Structural reinforcements

- L&L Products, Inc.

A composite structural reinforcement has a keyed reinforcement member in which a thermally expandable resin strip is mechanically retained. The mechanical interlock permits the resin to be secured to the member without heat or an adhesive.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application is a continuation of application number 09/268,810 filed on Mar. 10, 1999 now U.S. Pat. No. 6,131,897.

TECHNICAL FIELD

The present invention relates generally to the reinforcement of hollow structures and more specifically to the use of rigid reinforcements which utilize expandable resins.

BACKGROUND OF THE INVENTION

There has been an increase in the need for selective reinforcement of automotive structures in order to meet various government test standards. To that end, structural foams and carriers have been developed for the purpose of reinforcing specific locations in vehicles. The primary focus of these reinforcements is to add strength or stiffness to a structure.

As will be appreciated by those skilled in the art, the three factors of greatest general importance in the evaluation of reinforcement effectiveness are stiffness, weight, and cost. With most prior art techniques, increasing stiffness results in a corresponding penalty of weight increase and/or cost increase. For example, while using thicker gages of metal increases strength, it results in an unwanted increase in weight. Similarly, the use of exotic high-strength alloys is effective to increase strength, but this adds considerably to the cost of the vehicle. Finally, it will be recognized that the cost of resins is also a concern and thus structural foams must be used sparingly.

Another concern in the use of structural foams is the problem associated with fully curing material that is very thick. That is, in some prior art applications the materials required to satisfactorily reinforce are so thick that it is difficult to achieve full cure. Therefore, it will be recognized that techniques for reinforcing hollow structures which do not cause a substantial weight and cost or curing problems have the potential to provide significant advantages.

It is therefore an object of the present invention to provide a structural reinforcement which utilizes structural foam in a manner which conserves resin.

It is a further object of the invention to provide such a reinforcement which can be fully cured in a short time.

It is still a further object to provide a low-cost, light-weight structural reinforcement which provides significant strength and stiffness to the reinforced region.

It is still a further object to provide a structural reinforcement which can be transported easily to the site of installation.

SUMMARY OF THE INVENTION

In one aspect the present invention provides a keyed reinforcing member having a rigid body and an attached uncured resin portion. The rigid body includes a surface having a geometry that mates with the uncured resin to form a purely mechanical interlock between the rigid body and the resin. In one aspect the rigid member has an interlocking channel in which a strip of uncured resin is disposed. In one aspect the rigid member is linear, in other applications the member is non-linear with the resin strip being disposed circumferentially. In still another aspect the rigid member has attachment sites and locator pins which facilitate its location and attachment to the hollow structural body to be reinforced.

In another aspect the present invention provides a method of reinforcing a structure comprising the steps of providing a rigid member having a surface adapted to receive and mechanically retain an uncured resin body having a preselected shape. An uncured resin body having the mating geometry is inserted in the interlocking portion of the rigid member. The composite keyed reinforcement is then placed in the appropriate location of the structural body to be reinforced. The composite keyed reinforcement is then heated to a temperature sufficient to foam (expand) and cure the resin. Typically, the foam will then bond to the surrounding structural body.

Thus, the invention provides a way to reduce cost, improve stiffness, and increase the possibility of achieving full cure of the structural foam all through the use of a composite construction. The keying of the surface of the reinforcement member permits uncured resin to be applied such that mechanical interlocking between the member and the applied uncured resin occurs. This interlocking permits the resin to be positioned on the reinforcement member without the necessity of heating the reinforcement member, using a secondary adhesive, heating the uncured structural foam, or using a pressure sensitive uncured structural foam. In addition to processing ease, the keyed surface produces a structure that is strongly resistant to damage during shipping or handling in an assembly plant. In one aspect the primary uncured heat expandable material attached to the keyed reinforcing member is not pressure sensitive. This enables packaging such that adjacent preformed parts do not adhere to each other during shipping (i.e. the material does not behave as a pressure sensitive adhesive).

