Hernia mesh patch with seal stiffener

- Bard ASDI Inc.

A hernia patch has a first layer of inert synthetic mesh material selectively sized and shaped to extend across and beyond a hernia. A second layer of inert synthetic mesh material overlies the first layer to create a generally planar configuration for the patch. The first and second layers are joined together by a seam that defines a periphery of a pouch between the layers and provides stiffness to the patch for urging the patch to conform to the generally planar configuration across the hernia, which helps to prevent folding of the patch as the surgeon withdraws his or her finger. The seam may be straight, zig-zag, sinusoidal or other configurations that effectively urge the patch to conform to a planar configuration. One of the layers has a border that extends beyond the seam and that has a free outer edge. A plurality of border slits extend from the outer edge through the border substantially to the seam. An access slit is formed in one of the layers for insertion of a surgeon's finger into the pouch to facilitate insertion of the patch into the patient and to position the patch across the hernia.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of provisional application Ser. No. 60/095,793, filed Aug. 7, 1998, and is a continuation-in-part of application Ser. No. 09/006,653, filed Jan. 14, 1998, U.S. Pat. No. 5,916,225, which was a continuation of application Ser. No. 0,8/755,108, Nov. 22, 1996, U.S. Pat. No. 5,769,864, which is a continuation-in-part of application Ser. No. 08/315,249, Sep. 29, 1994, U.S. Pat. No. 5,634,931.

TECHNICAL FIELD

The present invention generally relates to a surgically implantable patch for use in repairing a hernia or other wound. More particularly, the present invention relates to a hernia repair patch having a seal that acts to stiffen the patch to maintain the patch in a planar configuration.

BACKGROUND OF THE INVENTION

Surgically implantable mesh patches for the repair of inguinal and other abdominal wall hernias, which are intended for permanent placement within a patient's body space, have been provided and used previously. Tension free surgical repairs of hernias have been developed using synthetic mesh materials to bridge and to patch hernia defects. These repairs resulted in both a decrease in the recurrence rate as well as a decrease in the amount of a patient's post operative discomfort. Patients undergoing these more advanced procedures were able and are able to resume their normal activities sooner.

Some of these earlier techniques are somewhat complicated. Several use a plug or a locating member to fit within the hernia defect itself. Also, many of these earlier techniques were designed specifically for use in laparoscopic repair of hernias. Moreover, many of the prior inventions required suturing to the patient's body tissue. Although these medical advances are acknowledged for their usefulness and success, there remains a need or needs for more improvements in the surgical repair of hernias.

DISCLOSURE OF THE INVENTION

A hernia mesh patch for use in the surgical repair of a patient's inguinal, or other abdominal wall hernias, is disclosed for permanent placement within a patient's body space. The hernia mesh patch has a top layer and a bottom layer of an inert, synthetic mesh, preferably polypropylene mesh. The top layer and the bottom layer are secured to each other with a seam. A slit is located in one of the layers to provide access to a pouch formed between the two layers by the seam.

The seam provides stiffness for the patch, which causes the patch to assume a flattened configuration. The seam comprises an ultrasonic seal that is arranged in an oval, ovoid, loop, or ring configuration, or a partial oval, ovoid, loop or ring having a circumference slightly greater than the circumference of the interior pocket of the patch. The seal may be of a linear, zig-zag, sinusoidal, or other suitable pattern. A border on at least one of the layers extends outward past the seam. The border preferably has slits that define tabs, which fill uneven voids in the patient's tissue.

Without the need for general anesthesia, nor expensive laparoscopic instrumentation, a surgeon makes a small incision in the patient when repairing an inguinal hernia. The incision is approximately three centimeters long, arranged obliquely, and approximately two to three centimeters above the internal ring location of the inguinal hernia.

Thereafter, the surgeon uses his or her fingers to readily fold and compact the hernia mesh patch and direct the patch through the incision and into the patient's properitoneal space. The hernia mesh patch then unfolds and expands into a planar configuration due to the resiliency of the seam. The surgeon may insert a finger if through a slit formed in one of the layers of the patch and into the pouch to manipulate the patch. The surgeon then moves the hernia mesh patch to cover the defect in the patient's abdominal cavity. Thereafter, the surgeon withdraws his or her finger and secures the incision with stitches.

Soon after surgery, the patient's body reacts to the mesh of the hernia mesh patch. In a short time, the mesh becomes stuck, thereby keeping the hernia mesh patch in place. Thereafter, the patient's scar tissue grows into the mesh over a period of time, typically between thirty and sixty days, to permanently fix the hernia mesh patch in its intended position over the repaired area where the hernia was located.

