Method and system for transitioning between lean and stoichiometric operation of a lean-burn engine

- Ford

An exhaust treatment system for an internal combustion engine includes a catalytic emission control device. When transitioning the engine between a lean operating condition and a stoichiometric operating condition, as when scheduling a purge of the downstream device to thereby release an amount of a selected exhaust gas constituent, such as NOx, that has been stored in the downstream device during the lean operating condition, the air-fuel ratio of the air-fuel mixture supplied to each cylinder is sequentially stepped from an air-fuel ratio of at least about 18 to the stoichiometric air-fuel ratio. The purge event is preferably commenced when all but one cylinders has been stepped to stoichiometric operation, with the air-fuel mixture supplied to the last cylinder being stepped immediately to an air-fuel ratio rich of a stoichiometric air-fuel ratio.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Technical Field

The invention relates to methods and systems for controlling transitions of a “lean burn” internal combustion engine between lean and stoichiometric engine operating conditions.

2. Background Art

Generally, the operation of a vehicle's internal combustion engine produces engine exhaust gas that includes a variety of constituents, including carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx). The rates at which the engine generates these constituents are dependent upon a variety of factors, such as engine operating speed and load, engine temperature, spark timing, and EGR. Moreover, such engines often generate increased levels of one or more exhaust gas constituents, such as NOx, when the engine is operated in a lean-burn cycle, i.e., when engine operation includes engine operating conditions characterized by a ratio of intake air to injected fuel that is greater than the stoichiometric air-fuel ratio (a “lean” engine operating condition), for example, to achieve greater vehicle fuel economy.

In order to control these vehicle tailpipe emissions, the prior art teaches vehicle exhaust treatment systems that employ one or more three-way catalysts, also referred to as emission control devices, in an exhaust passage to store and release select exhaust gas constituents, such as NOx, depending upon engine operating conditions. For example, U.S. Pat. No. 5,437,153 teaches an emission control device which stores exhaust gas NOx when the exhaust gas is lean, and releases previously-stored NOx when the exhaust gas is either stoichiometric or “rich” of stoichiometric, i.e., when the ratio of intake air to injected fuel is at or below the stoichiometric air-fuel ratio. Such systems often employ open-loop control of device storage and release times (also respectively known as device “fill” and “purge” times) so as to maximize the benefits of increased fuel efficiency obtained through lean engine operation without concomitantly increasing tailpipe emissions as the device becomes “filled.”

The timing of each purge event must be controlled so that the device does not otherwise exceed its NOx storage capacity, because the selected exhaust gas constituent would then pass through the device and effect an undesired increase in tailpipe emissions. The frequency of the purge is preferably controlled to avoid the purging of only partially filled devices, due to the fuel penalty associated with the purge event's enriched air-fuel mixture.

The prior art has recognized that the storage capacity of a given emission control device for a selected exhaust gas constituent is itself a function of many variables, including device temperature, device history, sulfation level, and the presence of any thermal damage to the device. Moreover, as the device approaches its maximum capacity, the prior art teaches that the incremental rate at which the device continues to store the selected exhaust gas constituent may begin to fall. Accordingly, U.S. Pat. No. 5,437,153 teaches use of a nominal NOx-storage capacity for its disclosed device which is significantly less than the actual NOx-storage capacity of the device, to thereby provide the device with a perfect instantaneous NOx-retaining efficiency, that is, so that the device is able to store all engine-generated NOx as long as the cumulative stored NOx remains below this nominal capacity. A purge event is scheduled to rejuvenate the device whenever accumulated estimates of engine-generated NOx reach the device's nominal capacity.

Significantly, it has been observed that a gasoline-powered internal combustion engine is likely to generate increased levels of certain exhaust gas constituents, such as NOx, when transitioning between a lean operating condition and a stoichiometric operating condition. For example, such engines are likely to generate increased levels of NOx as each of its cylinders are operated with an air-fuel ratio in the range between about 18 and about 15. Such increased levels of generated NOx during lean-to-stoichiometric transitions are likely to precipitate increased tailpipe NOx emissions, particularly when the subject transition immediately precedes a scheduled purge event, because of the trap's reduced instantaneous efficiency (i.e., the reduced instantaneous NOx-retention rate) and/or a lack of available NOx-storage capacity.

