reference to
As shown in
In each of slots 202, 204 and 206, the rectangle with oblique lines represents a symbol for carrying RS, the gray color rectangle represents a symbol for carrying UCI, the rectangle with dots represents a symbol for carrying downlink, and the white color rectangle represents a symbol for switching period. This description about the rectangles will also apply to
As described above, during the switching period (or GP), a UE completes switching from downlink reception to uplink transmission.
Slot 202 includes 3 symbols for carrying RS and 4 symbols for carrying UCI. Slot 204 includes 1 symbol for carrying downlink, 1 symbol for switching period, 3 symbols for carrying UCI and 2 symbols for carrying RS. Slot 206 include 2 symbols for carrying downlink, 1 symbol for switching period, 2 symbols for carrying UCI and 2 symbols for carrying RS. However, it can be understood that the above numbers are only examples, and other structures of slots may be adopted.
For the convenience, the long format PUCCH carried in the slot structures as shown in
As described above, in LTE, PUCCH format 1/1a/1b is transmitted in a subframe of 14 symbols, in which 6 symbols are used to carry RS, and 8 symbols are used to carry UCI (specifically, Ack/Nack). To match that, the NR PUCCH of format 1 needs to support about 8 symbols for carrying UCI.
Specifically, as coverage is one of the targets for using a long format PUCCH, for example, Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexed (DFT-S-OFDM) waveform may be used which will have lower peak-to-average-power-ratio/cubic metric (PAPR/CM) and therefore requires less power back-off at UE side. For this PUCCH format, Binary Phase Shift Keying (BPSK)/Quadrature Phase Shift Keying (QPSK) modulation may be used to generate one modulated symbol (for 1-2 bits). The modulated symbols may be spread by orthogonal or quasi-orthogonal sequences of length 12 and mapped along frequency onto a symbol in a PRB. Multiple Ack/Nack bits may be multiplexed on the same symbol using different orthogonal or quasi-orthogonal sequences. The spread sequences may be repeated across different symbols in a slot to support power boosting and improve the spreading gains, which in the end may lead to improved coverage of PUCCH. As different slot may have different number of uplink symbols, it may be hard to apply spreading further in time direction using orthogonal cover code (OCC). One reason may be the total number of uplink symbol for UCI in one slot may be an odd number. The other reason is when using slot aggregation, the uplink symbols in different slots may vary and therefore may not support the same number of PUCCH multiplexing. However, the aggregation method according to an embodiment of the present disclosure can solve the problem.
As can seen from
As show in Table 2, for index 1 of slot aggregation configuration, 7+7 as shown in the second column means that two slots 202 are aggregated, and each of the two slots includes 4 symbols for UCI, and thus total number of uplink symbols for UCI is 4+4=8 as shown in the third column. For index 2 of slot aggregation configuration, 7+5 as shown in the second column means that slot 202 and slot 204 are aggregated, and slot 202 includes 4 symbols for UCI and slot 204 includes 3 symbols for UCI, and thus total number of uplink symbols for UCI is 4+3=7 as shown in the third column. Similar description may be applied to each of the indices 3-12 of slot aggregation configuration, and thus detailed description on these indices of slot aggregation configuration is omitted. From Table 2, it can be observed that total number of uplink symbols for UCI may range from 7 to 11, which is close to 8 as used in the PUCCH format 1/1a/1b of LTE. As such, the aggregation method according to the embodiment of the present disclosure can support about the same number of UCI as that in LTE PUCCH format 1/1a/1b.
It is to be noted that the aggregation configurations shown in Table 2 are only examples and actual aggregation configuration is not limited to the aggregation configurations shown in Table 2, and that the two or more of slots 202-206 may aggregated in another way, as long as the total number of uplink symbols for UCI can support about enough (e.g, 8 in case of NR PUCCH of format 1) symbols for UCI.
As shown in
For the convenience, the long format PUCCH carried in the slot structures as shown in
As can seen from
As show in Table 4, for index 1 of slot aggregation configuration, 7+7 means that two slots 302 are aggregated, and each of the two slots includes 5 symbols for UCI, and thus total number of uplink symbols for UCI is 5+5=10. For index 2 of slot aggregation configuration, 7+5 means that slot 302 and slot 304 are aggregated, and slot 302 includes 5 symbols for UCI and slot 304 includes 3 symbols for UCI, and thus total number of uplink symbols for UCI is 5+3=8. Similar description may be applied to each of the indices 2-9 of slot aggregation configuration, and thus the detailed description on the indices 3-9 of slot aggregation configuration is omitted here.