Small holes may be cut through both layers of the mesh inside the seal ring, to increase friction and to minimize the sliding or migration of the hernia mesh patch after it is positioned.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a schematic partial front view of a patient's body.

FIG. 2 is a schematic partial diagrammatic cross-section view of a patient's abdominal wall layers showing an inguinal or other abdominal wall hernia, and the surgically implantable hernia repair mesh patch positioned in the preperitoneal created space.

FIG. 3 is a top view of a preferred embodiment of the surgically implantable hernia repair mesh patch.

FIG. 4 is a top view of the top layer of the surgically implantable hernia repair mesh patch shown in FIG. 3.

FIG. 5 is a top view of the bottom layer of the implantable hernia repair mesh patch shown in FIG. 3.

FIG. 6 is an enlarged view of a dart shown in FIGS. 3 and 4.

FIG. 7 is a top view of a zig-zag seam used in an alternate embodiment of the invention.

BEST MODE FOR CARRYING OUT THE INVENTION

The hernia mesh patch 10, illustrated in the drawings, is surgically permanently implantable within a patient's body space to adequately cover, correct, prevent and repair any inguinal or other abdominal wall hernias or other types of hernias. The surgeon has the objective of making a sutureless repair by first cutting an approximately three centimeter incision 16. Incision 16 is obliquely positioned approximately two to three centimeters above the location described as the internal ring 18, where an inguinal hernia 14 has occurred, as shown in FIG. 1. The surgeon then works through incision 16 to insert the hernia mesh patch 10. The repair of an inguinal hernia is shown in FIG. 2. The surgeon dissects deeply into the patient's preperitoneal space 20, as indicated in FIG. 2, using a sharp instrument to make the incision 16 through the patient's skin 24, the subcutaneous fatty tissues 26, and the external oblique fascia 28, which has been cut parallel with its fibers a short distance. The surgeon then incises the transversalis fascia 32, creating an entrance into the preperitoneal space 20 above the peritoneum 34 at a location proximate to the hernia defect 14. In so doing, the surgeon identifies and frees up the hernia sac and creates the pocket 22 in the preperitoneal space 20. Space 20 underlies the area referred to as Hesselbach's triangle, in reference to both indirect and direct hernias. The surgeon's placement of the hernia mesh patch 10 in accordance with this method protects the entire inguinal floor, and therefore not only will the patch 10 repair or correct a single small hernia, but will also protect against future hernias through other potentially weakened areas.

Referring now to FIGS. 2 and 3, hernia mesh patch 10 is particularly designed for the repair of an inguinal hernia 14, but also can be used for other abdominal wall hernias or other tissue aperture repair. Hernia patch 10 is composed of two similarly shaped pieces of an inert synthetic mesh material, a bottom layer 42 and a top layer 44. Bottom layer 42 and top layer 44 are preferably constructed of a polypropylene material. The mesh material is formed from monofilament material that is resistant to infection and that has been used safely in many hernia operations, in previous ways and in previous embodiments. Preferably, the layers 42, 44 are made in respective circle, loop, ovoid, or oval shapes.

A seam 46 joins the top and bottom layers 44 and 42 together. Preferably, bottom layer 42 is the same size as top layer 44, although the sizes may differ slightly. Seam 46 is preferably created ultrasonically without heat, glue, etc. In one embodiment, seam 46 is located approximately one centimeter in from outer edge or periphery 50. The seam 46 may be straight (FIG. 3), zig-zag 47 (FIG. 7), sinusoidal, or in other configurations.

Seam 46 should have a sufficient cross-section to urge patch 10 to a planar configuration. The outer one centimeter of mesh material of the top mesh material piece or layer 44 is left free to serve as a border or apron 51 to fill uneven voids in the patient's tissue. Free border 51 serves to frictionally keep patch 10 in the appropriate hernia repair position when the hernia mesh patch 10 is placed in a patient's preperitoneal space. Inside of the seam 46, like-size darts 59 (FIGS. 3, 4 and 6), aligned one above the other, are preferably positioned on bottom mesh layer 42 and top mesh layer 44. The presence of the darts 59 helps initially to frictionally keep the hernia mesh patch 10 in place. Thereafter, the patient's scar tissues grow in and around the darts 59 to continue to keep the hernia mesh patch in position. The outer one centimeter of top layer 44 has a cut or slit 58 that extends radially or diagonally to create scalloped or fringed edges 60 and defines tab portions 62.

