Genetically fused globin-like polypeptides having hemoglobin-like activity

- Somatogen, Inc.

The alpha subunits of hemoglobin, which in nature are formed as separate polypeptide chains which bind noncovalently to the beta subunits, are here provided in the form of the novel molecule di-alpha globin, a single polypeptide chain defined by connecting the two alpha subunits either directly via peptide bond or indirectly by a flexible amino acid or peptide linker. Di-alpha globin may be combined in vivo or in vitro with beta globin and heme to form hemoglobin. Di-alpha globin is expressed by recombinant DNA techniques. Di-beta globin may be similarly obtained.

Skip to:  ·  Claims  ·  References Cited  · Patent History  ·  Patent History

Claims

1. A non-naturally occurring, genetically fused globin-like polypeptide comprising two or more globin-like domains connected by one or more peptide bonds into a single unbranched polypeptide chain, said chain being capable of associating with alpha and/or beta globin and incorporating heme to form a hemoglobin-like protein with reversible oxygen binding activity.

2. The polypeptide of claim 1 which comprises only two globin-like domains.

3. The polypeptide of claim 2, said polypeptide being a di-alpha globin-like polypeptide comprising a first and second alpha globin-like polypeptide domains, said chain being capable of associating with beta globin.

4. The polypeptide of claim 2, said polypeptide being a di-beta globin-like polypeptide comprising an essentially first and second beta-globin-like polypeptide domains, said chain being capable of associating with alpha-globin activity.

5. The polypeptide of claim 2, said polypeptide being a pseudodimeric globin-like polypeptide comprising an alpha globin-like polypeptide domain and a beta globin-like polypeptide domain.

6. The polypeptide of claim 1 wherein a first and a second globin-like polypeptide domain are connected by a peptide linker of one or more amino acids.

7. The polypeptide of claim 6 wherein the amino acids of the linker are selected from the group consisting of lysine, aspartic acid, arginine, serine, asparagine, proline and glycine.

8. The polypeptide claim 7 wherein the linker consists of one or more glycines.

9. The polypeptide of claim 1 wherein each globin-like domain has at least 75% sequence identity with human alpha globin or human beta globin.

10. The polypeptide of claim 1 wherein each globin-like domain is identical in sequence with human alpha globin or human beta globin.

11. The polypeptide of claim 9, wherein said polypeptide comprises only two globin-like domains.

12. The polypeptide of claim 1 wherein at a predetermined position, a first globin-like domain has a cysteine residue and a second globin-like domain has a residue other than cysteine.

13. The polypeptide of claim 12 wherein each globin-like domain has at least 75% sequence identity with human alpha globin or human beta globin.

14. The polypeptide of claim 13 wherein said globin-like domains of said polypeptide are identical except for that, at one or more predetermined positions, a first globin-like domain has a cysteine residue and a second globin-like domain has a residue other than cysteine.

15. The polypeptide of claim 14 wherein one of said predetermined positions is

(a) a position in the alpha globin-like domain corresponding to a human alpha globin position selected from the group consisting of his72, asn78, asn68, ala7l, thr67, lys7, lys11, thr8, ala12, thr118, lys16, ala45, glu116, gly15, his112, thr24, glu23, lys60, lys56, his50, gly51, glu53, ser49, asp47, gln54, his45, lys90, ala82, lys6l, ala19, his20, asp85, ser81, asp75, asp74, lys139, asp64, and gly18, or
(b) a position in a beta globin-like domain corresponding to a human beta globin position selected from the group consisting of asp79, his2, leu3, thr4, glu6, ser9, thr12, ala13, gly16, lys17, val18, asn19, val20, asp21, glu22, lys65, ser72, ala76, his77, asp79, asn80, gly83, ala86, thr87, glu90, lys95, lys59, glu43, ser44, asp47, ser49, thr50, ala53, asp52, lys61, glu121, lys120, thr123, lys66, asp73, ala62, his116, and his117.

16. The polypeptide of claim 1 wherein said polypeptide contains one or more mutations rendering said protein a low affinity hemoglobin mutant.