From Table 4, it can be observed that total number of uplink symbols for UCI may range from 8 to 11, which is equal to or greater than 8 as used in the PUCCH format 1/1a/1b of LTE. In other words, the slots are aggregated to support at least around 8 uplink symbols for carrying UCI, for providing at least the same or similar performance as PUCCH format 1/1a/1b for LTE. As such, the aggregation method according to the embodiment of the present disclosure can support about the same number of UCI as that in LTE PUCCH format 1/1a/1b.
It is to be noted that the aggregation configurations shown in Table 4 are only examples and actual aggregation configuration is not limited to the aggregation configurations shown in Table 4, and that more or less of slots 302-306 may aggregated in another way, as long as the total number of uplink symbols for UCI can support about enough (e.g, 8 in case of NR PUCCH of format 1) symbols for UCI.
In Tables 2 and 4, it is shown that aggregated number of UCI sometimes is up to 12. The main consideration for that is sometimes the long format PUCCH may have collision with short PUCCHs, which are transmitted at the last 1 or 2 symbols of the slot. If Time Division Multiplex (TDM) manner is used to avoid such conflict, the long PUCCH may be shortened in that slot. As a result, there will be less uplink symbols in that slot for UCI of the long format PUCCH. The total number of symbols for UCI listed in the last columns of Tables 2 and does not consider this situation and therefore more symbols may be needed to compensate this loss.
In an embodiment, the same slot aggregation configuration may include the same sets of slots aggregated in different order in time. For example, aggregation of slots 7/5/4 in time (meaning aggregation of three slots with 7/5/4 uplink symbols respectively in time) may be signaled using the same indication for aggregation of slots 7/4/5 in time as it just indicates the total aggregated symbols for UCI. The information of each slot structure in time may be obtained from other sources such as common control channel transmitted at the beginning of the slot.
In an embodiment, the slot aggregation configuration may be indicated by only the total number of aggregated symbols for UCI and the total number of aggregated slots, and may leave the slot structure of each slot to be indicated by the common control channel.
For example, the slot aggregation combinations as shown in Tables 2 and 4 may be simplified to Tables 5 and 6 respectively.
The 2nd column in Table 5 or 6 shows the slot aggregation combinations (similar to those in Table 2 or 4) and number of aggregated slot (in each of the brackets). When such configuration/indications is/are received by a UE, the UE will know how many slots may be aggregated to form a long format PUCCH and number of aggregated symbols that will carry UCI. Then, the UE may obtain structure of each slot from other source. For example, the UE may decode the common control channel of each slot to obtain the slot structure information and thus the exact number/start of PUCCH symbols in each slot.
Table 5 shows simplified slot aggregation configurations corresponding to the slot aggregation configurations in Table 2.
In the example shown in Table 5, for index 1 of slot aggregation configuration, a gNB may signal “2” in the brackets in the second column and “7” in the third column to the UE, and accordingly the UE will know that there are 2 slots will be aggregated and the total number of aggregated uplink symbols for UCI is 7. Or, a gNB may signal “3” in the brackets in the second column and “7” in the third column to the UE, and accordingly the UE will know that there are 3 slots will be aggregated and the total number of aggregated uplink symbols for UCI is 7. Then, the UE may obtain structure of each slot from other source. For example, the UE may decode the common control channel of each slot to obtain the slot structure information and thus the exact number/start of PUCCH symbols in each slot. Similar description may be applied to the indices 2-5 in Table 5, and will not be elaborated here.
Table 6 shows simplified slot aggregation configurations corresponding to the slot aggregation configurations in Table 4.
