Sludge scraping and collecting apparatus
The present invention provides a sludge or the like scraping and collecting apparatus. This apparatus has a whole structure more simplified and can realize a cost-down. Further, it is advantageously installed. The scraping and collecting apparatus comprises a carriage having a main body formed from a single long member constant in section in a front and rear direction. The carrier main body has a front end and a rear end provided with sludge scrapers. These front and rear sludge scrapers are adapted to be able to simultaneously and interlockingly move by a pulling and conveying means through a longitudinally and interlockingly moving member which advances and retreats in parallel with the carriage main body.
This invention relates to a sludge scraping and collecting apparatus.
DESCRIPTION OF RELATED ARTAs for a conventional sludge scraping and collecting apparatus, a processing basin such as a sedimentation basin, is equipped with a circulating chain having a number of flights arranged. The flights scrape and collect the sludge at a bottom of the basin while they are passing over the bottom of the basin and bring it into a sludge pit. However, because the conventional sludge scraping and collecting apparatus becomes complicated in structure and does not pay in the aspect of cost and so on, recently, instead of the above-mentioned conventional one, there emerges a sludge scraping and collecting apparatus which includes a carriage equipped with a vertically movable sludge scraper adapted to advance and retreat along guide rails laid on the bottom of the basin. This sludge scraping and collecting apparatus has an advantage that it has a simple structure and is produced at a relatively low cost.
The above-mentioned sludge scraping and collecting apparatus is generally provided with a carriage which has running wheels and can advance and retreat on the guide rails. It is driven from above the basin and made to advance and retreat by a pulling and conveying means such as a wire rope. While it advances and retreats, the sludge scraper equipped on the carriage is adapted to be switchable over between a vertical scraping and collecting position and a lifted-up return position.
Such sludge scraping and collecting apparatus has the guide rails arranged along both side walls and has a horizontally wide carriage provided over a space between these rails. Accordingly, the apparatus becomes so large that it tried in vain to reduce the cost.
Further, the convention sludge scraping and collecting apparatus has a carriage short in a front and rear direction. Therefore, it advances and retreats by a long stroke since the processing basin has a long distance. This results in increasing the scraping and collecting cycle in time and, for example, entails a fear that it cannot satisfactorily deal with a large amount of sanitary sewage when the sewage has flowed into the processing basin. Thus the carriage is elongated to have its front end and rear end provided with sludge scrapers in an attempt to scrape and collect the sludge present at the rear portion toward the front portion separately several times so as to fall it into the pit.
However, in this case, if the carriage main body is fundamentally in the shape of a large rectangular frame in plan, there was a limit in not only simplifying the structure of the whole device but also in reducing the cost.
In the case where the sludge scraping and collecting apparatus of the type that switches over the sludge scraper from the upper position to the lower position and vice versa as mentioned above is, for example, installed with a final sedimentation basin taken as an intended object, the sludge scraper easily hoists the sludge when it advances since it has been conventionally set as high as at least 600 mm. Thus there is imagined a likelihood of impeding the decontamination treatment by inducting the hoisted sludge portion of high floatability out of an overflow weir for supernatant water, which is positioned downstream thereof, along with the flow in the basin caused by the easy hoisting.
In order to solve the above-mentioned problems, the present invention has an object to provide a sludge or the like scraping and collecting apparatus which has a whole structure more simplified and can, in fact, reduce the cost and advantageously be installed. It has another object to provide a sludge or the like scraping and collecting apparatus which prevents the hoisting of the sludge so as to improve the decontamination efficiency and effectively conducts the decontamination treatment by returning the sludge while it is being activated.
It has still another object to provide a sludge or the like scraping and collecting apparatus which more simplifies the rotation system of a rake arm installed in a circular sedimentation basin and assures a reliable operation at a lower cost.
In order to accomplish the above objects, the invention sets forth a sludge or the like scraping and collecting apparatus which comprises a guide rail laid on a bottom of a processing basin, rectangular in plan, such as a sedimentation basin and aeration reservoir, having side walls opposing to each other, front and rear end walls perpendicular to these side walls and one end provided with a pit, so as to pass through a mid portion between the both side walls in a longitudinal direction which is a front and rear direction, and a carriage having running wheels and provided on the guide rail so that it can reciprocally run in the front and rear direction. The carriage is provided with a sludge scraper which scrapes and collects the sludge to be deposited on the left and right sides of the guide rail toward the pit so that the sludge scraper is switchable over vertically and rotatably from a lowered scraping and collecting position to a lifted-up return position and vice versa. There is disposed above the processing basin a driving portion which continuously rotates a driven wheel and switches over its rotation direction to a normal one or a reverse one and vice versa. The sludge scraper is rotated and switched over to either of the upper position and the lower position through a pulling and conveying means wrapped around the driven wheel and a direction-conversion wheel arranged in the processing basin. Then the carriage is pulled forwardly or rearwardly.