17. The polypeptide of claim 16 wherein at least one of said low affinity mutations is

(a) a mutation of an alpha-globin mutation selected from the group consisting of 43 phe.fwdarw.leu, 43 phe.fwdarw.val, 86 leu.fwdarw.arg, 94 asp.fwdarw.asn, 46 phe.fwdarw.thr, 46 phe.fwdarw.ser, 46 phe.fwdarw.ala, 58 his.fwdarw.phe, 58 his.fwdarw.trp, 61 lys.fwdarw.thr, 61 lys.fwdarw.ser, 61 lys.fwdarw.met, 61 lys.fwdarw.asn, 62 val.fwdarw.leu, 62 val.fwdarw.ile, 62 val.fwdarw.phe, 62 val.fwdarw.trp, 65 ala.fwdarw.asp, 94 asp.fwdarw.gln, 94 asp.fwdarw.thr, 94 asp.fwdarw.ser, 94 asp.fwdarw.lys, 94 asp.fwdarw.gly, and 94 asp.fwdarw.arg, or
(b) a mutation of a beta globin-like domain which corresponds to a human beta globin mutation selected from the group consisting of 1 val.fwdarw.acetyl ala, 21 asp.fwdarw.gly, 24 gly.fwdarw.asp, 37 trp.fwdarw.arg, 38 thr.fwdarw.pro, 42 phe.fwdarw.ser, 42 phe.fwdarw.leu, 42 phe.fwdarw.val, 45 phe.fwdarw.ser, 48 leu.fwdarw.arg, 61 lys.fwdarw.met, 65 lys.fwdarw.gln, 66 lys.fwdarw.thr, 67 val.fwdarw.asp, 70 ala.fwdarw.asp, 73 asp.fwdarw.tyr, 73 asp.fwdarw.asn, 73 asp.fwdarw.val, 82 lys.fwdarw.thr, 83 gly.fwdarw.asp, 90 glu.fwdarw.gly, 90 glu.fwdarw.lys, 91 leu.fwdarw.arg, 102 asn.fwdarw.thr, 102 asn.fwdarw.ser, 102 asn.fwdarw.tyr, 102 asn.fwdarw.lys, 107 gly.fwdarw.arg, 108 asn.fwdarw.asp, 108 asn.fwdarw.lys, 111 val.fwdarw.phe, 113 val.fwdarw.glu, 136 gly.fwdarw.asp, 21 asp.fwdarw.ala, 21 asp.fwdarw.ser, 45 phe.fwdarw.ala, 45 phe.fwdarw.thr, 45 phe.fwdarw.val, 63 his.fwdarw.phe, 63 his.fwdarw.trp, 66 lys.fwdarw.ser, 66 lys.fwdarw.asn, 67 val.fwdarw.phe, 67 val.fwdarw.trp, 67 val.fwdarw.ile, 70 ala.fwdarw.glu, 70 ala.fwdarw.ser, 70 ala.fwdarw.thr, 96 leu.fwdarw.phe, 96 leu.fwdarw.his, 96 leu.fwdarw.lys, 98 val.fwdarw.trp, 98 val.fwdarw.phe, 102 asn.fwdarw.asp, 102 asn.fwdarw.glu, 102 asn.fwdarw.arg, 102 asn.fwdarw.his, 102 asn.fwdarw.gly, 108 asn.fwdarw.arg, and 108 asn.fwdarw.glu.

18. The polypeptide of claim 1, wherein said polypeptide contains one or more mutations rendering said protein a high affinity hemoglobin mutant.