These features and others will be more fully explained herein in connection with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a cross sectional view of a rigid linear member of the keyed reinforcement of the present invention, prior to attachment of the resin strip.

FIG. 2 is a cross section of a group of resin strips prior to insertion into the linear member of FIG. 1.

FIG. 3 is a cross sectional view of keyed reinforcement depicted in FIG. 1 after attachment of the resin strips of FIG. 1 and with insertion of a locator pin.

FIG. 4 is a side view of the keyed reinforcement member depicted in FIG. 1 of the drawings.

FIG. 5 is a cross section of a linear keyed reinforcement in another embodiment.

FIG. 6 is a perspective view of a portion of a non-linear keyed reinforcement in one aspect of the invention.

FIG. 7 is a cross section along lines 7—7 of FIG. 6 but with the resin strip inserted into the channel.

FIG. 8 is a plan view of the complete ring structure partially depicted in FIG. 6.

DESCRIPTION

Referring now to FIGS. 1 through 4 of the drawings, multi-walled keyed member 20 is depicted as a linear extrusion having opposed walls 22, 24 and opposed walls 26, 28. Keyed member 20 serves not only to provide stiffness and strength to composite structural reinforcement member 30 (FIG. 3), but also as a mechanically interlocking carrier for thermally expandable resin strips 32. Keyed member 20 may be formed of a number of materials such as aluminum, light-weight steel and high-strength plastics. Most preferably, keyed member 20 is an aluminum extrusion, but can also be done effectively using injection molded, compression molded, blow molded, extruded, or rotational molded plastic or stamped or roll formed steel as well as other forming methods known to those skilled in the art of material use and forming. In this particular embodiment, keyed member 20 has an internal partition or wall 34 which defines two chambers, 36 and 38. Partition 34 provides additional strength and rigidity to member 20.

In the embodiment of FIGS. 1-4 each wall of keyed member 20 is provided with at least one channel 40 which is adapted to retain one resin strip 42. In more detail, and referring now to FIG. 1 of the drawings, wall 22 of keyed member 20 has channel 40 which will generally be coextensive along the entire length of keyed member 20. In this particular embodiment channel 40 is provided with lips or flanges 44 which extend partially over the opening or cavity of channel 40. As shown in FIG. 3, resin strips 42 have a shape which mates with channels 40 to provide a mechanical interlock as shown best in FIG. 3 of the drawings. It is to be understood that the precise mating shapes or geometries of the keyed member and the interlocking strip are not critical to the practice of the invention. It is important, however, that the two (member 20 and strips 42) have shapes which achieve the desired mechanical interlock, i.e. resin strips 42 are held in place by member 20 without the need for an adhesive bond or external additional locking parts. Thus, in the example shown in FIGS. 2 and 3 of the drawings lower edges 46 of resin strips 42 extend to engage lips 44 of channels 40. In FIG. 4 of the drawings, the linear nature of keyed member 20 and strip 42 are shown more clearly. It will be appreciated that strips 42 (which will also preferably be extruded) can be easily slipped into channels 40 for assembly of composite reinforcement structure 30 or may be formed in place as will be more fully described herein.

In order to locate composite reinforcement 30 in a structure to be reinforced, such as a motor vehicle body, and referring now to FIG. 3 of the drawings locator pin 48 may be provided. The nature of locator pins will be well known to those skilled in the art. In addition, in the most preferred embodiment of the invention at least two walls of keyed member 20 (in terms of area) are each at least 25% covered (this is total coverage and coverage may be interrupted) by their respective resin strips.

Referring now to FIG. 5 of the drawings in another embodiment composite reinforcement 50 has keyed member 52 with a central web 54 that forms channels 56 in which resin strips 58 are mechanically held in T-shaped locking configuration. This illustrates the variable nature of the interlocking surfaces of the keyed member and the resin strips; here, strip 58 has a convex surface 60 that is received in a concave depression 62. As in the previously described embodiment strips 64 are provided such that all sides of keyed member 52 have an associated resin strip. Locator pin 66 is also shown.