In the example shown in Table 6, for index 1 of slot aggregation configuration, a gNB may signal “2” in the brackets in the second column and “8” in the third column to the UE, and accordingly the UE will know that there are 2 slots will be aggregated and the total number of aggregated uplink symbols for UCI is 8. Then, the UE may obtain structure of each slot from other source. For example, the UE may decode the common control channel of each slot to obtain the slot structure information and thus the exact number/start of PUCCH symbols in each slot. It is to be noted that, for index 1 of slot aggregation configuration, the slot aggregation combination of “7+5” and the slot aggregation combination “7+4” both may be signaled from the gNB to the UE by using “2” and “8”. In such as case, when slot structure information is obtained by the UE, the UE will selects one of the slot aggregation combination of “7+5” and the slot aggregation combination “7+4” to perform slot aggregation, for example, according to a predetermined selection rule which is pre-configured in the UE. Similar description may be applied to the indices 2-4 in Table 6, and will not be elaborated here.
As described above, in addition to NR PUCCH of format 1, other types of PUCCH formats also need to be supported which may carry more payload than 1-2 bits. For example, a NR PUCCH of format 2 may be defined. The NR PUCCH of format 2 may carry a payload of about 20 coded bits. The content may be Ack/Nack for multiple codewords and/or other types of UCI such as CSI. For LTE PUCCH format 1/1a/1b, 10 symbols are used to carry UCI and 4 symbols are used to carry RS. Therefore, to match that, the NR PUCCH of format 2 supports about 10 symbols for carrying UCI.
Since the NR PUCCH of format 2 supports more symbols for carrying UCI compared with the NR PUCCH of format 1, more slots, or slots with more symbols for carrying UCI may be aggregated.
Table 7 shows an example of slot aggregation combination for NR PUCCH of format 2 when the slots shown in
As shown in Table 7, for index 1 of slot aggregation configuration, 7+7 as shown in the second column means that two slots 302 as shown in
Table 8 shows simplified slot aggregation configurations corresponding to the slot aggregation configurations in Table 7.
As shown in Table 8, total number of aggregated symbols for UCI as shown in the third column and number of aggregated slots as shown in the second column in brackets may be signaled to the UE while leaving the slot structure indicated to a UE by other sources such as common control channel. As the NR PUCCH of format 2 requires 10 symbols to carry, when the total number of aggregated symbols for UCI is larger than that, one or a number of the 10 symbols may be repeated in the aggregated slots, thus improve the performance.
Aggregation of a set of slots as shown in
As shown in
For example, the PRBs 402A and 402B are located in the same slot 402, and may be aggregated to support 10 symbols for carrying UCI, such that a long PUCCH, for example, NR PUCCH of format 1 or NR PUCCH of format 2, can be supported by the aggregated PRBs in the same slot.
Similarly, the PRBs 404A, 404B, 404C and 404D are located in the same slot 404, and two or more of the PRBs 404A, 404B, 404C and 404D may be aggregated to support enough symbols for carrying UCI. In case of NR PUCCH of format 1, for example, three PRBs (e.g., PRBs 404A, 404B and 404C) located in slot 404 may be aggregated to support 9 symbols for carrying UCI. In case of NR PUCCH of format 2, for example, four PRBs 404A, 404B, 404C and 404D located in slot 404 may be aggregated to support 12 symbols for carrying UCI.
It is to be noted that NR PUCCH of format 1 or NR PUCCH of format 2 are only examples, and similar principle may be applied to other PUCCH formats with larger payload.
It is also to be noted that the total number of PRBs to be aggregated in the same slot is not limited to the above examples, and may take other value depending on a specific long format PUCCH and the total number of symbols in a slot for carrying UCI.
Aggregation of a set of PRBs in a single slot as shown in
As shown in
In case of NR PUCCH of format 1, three of PRB 502A and PRB 502B located in slot 502 and PRB 504A and PRB 504B located in slot 504 may be aggregated to support 9 symbols for carrying UCI.
In case of NR PUCCH of format 2, all of PRB 502A and PRB 502B located in slot 502 and PRB 504A and PRB 504B located in slot 504 may be aggregated to support 12 symbols for carrying UCI.
It is to be noted that NR PUCCH of format 1 or NR PUCCH of format 2 are only examples, and similar principle may be applied to other PUCCH formats with larger payload.
It is also to be noted that the total number of PRBs to be aggregated is not limited to the above examples, and may take other value depending on a specific long format PUCCH and the total number of symbols in a slot for carrying UCI.