19. The polypeptide of claim 18 wherein at least one of said high affinity mutations is

(a) a mutation of an alpha globin-like domain which corresponds to a human alpha globin mutation selected from the group consisting of 6 Asp.fwdarw.Ala, 6 Asp.fwdarw.Asn, 6 Asp.fwdarw.Val, 6 Asp.fwdarw.Tyr, 6 Lys.fwdarw.Asn, 40 Lys.fwdarw.Glu, 44 Pro.fwdarw.Leu, 44 Pro.fwdarw.Arg, 45 His.fwdarw.Arg, 85 Asp.fwdarw.Asn, 92 Arg.fwdarw.Gln, 92 Arg.fwdarw.Leu, 95 Pro.fwdarw.Leu, 95 Pro.fwdarw.Ser, 95 Pro.fwdarw.Ala, 95 Pro.fwdarw.Arg, 97 Asn.fwdarw.Lys, 126 Asp.fwdarw.Asn, 141 Arg.fwdarw.His, 141 Arg.fwdarw.Ser, and 141 Arg.fwdarw.Leu, or
(b) a mutation of a beta globin-like domain which corresponds to a human beta globin mutation selected from the group consisting of 2 His.fwdarw.Arg, 20 Val.fwdarw.Met, 23 Val.fwdarw.Asp, 23 Val.fwdarw.Phe, 34 Val.fwdarw.Phe, 36 Pro.fwdarw.Thr, 37 Trp.fwdarw.Ser, 40 Arg.fwdarw.Lys, 40 Arg.fwdarw.Ser, 51 Pro.fwdarw.Arg, 51 Leu.fwdarw.His, 79 Asp.fwdarw.Gly, 79 Lys.fwdarw.Thr, 79 Lys.fwdarw.Met, 82 Lys.fwdarw.Asn, 89 Ser.fwdarw.Asn, 89 Ser.fwdarw.Arg, 94 Asp.fwdarw.His, 94 Asp.fwdarw.Asn, 96 Leu.fwdarw.Val, 97 His.fwdarw.Gln, 97 His.fwdarw.Leu, 99 Asp.fwdarw.Asn, 99 Asp.fwdarw.His, 99 Asp.fwdarw.Ala, 99 Asp.fwdarw.Tyr, 99 Asp.fwdarw.Gly, 99 Asp.fwdarw.Val, 100 Pro.fwdarw.Leu, 101 Glu.fwdarw.Lys, 101 Glu.fwdarw.Gly, 101 Glu.fwdarw.Asp, 103 Phe.fwdarw.Leu, 109 Val.fwdarw.Met, 121 Glu.fwdarw.Gln, 121 Pro.fwdarw.Gln, 121 Ala.fwdarw.Pro, 140 Ala.fwdarw.Thr, 142 Ala.fwdarw.Asp, 143 His.fwdarw.Arg, 143 His.fwdarw.Gln, 143 His.fwdarw.Pro, 144 Lys.fwdarw.Asn, 145 Tyr.fwdarw.His, 145 Tyr.fwdarw.Cys, 145 Tyr.fwdarw.Asp, 145 Tyr.fwdarw.Term, 146 His.fwdarw.Asp, 146 His.fwdarw.Pro, and 146 His.fwdarw.Leu.

20. The polypeptide of claim 1 wherein each alpha globin-like domain of said genetically fused polypeptide is identical to human alpha globin save for

(a) one or more an oxygen affinity-modifying modifications characterized as
(i) one or more low affinity mutations, selected from the group consisting of 43 phe.fwdarw.leu, 43 phe.fwdarw.val, 86 leu.fwdarw.arg, 94 asp.fwdarw.asn, 46 phe.fwdarw.thr, 46 phe.fwdarw.ser, 46 phe.fwdarw.ala, 58 his.fwdarw.phe, 58 his.fwdarw.trp, 61 lys.fwdarw.thr, 61 lys.fwdarw.ser, 61 lys.fwdarw.met, 61 lys.fwdarw.asn, 62 val.fwdarw.leu, 62 val.fwdarw.ile, 62 val.fwdarw.phe, 62 val.fwdarw.trp, 65 ala.fwdarw.asp, 94 asp.fwdarw.gln, 94 asp.fwdarw.thr, 94 asp.fwdarw.ser, 94 asp.fwdarw.lys, 94 asp.fwdarw.gly, and 94 asp.fwdarw.arg, or
(ii) one or more high affinity mutations selected from the group consisting of 6 Asp.fwdarw.Ala, 6 Asp.fwdarw.Asn, 6 Asp.fwdarw.Val, 6 Asp.fwdarw.Tyr, 6 Lys.fwdarw.Asn, 40 Lys.fwdarw.Glu, 44 Pro.fwdarw.Leu, 44 Pro.fwdarw.Arg, 45 His.fwdarw.Arg, 85 Asp.fwdarw.Asn, 92 Arg.fwdarw.Gln, 92 Arg.fwdarw.Leu, 95 Pro.fwdarw.Leu, 95 Pro.fwdarw.Ser, 95 Pro.fwdarw.Ala, 95 Pro.fwdarw.Arg, 97 Asn.fwdarw.Lys, 126 Asp.fwdarw.Asn, 141 Arg.fwdarw.His, 141 Arg.fwdarw.Ser, and 141 Arg.fwdarw.Leu;
and/or
(b) a Cys substitution at one or more sites selected from the group consisting of: his72, asn78, asn68, ala71, thr67, lys7, lys11, thr8, ala12, thr118, lys16, ala45, glu116, gly15, his112, thr24, glu23, lys60, lys56, his50, gly51, glu53, ser49, asp47, gln54, his45, lys90, ala82, lys61, ala19, his20, asp85, ser81, asp75, asp74, lys139, asp64, and gly18.