In response, U.S. Pat. No. 5,423,181 teaches a method for operating a lean-burn engine wherein the transition from a lean operating condition to operation about stoichiometry is characterized by a brief period during which the engine is operated with an enriched air-fuel mixture, i.e., using an air-fuel ratio that is rich of the stoichiometric air-fuel ratio. Under this approach, the excess hydrocarbons flowing through the trap as a result of this “rich pulse” reduce excess NOx being simultaneously released from the trap, thereby lowering overall tailpipe NOx emissions which might otherwise result from the lean-to-stoichiometric transition.

The inventors herein have recognized that what is still needed, however, is a method of transitioning the engine between a lean operating condition and a stoichiometric operating condition that is itself characterized by reduced levels of a selected engine-generated exhaust gas constituent, such as NOx, whereby overall tailpipe emissions of a selected exhaust gas constituent may be advantageously further reduced.

SUMMARY OF THE INVENTION

In accordance with the invention, a method and system for transitioning an engine between a first operating condition and a second operating condition, wherein the first and second operating conditions are characterized by combustion, in each of a plurality of engine cylinders, of a supplied air-fuel mixture having a first and second air-fuel ratio, respectively, and wherein one of the first and second air-fuel ratios is significantly lean of a stoichiometric air-fuel ratio and the other of the first and second air-fuel ratios is an air-fuel ratio at or near stoichiometry (hereinafter “a stoichiometric air-fuel ratio”), the method comprising identifying at least two discrete sets of cylinders supplied with the air-fuel mixture at the first air-fuel ratio; and sequentially stepping the air-fuel ratio of the air-fuel mixture supplied to each set of cylinders from the first air-fuel ratio to the second air-fuel ratio, includes: identifying at least two discrete sets of cylinders operating at the first air-fuel ratio; and sequentially stepping the air-fuel ratio of the air-fuel mixture supplied to each set of cylinders between the first air-fuel ratio and the second air-fuel ratio. In this manner, the invention advantageously avoids operating any given cylinder in the range of air-fuel ratios likely to generate excessively large concentration of a selected exhaust gas constituent during such transitions from either a lean operating condition to a stoichiometric operating condition or a stoichiometric operating condition to a lean operating condition. By way of example only, where the selected constituent is NOx, the range of air-fuel ratios likely to generate an excessive concentration of NOx is between about 18 and the stoichiometric air-fuel ratio.

In accordance with another feature of the invention, in a preferred embodiment, torque fluctuations resulting from the use of different air-fuel mixtures in the several cylinders during transition are minimized by retarding the spark to any set of cylinders operating with a stoichiometric air-fuel ratio until all cylinders are operating at either the first or second operating condition. Thus, when transitioning from a lean operating condition to a stoichiometric operating condition, each set of cylinders is sequentially stepped between operating at a lean air-fuel ratio and operating at a stoichiometric air-fuel ratio, with spark being simultaneously retarded as to each set of cylinders whose respective air-fuel mixtures have been stepped to the stoichiometric air-fuel ratio. Similarly, when transitioning from a stoichiometric operating condition to a lean operating condition, spark is initially retarded to all sets of cylinders (each of which is operating, prior to the transition, with a stoichiometric air-fuel ratio). Then, as the air-fuel mixture supplied to each set of cylinders is stepped to the lean air-fuel ratio, the spark to those cylinders is simultaneously advanced.

In accordance with another feature of the invention, after spark has been retarded to all sets of cylinders transitioned from a lean operating condition to a stoichiometric operating condition, and with all cylinders operating at the stoichiometric air-fuel ratio, spark is preferably slowly advanced while air mass flow rate is decreased, either under the direction of an electronic throttle control or the vehicle driver. The spark and air-flow adjustment upon reaching stoichiometric operation in all cylinders ensures maximum fuel economy with little additional perceived torque fluctuation by vehicle occupants.