Another aspect of the invention described above is that the sludge scrapers are arranged at least at the front and rear ends of the carriage so that the sludge which has been scraped and collected and has been moved forward by the sludge scraper at the rear end is further scraped and collected and is moved forward by the sludge scraper arranged ahead of the sludge scraper at the rear end, thereby scraping off the sludge into the pit.
A further aspect of the invention described above is that the carriage has a main body formed from a single long member constant in section in the front and rear direction and the carriage main body has a front end and a rear end at which the sludge scrapers are arranged. These front and rear sludge scrapers are simultaneously and interlockingly moved by the pulling and conveying means through a longitudinal interlockingly moving member which advances and retreats in parallel to the carriage main body.
Yet another aspect of the invention described above is that the carriage main body is formed from a channel member, an angled member, an angular pipe and the like, and the longitudinal interlockingly moving member passes through a space within the groove or the pipe.
Further, another aspect of the invention described above is that the guide rail defines a continuous inner space longitudinally thereof, through which the pulling and conveying means passes.
In still another aspect of the invention described above the sludge scraper has a vertical height within a range of 150 mm to 400 mm and adjustable so as to meet a deposit state of the sludge in the processing basin.
Another aspect of the invention described above is where the front and rear sludge scrapers define a longitudinal space therebetween in which an auxiliary scraper is arranged.
Yet another aspect of the invention described above is where a support column is made to stand up from the carriage and a scum scraping and collecting plate which scrapes and collects scum on the water in one direction is provided through an upper end of the support column so that it floats and sinks.
A different embodiment of the invention is a sludge or the like scraping and collecting apparatus which comprises a carriage provided on a bottom of a processing basin, rectangular in section, such as a sedimentation basin and aeration reservoir, having side walls opposing to each other, front and rear end walls perpendicular to these side walls and one end provided with a pit, so as to pass through a mid portion widthwise of the basin, a common shaft projecting from the carriage so as to extend in a left and right direction and running wheels of tire type provided at the left and right projections of the common shaft so as to be rotatable and rollable on the bottom of the basin. A sludge scraper is provided rotatably around the common shaft, around which the running wheels are also provided. The sludge scraper is lowered to take a scraping and collecting position for scraping and collecting the sludge toward the pit when it advances and is listed up to take a return position when it retreats. The carriage is arranged to be able to advance and retreat by a means for preventing run-out in the left and rear direction. There is disposed above the processing basin a driving portion which can continuously rotate a driven wheel and switches over its rotation direction to a normal one or to a reverse one and vice versa. The sludge scraper is rotated and switched over to either of the upper position and the lower position through a pulling and conveying means wrapped over the driven wheel and a direction-conversion wheel arranged in the processing basin. Then the carriage is pulled forwardly and rearwardly.
Another aspect of the embodiment of the invention discussed above is where the means for preventing the run-out in the left and rear direction comprises the guide rail laid on the widthwise mid portion of the bottom of the basin and a run-out preventing roller projecting from the carriage and extending along the guide rail.
Another embodiment of the invention is the sludge or the like scraping and collecting apparatus rotatably provided with a rake arm having a rake which scrapes and collects the sludge on a bottom surface of a circular sedimentation basin and falls it into a central pit, wherein the rake arm is rotated by a driven wheel equipped on the rake arm, which is rolled along the bottom of the basin while being forcedly rotated through a driving source and makes a circulation movement.
Another aspect of the invention discussed above is where the driven wheel is provided at a leading end of the rake arm and the driving source is also disposed on the rake arm.
Yet another aspect of the invention discussed above is where the rake arm is provided so that it is able to rotate around a pipe for introducing sanitary sewage which stands up from a mid portion of the basin through the central pit.
Still another aspect of the invention discussed above is where the driving source is installed rotatably above the water surface of the basin and is adapted so that its power is transmissible to the driven wheel.
A yet different embodiment of the invention is a sludge or the like scraping and collecting apparatus rotatably provided with a rake arm having a rake which scrapes and collects the sludge on a bottom of a circular sedimentation basin and falls it into a central pit and adapted to rotate over the water and to forward the floating scum outwardly and radially of the basin while scraping and collecting it so as to flow and remove it into a scum removing device. The scraping and collecting apparatus further includes, as a means for scraping and forwarding the scum radially and outwardly of the basin, a scraping and forwarding member able to circulate so that it scrapes and forwards the scum from a radially inward side of the basin to a radially outward side thereof while floating on the water of the basin and then rotates to retreat to the radially inner side.
A different aspect of the invention discussed above is where the means for forwarding the scum outwardly and radially of the basin has a rearward side in the rotation direction. There is arranged on the rearward side a scum scraper rotatable in the basin.