21. The polypeptide of claim 1 wherein the beta globin-like domain of said genetically fused polypeptide is identical to human beta globin save for

(a) one or more oxygen affinity-modifying modifications characterized as
(i) one or more low affinity mutations selected from the group consisting of, 1 val.fwdarw.acetyl ala, 21 asp.fwdarw.gly, 24 gly.fwdarw.asp, 37 trp.fwdarw.arg, 38 thr.fwdarw.pro, 42 phe.fwdarw.ser, 42 phe.fwdarw.leu, 42 phe.fwdarw.val, 45 phe.fwdarw.ser, 48 leu.fwdarw.arg, 61 lys.fwdarw.met, 65 lys.fwdarw.gln, 66 lys.fwdarw.thr, 67 val.fwdarw.asp, 70 ala.fwdarw.asp, 73 asp.fwdarw.tyr, 73 asp.fwdarw.asn, 73 asp.fwdarw.val, 82 lys.fwdarw.thr, 83 gly.fwdarw.asp, 90 glu.fwdarw.gly, 90 glu.fwdarw.lys, 91 leu.fwdarw.arg, 102 asn.fwdarw.thr, 102 asn.fwdarw.ser, 102 asn.fwdarw.tyr, 102 asn.fwdarw.lys, 107 gly.fwdarw.arg, 108 asn.fwdarw.asp, 108 asn.fwdarw.lys, 111 val.fwdarw.phe, 113 val.fwdarw.glu, 136 gly.fwdarw.asp, 21 asp.fwdarw.ala, 21 asp.fwdarw.ser, 45 phe.fwdarw.ala, 45 phe.fwdarw.thr, 45 phe.fwdarw.val, 63 his.fwdarw.phe, 63 his.fwdarw.trp, 66 lys.fwdarw.ser, 66 lys.fwdarw.asn, 67 val.fwdarw.phe, 67 val.fwdarw.trp, 67 val.fwdarw.ile, 70 ala.fwdarw.glu, 70 ala.fwdarw.ser, 70 ala.fwdarw.thr, 96 leu.fwdarw.phe, 96 leu.fwdarw.his, 96 leu.fwdarw.lys, 98 val.fwdarw.trp, 98 val.fwdarw.phe, 102 asn.fwdarw.asp, 102 asn.fwdarw.glu, 102 asn.fwdarw.arg, 102 asn.fwdarw.his, 102 asn.fwdarw.gly, 108 asn.fwdarw.arg, and 108 asn.fwdarw.glu, or
(ii) one or more high affinity mutations selected from the group consisting of, 2 His.fwdarw.Arg, 20 Val.fwdarw.Met, 23 Val.fwdarw.Asp, 23 Val.fwdarw.Phe, 34 Val.fwdarw.Phe, 36 Pro.fwdarw.Thr, 37 Trp.fwdarw.Ser, 40 Arg.fwdarw.Lys, 40 Arg.fwdarw.Ser, 51 Pro.fwdarw.Arg, 51 Leu.fwdarw.His, 79 Asp.fwdarw.Gly, 79 Lys.fwdarw.Thr, 79 Lys.fwdarw.Met, 82 Lys.fwdarw.Asn, 89 Ser.fwdarw.Asn, 89 Ser.fwdarw.Arg, 94 Asp.fwdarw.His, 94 Asp.fwdarw.Asn, 96 Leu.fwdarw.Val, 97 His.fwdarw.Gln, 97 His.fwdarw.Leu, 99 Asp.fwdarw.Asn, 99 Asp.fwdarw.His, 99 Asp.fwdarw.Ala, 99 Asp.fwdarw.Tyr, 99 Asp.fwdarw.Gly, 99 Asp.fwdarw.Val, 100 Pro.fwdarw.Leu, 101 Glu.fwdarw.Lys, 101 Glu.fwdarw.Gly, 101 Glu.fwdarw.Asp, 103 Phe.fwdarw.Leu, 109 Val.fwdarw.Met, 121 Glu.fwdarw.Gln, 121 Pro.fwdarw.Gln, 121 Ala.fwdarw.Pro, 140 Ala.fwdarw.Thr, 142 Ala.fwdarw.Asp, 143 His.fwdarw.Arg, 143 His.fwdarw.Gln, 143 His.fwdarw.Pro, 144 Lys.fwdarw.Asn, 145 Tyr.fwdarw.His, 145 Tyr.fwdarw.Cys, 145 Tyr.fwdarw.Asp, 145 Tyr.fwdarw.Term, 146 His.fwdarw.Asp, 146 His.fwdarw.Pro, and 146 His.fwdarw.Leu;
and/or
(b) a Cys substitution at one or more sites selected from the group consisting of: asp79, his2, leu3, thr4, glu6, ser9, thr12, ala13, gly16, lys17, val18, asn19, val20, asp21, glu22, lys65, ser72, ala76, his77, asp79, asn80, gly83, ala86, thr87, glu90, lys95, lys59, glu43, ser44, asp47, ser49, thr50, ala53, asp52, lys61, glu121, lys120, thr123, lys66, asp73, ala62, his116, and his117.