The construction of the present invention enables a number of different options for installation in a hollow structural part of a motor vehicle. One possibility is to attach end caps (not shown) to the reinforcing structure. These end caps may have an integral fastener or be spring loaded to enable installation and positioning in a vehicle. Another option is to form a part that has the near net shape of the structure that it is intended to reinforce such that when installed into a hollow cavity it becomes trapped and is thereby positioned. This would typically be a vehicle area that requires a reinforcement that is not linear and involves laying a part into a partial cavity that is later capped with another piece of sheet metal. An additional method of installation is to apply a pressure sensitive adhesive to some surface of the composite reinforcing structure. Depending on goals of the reinforcement, the pressure sensitive adhesive may or may not also have structural characteristics following cure.

As stated above, in one embodiment of the invention composite keyed reinforcement 30 is linear; that is, preferably its length is at least twice its width or height. In another preferred embodiment, however, and referring now to FIGS. 6 through 8 of the drawings, composite reinforcement 70 is in the nature of a ring or continuous wall structure. Each face 72 has a channel 74 into which a resin strip 76 is disposed by mechanical interlock as in the previously described embodiments. (In addition, as best shown in FIG. 7, in a preferred embodiment of the invention at least 50% by weight of resin strip 76 resides outside of channel 74 although it is not necessary that any material reside outside in some applications.) Accordingly, the structures of FIGS. 1-5 would typically be used if increased bending resistance is required. If reinforcement for so-called breathing or oil canning is required, circumferential material of FIGS. 6 through may be used.

Resin strips 42, 64 and 76 are thermally expandable. That is, upon the application of heat they will expand, typically by a foaming reaction, and preferably to at least 50% the volume of the unexpanded state, but more preferably twice (the unexpanded state being depicted in the drawings). In a preferred embodiment, the resin used to form the resin strips is an epoxy-based material.

Resin preferably forms from about 5% to about 75% by weight and more preferably from about 15% to 65% by weight of the resin strip. Filler preferably forms from about 0% to about 70% by weight and more preferably from about 20% to about 50% by weight of the resin strip. Blowing agent preferably forms from about 0% to about 10% by weight and more preferably from about 0.2% to 5% by weight of the resin strip. Curing agent preferably forms from about 0% to about 10% by weight and more preferably from about 0.5% to 5% by weight of the resin strip. Accelerator preferably forms from about 0% to about 10% by weight and more preferably from about 0.3% to 5% by weight of the resin strip. One preferred formulation is set forth in Table I below.

Ingredient % by Weight Epoxy Resin 15% to 65% Ethylene Copolymer  0% to 20% Blowing Agent 0.2% to 5%   Curing Agent 0.5% to 5%   Accelerator 0.3% to 5%   Filler 20% to 50%

As stated, the heat expandable material is most preferably a heat-activated, substantially epoxy-based material. However, other suitable materials may also be suitable. These include polyolefin materials, copolymers and terpolymers with at least one monomer type an alpha-olefin, phenol/formaldehyde materials, phenoxy materials, polyurethane materials with a high glass transition and others. In general the desired characteristics of this heat expandable material will be high stiffness, high strength, high glass transition temperature, good corrosion resistance, ability to adhere to contaminated metallic and polymer surfaces, fast cure upon activation, good handing characteristics, low cured density, low cost, and long shelf life.

As stated, composite keyed reinforcement part 30 is most preferably intended to be placed in a hollow vehicle cavity for the purpose of structural reinforcement. When the vehicle is heated, the heat expandable material (structural foam) expands to contact the surface of the hollow cavity that it is intended to reinforce. It is not necessary that the space between the member and the inner surface of the hollow cavity or other surface being reinforced be fully filled with expanded heat expandable material for substantial reinforcement to occur. If full filling is required, it is possible to space the distance between pieces of uncured heat expandable material and/or adjust the quantity of heat expandable material such that the heat expandable material knits together during the expansion process.