In accordance with another feature of the invention, where the invention is used in combination with a downstream device that stores a selected exhaust gas constituent, such as NOx, when the engine's air-fuel ratio is lean and releases previously-stored selected constituent when the engine is operated at an air-fuel ratio at or rich of the stoichiometric air-fuel ratio, the method preferably includes enriching the air-fuel mixture to a third air-fuel mixture supplied to at least one cylinder for a predetermined time, whereupon the trap is purged of stored amounts of the selected constituent. In a preferred embodiment, the air-fuel mixture supplied to the last set of cylinders being stepped from a lean air-fuel ratio to a stoichiometric air-fuel ratio is, instead, immediately stepped to a rich air-fuel ratio to begin the purge event. Where desired, the air-fuel mixture supplied to at least one other set of cylinders, each already operating with a stoichiometric air-fuel ratio, is simultaneously stepped to the rich air-fuel ratio. Upon completion of the purge event, the enriched air-fuel mixture supplied to each enriched set of cylinders is returned, again in a “step” fashion, to a stoichiometric air-fuel ratio.

The above object and other objects, features, and advantages of the present invention are readily apparent from the following detailed description of the best mode for carrying out the invention when taken in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic of an engine system for the preferred embodiment of the invention;

FIG. 2 is graph illustrating a typical concentration of a selected exhaust gas constituent, specifically, NOx, in the engine feedgas over a range of air-fuel ratios;

FIG. 3 is an expanded timing diagram illustrating a pair of transitions between a lean operating condition and a stoichiometric operating condition; and

FIG. 4 is an expanded timing diagram illustrating a transition from a lean operating condition, through stoichiometric operation, and immediately into a scheduled purge event.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Referring to FIG. 1, an exemplary control system 10 for a four-cylinder, direct-injection, spark-ignition, gasoline-powered engine 12 for a motor vehicle includes an electronic engine controller 14 having ROM, RAM and a processor (“CPU”) as indicated. The controller 14 controls the individual operation of each of a set of fuel injectors 16. The fuel injectors 16, which are of conventional design, are each positioned to inject fuel into a respective cylinder 18 of the engine 12 in precise quantities as determined by the controller 14. The controller 14 similarly controls the individual operation, i.e., timing, of the current directed through each of a set of spark plugs 20 in a known manner.

The controller 14 also controls an electronic throttle 22 that regulates the mass flow of air into the engine 12. During operation of the engine 12, the controller 14 transmits a control signal to the electronic throttle 22 and to each fuel injector 16 to maintain a target cylinder air-fuel ratio for the resulting air-fuel mixture individually supplied to each cylinder 18. An air mass flow sensor 24, positioned at the air intake of engine's intake manifold 26, provides a signal regarding the air mass flow resulting from positioning of the engine's throttle 22. The airflow signal from the air mass flow sensor 24 is utilized by the controller 14 to calculate an air mass value which is indicative of a mass of air flowing per unit time into the engine's induction system.

A heated exhaust gas oxygen (HEGO) sensor 28 detects the oxygen content of the exhaust gas generated by the engine and transmits a signal to the controller 14. The HEGO sensor 28 is used for control of the engine air-fuel ratio, especially during operation of the engine 12 at or near the stoichiometric air-fuel ratio which, for a constructed embodiment, is about 14.65. A plurality of other sensors (not shown) also generate additional electrical signals in response to various engine operations, for use by the controller 14.

An exhaust system 30 transports exhaust gas produced from combustion of an air-fuel mixture in each cylinder 18 through a pair of emission control devices 32,34.