22. The polypeptide of claim 17 wherein at least one beta-globin-like domain includes the low affinity Presbyterian mutation, 108 Asn.fwdarw.Lys.

23. The polypeptide of claim 19 wherein at least one beta-globin-like domain includes the high affinity providence mutation, 82 Lys.fwdarw.Asn.

Referenced Cited
U.S. Patent Documents
4001200 January 4, 1977 Bonsen et al.
4001401 January 4, 1977 Bonsen et al.
4473496 September 25, 1984 Scannon
4529719 July 16, 1985 Tye
4584130 April 22, 1986 Bucci et al.
4600531 July 15, 1986 Walder
4840896 June 20, 1989 Reddy et al.
5250665 October 5, 1993 Kluger et al.
Foreign Patent Documents
09179 January 1986 WOX
Other references
  • Nagai et al. PNAS USA 82(1985):7252-7255. de Baetselier et al. Medical Fac Handbook Rijksun v. Get (1988) (53) abstract. Guapente et al. PNAS USA (1981) 79: 7410-14, abstract. Liebhaber et al. PNAS 77: 7054-58 (1980). Springer et al. PNAS 84(1989):8961-8965. Sehomer et al. Meth. Fizgrol 153 (1987) 401. Schomer et al. PNAS (1986) 83:8506-8510. Saito et al. J. Biochem. 101: 1281 (1987). Hallewell et al. (1987) J. Biol. Chem, 264, 5260-5268. Bunn & Forget 1986 Hemoglobin: Molecular, Genetic and Clinical Aspects WB Saunders Co Philadelphia pp. 596-598. Manning, et al., Evolution of a polymeric globin in the brine shrimp Artemia, Nature, vol. 348, pp. 653-656, Dec. 13, 1990. Martin, et al., Kinetics and Thermodynamics of Oxygen and Carbon Monoxide Binding to the T-State Hemoglobin of Urechis caupo, Biochemistry, vol. 29, pp. 5718-5726, 1990. Moens, et al., Structural Interpretation of the Amino Acid Sequence of a Second Domain from the Artemia Covalent Polymer Globin, The Journal of Biological Chemistry, vol. 265, No. 24, pp. 14285-14291, Aug. 25, 1990. Ownby, et al., The Extracellular Hemoglobin of the Earthworm, Lumbricus terrestris, The Journal of Biological Chemistry, vol. 268, No. 18, pp. 13539-13547, Jun. 25, 1993. Padlan, et al., Three-Dimensional Structure of Hemoglobin from the Polychaete Annelid, Glycera dibranchiata, at 2.5 A Resolution, The Journal of Biological Chemistry, vol. 249, No. 13, pp. 4067-4078, Jul. 10, 1974. Suzuki, et al., Linker Chain L1 of Earthworm Hemoglobin, The Journal of Biological Chemistry, vol. 268, No. 18, pp. 13548-13555, Jun. 25, 1993. Terwilliger, Robert C., Structures of Invertebrate Hemoglobins, Amer. Zool., vol. 20, pp. 53-67, 1980. Terwilliger, et al., The Quaternary Structure of a Molluscan (Helisoma Trivolvis) Extracellular Hemoglobin, Biochimica et Biophysica Acta, vol. 453, pp. 101-110, 1976. Trotman, et al., Interdomain Linkage in the Polymeric Hemoglobin Molecule of Artemia, J. Mol. Evol., vol. 38, pp. 628-636, 1994. Trotman, et al., The Polymeric Hemoglobin Molecule of Artemia, The Journal of Biological Chemistry, vol. 