A particular benefit of the present invention is that it permits large sections to be reinforced with full confidence that the structural foam material will fully cure. Because the material must be heated to cure, it is important that full cure occur to obtain optimum properties. If very large sections are filled with structural foam alone, then the difficulty of obtaining sufficient heat transfer through the material can be difficult. Use of a keyed composite reinforcing member greatly increases the probability that full cure will occur. This is possible both because it permits the possibility of using less heat activated foam and the rigid reinforcement provides a heat transfer conduit to the inner surface of the heat activated material. An additional benefit is that a reinforcement with less weight and lower cost can be provided for certain design types. A further additional benefit is that it permits the possibility of producing a part that is highly resistant to damage during transport owing to the support that the keyed reinforcing member provides to the heat expandable material.

Keyed reinforcing member 20 can be produced in many different ways which facilitates production of a keyed indentation that permits mechanical interlocking. It is possible to make a keyed reinforcing member by aluminum extrusion, steel roll forming, pultruded polymer composites, extruded polymers, blow molded polymers, thermoformed extruded polymers, and compression molded powder metals. Many other methods can be envisioned as well. The type of reinforcement is dictated by desired part shape, performance characteristics, and cost.

Composite reinforcing structure 30 may be constructed by dispensing heat activated expandable material onto the keyed reinforcing member using an extruder, including an extruder that is articulated by a robot. This process relies on the extruder being positioned such that molten heat expandable material is dispensed into the keyed section of the keyed reinforcement member. Upon cooling, the heat expandable material will stiffen and resist deformation while being transported. Upon sufficient reheating (a temperature necessarily higher than the temperature used to shape the heat expandable material), the heat expandable material will be activated such that it will expand and cure in the hollow vehicle cavity and thereby provide the desired reinforcement. A particularly preferred way of dispensing material onto a keyed reinforcing member is to use a robot articulated extruder to press the molten heat expandable material into the keyed sections. An additional method is to insert injection mold this material onto the keyed reinforcing structure. Another way of constructing this kind of reinforcement is to separately extrude the heat expandable material into a shape that mimics the section of a keyed location and then slide or snap the heat expandable material into the keyed section of a keyed reinforcing member. A further additional way of making the composite construction is to press molten of deformable heat expandable material into the keyed section of the reinforcing member.

Claims

1. A structural reinforcement system for structurally reinforcing a hollow member, said reinforcement member comprising:

(a) a member having at least one longitudinal channel incorporated about its periphery, said member adapted for placement in a cavity defined in an automotive vehicle frame; and
(b) an expandable material disposed within at least one of said channels over at least a portion of said member.

2. The system as claimed in claim 1, wherein said member is a metal alloy.

3. The system as claimed in claim 1, wherein said member is injection molded.

4. The system as claimed in claim 1, wherein said member is aluminum.

5. The system as claimed in claim 1, wherein said member is a formed steel.

6. The system as claimed in claim 1, wherein said expandable material is a heat activated expandable polymeric material having foamable characteristics when exposed to heat.

7. The system as claimed in claim 1, wherein said member has at least two longitudinal channels disposed substantially over the entire length of said member.

8. The system as claimed in claim 1, wherein said member includes ribs for retaining said expandable material in said channels.

9. The system as claimed in claim 1, wherein said member is adapted for reinforcing a hollow structural member of a motor vehicle.

10. The system as claimed in claim 1, wherein said expandable material is suitable for placement within and along said plurality of channels of said members.

11. A reinforcement system for hollow members of an automotive vehicle, comprising:

(a) a hollow member adapted for insertion in a cavity of an automotive vehicle, said member having a plurality of longitudinal channels defined about its periphery; and
(b) an expandable material disposed within at least one of said channels in sealing contact with at least a portion of said member and at least one of said plurality of channels.