As illustrated in FIG. 2, the concentration of a selected constituent of the exhaust gas generated by any given cylinder 18, such as NOx, is a function of the in-cylinder air-fuel ratio (designated “AIR-FUEL RATIO” in FIG. 2). In accordance with the invention, the controller 14 regulates the air-fuel ratio of the air-fuel mixture supplied to each set of cylinders 18 to avoid cylinder operation at air-fuel ratios between about 18 and about 15 (the latter being slightly lean of the stoichiometric air-fuel ratio of 14.65), even when transitioning between a lean operating condition and a stoichiometric operating condition.

More specifically, under the invention, the controller 14 avoids such increased NOx emissions at the source by sequentially stepping, i.e., changing in a “step” fashion, the air-fuel ratio of the air-fuel mixture supplied to each of a plurality of discrete groups or sets of cylinders 18 (in the illustrated embodiment, there are four discrete sets of cylinders 18, one cylinder 18 to each set) between a lean air-fuel ratio of at least about 18 (illustrated as point A in FIG. 2) and a stoichiometric air-fuel ratio of about 15 (illustrated as point B in FIG. 2). Exemplary transitions from lean-to-stoichiometric operation and from stoichiometric-to-lean operation, as achieved by the proposed system, is illustrated in FIG. 3 (wherein each of the four sets includes a single cylinder 18). In this manner, the invention avoids operating of any given cylinder 18 in the range of problematic air-fuel ratios.

In order to minimize torque fluctuations when transitioning from a lean operating condition to a stoichiometric operating condition, or when transitioning from a stoichiometric operating condition to a lean operating condition, the controller 14 retards the spark to any cylinder 18/set of cylinders 18 which is operating, during transition, with a stoichiometric air-fuel ratio. More specifically, because any cylinder 18 operating with a stoichiometric air-fuel ratio will generate greater torque than another cylinder 18 operating “lean,” spark is retarded in only the stoichiometric cylinders 18 to thereby even-out generated torque until all cylinders have been brought either to lean or stoichiometric operation.

Thus, when transitioning from a lean operating condition to a stoichiometric operating condition, each cylinder 18 is sequentially stepped between operating at a lean air-fuel ratio and operating at a stoichiometric air-fuel ratio, with spark being simultaneously retarded as to each cylinder whose respective air-fuel mixtures have been stepped to the stoichiometric air-fuel ratio. Similarly, when transitioning from a stoichiometric operating condition to a lean operating condition, spark is initially retarded to all cylinders 18 (each of which is operating, prior to the transition, with a stoichiometric air-fuel ratio). Then, as the air-fuel mixture supplied to each cylinder 18 is stepped to the lean air-fuel ratio, the spark to the cylinder 18 is simultaneously advanced.

In accordance with another feature of the invention, after spark has been retarded to all cylinders 18 transitioned from a lean operating condition to a stoichiometric operating condition, and with all cylinders 18 operating at the stoichiometric air-fuel ratio, spark is preferably slowly advanced over a predetermined time period t2 while air mass flow rate is decreased, either under the direction of an electronic throttle 22 or the vehicle driver. The adjustment of spark and mass airflow during time period t2 ensures maximum fuel economy with little additional perceived torque fluctuation by vehicle occupants after the cylinders 18 have been respectively brought to stoichiometric operation.

In accordance with the invention, the relative timing of the step change in air-fuel ratios of the several cylinders 18 is controlled by the controller 14. Where the engine features injection of fuel directly into each cylinder 18, changes in cylinder air-fuel ratios are immediate, and there need be a delay or “waiting period t1”of only one cylinder event between the stepping of one set of cylinders 18 and the stepping of another set of cylinders 18. Where the engine features port fuel injection, a longer delay may be necessary so as to ensure that each stepped cylinder 18 has achieved the target air-fuel ratio. It will be appreciated that the controller 14 can alternatively calculate the waiting period t1 in any suitable manner, for example, as a function of engine operating conditions such as engine load and speed, as through use of a lookup table stored in the controller's memory.

As seen in FIG. 3, the step change in the last set of cylinders 18 to either the lean operating condition or the stoichiometric operating condition is preferably followed by a waiting period t2 during which the electronic throttle 22 adjusts the mass airflow into the engine 12, or the vehicle driver is otherwise permitted to respond by releasing the accelerator pedal (not shown) by a small amount, while the spark is advanced back to optimal. In this manner, a constant engine torque output is achieved.