A different embodiment of the invention is a sludge or the like scraping and collecting apparatus which comprises an air introducing main conduit provided at an upper position from a bottom wall of a processing basin, rectangular in section, such as an aeration reservoir, having left and right side walls opposed to each other, front and rear end walls perpendicular to the side walls and one longitudinal end provided with a means for expelling the scraped and collected deposits, and installed so as to extend in parallel to the side walls. An air diffusing pipe projects from the main conduit while crossing it so as to extend toward the side wall and communicates with the main conduit. The scraping and collecting device scrapes and collects the deposits precipitated on the bottom wall of the processing basin such as the aeration reservoir. A guide rail is laid on the bottom wall so as to pass in a longitudinal direction, which is a front and rear direction, between the side walls. The guide rail has an upper portion provided with a framework so that the framework is able to run reciprocally in the front and rear direction and formed with an induction scraper of the fixed type and another scraper of the vertically switchable type. The induction scraper is adapted to scrape out the deposits precipitated in a region below the air diffusing pipe to an exterior area. The another scraper is lowered to scrape and forward the deposits precipitated on the bottom wall along with the deposits scraped out by the induction scraper and on the other hand, is lifted up to return rearwardly without scraping back the deposits.
Hereinafter, the present invention is explained in detail with reference to illustrated embodiments.
The sedimentation basin is provided with side walls 1 which oppose to each other in a right and left direction as shown by a plan view of
Numeral 6 designate a guide rail. The guide rail 6 passes through a mid portion of the width of the basin as shown in
This guide rail 6 consists of a head side rail (A) at the left end of
The guide rail 6 comprises a pair of rail main bodies 7 formed from H-shaped steels, as fundamentally shown in section in
The rail main bodies 7 have the respective upper surfaces constituting their outer sides to which running base plates 10 are fixed by welding. More specifically, the head side rail (A) has its front end portion fixed to the end wall 2 at the front end through a rail bracket 11 and has its rear end portion fixed so that the rail connecting plate 8 comes onto the front end of the bottom 4 of the basin. A third load sheave 12 is fixed widthwise at a forward and lower position on the head side rail (A). Further, a first load sheave 13 is secured widthwise at a higher position slightly rearwards of the third load sheave 12 through a bracket 14 thereon.
The head side rail (A) has a rear side to which a plurality of intermediate rails (C) are continuously connected. Continuously connected to the rear side of the rearmost one of the intermediate rails (C) is the tail side rail (B) through which a second load sheave 15 is fixed. The sheave 15 is secured through a bracket 16.
Each of the running base plates 10 of the rails (B) and (C) extends forwards from the end, portion of the rail main body slightly to have its leading end cut slant in plan. As for the head side rail (A) shown at a left lower portion of
The thus continuously formed running base plate 10 has a front end and a rear end each formed with a gradient 17 so that a running wheel to be mentioned later drops down from the running base plate 10 onto the rail main body when it comes to an advance end or to a retreat end. How the gradient is formed at the front end and the rear end is explained by taking out the relevant portion and enlarging it at a lower column of
There is fixed within the guide rail 6 an inner rail 19 of an angled member provided with its groove oriented upwards so that it passes over the rail connecting plate 8 as shown in
Moreover, the rail main bodies 7 and 7 define a space having an upper end to which a rail cover 20 is detachably attached so as to prevent the sludge which falls from above, from entering the guide rail 6. The rail cover 20 is provided with a groove 20a widthwise thereof. A carriage to be mentioned later may be provided with a scraper for removing the sludge within this groove 20a. This scraper may be a link chain or the like.
The carriage 22 has a main body 23. The main body 23 comprises a front portion (a) and a rear portion (b). Both of these potions (a) and (b) are channel steels as shown in
The carriage main body 23 has the front portion integrally fixed to a receiving board 26 as shown by a perspective view of
The paired left and right receiving boards 26 each has a bottom side to which a roller bracket 37 is integrally fixed. The roller bracket 37 mounts a side roller 34 able to butt against the running base plate 10 from an external and lateral area and a roller 35 (with a bracket 36) for preventing the floating-up, which can butt against an upper web of the rail main body 7 from a lower area, in view of the relationship of position in the front and rear direction. Further, detachably attached between the end plate 28 and a cover receiving member 38 is a side cover 39, which protects the bearing or the like to be mentioned later from the sludge. Additionally, the end plate 28 has a lower and rear surface to which a rail scraper 40 is detachably attached. The rail scraper 40 gets rid of the sludge over the upper surface of the guide rail 6 or within the grooves as shown in
These constructions are substantially the same as those at the rear end portion of the carriage, so that they are only designated by the same reference numerals and an explanation therefor is omitted.
Shaft attaching plates 42 with shafts 41 integrally projecting therefrom are mounted rearwards of the receiving board 26 of the carriage main body 23 so that they can be fixed by bolts from lateral sides. Running wheels 43 are rotatably fitted around the pair of left and right shafts 41. The running wheels 43 roll over the running base plates 10.