In the example shown in
Two or more of PRBs 602A and 602B located in slot 602 and PRBs 604A and 604B may be aggregated to support long format PUCCH such as NR PUCCH of format 1 or NR PUCCH of format 2.
The embodiment shown in
Since either of
The aggregation method carried out in the gNB side has been described with reference to
In block S802, a UE receives information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots from a gNB.
In block S804, the UE aggregates the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots according to the aggregation configuration.
In block S 806, the UE sends a long format PUCCH to the gNB via the aggregated one of the set of slots, the set of PRBs in a single slot, and set of PRBs across at least two slots.
When the long format PUCCH supports 1 PRB×N symbols time-frequency resources for carrying UCI, one of the set of slots, the set of PRBs in a single slot, and the a set of PRBs across at least two slots may be aggregated to support about 1 PRB×N symbols time-frequency resources for carrying UCI, where N is a positive integer.
When a set of slots is aggregated for carrying the long format PUCCH, in block S802, the UE may receive information of at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, and total number of symbols to be aggregated for carrying UCI from the gNB.
In an embodiment, the UE may receive the total number of slots to be aggregated and the total number of symbols to be aggregated for carrying UCI, and then the UE may receive the structure of each slot to be aggregated via a common control channel from the gNB.
In another embodiment, the UE may receive the total number of slots to be aggregated and the structure of each slot to be aggregated.
As illustrated in
In block S802′, the UE may obtain information on at least one of: a total number of slots to be aggregated for carrying UCI, and a structure of each slot.
In block S804′, the UE may aggregate a plurality of slots according to the information on the at least one of the total number of slots to be aggregated and the structure of each slot.
In block S806′, the UE may sends PUCCH to a gNB via the aggregated slots.
In the embodiment, the UE may further obtain information on the first slot of the slots to be aggregated. In such case, the UE may aggregate a plurality of slots according to the information on the at least one of the total number of slots to be aggregated, the structure of each slot, and the information on the first slot of the slots to be aggregated.
In an embodiment, the UE may obtain the total number of slots to be aggregated from a gNB.
In an embodiment, the UE may obtain the structure of each slot to be aggregated from a gNB. Alternatively, in an embodiment, the UE may obtain the structure of each slot to be aggregated according to a protocol.
In an embodiment, the plurality of slots are aggregated by aggregating one or more PRBs of each slot. In an embodiment, the one or more PRBs are positioned in a same manner in the slots. Alternatively, in an embodiment, the one or more PRBs are positioned in different manners in the slots.
In an embodiment, the PUCCH is long format PUCCH. In an embodiment, when the long format PUCCH supports 1 PRB×N symbols time-frequency resources for carrying UCI, the plurality of slots are aggregated to support about 1 PRB×N symbols time-frequency resources for carrying UCI, where N is a positive integer.
When a set of PRBs in a single slot is aggregated for carrying the long format PUCCH, in block S802, the UE may receive information of at least one of the total number of PRBs to be aggregated in the single slot, location of each of PRBs to be aggregated in the single slot, and total number of symbols to be aggregated for carrying UCI from the gNB.
When a set of PRBs across at least two slots is aggregated for carrying the long format PUCCH, in block S802, the UE may receive information of at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, the total number of PRBs to be aggregated in each slot, location of each of PRBs to be aggregated in each slot, and total number of symbols to be aggregated for carrying UCI from the gNB.
In an embodiment, the UE may receive an index of a look-up table, wherein the look-up table is pre-configured in the UE or sent to the UE via signaling of a higher layer and contains aggregation configurations and their respective indices from the gNB. In such a case, before block S804, the UE may retrieve aggregation configuration from the look-up table according to the index received from the gNB.
In an embodiment, in block S802, the UE may receive information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots from the gNB dynamically via lower layer signaling, semi-statically via combination of higher layer signaling, or via a combination of lower layer signaling and higher layer signaling.
Since details of the aggregation method have been described with reference to
The technical solutions provided in the present disclosure may achieve the following beneficial effects. According to some embodiments of the present disclosure, a UE obtains information on at least one of: a total number of slots to be aggregated for carrying UCI, and a structure of each slot; the UE aggregates a plurality of slots according to the information on the at least one of the total number of slots to be aggregated and the structure of each slot; and the UE sends PUCCH to a gNB via the aggregated slots. As such, the aggregation method may achieve at least the same coverage of PUCCH as compared with LTE.