In accordance with another feature of the invention, the method is preferably also employed when transitioning from a lean engine operating condition to an enriched engine operating condition suitable for “purging” NOx stored in the trap 34, because of the trap's reduced instantaneous efficiency (i.e., the reduced instantaneous NOx-absorption rate) and/or a lack of available NOx-storage capacity in the trap 34 which triggered the need for the purge in the first instance. Still further, the last set of cylinders 18 to be stepped to stoichiometric operation is preferably immediately stepped through stoichiometric operation to rich operation, thereby immediately commencing the purge event, as illustrated in FIG. 4. Of course, the invention contemplates simultaneously switching other cylinders 18/sets of cylinders 18, then operating at the stoichiometric air-fuel ratio, to the enriched operating condition to thereby enhance the “strength” of the purge event. It will be appreciated that the purge time t3, the relative degree to which the at least one cylinder 18 is enriched during the purge, and the number of cylinders 18 operated at an enriched air-fuel ratio, are each a function of the properties of the trap. The enriched operating condition is thereafter maintained for a predetermined “purge time t3.” At the end of the purge event, the air-fuel mixture at which each cylinder 18 is operated is nominally returned to the stoichiometric air-fuel ratio.

Alternatively, under the invention, the controller 14 may enrich the air-fuel ratio of the air-fuel mixture supplied to one or more cylinder 18 after bringing the last set of cylinder 18 to stoichiometric operation, and after expiration of a suitable predetermined time period t2.

While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention. For example, while the use of spark timing to normalize torque output during transition has been disclosed, it will be appreciated that the invention contemplates use of other suitable mechanism for controlling the torque output of the several cylinders 18 during transition, including any suitable mechanism for varying mass airflow to each individual cylinder 18.

Claims

1. A method for transitioning an internal combustion engine between a first operating condition and a second operating condition, wherein the first and second operating conditions are characterized by combustion, in each of a plurality of engine cylinders, of a supplied air-fuel mixture having a first and second air-fuel ratio, respectively, and wherein one of the first and second air-fuel ratios is significantly lean of a stoichiometric air-fuel ratio and the other of the first and second air-fuel ratios is a stoichiometric air-fuel ratio, the method comprising:

identifying at least two discrete sets of cylinders supplied with the air-fuel mixture at the first air-fuel ratio;
sequentially stepping the air-fuel ratio of the air-fuel mixture supplied to each set of cylinders from the first air-fuel ratio to the second air-fuel ratio; and
including retarding the timing of combustion ignition in one set of cylinders with respect to another set of cylinders until all sets of cylinders are operating at the second operating condition; and
including decreasing a mass flow of air to all sets of cylinders simultaneous with advancing timing.

2. A method for transitioning an internal combustion engine between a first operating condition and a second operating condition, wherein the first and second operating conditions are characterized by combustion, in each of a plurality of engine cylinders, of a supplied air-fuel mixture having a first and second air-fuel ratio, respectively, and wherein one of the first and second air-fuel ratios is significantly lean of a stoichiometric air-fuel ratio and the other of the first and second air-fuel ratios is a stoichiometric air-fuel ratio, the method comprising:

identifying at least two discrete sets of cylinders supplied with the air-fuel mixture at the first air-fuel ratio;
sequentially stepping the air-fuel ratio of the air-fuel mixture supplied to each set of cylinders from the first air-fuel ratio to the second air-fuel ratio; and
wherein the first air-fuel ratio is the lean air-fuel ratio and the second air-fuel ratio is the stoichiometric air-fuel ratio, the method further including:
determining when the air-fuel ratio of the air-fuel mixture supplied to all but one set of cylinders has been stepped to the second air-fuel ratio; and
stepping the air-fuel ratio of the air-fuel mixture supplied to the one set of cylinders to a third air-fuel ratio rich of a stoichiometric air-fuel ratio.