A pair of left and right intermediate auxiliary wheels 45 are equipped in the vicinity of the front and rear joint portions of the carriage main body 23 as non limitative resin wheels.
On the other hand, a pair of left and right bearings 52 are detachably fixed onto the respective bearing pedestals 27 of the front and rear receiving boards 26 so that their axes are oriented widthwise. A rotary solid (or pipe) shaft 53 is provided so that it passes through these bearings 52 and projects from both sides. This rotary shaft 53 has opposite ends provided with a pair of left and right sludge scrapers 55. Each of the sludge scrapers 55 comprises a scraper pipe 54, a scraper main body 58 and a scraper rubber strip 59. The scraper pipes 54 are inserted onto opposite ends of the rotary shaft 53 and are detachably fixed through attaching members 56. The scraper main body 58 is fixed to the scraper pipe 54 by a connection band 57 which projects from the scraper pipe 54. The scraper rubber strip 59 is provided so as to extend over a lower edge and an outer edge portion of the scraper main body 58. Further, each of the front and rear scraper main bodies 58 has a rear and lower portion provided with a gage wheel 61 so that it is rollable over a laid guide rail 60 and is adjustable in height.
Meanwhile, a pair of left and right short receiving arms 63 are provided at a position between the bearings 52 of the front rotary shaft 53 as shown in
Thus when the weight 66 swings forwardly of the vertical line 67 as shown in
An interlockingly moving link 72 is adapted to have its length adjustable and has one end connected to each of the front interlockingly moving arm 65 and the rear interlockingly moving arm 71. The interlockingly moving link 72 has the other end a lower portion of which is connected to an advancing and retreating piece 73 which advances and retreats horizontally in the front and rear direction. The advancing and retreating piece 73 is provided with a butting member 74 and is arranged at a front position and a rear position. Each of them is integrally fixed onto an advancing and retreating slider 75 in the shape of a square bar which advances and retreats over a bottom of a widthwise mid portion within the carriage main body 23 as shown in
Numeral 80 designates a front stopper and numeral 81 indicates a rear stopper. They are provided at front and rear two positions of the carriage main body 23 through brackets 82 so that they are adjustable in the front and rear direction. The butting members 74 abut against the stopper 80 and the stopper 81 so as to regulate the scraper to the scraping and collecting position and to the return lifted-up position, respectively.
As shown in
The carriage main body 23 has front opposite sides to which support column pedestals 88 are fixed as shown in
Further, there stand on an upper end of the support column 89 a pair of left and right vertically guiding bars 98 each of which has a coil spring 97. A scum scraping and collecting plate 99 is adapted to vertically move with respect to the bar 98. The scum scraping and collecting plate 99 comprises a hollow member, rectangular in section, and has an interior area filled with a foam material so as to secure buoyancy. The scum scraping and collecting plate 99 has a widthwise mid portion from the bottom of which a pull-down bar 100 projects. This bar 100 is vertically guided by a bar guide pipe 102 which hangs down from an upper horizontal connecting member 101. The bar 100 has a lower end to which one end of a float and sink connecting wire 103 is connected. The wire 103 is connected to an upper end of the front interlockingly moving arm 65 via a sheave 105 provided in a bracket 104 which projects from a front surface of the lower horizontal connecting member 96.
Next, an explanation is given for the operation of the sludge scraping and collecting apparatus.
Owing to the fact that the front interlockingly moving arm 65 leans forwards at the time of scraping and collecting, the float and sink wire 103 as shown in
Thereafter, the limit switch acts on the driving source to switch over the pulling and conveying means 86 to a reverse rotation (rightward rotation in
Moreover, as for the scum scraping and collecting plate 99, the front interlockingly moving arm 65 leans rearwards to loosen the wire 103, thereby allowing it to float up to the water surface along with the repulsion of the spring 97 and to take the scum scraping and collecting position. Consequently, after the front running wheels 43 have ridden unto the running base plate 10, the above actions continuously drive the pulling and conveying means 86 to return the front and rear sludge scrapers 55 in the direction (R) in
The above-mentioned embodiment utilizes a link chain as the pulling and conveying means. It may be a timing belt, a wire or the like ropes.
The carriage main body may have the grooves arranged downward and may employ semi-round pipes. Especially, in order that depositing sludge does not stay although the carriage main body has a simplified structure, it may be formed as a carriage main body 110 in the shape of a mountain or an angle as shown in
In the foregoing embodiment, an explanation was given for the sludge scraping and collecting apparatus with the scum scraping and collecting device. There is a case where the sludge scraping and collecting apparatus is constructed as only a sludge scraping and collecting apparatus without the scum scraping and collecting device.
The carriage main body 23 is opened at its upper portion as shown in
As for the sludge scraper 55, two ones are arranged at the front and rear positions. However, it may be three ones and further more ones like four ones, five ones, six ones and so on.