12. The system as claimed in claim 11, wherein said hollow member includes at least two longitudinal passageways separated by a partition.

13. The system as claimed in claim 11, wherein said member is a metal alloy.

14. The system as claimed in claim 11, wherein said member is injection molded.

15. The system as claimed in claim 11, wherein said member is aluminum.

16. The system as claimed in claim 11, wherein said member is a formed steel.

17. The member as claimed in claim 11, wherein said expandable material is a polymeric material having structurally adhering properties when exposed to heat.

18. The member as claimed in claim 11, wherein said expandable material is an epoxy-based polymeric material.

19. The member as claimed in claim 11, wherein said expandable material is a heat activated material having foamable characteristics when exposed to heat.

20. The member as claimed in claim 11, wherein said expandable material is a structurally adhering polymeric material that is generally free of tack to the touch.

21. A reinforcement member for structurally reinforcing a hollow member of an automotive vehicle, said reinforcement member comprising:

(a) a rigid member having a plurality of channels configured about its periphery for receiving and mechanically retaining an expandable material inserted therein, said member being adapted for placement in a cavity defined in an automotive vehicle frame; and
(b) an expandable material disposed in at least one of said channels and over at least a portion of the surface adjacent said channel of said member, said expandable material being suitable for foaming upon activation through heat and adhering to said member.

22. The member as claimed in claim 21, wherein said member is a metal alloy.

23. The member as claimed in claim 21, wherein said member is injection molded.

24. The member as claimed in claim 21, wherein said member is aluminum.

25. The member as claimed in claim 21, wherein said member is a formed steel.

26. A reinforcement system for a hollow member of an automotive vehicle, comprising:

(a) an automotive vehicle body member, said body member having a wall structure defining an internal passageway therein; and
(b) a rigidifying member having a channel defined on an outer surface thereof, and
(c) an expandable material disposed in said channel over at least a portion of the exterior of said member, said expandable member being suitable for foaming upon activation and adhering said member to said wall structure of said vehicle body.