3. The method of claim 2, wherein the third air-fuel ratio is maintained in the one set of cylinders for a third predetermined time, and further including changing the air-fuel ratio of the air-fuel mixture supplied to the one set of cylinders back to the second air-fuel ratio.

4. A system for controlling operation of a lean burn engine having a plurality of cylinders, each cylinder receiving a metered quantity of fuel from a respective fuel injector, and each cylinder receiving an ignition spark from a respective spark plug, the system comprising:

a controller including a microprocessor arranged to operate the fuel injector for each cylinder to thereby individually control the air-fuel ratio of an air-fuel mixture supplied to each cylinder, wherein the controller is further arranged to transitioning the engine between a first operating condition and a second operating condition, the first operating condition being characterized by a first air-fuel ratio and second operating conditions being characterized by a second air-fuel ratio, one of the first and second air-fuel ratios being significantly lean of a stoichiometric air-fuel ratio and the other of the first and second air-fuel ratios being a stoichiometric air-fuel ratio; and wherein the controller is arranged to sequentially step the air-fuel ratio of the air-fuel mixture supplied to each of at least two cylinders from the first air-fuel ratio to the second air-fuel ratio; and
wherein the controller is further arranged to determine when the air-fuel mixture supplied to each cylinder has been maintained at the second air-fuel ratio for a second predetermined time, and to change the air-fuel ratio of the air-fuel mixture supplied to at least one cylinder to a third air-fuel ratio rich of the stoichiometric air-fuel ratio.

5. The system of claim 4, wherein the controller is further arranged to maintain the third air-fuel ratio in the at least one cylinder for a third predetermined time.