The top mesh material, or bottom layer piece 42, has a cut or slit 66 transversely at the center thereof, which creates a finger access into the interior space or pouch 70 between the top and bottom layers 44, 42 of the synthetic mesh material.

In use, the surgeon uses both sharp and blunt instruments to create a pocket in a patient's preperitoneal space. The surgeon selects the type and size embodiment of the hernia mesh patch 10 best suited to be used in the repair of the patient's defect or hernia 14. The selected hernia mesh patch 10 may then be folded and further compacted by the surgeon, using his or her fingers, so that selected patch 10 may be conveniently inserted through the wound or incision 16 and down into the patient's preperitoneal space. The hernia mesh patch 10 is then released to allow the patch 10 to expand. The stiffness of seam 46 biases the patch into a planar configuration. Thereafter, the surgeon uses his or her finger to continue any further expansion of patch 10 that may be necessary. The surgeon's finger may be inserted through the slit 66 in the top mesh layer 42 to position patch 10 within the preperitoneal space. After the withdrawal of the surgeon's finger, the repair surgery is completed by closing the incision 16 with stitches.

In the repair of other hernias, and especially those at that are large, a direct incision is made. After the placement of a large hernia mesh patch, the surgeon may use limited sutures to keep the larger hernia mesh patch in place. Generally, most of the embodiments of the hernia mesh patch are positioned, and so remain, without the use of sutures.

The hernia mesh patch of the invention is simple in design and in the method of insertion. The patches adequately underlay a hernia defect by a minimum of two centimeters around the circumference of the hernia defect, with sufficient rigidity and with sufficient friction to eliminate or minimize sliding or migration. When the hernia mesh patches are used, the repair of inguinal and other abdominal wall hernias are repaired through a smaller wound or incision, with less tension, less post-operative discomfort, shorter operating time, and at a potential lower cost to the patient. The patient's post-operative discomfort is decreased, and the risk of any recurrence is likewise decreased.

While the invention has been shown in several embodiments, it should be apparent that it is not limited to those embodiments but is susceptible to various changes without departing from the scope of the invention.

Claims

1. A tissue aperture repair patch for implanting within a patient, comprising:

at least one layer of inert synthetic mesh material sized and shaped to extend across and beyond a tissue aperture in a patient;
a seam on said layer that imparts stiffness to the patch for biasing the patch in a planar configuration; and
the layer of inert synthetic mesh material having a periphery extending beyond the seam that defines a border having a free outer edge to fill uneven voids in a patient's tissue.

2. The patch according to claim 1, further comprising:

an opening in one of said layers for insertion of a finger into said pouch to position said patch across the aperture.

3. A tissue aperture repair patch for implanting in a patient, comprising:

a first layer of inert synthetic mesh material sized and shaped to extend across and beyond a tissue aperture in a patient;
a second layer of inert synthetic mesh material secured to the first layer by a seam to create a pouch between the first and second layers;
an opening in the pouch for providing access to an interior of the pouch to position the patch across the tissue aperture; and
the seam defining a periphery of said pouch between said layers, and imparting stiffness to the patch for biasing the patch into a planar configuration.

4. The patch according to claim 3, wherein:

the seam is spaced inwardly from a periphery of at least one of said first layer and said second layer, said seam defining a border between said seam and said periphery.

5. The patch according to claim 3, wherein:

said seam is in a zig-zag configuration.

6. A tissue aperture repair patch, comprising:

a first layer of inert synthetic mesh material sized and shaped to extend across and beyond a hernia;
a second layer of inert synthetic mesh material overlying said first layer to create a generally planar configuration for the patch;
said first layer and said second layer being joined together by a seam that defines a periphery of a pouch between said layers, said seam imparting stiffness to the patch for biasing the patch to a planar configuration;
an opening in one of said layers for providing access to an interior of said pouch to facilitate insertion of the patch into the patient and to position the patch across the tissue aperture; and
wherein the seam is spaced inwardly from a periphery of at least one of said first layer and said second layer, said seam defining a border between said seam and said periphery.