27. The system as claimed in claim 26, wherein said member is a metal alloy.

28. The system as claimed in claim 26, wherein said member is injection molded.

29. The system as claimed in claim 26, wherein said member is aluminum.

30. A The system as claimed in claim 26, wherein said member is a formed steel.

Referenced Cited
U.S. Patent Documents
3054636 September 1962 Wessels, III
3123170 March 1964 Bryant
3493257 February 1970 Fitzgerald et al.
3665968 May 1972 DePutter
3746387 July 1973 Schwenk
3757559 September 1973 Welsh
3890108 June 1975 Welsh
4019301 April 26, 1977 Fox
4082825 April 4, 1978 Puterbaugh
4090734 May 23, 1978 Inami et al.
4238540 December 9, 1980 Yates et al.
4378395 March 29, 1983 Asoshina et al.
4397490 August 9, 1983 Evans et al.
4440434 April 3, 1984 Celli
4457555 July 3, 1984 Draper
4559274 December 17, 1985 Kloppe et al.
4610836 September 9, 1986 Wycech
4613177 September 23, 1986 Loren et al.
4705716 November 10, 1987 Tang
4732806 March 22, 1988 Wycech
4751249 June 14, 1988 Wycech
4762352 August 9, 1988 Enomoto
4803108 February 7, 1989 Leuchten et al.
4836516 June 6, 1989 Wycech
4853270 August 1, 1989 Wycech
4861097 August 29, 1989 Wycech
4898630 February 6, 1990 Kitoh et al.
4901500 February 20, 1990 Wycech
4908930 March 20, 1990 Wycech
4917435 April 17, 1990 Bonnett et al.
4922596 May 8, 1990 Wycech
4923902 May 8, 1990 Wycech
4978562 December 18, 1990 Wycech
4989913 February 5, 1991 Moore, III
4995545 February 26, 1991 Wycech
5102188 April 7, 1992 Yamane
5122398 June 16, 1992 Seiler et al.
5124186 June 23, 1992 Wycech
5213391 May 25, 1993 Takagi
5255487 October 26, 1993 Wieting et al.
5266133 November 30, 1993 Hanley et al.
5344208 September 6, 1994 Bien et al.
5373027 December 13, 1994 Hanley et al.
5395135 March 7, 1995 Lim et al.
5506025 April 9, 1996 Otto et al.
5560672 October 1, 1996 Lim et al.
5575526 November 19, 1996 Wycech
5580120 December 3, 1996 Nees et al.
5642914 July 1, 1997 Takabatake
5648401 July 15, 1997 Czaplicki et al.
5649400 July 22, 1997 Miwa
5652039 July 29, 1997 Tremain et al.
5707098 January 13, 1998 Uchida et al.
5725272 March 10, 1998 Jones
5731069 March 24, 1998 Delle Donne et al.
5755486 May 26, 1998 Wycech
5766719 June 16, 1998 Rimkus
5785376 July 28, 1998 Nees et al.
5786394 July 28, 1998 Slaven
5803533 September 8, 1998 Schulz et al.
5804608 September 8, 1998 Nakazato et al.
5806915 September 15, 1998 Takabatake
5806919 September 15, 1998 Davies
5855094 January 5, 1999 Baudisch et al.
5866052 February 2, 1999 Muramatsu
5884960 March 23, 1999 Wycech
5885688 March 23, 1999 McLaughlin
5888600 March 30, 1999 Wycech
5888642 March 30, 1999 Meteer et al.
5901528 May 11, 1999 Richardson
5904024 May 18, 1999 Miwa
5932680 August 3, 1999 Heider
5934737 August 10, 1999 Abouzahr
5941597 August 24, 1999 Horiuchi et al.
5984389 November 16, 1999 Nuber
5985435 November 16, 1999 Czaplicki et al.
5988734 November 23, 1999 Longo et al.
5992923 November 30, 1999 Wycech
5994422 November 30, 1999 Born et al.
6003274 December 21, 1999 Wycech
6004425 December 21, 1999 Born et al.
6022066 February 8, 2000 Tremblay et al.
6033300 March 7, 2000 Schneider
6050630 April 18, 2000 Hochet
6058673 May 9, 2000 Wycech
6059342 May 9, 2000 Kawai et al.
6068424 May 30, 2000 Wycech
6077884 June 20, 2000 Hess et al.
6079180 June 27, 2000 Wycech
6082811 July 4, 2000 Yoshida
6090232 July 18, 2000 Seeliger et al.
6092864 July 25, 2000 Wycech et al.
6094798 August 1, 2000 Seeliger et al.
6096403 August 1, 2000 Wycech et al.
6096791 August 1, 2000 Born et al.
6099948 August 8, 2000 Paver, Jr.