In
In the case where the advancing speed of the sludge scraper is set to a lower one, it will be considered that the scraping and collecting amount may be reduced. Thus the present invention may arrange at least one auxiliary scraper 121 vertically movably other than the original sludge scrapers 55 spaced apart at a predetermined interval in the front and rear direction, on a front side where more sludge deposits from the flow-straightening plate, namely, when seen from the front end, between the first and second sludge scrapers 55 so as to secure the scraping and collecting amount. The presence of the auxiliary scraper 121 assures the scraping and collecting amount and also the stroke (S) is set so as to correspond to within a time span for maintaining the active state. The active fungus in the returned sludge is sent to aeration as it is alive and is used effectively for purification.
In such a final sedimentation basin, when it rains a lot and the amount of the flow-in water reaches the peak, contrary to a short-circuit current which flows in an upper layer as indicated by an arrow (T), the mixture liquid which has become low in temperature and slightly large in density due to rain fall does not straightly flow down but is changed to inertia current as density current. While it tends to moderately flow down as shown by an arrow (M) in
In view of the above fact, this embodiment effectively suppresses the density current (M) by a simple system to thereby inhibit the flow-out phenomenon of the sludge flocs and realizes the early recovery of the active sludge through accelerating the deposit of the sludge at the beginning of the flow-in or the like. Further, it suppresses the occurrence itself of the sludge flocs in an attempt to prevent the foregoing problems from appearing.
More specifically, this embodiment arranges a flow-inhibiting means 133 slightly behind a front end of the guide rail 6 in the basin as shown in
Further, a cylinder of a long stroke and a hydraulically driven system may be arranged in parallel with a long carriage main body and thereon. Its rod is connected to a leading end of the guide rail and may be advanced and retreated by alternatively introducing water under pressure into a front portion and a rear portion of a piston within the cylinder. The carriage main body itself may be the cylinder.
The pit 140 has an upper opening to which a support 151 in the shape of a cross when seen in plan is secured. The support 151 has a mid portion provided with a vertical fixed pipe 152. The pipe 152 is provided with a vertical shaft 153 rotatably. This vertical shaft 153 has a lower end to which a rotary blade 155 is attached so as to feed the sludge which flows into the pit 140 to a sludge discharge passage 154 communicated with a peripheral portion of the pit 140. On the other hand, a pair of rake arms 156 are rotatably attached around the vertical shaft 153. Each of the rake arms 156 is provided with a number of rakes 157 and has a leading end equipped with a driving source 158 which consists of an underwater motor and a reduction gear. One of the rake arms 156 has a leading end provided with a driven wheel 159 of rubber tire type so that it is compulsorily driven by the driving source 158 and rotates while rolling on the bottom wall 141. The other rake arm 156 may be also provided with the driven wheel 159. In this case, the driven wheel is alternatively of free rotation type and of compulsory rotation type.
A distribution cord 160 of the driving source 159 is led to an upper rotary conductive joint 162 through a central pipe 161 so as to make it energizable.
The rake arm 156 is composed of a single pipe as shown in
The pit 200 has a mid portion provided with a base 205 on which a central pipe 206 stands up. A sanitary-sewage induction pipe 207 is inserted through the base 205 and the central pipe 206. As shown by an arrow (H) in
The central pipe 206 is provided around its base with a rotor 210 vertically rotatable through radial bearings. The rotor 210 is supported on a base 205 rotatably by thrust bearings. The rotor 210 has rake arms 211, which project largely and radially from a peripheral portion of the rotor 210. The rake arm 211 is a light arm comprising four pipes and connection pipes for connecting these four pipes mutually. The rake arm 211 has a bottom surface on which such rakes as
The rake arm 211 has the bottom surface at its leading end, attached to which is a frame 214 provided peripherally at its front and rear ends with driven wheels 213 as shown in
This base 219 makes a rotation movement along an inner side of the baffle plate 204. When the fitting base 219 comes to an inspection base 220 projecting from a specified position of a peripheral wall 202 to an inner periphery of the basin, it is possible to ride on an upper side thereof, which results in the possibility of conducting the maintenance work and the like. Installed on the fitting base 219 are a driving source 221 for scraping and collecting sludge, which drives the driven wheels 213 and a driving source 222 for scraping and forwarding scum. As shown in
Numeral 230 indicates the scum scraper, which has a section as shown in
Numerals 232 and 233 designate an inner sprocket and an outer sprocket, respectively. These are paired and are rotatable around a horizontal axis through the upper portions of the respective support columns 215 and 218 forwardly of the scum scraper 230. A pair of front and rear rotation interlocking members 234 are wrapped around these sprockets 232 and 233 and are continuously driven by the driving source 222 for scraping and forwarding the scum through a conduction means in a direction indicated by an arrow (Y) in
There are arranged between the front and rear portions of these rotation interlocking members 234, scraping and forwarding members 235 each in the shape of a round shaft (or a rectangular shaft) as shown in
Furthermore, as shown in
The scum scraper 230 rotates in the direction indicated by the arrow (Q) in
As for another embodiment, as shown in
The reservoir 300 comprises left and right side walls 301, 301 shown in
A plurality of concrete pipe bases 303 are arranged on the bottom wall 302. These bases 303 are spaced apart at a predetermined interval on two lines parallel to the side wall 301. Fixed on to the bases 303 are main conduits 304, 304 in correspondence with the above-mentioned lines and in parallel to each other. Pressurized air is supplied from one end or both ends of each of these conduits 304.