As shown in
In block S902, the gNB signals information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots to a UE.
In block S904, the UE aggregates the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots according to the aggregation configuration.
In block S906, the UE sends a long format PUCCH to the gNB via the aggregated one of the set of slots, the set of PRBs in a single slot, and set of PRBs across at least two slots.
Since details of the aggregation method carried out in a gNB have been described with reference to
As show in
The signaling module 1002 may be configured to signal information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots to a UE.
The obtaining module 1004 may be configured to receive a long format PUCCH carried in the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots, which is aggregated according to the aggregation configuration, from the UE.
The signaling module 1002 and the obtaining module 1004 both may be implemented by at least one processor in the gNB. The processor may be Central Processing Unit (CPU), a Microprocessor Unit (MPU), a Digital Signal Processor (DSP) or a Field Programmable Gate Array (FPGA).
When the long format PUCCH supports 1 PRB×N symbols time-frequency resources for carrying UCI, the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots may be aggregated to support about 1 PRB×N symbols time-frequency resources for carrying UCI, where N is a positive integer.
When a set of slots is aggregated for carrying the long format PUCCH, the signaling module 1002 may be configured to signal information of at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, and total number of symbols to be aggregated for carrying UCI to the UE.
In an embodiment, the signaling module 1002 may be configured to signal information on at least one of: a total number of slots to be aggregated for carrying UCI, and a structure of each slot to UE.
In an embodiment, the obtaining module 1004 may be configured to receive PUCCH from the UE via a plurality of slots aggregated according to the information on the at least one of the total number of slots to be aggregated and the structure of each slot.
In an embodiment, the signaling module 1002 may be further configured to signal information on the first slot of the slots to be aggregated. In an embodiment, the obtaining module 1004 may be configured to receiving PUCCH from the UE via a plurality of slots which are aggregated according to the information on the at least one of the total number of slots to be aggregated, the structure of each slot, and the information on the first slot of the slots to be aggregated.
In an embodiment, the obtaining module 1004 may be configured to receive PUCCH from the UE via aggregated slots which are aggregated by aggregating a plurality of slots by aggregating one or more PRBs of each slot. In an embodiment, the one or more PRBs may be positioned in a same manner in the slots. Alternatively, in an embodiment, the one or more PRBs may be positioned in different manners in the slots.
In an embodiment, the PUCCH is long format PUCCH. Alternatively, the PUCCH may be not long format PUCCH.
In an embodiment, when the long format PUCCH supports 1 PRB×N symbols time-frequency resources for carrying UCI, the plurality of slots are aggregated to support about 1 PRB×N symbols time-frequency resources for carrying UCI, where N is a positive integer.
In an embodiment, the signaling module 1002 may be configured to signal the total number of slots to be aggregated and the total number of symbols to be aggregated for carrying UCI to the UE. In such a case, the structure of each slot to be aggregated is signaled to the UE via a common control channel.
When a set of PRBs in a single slot is aggregated for carrying the long format PUCCH, the signaling module 1002 may be configured to signal information of at least one of the total number of PRBs to be aggregated in the single slot, location of each of PRBs to be aggregated in the single slot, and total number of symbols to be aggregated for carrying UCI to the UE.
When a set of PRBs across at least two slots is aggregated for carrying the long format PUCCH, the signaling module 1002 may be configured to signal information of at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, the total number of PRBs to be aggregated in each slot, location of each of PRBs to be aggregated in each slot, and total number of symbols to be aggregated for carrying UCI to the UE.
In an embodiment, the signaling module 1002 may be configured to signal an index of a look-up table to the UE, wherein the look-up table is pre-configured in the UE or sent to the UE via signaling of a higher layer and contains aggregation configurations and their respective indices.
In an embodiment, the signaling module 1002 may be configured to signal information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots to a UE dynamically via lower layer signaling, semi-statically via combination of higher layer signaling, or via a combination of lower layer signaling and higher layer signaling.
Since details of the aggregation method have been described with reference to
As shown in
The obtaining module 1102 may be configured to receive information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots from a gNB.