266, No. 21, pp. 13789-13795, Jul. 25, 1991. Weber, Roy E., Functions of Invertebrate Hemoglobins with Special Reference to Adaptations to Environmental Hypoxia, Amer. Zool., vol. 20, pp. 79-101, 1980. Zhu, et al., Stoichiometry of Subunits and Heme Content of Hemoglobin from the Earthworm Lumbricus terrestris, The Journal of Biological Chemistry, vol. 271, No. 47, pp. 29999-30006. Antonini, et al., Assembly of Multisubunit Respiratory Protein, Ann. Rev. Biophys. Bioeng., vol. 6, pp. 239-271, 1977. De Baere, et al., Polar zipper sequence in the high-affinity hemoglobin of Ascaris suum: Amino acid sequence and structural interpretation, Proc. Natl. Acad. Sci. USA, vol. 89, pp. 4638-4642, May 1992. DiFeo, et al., Kinetic and spectroscopic studies of haemoglobin and myoglobin from Urechis caupo, Biochem. J., vol. 269, pp. 739-747, 1990. Garlick, Robert Lee, Structure of Annelid High Molecular Weight Hemoglobins (Erythrocruorins), Amer. Zool., vol. 20, pp. 69-77, 1980. Garlick, et al., The Amino Acid Sequence of a Major Polypeptide Chain of Earthworm Hemoglobin, The Journal of Biological Chemistry, vol. 257, No. 15, pp. 9005-9015, Aug. 10, 1982. Garey, et al., Structure and Function of Hemoglobin from Urechis caupo, Archives of Biochemistry and Biophysics, vol. 228, No. 1, pp. 320-331, 1984. Garey, et al., The Hemoglobin of Urechis caupo, The Journal of Biological Chemistry, vol. 261, No. 35, pp. 16446-16450, Dec. 15, 1986. Hall, et al., Hemoglobins and Myoglobin of the Echiuran Urechis Caupo (Fisher and Macginitie), Comp. Biochem. Physiol, vol. 70B, pp. 353-357, 1981. Keilin, et al., Relationship Between Haemoglobin and Erythrocruorin, Nature, vol. 168, pp. 266-269, Aug. 18, 1951. Kolatkar, et al., Structure Determination and Refinement of Homotetrameric Hemoglobin from Urechis caupo at 2.5 .ANG.Resolution, Acta Crystallographica, vol. B48, pp. 191-199, 1992. Kolatkar, et al., Structural Analysis of Urechis caupo Hemoglobin, J. Mol. Biol., vol. 237, pp. 87-97, 1994. Magnum, et al., Oxygen Binding of Intact Coelomic Cells and Extracted Hemoglobin of the Echiuran Urechis Caupo, Comp. Biochem. Physiol., vol. 76A, No. 2, pp. 253-257, 1983.
Patent History
Patent number: 5844089
Type: Grant
Filed: May 25, 1995
Date of Patent: Dec 1, 1998
Assignee: Somatogen, Inc. (Boulder, CO)
Inventors: Stephen J. Hoffman (Denver, CO), Douglas L. Looker (Lafayette, CO), Mary S. Rosendahl (Broomfield, CO), Gary L. Stetler (Denver, CO), Michael Wagenbach (Osaka), David C. Anderson (Lafayette, CO), Antony James Mathews (Louisville, CO), Kiyoshi Nagai (Cambridge)
Primary Examiner: Karen C. Carlson
Attorney: Iver P. Cooper
Application Number: 8/450,733
Classifications
Current U.S. Class: Hemoglobins Or Globins (530/385)
International Classification: C07K 14805;