A pair of air diffusing pipes 305 extend, at several portions in a longitudinal direction of each of the conduits 304, perpendicularly to the longitudinal direction and horizontally and communicate with the conduits 304, respectively. Each of these air diffusing pipes 305 has a longitudinal bottom surface provided with an air diffusing port 305a as shown in
A various sorts of deposits, most of which is fine sand mud, precipitate on the bottom wall 302 within the aeration reservoir 300. Conventionally, it was impossible to constitute a removing (scraping) device which can effectively remove them. This is because the bottom area of the reservoir 300 is composed of the bases 303, the conduits 304 and the air diffusing pipes 305 which have become a large obstacle in constituting the removing device.
This embodiment has made it possible for a deposit (deposit sand) scraping and collecting device 310 to be installed by forming it as a specific one adapted to the existing air diffusing structure. Hereafter, the left and right direction in
The device 310 includes a guide rail 311 of monorail system as a relevant part. This embodiment employs for the guide rail 311, a rectangular pipe into which deposit does not enter. The guide rail 311 is arranged along a widthwise mid portion of the device 310 and fixed by anchors not shown. There is a case where an H-shaped or an I-shaped steel is chosen for the guide rail 311. However, in that case, there is a probability of attaching another local scraper to the scraping and collecting device 310. Further, an end portion of the scraping and collecting direction (F) which corresponds to the upper portion in
The device 310 is provided with a framework 312. The framework 312 is arranged to form a saddle with its groove directed downwardly. And the framework 312 is provided at its front and rear ends with a pair of left and right running wheels 313, respectively, which ride on the upper surface of the guide rail 311 so as to be rollable thereon. Each of the running wheels 313 is provided at its outer side with a flange in order not to run off the guide rail 311. Besides, although not shown, there is a case where the framework 312 is provided with a side roller which rotates around a vertical axis and keeps an orbit of the framework 312 proper by contacting the guide rail 311 from an exterior area. Further, there may be provided a float-up preventing roller, which controls the floating movement of the framework 312 constant and is arranged so as to be able to contact a horizontal flange (for example, an upper flange of the H-shaped steel) on the side of the guide rail 311 from below. The running wheels 313 may be in the shape of wide rollers and may comprise a pair of such rollers at the front and rear ends of the framework 312. The framework 312 has front and rear ends provided with rail scrapers 314 on the guide rail 311, which expels the deposits precipitated on the guide rail 311 outwards.
A sinuate member 315 composed of a wire rope, a link chain or the like is connected to each of the front and rear ends of the framework 312. This sinuate member 315 is of mono-wire type or mono-chain type. For example, it has one end connected to the front end of the framework 312 and has the other end connected to the rear end thereof while being connected to a driving source installed on the reservoir through a suitable sheave. Thus when the driving source is rotated normally or reversely, the framework 312 can be arranged to advance and retreat.
The framework 312 has an upper surface, as shown in
A plurality of suspending members 318 extend from the scraper shaft 317 as shown in
Each of the scrapers 319 and 320 is rotated around the scraper shaft 317 to be switched over to an illustrated scraping and collecting position or to a forwardly and upwardly lifted return position and vice versa. For performing the switch-over, a lever 321 projects from a longitudinal mid portion of the scraper 317 and has an upper end provided with a weight 322 of a roller type. A center of gravity is changed over from a front portion of the weight 322 to a rear portion thereof or vice versa so as to switch over from the scraping and collecting position to the return position or vice versa. This change-over of the center of gravity is performed by the abutting of the weight 322 to fixed stoppers, which are opposed to the weight 322 and are arranged at the ends of the directions (R) and (F) in
Each of the first scrapers 319 may have so large a width that it spans between the central guide rail 311 and its opposite side base 303. Further, each of the second scrapers 320 may so large a width that it spans between the side wall 301 and the base 303. However, should they be so long that they come to below the air diffusing pipes 305, there appears a fear that they interfere the air diffusing pipes 305 along with their vertical movements. Therefore, each of the scrapers 319 and 320 is made to have a predetermined narrow width which always prevents it from interfering with them even if it vertically moves.