Referenced Cited
U.S. Patent Documents
3696618 October 1972 Boyd et al.
3969932 July 20, 1976 Rieger et al.
4033122 July 5, 1977 Masaki et al.
4036014 July 19, 1977 Ariga
4167924 September 18, 1979 Carlson et al.
4178883 December 18, 1979 Herth
4186296 January 29, 1980 Crump, Jr.
4251989 February 24, 1981 Norimatsu et al.
4533900 August 6, 1985 Muhlberger et al.
4622809 November 18, 1986 Abthoff et al.
4677955 July 7, 1987 Takao
4854123 August 8, 1989 Inoue et al.
4884066 November 28, 1989 Miyata et al.
4913122 April 3, 1990 Uchida et al.
4964272 October 23, 1990 Kayanuma
5009210 April 23, 1991 Nakagawa et al.
5088281 February 18, 1992 Izutani et al.
5097700 March 24, 1992 Nakane
5165230 November 24, 1992 Kayanuma et al.
5174111 December 29, 1992 Nomura et al.
5189876 March 2, 1993 Hirota et al.
5201802 April 13, 1993 Hirota et al.
5209061 May 11, 1993 Takeshima
5222471 June 29, 1993 Stueven
5233830 August 10, 1993 Takeshima et al.
5267439 December 7, 1993 Raff et al.
5270024 December 14, 1993 Kasahara et al.
5272871 December 28, 1993 Oshima et al.
5325664 July 5, 1994 Seki et al.
5331809 July 26, 1994 Takeshima et al.
5335538 August 9, 1994 Blischke et al.
5357750 October 25, 1994 Ito et al.
5359852 November 1, 1994 Curran et al.
5377484 January 3, 1995 Shimizu
5402641 April 4, 1995 Katoh et al.
5410873 May 2, 1995 Tashiro
5412945 May 9, 1995 Katoh et al.
5412946 May 9, 1995 Oshima et al.
5414994 May 16, 1995 Cullen et al.
5419122 May 30, 1995 Tabe et al.
5423181 June 13, 1995 Katoh et al.
5426934 June 27, 1995 Hunt et al.
5433074 July 18, 1995 Seto et al.
5437153 August 1, 1995 Takeshima et al.
5448886 September 12, 1995 Toyoda
5448887 September 12, 1995 Takeshima
5450722 September 19, 1995 Takeshima et al.
5452576 September 26, 1995 Hamburg et al.
5472673 December 5, 1995 Goto et al.
5473887 December 12, 1995 Takeshima et al.
5473890 December 12, 1995 Takeshima et al.
5483795 January 16, 1996 Katoh et al.
5531972 July 2, 1996 Rudy
5544482 August 13, 1996 Matsumoto et al.
5551231 September 3, 1996 Tanaka et al.
5554269 September 10, 1996 Joseph et al.
5569848 October 29, 1996 Sharp
5577382 November 26, 1996 Kihara et al.
5595060 January 21, 1997 Togai et al.
5598703 February 4, 1997 Hamburg et al.
5617722 April 8, 1997 Takaku
5622047 April 22, 1997 Yamashita et al.
5626014 May 6, 1997 Hepburn et al.
5626117 May 6, 1997 Wright et al.
5655363 August 12, 1997 Ito et al.
5657625 August 19, 1997 Koga et al.
5693877 December 2, 1997 Ohsuga et al.
5713199 February 3, 1998 Takeshima et al.
5715679 February 10, 1998 Asanuma et al.
5722236 March 3, 1998 Cullen et al.
5724808 March 10, 1998 Ito et al.
5729971 March 24, 1998 Matsuno et al.
5732554 March 31, 1998 Sasaki et al.
5735119 April 7, 1998 Asanuma et al.
5737917 April 14, 1998 Nagai
5740669 April 21, 1998 Kinugasa et al.
5743084 April 28, 1998 Hepburn
5743086 April 28, 1998 Nagai
5746049 May 5, 1998 Cullen et al.
5746052 May 5, 1998 Kinugasa et al.
5752492 May 19, 1998 Kato et al.
5771685 June 30, 1998 Hepburn
5771686 June 30, 1998 Pischinger et al.
5778666 July 14, 1998 Cullen et al.
5792436 August 11, 1998 Feeley et al.
5802843 September 8, 1998 Kurihara et al.
5803048 September 8, 1998 Yano et al.
5806306 September 15, 1998 Okamoto et al.
5813387 September 29, 1998 Minowa et al.
5831267 November 3, 1998 Jack et al.
5832722 November 10, 1998 Cullen et al.
5842339 December 1, 1998 Bush et al.
5842340 December 1, 1998 Bush et al.
5862661 January 26, 1999 Zhang et al.
5865027 February 2, 1999 Hanafusa et al.
5867983 February 9, 1999 Otani
5877413 March 2, 1999 Hamburg et al.
5910096 June 8, 1999 Hepburn et al.
5929320 July 27, 1999 Yoo
5934072 August 10, 1999 Hirota et al.
5938715 August 17, 1999 Zhang et al.
5953907 September 21, 1999 Kato et al.
5966930 October 19, 1999 Hatano et al.
5970707 October 26, 1999 Sawada et al.