The aggregation module 1104 may be configured to aggregate the one of the set of slots, the set of PRBs in a single slot, and the set of PRBs across at least two slots according to the aggregation configuration.
The obtaining module 1102, aggregation module 1104 and sending module 1106 may be implemented by at least one processor in the UE. The processor may be Central Processing Unit (CPU), a Microprocessor Unit (MPU), a Digital Signal Processor (DSP) or a Field Programmable Gate Array (FPGA).
The sending module 1106 may be configured to send a long format PUCCH to the gNB via the aggregated one of the set of slots, the set of PRBs in a single slot, and set of PRBs across at least two slots.
When the long format PUCCH supports 1 PRB×N symbols time-frequency resources for carrying UCI, one of the set of slots, the set of PRBs in a single slot, and the a set of PRBs across at least two slots may be aggregated to support about 1 PRB×N symbols time-frequency resources for carrying UCI, where N is a positive integer.
When a set of slots is aggregated for carrying the long format PUCCH, the obtaining module 1102 may be configured to receive information of at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, and total number of symbols to be aggregated for carrying UCI from the gNB.
In an embodiment, the obtaining module 1102 may be configured to receive the total number of slots to be aggregated and the total number of symbols to be aggregated for carrying UCI; and receive the structure of each slot to be aggregated via a common control channel from the gNB.
In an embodiment, the obtaining module 1102 may be configured to obtain information on at least one of a total number of slots to be aggregated for carrying UCI, and a structure of each slot. In such case, the aggregating module 1104 may be configured to aggregate a plurality of slots according to the information on the at least one of the total number of slots to be aggregated and the structure of each slot. Accordingly, the sending module 1106 may be configured to send PUCCH to a gNB via the aggregated slots.
In an embodiment, the obtaining module 1102 may be further configured to obtain information on the first slot of the slots to be aggregated. In such case, the aggregating module 1104 may be configured to aggregate a plurality of slots according to the information on the at least one of the total number of slots to be aggregated, the structure of each slot, and the information on the first slot of the slots to be aggregated.
In an embodiment, the obtaining module 1102 may be configured to obtain the total number of slots to be aggregated from a gNB.
In an embodiment, the obtaining module 1102 may be configured to obtain the structure of each slot to be aggregated from a gNB. Alternatively, in an embodiment, the obtaining module 1102 may be configured to obtain the structure of each slot to be aggregated according to a protocol.
In an embodiment, the aggregating module 1104 may be configured to aggregate a plurality of slots by aggregating one or more PRBs of each slot, the one or more PRBs being positioned in a same manner in the slots.
In an embodiment, the aggregating module 1104 may be configured to aggregate a plurality of slots by aggregating one or more PRBs of each slot, the one or more PRBs being positioned in different manners in the slots.
In an embodiment, the PUCCH may be long format PUCCH. Alternatively, the PUCCH may be not long format PUCCH.
When a set of PRBs in a single slot is aggregated for carrying the long format PUCCH, the obtaining module 1102 may be configured to receive information of at least one of the total number of PRBs to be aggregated in the single slot, location of each of PRBs to be aggregated in the single slot, and total number of symbols to be aggregated for carrying UCI from the gNB.
When a set of PRBs across at least two slots is aggregated for carrying the long format PUCCH, the obtaining module 1102 may be configured to receive information of at least one of the total number of slots to be aggregated, structure of each slot to be aggregated, the total number of PRBs to be aggregated in each slot, location of each of PRBs to be aggregated in each slot, and total number of symbols to be aggregated for carrying UCI from the gNB.
In an embodiment, the obtaining module 1102 may be configured to receive an index of a look-up table, wherein the look-up table is pre-configured in the UE or sent to the UE via signaling of a higher layer and contains aggregation configurations and their respective indices from the gNB. The obtaining module 1102 may be further configured retrieve aggregation configuration from the look-up table according to the index received from the gNB.
In an embodiment, the obtaining module 1102 may be configured to receive information on at least part of aggregation configuration of one of a set of slots, a set of PRBs in a single slot, and a set of PRBs across at least two slots from the gNB dynamically via lower layer signaling, semi-statically via combination of higher layer signaling, or via a combination of lower layer signaling and higher layer signaling.