However, if each of the scrapers 319 and 320 is made to have a small width, as shown in
The framework 312 has front and rear opposite sides to which stays 325 are fixed. Two front and rear horizontal bars 326, 326 are fixed onto the stays 325 so that they pass over the framework 312, the main conduits 304 and the air diffusing pipes 305. The horizontal bars 326 define a space reinforced by connection members 327 through which the scraper shaft 317 passes. Vertical bars 328 are fixed through these horizontal bars 326, thereby securing the induction scrapers 323, 323 to their lower ends, respectively.
At the terminal of the scraping and collecting operation, the lever 321 is tilted rearwards and switched over by the butting of the weights 222 against the stoppers opposed thereto This enables the scrapers 319 and 320 to stand up as shown by arrows in
Each of the scrapers 319 and 320 is formed to have a narrow width so as to be able to attend to the regions other than the region below the air diffusing pipes 305. However, each of them may be formed to have so large a width that it can extend to the regions below the air diffusing pipes 305. However, the scrapers 319 and 320 should be timed so as not to interfere with the air diffusing pipes 305 when they are vertically switched over. Although the induction scrapers 323 are provided with the main plates (a), they are get rid of the main plates (a) and may have only front and rear slant plates (b) so as to form a V-shape in plan or to be curved in the shape of a capital letter (U) as a whole.
Numeral 403 designates a carrier 403 which comprises a main body 404 formed from a single long rectangular pipe, side brackets 405 provided on the left and right opposite sides of each of the front and rear ends of the main body 404 and bearings 406 detachably attached onto the side brackets 405. The main body 404 has end portion which may be closed so as to prevent the sludge or the like from entering thereinto. Used for the main body 404 are a wide variety of members such as a round pipe, a channel steel and a mountain-shaped steel.
The bearings 406 are arranged in pair at the front end and the rear end while spaced apart from and opposed to each other in the left and right direction. A common shaft 407 passes through each of the front and rear paired bearings 406 and projects therefrom. The common shaft 407 is a little shorter than the width of the basin and may be formed in the shape of a pipe. Notably, there is a case where one of the front and rear common shafts is omitted. Running wheels 408 are provided so as to be able to rotate at positions spaced apart in the left and right direction of every common shaft 407. Each of the running wheels 408 is of solid type and is attached to the common shaft 407 through a bush 409 and plates 410 which prevents the removal of the side surfaces, so that it can rotate independently. This running wheel 408 is of solid type and may be provided at its tread portion with projections so as to prevent the slipping and to conduct the drain although no projection pattern is shown. A tube-less tire may be employed for the running wheel 408. Besides, an endless crawler may be wrapped over the front and rear running wheels 408. As for the running wheels 408, they are arranged in the number of only one on each of the left and right sides. But they may be arranged in plural number on each of the left and right sides. In this case, one of the plural running wheels has a larger diameter and each of the remaining ones may be an auxiliary wheel of a diameter slightly smaller than the larger diameter.
An interlocking levers 412 projects from an outer periphery of a portion corresponding to a space defined by the bearings 406 at the mid portion of each of the front and rear common shafts 407 so that they are formed in pair and can be switched over to either of a forwardly rising angle and a rearwardly rising angle. The carrier main body 404 has a body. Arranged around the body is a shifter 415, which comprises a pair of left and right plate members rollable by rollers 414, so that it can advance and retreat in the front and rear direction. An interlocking link 416 is connected to a space defined between the shifter 415 and each of the interlocking lever 412. Thus as shown in
The shifter 415 has a lower portion to front and rear ends of which chain anchors 418 are attached. A pulling and conveying means 420 of a link chain has every end portion to which the anchor 418 is attached. As shown by an imaginary line in
The guide rail 425 is shown in detail in
The guide rail 425 has a rear end arranged in front of the second load sheave 424 in
On the other hand, numeral 436 designates a sludge scraper, which is attached to a front side of the common shaft 407 through a plurality of brackets 437 projecting therefrom. The scraper 436 comprises two parts. One front part is an integral single plate and the other rear part is composed of left and right portions to be separated from each other.
The sludge scraper 436 has a portion corresponding to a running wheel 408. As shown in
When the carrier 403 has returned toward the direction (R), the limit switch detects the timing to switch over the rotation of the driven wheel to the direction indicated by the solid line arrow. This pulls the upper circulating portion of the pulling and conveying means 420 in the direction indicated by the arrow (F) to pull the shifter 415 to the stopper not shown. Meanwhile, the front and rear interlocking levers 412 are forwardly and interlockingly rotated through the interlockingly moving links 416 to rotate the common shafts 407 in the same direction. This switches over the scraper 436 lifted up as shown by the imaginary line to the vertical scraping and collecting position illustrated by the solid line. The pulling and conveying means 420 is continuously pulled in the direction indicated by the arrow (F) to pull the carrier 403 for scraping and collecting in the same direction.