7. The patch according to claim 6, wherein:

said seam is in a zig-zag configuration.
Referenced Cited
U.S. Patent Documents
2671444 March 1954 Pease, Jr.
3054406 September 1962 Usher
4007743 February 15, 1977 Blake
4347847 September 7, 1982 Usher
4452245 June 5, 1984 Usher
4561434 December 31, 1985 Taylor
4633873 January 6, 1987 Dumican et al.
4655221 April 7, 1987 Devereux
4693720 September 15, 1987 Scharnberg et al.
4710192 December 1, 1987 Liotta et al.
4769038 September 6, 1988 Bendavid
4796603 January 10, 1989 Dahlke
4854316 August 8, 1989 Davis
4865026 September 12, 1989 Barrett
4955907 September 11, 1990 Ledergerber
5006106 April 9, 1991 Angelchik
5059205 October 22, 1991 El-Nounou et al.
5116357 May 26, 1992 Eberbach
5122155 June 16, 1992 Eberbach
5141515 August 25, 1992 Eberbach
5147374 September 15, 1992 Fernandez
5147384 September 15, 1992 La Rocca
5147387 September 15, 1992 Jansen
5176692 January 5, 1993 Wilk et al.
5192301 March 9, 1993 Kamiya et al.
5195542 March 23, 1993 Gazielly et al.
5201745 April 13, 1993 Tayot et al.
5254133 October 19, 1993 Seid
5258000 November 2, 1993 Gianturco
5290217 March 1, 1994 Campos
5334217 August 2, 1994 Das
5350399 September 27, 1994 Erlebacher et al.
5356432 October 18, 1994 Rutkow et al.
5366460 November 22, 1994 Eberbach
5368602 November 29, 1994 de la Torre
5370650 December 6, 1994 Tovey et al.
5397331 March 14, 1995 Himpens et al.
5425744 June 20, 1995 Fagan et al.
5433996 July 18, 1995 Kranzler et al.
5451235 September 19, 1995 Lock et al.
5456720 October 10, 1995 Schultz et al.
5507811 April 16, 1996 Koike et al.
5593441 January 14, 1997 Lichtenstein et al.
5614284 March 25, 1997 Kranzler et al.
5695525 December 9, 1997 Mulhauser et al.
5702416 December 30, 1997 Kieturakis et al.
5716408 February 10, 1998 Eldridge et al.
5743917 April 28, 1998 Saxon
5766246 June 16, 1998 Mulhauser et al.
5769864 June 23, 1998 Kugel
5824082 October 20, 1998 Brown
5836961 November 17, 1998 Kieturakis et al.
5879366 March 9, 1999 Shaw et al.
5916225 June 29, 1999 Kugel
5919232 July 6, 1999 Chaffringeon et al.
5922026 July 13, 1999 Chin
5954767 September 21, 1999 Pajotin et al.
Foreign Patent Documents
2114282 July 1994 CA
0 362 113 April 1990 EP
0 474 887 October 1991 EP
676 285 July 1979 SU
782 814 November 1980 SU
WO 90/14796 December 1990 WO
WO 93/17635 September 1993 WO
WO 94/27535 December 1994 WO
WO 96/09795 April 1996 WO
WO 97/22310 June 1997 WO
Other references
  • “Minimally Invasive, Non-Laparoscopic, Preperitoneal, Sutureless, Inguinal Hernorrhaphy” by Robert D. Kugel (not published). See Exhibit 2 of Declaration.
  • Gregory L. Brown, M.D. et al., “Comparison of Prosthetic Materials for Abdominal Wall Reconstruction in the Presence of Contamination and Infection”, Annals of Surgery, Jun. 1985, vol. 201, pp. 705-711.
  • Scott D. Jenkins, M.D. et al., “A Comparison of Prosthetic Materials Used to Repair Abdominal Wall Defects”, Surgery, Aug. 1983, vol. 94, No. 2, pp. 392-398.
  • “Prevention of Postsurgical Adhesions by Interceed (TC7)”, Fertility and Sterility, Jun. 1989, vol. 51, No. 6, pp. 933-938.
  • Hernando Cordona, M.D., “Prosthokeratoplasty”, 1983, Cornea, vol. 2, No. 3, 1983, pp. 179-183.
  • Alonzo P. Walker, M.D., et al., “Double-Layer Prostheses for Repair of Abdominal Wall Defects in a Rabbit Model”, pp. 32-37, Journal of Surgical Research, vol. 55, No. No. 1, Jul. 1993.
Patent History
Patent number: 6224615
Type: Grant
Filed: Feb 11, 1999
Date of Patent: May 1, 2001
Assignee: Bard ASDI Inc. (Murray Hill, NJ)
Inventors: Robert D. Kugel (Olympia, WA), J. Douglas Inman (Arlington, TX), Keith D. Biggers (Southlake, TX)
Primary Examiner: Gary Jackson
Attorney, Agent or Law Firm: Wolf, Greenfield & Sacks, P.C.
Application Number: 09/250,225