Since details of the aggregation method have been described with reference to
As shown in
The device 1200 may include one or more of the following components: a processing component 1202, a memory 1204, a power component 1206, a multimedia component 1208, an audio component 1210, an Input/Output (I/O) interface 1212, a sensor component 1214, and a communication component 1216.
The processing component 1202 typically controls overall operations of the device 1200, such as the operations associated with display, telephone calls, data communications, camera operations, and recording operations. The processing component 1202 may include one or more processors 1220 to execute instructions to perform all or part of the operations in the abovementioned method. Moreover, the processing component 1202 may include one or more modules which facilitate interaction between the processing component 1202 and the other components. For instance, the processing component 1202 may include a multimedia module to facilitate interaction between the multimedia component 1208 and the processing component 1202.
The memory 1204 is configured to store various types of data to support the operation of the device 1200. Examples of such data include instructions for any application programs or methods operated on the device 1200, contact data, phonebook data, messages, pictures, video, etc. The memory 1204 may be implemented by any type of volatile or non-volatile memory devices, or a combination thereof, such as a Static Random Access Memory (SRAM), an Electrically Erasable Programmable Read-Only Memory (EEPROM), an Erasable Programmable Read-Only Memory (EPROM), a Programmable Read-Only Memory (PROM), a Read-Only Memory (ROM), a magnetic memory, a flash memory, and a magnetic or optical disk.
The power component 1206 provides power for various components of the device 1200. The power component 1206 may include a power management system, one or more power supplies, and other components associated with the generation, management and distribution of power for the device 1200.
The multimedia component 1208 includes a screen providing an output interface between the device 1200 and a user. In some embodiments, the screen may include a Liquid Crystal Display (LCD) and a Touch Panel (TP). If the screen includes the TP, the screen may be implemented as a touch screen to receive an input signal from the user. The TP includes one or more touch sensors to sense touches, swipes and gestures on the TP. The touch sensors may not only sense a boundary of a touch or swipe action, but also sense a duration and pressure associated with the touch or swipe action. In some embodiments, the multimedia component 1208 includes a front camera and/or a rear camera. The front camera and/or the rear camera may receive external multimedia data when the device 1200 is in an operation mode, such as a photographing mode or a video mode. Each of the front camera and the rear camera may be a fixed optical lens system or have focusing and optical zooming capabilities.
The audio component 1210 is configured to output and/or input an audio signal. For example, the audio component 1210 includes a Microphone (MIC), and the MIC is configured to receive an external audio signal when the device 1200 is in the operation mode, such as a call mode, a recording mode and a voice recognition mode. The received audio signal may be further stored in the memory 1204 or sent through the communication component 1216. In some embodiments, the audio component 1210 further includes a speaker configured to output the audio signal.
The I/O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module, and the peripheral interface module may be a keyboard, a click wheel, a button and the like. The button may include, but not limited to: a home button, a volume button, a starting button and a locking button.
The sensor component 1214 includes one or more sensors configured to provide status assessment in various aspects for the device 1200. For instance, the sensor component 1214 may detect an on/off status of the device 1200 and relative positioning of components, such as a display and small keyboard of the device 1200, and the sensor component 1214 may further detect a change in a position of the device 1200 or a component of the device 1200, presence or absence of contact between the user and the device 1200, orientation or acceleration/deceleration of the device 1200 and a change in temperature of the device 1200. The sensor component 1214 may include a proximity sensor configured to detect presence of an object nearby without any physical contact. The sensor component 1214 may also include a light sensor, such as a Complementary Metal Oxide Semiconductor (CMOS) or Charge Coupled Device (CCD) image sensor, configured for use in an imaging application. In some embodiments, the sensor component 1214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
The communication component 1216 is configured to facilitate wired or wireless communication between the device 1200 and another device. The device 1200 may access a communication-standard-based wireless network, such as a Wireless Fidelity (Wi-Fi) network, a 2nd-Generation (2G), 3rd-Generation (3G) or 4th-Generation (4G) network or a combination thereof. In an exemplary embodiment, the communication component 1216 receives a broadcast signal or broadcast associated information from an external broadcast management system through a broadcast channel. In an exemplary embodiment, the communication component 1216 further includes a Near Field Communication (NFC) module to facilitate short-range communication. For example, the NFC module may be implemented on the basis of a Radio Frequency Identification (RFID) technology, an Infrared Data Association (IrDA) technology, an Ultra-WideBand (UWB) technology, a BlueTooth (BT) technology and another technology.