In this embodiment, an independent driving system is formed for one sedimentation basin. However, for example, two scraping and collecting apparatuses are arranged in adjacent two basins to bring them into an interlockingly moving relationship by a single pulling and conveying means 420. These scraping and collecting apparatuses are interlockingly moved by a single driving source. Such one driving system of two basins is applicable to this embodiment. In this case, for example, as shown in
Claims
1. A sludge scraping and collecting apparatus which comprises a guide rail laid on a bottom of a processing basin, rectangular in plan, having side walls opposing to each other in a widthwise direction of the basin, front and rear end walls perpendicular to these side walls and spaced from each other in a longitudinal direction of the basin and one end at the front of the basin, which is provided with a pit, so as to pass through a mid portion between the both side walls in a longitudinal direction which is a front and rear direction,
- a carriage having a main body, an advancing and retreating slider and a sludge scraper arranged at least at a front end and a rear end of the carriage main body and provided on the guide rail so that it reciprocally runs in the front and rear direction through running wheels,
- the carriage main body having a body portion formed into a one-piece unit through which the advancing and retreating slider can be inserted and extending uniformly in the same section in the front and rear direction,
- the advancing and retreating slider being supported by the body portion of the carriage main body, so that it is guided to advance and retreat in the front and rear direction and enables the front and rear sludge scrapers to switch over their upper and lower rotation positions simultaneously when it advances and retreats,
- the sludge scraper being switchable over between a lowered scraping and collecting position where it scrapes and collects the sludge to be deposited on left and right sides of the guide rail, toward the pit and a lifted-up return position, the sludge scraped and collected forward by the rear scraper being scraped and collected further forward by the front scraper, thereby being scraped off into the pit,
- there being disposed above the processing basin a driving portion which continuously rotates a driven wheel and switches over its rotation direction to a normal one or a reverse one or vice versa, a pulling and conveying means wrapped around the driven wheel having one end connected to a front end portion of the advancing and retreating slider through a direction-conversion wheel fixed in the basin and having the other end connected to the rear end of the advancing and retreating slider through another direction-conversion wheel arranged at the rear end of the guide rail after it extends from the direction-conversion wheel fixed in the basin and passes through the guide rail,
- the driven wheel being driven for rotating in one direction to switch over the sludge scrapers to either of upper and lower rotation positions through the pulling and conveying means and then driving the carriage for conveying the latter forwardly or rearwardly, wherein
- the carriage main body has front and rear end portions to which receiving boards with bearing pedestals projecting from both of the left and right sides of the carriage main body horizontally are fixed, a pair of left and right bearings being spaced apart on the respective bearing pedestals of the receiving boards detachably with its axis directed in the widthwise direction of the basin, and these bearings are provided with a rotary shaft having outwardly projecting both ends onto which scraper pipes as base shafts for the sludge scrapers are externally fitted so that they are inserted thereonto and removed therefrom so as to form a pair in the left and right direction and are fixed by attaching means.
2. The sludge scraping and collecting apparatus as set forth in claim 1, wherein the sludge scraper has a vertical height within a range of 150 mm to 400 mm and adjustable so as to meet a deposit state of the sludge in the processing basin.
3. The sludge scraping and collecting apparatus as set forth in claim 1, wherein the front and rear sludge scrapers defines a longitudinal space therebetween in which an auxiliary scraper is arranged.
4. The sludge scraping and collecting apparatus as set forth in claim 1, wherein a support is made to stand up from the carriage side and a scum scraping and collecting plate which scrapes and collects scum on the water in one direction is provided through an upper end of the support so that it floats and sinks.
1911008 | May 1933 | Withington |
1918742 | July 1933 | Elrod |
2305929 | December 1942 | Lund |
3872005 | March 1975 | Baker |
4172040 | October 23, 1979 | Bona et al. |
4247400 | January 27, 1981 | King et al. |
4486309 | December 4, 1984 | Krodel |
4663042 | May 5, 1987 | Rasper et al. |
4950398 | August 21, 1990 | Weigand |
5200079 | April 6, 1993 | Schwartz et al. |
5269928 | December 14, 1993 | Leikam |
5478471 | December 26, 1995 | Fujiwara |
6199704 | March 13, 2001 | Fujiwara |
6220455 | April 24, 2001 | Tuomikoski |
6536606 | March 25, 2003 | Schneider et al. |
Type: Grant
Filed: Dec 10, 2004
Date of Patent: Jun 26, 2007
Patent Publication Number: 20060124539
Assignee: Fujiwara Sangyo Kabushiki Kaisha (Osaka)
Inventor: Michihiro Fujiwara (Osaka)
Primary Examiner: Christopher Upton
Attorney: Akin Gump Strauss Hauer & Feld LLP
Application Number: 11/009,573
International Classification: B01D 21/18 (20060101);