5974788 November 2, 1999 Hepburn et al.
5974791 November 2, 1999 Hirota et al.
5974793 November 2, 1999 Kinugasa et al.
5974794 November 2, 1999 Gotoh et al.
5979161 November 9, 1999 Hanafusa et al.
5979404 November 9, 1999 Minowa et al.
5983627 November 16, 1999 Asik
5992142 November 30, 1999 Pott
5992372 November 30, 1999 Nakajima
5996338 December 7, 1999 Hirota
6003308 December 21, 1999 Tsutsumi et al.
6012282 January 11, 2000 Kato et al.
6012428 January 11, 2000 Yano et al.
6014859 January 18, 2000 Yoshizaki et al.
6023929 February 15, 2000 Ma
6026640 February 22, 2000 Kato et al.
6058700 May 9, 2000 Yamashita et al.
6073440 June 13, 2000 Douta et al.
6079204 June 27, 2000 Sun et al.
6092021 July 18, 2000 Ehlbeck et al.
6092369 July 25, 2000 Hosogai et al.
6101809 August 15, 2000 Ishizuka et al.
6102019 August 15, 2000 Brooks
6105365 August 22, 2000 Deeba et al.
6119449 September 19, 2000 Köhler
6128899 October 10, 2000 Oono et al.
6134883 October 24, 2000 Kato et al.
6138453 October 31, 2000 Sawada et al.
6145302 November 14, 2000 Zhang et al.
6145305 November 14, 2000 Itou et al.
6148611 November 21, 2000 Sato
6148612 November 21, 2000 Yamashita et al.
6161378 December 19, 2000 Hanaoka et al.
6161428 December 19, 2000 Esteghlal et al.
6164064 December 26, 2000 Pott
6189523 February 20, 2001 Weisbrod et al.
6199373 March 13, 2001 Hepburn et al.
6202406 March 20, 2001 Griffin et al.
6205773 March 27, 2001 Suzuki
6214207 April 10, 2001 Miyata et al.
6216448 April 17, 2001 Schnaibel et al.
6216451 April 17, 2001 Schnaibel et al.
6233923 May 22, 2001 Itou et al.
6237330 May 29, 2001 Takahashi et al.
6244046 June 12, 2001 Yamashita
6324835 December 4, 2001 Surnilla et al.
6360713 March 26, 2002 Kolmanovsky et al.
6390054 May 21, 2002 Yang
Foreign Patent Documents
196 07 151 July 1997 DE
0 351 197 January 1990 EP
0 444 783 September 1991 EP
0 503 882 September 1992 EP
0 580 389 January 1994 EP
2316338 February 1998 GB
2355945 May 2001 GB
62-97630 May 1987 JP
62-117620 May 1987 JP
64-53042 March 1989 JP
2-30915 February 1990 JP
2-33408 February 1990 JP
2-207159 August 1990 JP
5-26080 February 1993 JP
5-106493 April 1993 JP
5-106494 April 1993 JP
6-58139 March 1994 JP
6-264787 September 1994 JP
7-97941 April 1995 JP
WO 98/27322 June 1998 WO
0118374 March 2001 WO
Other references
  • C. D. De Boer et al., “Engineered Control Strategies for Improved Catalytic Control of NO x in Lean Burn Applications,” SAE Technical Paper No. 881595, Oct. 10-13, 1988.
  • Y. Kaneko et al., “Effect of Air-Fuel Ratio Modulation on Conversion Efficiency of Three-Way Catalysts,” SAE Technical Paper No. 780607, Jun. 5-9, 1978, pp. 119-127.
  • W. H. Holl, “Air-Fuel Control to Reduce Emissions I. Engine-Emissions Relationships,” SAE Technical Paper No. 800051, Feb. 25-29, 1980.
  • A. H. Meitzler, “Application of Exhaust-Gas-Oxygen Sensors to the Study of Storage Effects in Automotive Three-Way Catalysts,” SAE Technical Paper No. 800019, Feb. 25-29, 1980.
  • J. Theis et al., “An Air/Fuel Algorithm to Improve the NO x Conversion of Copper-Based Catalysts,” SAE Technical Paper No. 922251, Oct. 19-22, 1992.
  • W. Wang, “Air-Fuel Control to Reduce Emissions, II. Engine-Catalyst Characterization Under Cyclic Conditions,” SAE Technical Paper No. 800052, Feb. 25-29, 1980.
  • T. Yamamoto et al., “Dynamic Behavior Analysis of Three Way Catalytic Reaction,” JSAE 882072—882166.
Patent History
Patent number: 6604504
Type: Grant
Filed: Jun 19, 2001
Date of Patent: Aug 12, 2003
Patent Publication Number: 20020189580
Assignee: Ford Global Technologies, LLC (Dearborn, MI)
Inventors: Gopichandra Surnilla (West Bloomfield, MI), David George Farmer (Plymouth, MI)
Primary Examiner: Erick Solis
Attorney, Agent or Law Firms: Julia Voutyras, Allan J. Lippa
Application Number: 09/884,383