In an exemplary embodiment, the device 1200 may be implemented by one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processors (DSPs), Digital Signal Processing Devices (DSPDs), Programmable Logic Devices (PLDs), Field Programmable Gate Arrays (FPGAs), controllers, micro -controllers, microprocessors or other electronic components, and is configured to execute the abovementioned method.
In an exemplary embodiment, there is also provided a non-transitory computer-readable storage medium including an instruction, such as the memory 1204 including an instruction, and the instruction may be executed by the processor 1220 of the device 1200 to implement the abovementioned method. For example, the non-transitory computer-readable storage medium may be a ROM, a Radom Access Memory (RAM), a Compact Disc Read-Only Memory (CD-ROM), a magnetic tape, a floppy disc, an optical data storage device and the like.
In an exemplary embodiment, there is also provided a non-transitory computer-readable storage medium having stored thereon instructions, that when executed by a processor of a gNB, cause the processor to perform the aggregation method as described with reference to
Other embodiments of the present disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the present disclosure. This application is intended to cover any variations, uses, or adaptations of the present disclosure following the general principles thereof and including such departures from the present disclosure as come within known or customary practice in the art. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the present disclosure being indicated by the following claims.
It will be appreciated that the present disclosure is not limited to the exact construction that has been described above and illustrated in the accompanying drawings, and that various modifications and changes may be made without departing from the scope thereof. It is intended that the scope of the present disclosure only be limited by the appended claims.
Claims
1. A gNodeB (gNB), comprising:
- a transceiver configured to receive physical uplink control channel (PUCCH) via a plurality of slots, the PUCCH occupying at least one physical resource block (PRB) within each of the plurality of slots, the plurality of slots being determined based on a number of slots configured for a transmission of the PUCCH and a slot structure.
2. The gNB of claim 1, wherein the transceiver is further configured to:
- send first configuration information, the first configuration information indicating a set of PRBs in a single slot.
3. The gNB of claim 2, wherein the first configuration information further indicates a total number of the PRBs and a location of the PRBs.
4. The gNB of claim 1, wherein a set of PRBs for the transmission of the PUCCH within each of the plurality of slots are identical.
5. The gNB of claim 1, wherein the transceiver is further configured to:
- send second configuration information, the second configuration information indicating a first slot for the transmission of the PUCCH.
6. The gNB of claim 5, wherein the plurality of slots are determined based on the first slot, the number of slots configured for the transmission of the PUCCH, and the slot structure.
7. The gNB of claim 1, wherein the slot structure is sent via a common control channel.
8. The gNB of claim 1, wherein the PUCCH adopts PUCCH format 1.
9. A user equipment (UE), comprising:
- a transceiver configured to send physical uplink control channel (PUCCH) via a plurality of slots, the PUCCH occupying at least one physical resource block (PRB) within each of the plurality of slots, the plurality of slots being determined based on a number of slots configured for a transmission of the PUCCH and a slot structure, wherein the slot structure is sent via a common control channel.
10. The UE of claim 9, wherein the transceiver is further configured to:
- receive first configuration information, the first configuration information indicating a set of PRBs in a single slot.
11. The UE of claim 10, wherein the first configuration information further indicates a total number of the PRBs and a location of the PRBs.
12. The UE of claim 9, wherein a set of PRBs for the transmission of the PUCCH within each of the plurality of slots are identical.
13. The UE of claim 9, wherein the transceiver is further configured to:
- receive second configuration information, the second configuration information indicating a first slot for the transmission of the PUCCH.
14. The UE of claim 13, further comprising:
- a processor configured to determine the plurality of slots based on the first slot, the number of slots configured for the transmission of the PUCCH and the slot structure.
15. The UE of claim 9, wherein the PUCCH adopts PUCCH format 1.
Type: Application
Filed: Jul 10, 2023
Publication Date: Nov 2, 2023
Inventor: Hua XU (Ottawa)
Application Number: 18/349,299