6102379 August 15, 2000 Ponslet et al.
6102473 August 15, 2000 Steininger et al.
6103341 August 15, 2000 Barz et al.
6103784 August 15, 2000 Hilborn et al.
6110982 August 29, 2000 Russick et al.
6129410 October 10, 2000 Kosaraju et al.
6131897 October 17, 2000 Barz et al.
6135542 October 24, 2000 Emmelmann et al.
6149227 November 21, 2000 Wycech
6150428 November 21, 2000 Hanley, IV et al.
6152260 November 28, 2000 Eipper et al.
6153709 November 28, 2000 Xiao et al.
6165588 December 26, 2000 Wycech
6168226 January 2, 2001 Wycech
Foreign Patent Documents
2919046 May 1979 DE
G9011147.8 September 1990 DE
G9320333.0 June 1994 DE
82102135.9 March 1982 EP
90202150.0 August 1990 EP
91104546.6 March 1991 EP
94101343.5 January 1994 EP
95913082.4 March 1995 EP
0 893 331 A1 January 1999 EP
0 893 332 A1 January 1999 EP
0 891 918 A1 January 1999 EP
628863 March 1947 GB
8028960 September 1980 GB
8725028 October 1987 GB
64-69308 March 1989 JP
64-69309 March 1989 JP
2-206537 August 1990 JP
5-38992 February 1993 JP
PCT/JP88/00029 January 1988 WO
PCT/AU92/00468 September 1992 WO
PCT/EP95/00896 March 1995 WO
PCT/US95/05749 May 1995 WO
PCT/US96/11155 July 1996 WO
PCT/US97/10693 June 1997 WO
PCT/US97/19981 November 1997 WO
PCT/US97/07644 November 1997 WO
PCT/US98/08980 May 1998 WO
PCT/US98/16461 August 1998 WO
PCT/US98/17994 September 1998 WO
PCT/US99/00770 January 1999 WO
PCT/US99/00035 January 1999 WO
PCT/US99/01855 February 1999 WO
PCT/US99/01865 February 1999 WO
PCT/US98/16461 February 1999 WO
PCT/US99/04279 March 1999 WO
PCT/US99/04263 March 1999 WO
PCT/US99/11195 May 1999 WO
PCT/US99/11194 May 1999 WO
PCT/US99/11110 May 1999 WO
PCT/US99/11109 May 1999 WO
PCT/US99/10441 May 1999 WO
PCT/CA99/00424 May 1999 WO
PCT/EP99/03832 June 1999 WO
PCT/US99/18820 August 1999 WO
PCT/EP99/06112 August 1999 WO
PCT/EP99/07143 September 1999 WO
PCT/US99/18832 September 1999 WO
PCT/US99/24795 October 1999 WO
PCT/EP99/09541 December 1999 WO
PCT/EP99/09732 December 1999 WO
PCT/EP99/09909 December 1999 WO
PCT/US99/29987 December 1999 WO
PCT/US99/29991 December 1999 WO
PCT/US99/29986 December 1999 WO
PCT/US99/29990 December 1999 WO
PCT/US99/29992 December 1999 WO
PCT/DE99/04103 December 1999 WO
PCT/EP99/10151 December 1999 WO
PCT/EP00/00021 January 2000 WO
PCT/US00/01644 January 2000 WO
PCT/US00/00497 January 2000 WO
PCT/US00/00010 January 2000 WO
PCT/EP00/01474 February 2000 WO
PCT/US00/02631 February 2000 WO
PCT/AT00/00123 May 2000 WO
Other references
  • Co-pending Application Ser. No. 09/524,960, filed Mar. 14, 2000.
  • Co-pending Application Ser. No. 09/524,961, filed Mar. 14, 2000.
  • Co-pending Application Ser. No. 09/428,243; filed Oct. 27, 1999.
  • Co-pending Application Ser. No. 09/460,322; filed Dec. 10, 1999.
  • Co-pending Application Ser. No. 09/459,756; filed Dec. 10, 1999.
  • Co-pending Application Ser. No. 9/524,298; filed Mar. 14, 2000.
  • Co-pending Application Ser. No. 09/502,686; filed Feb. 11, 2000.
  • Co-pending Application Ser. No. 09/631,211; filed Aug. 3, 2000.
  • Co-pending Application Ser. No. 09/676,443; filed Sep. 29, 2000.
  • Co-pending Application Ser. No. 09/591,877; filed Jun. 12, 2000.
  • Co-pending Application Ser. No. 09/676,725; filed Sep. 29, 2000.
Patent History
Patent number: 6311452
Type: Grant
Filed: Oct 13, 2000
Date of Patent: Nov 6, 2001
Assignee: L&L Products, Inc. (Romeo, MI)
Inventors: William J. Barz (Shelby Township, MI), Michael J. Czaplicki (Rochester, MI)
Primary Examiner: Carl D. Friedman
Assistant Examiner: Christy M. Syres
Attorney, Agent or Law Firm: Dobrusin & Thennisch
Application Number: 09/687,398