Flexible cable and disk drive with the same
A flexible cable and a disk drive with a flexible cable are provided. The disk drive includes a main base, a pickup base installed on the main base and provided with parts for recording and reproducing of signals on and from a disk, including an optical pickup linearly movable within a predetermined region, a board fixedly installed on a side of the main base and configured to control driving of the parts, including the optical pickup, and a flexible cable. The flexible cable includes a folded portion formed at a portion of a flexible cable main body so as to cause both ends of the flexible cable main body to extend in the same direction, wherein ends of the flexible cable connect to the optical pickup and the board at opposite positions, respectively, so as to transmit signals therebetween. With this structure, it is possible to efficiently use inner space of the disk drive.
Latest LG Electronics Patents:
- METHOD AND APPARATUS FOR MANAGING RANDOM ACCESS RESOURCE SETS BY CONSIDERING POTENTIAL FEATURES IN WIRELESS COMMUNICATION SYSTEM
- IMAGE DISPLAY APPARATUS AND OPERATING METHOD THEREOF
- DISPLAY DEVICE
- DEVICE AND METHOD FOR PERFORMING, ON BASIS OF CHANNEL INFORMATION, DEVICE GROUPING FOR FEDERATED LEARNING-BASED AIRCOMP OF NON-IID DATA ENVIRONMENT IN COMMUNICATION SYSTEM
- MAXIMUM POWER REDUCTION
1. Field of the Invention
The invention relates to a disk drive, and more particularly, to a flexible cable for electrically connecting a movable optical pickup to a fixed board in a disk drive.
2. Background of the Related Art
Referring to
A spindle motor 7 configured to rotate a disk is positioned on the pickup base 3. A disk is seated on a turntable 8 which is provided at a top end of the spindle motor 7 and which is configured to be rotated by the spindle motor 7. An optical pickup 9 is installed on the pickup base 3 and is guided along guide shafts 10. The optical pickup 9 records or reads out signals by irradiating a signal-recording surface of the disk with light. The optical pickup 9 is driven by a sled motor (not shown) to move along the guide shafts 10.
An electrical connection between the optical pickup 9, which moves along the guide shafts 10, and the main board 2 is established by a flexible cable 11, generally referred to as a “FFC” (Flexible Flat Cable), as shown in
A front end of the pickup base 3 is supported on a lift base 12. The lift base 12 is installed so that a front end thereof can be pivoted on a shaft 13 that functions as a center of rotation. Vibration-proof members 5′ are interposed between the lift base 12 and the pickup base 3 to support the pickup base 3 on the lift base 12 and prevent transmission of vibrations and noises.
In the related art disk drive described above, the optical pickup 9 records signals on the disk or reproduces recorded signals while moving along the guide shafts 10 by means of a driving force from the sled motor (not shown). The flexible cable 11 is used for transmitting signals between the optical pickup 9 and the main board 2. Since the flexible cable 11 can be freely bent to a certain extent, as described above, it may be installed to be bent and protrude toward a side opposite to the optical pickup 9 with respect to the connector 11c, as shown in
However, there is the following problem in the related art disk drive described above. The flexible cable 11 is installed to protrude toward a side opposite to the optical pickup 9 with respect to the connector 11c for connection to the main board 2, making a connection between the main board 2 and the optical pickup 9. As the flexible cable 11 is installed as such, it is not possible to install other parts in a region A (see
An object of the invention is to solve at least one or more of the above problems and/or disadvantages in a whole or in part and to provide at least the advantages described hereinafter.
In order to achieve at least the above objects, in whole or in part, and in accordance with the purposes of the invention, as embodied and broadly described, there is provided a flexible cable according to an embodiment of the invention comprising a flexible cable main body having one end configured to connect to a first part and the other end configured to connect to a second part on a side opposite to the first part and configured to transmit signals between the first and second parts, wherein at least one of the first and second parts is movable, and a folded portion formed by folding a portion of the cable main body so that two opposing faces are in contact with each other.
To further achieve at least the above objects, in whole or in part, and in accordance with the purposes of the invention, as embodied and broadly described, there is provided a flexible cable according to an embodiment of the invention comprising a first end configured to be connected to a first part and a second end configured to be connected to a second part so as to transmit signals between the first and second parts, at least one of the first and second parts being movable, and a folded portion formed by folding a portion of the flexible cable, wherein the folded portion does not deviate from vertical alignment with the first part.
To further achieve at least the above objects, in whole or in part, and in accordance with the purposes of the invention, as embodied and broadly described, there is provided a flexible cable according to an embodiment of the invention comprising a first end configured to be connected to a first part and a second end configured to be connected to a second part so as to transmit signals between the first and second parts, at least one of the first and second parts being movable, and at least one curved portion formed by folding a portion of the flexible cable, wherein a vertex of the curved portion does not deviate from vertical alignment with the first part.
To further achieve at least the above objects, in whole or in part and in accordance with the purposed of the invention, as embodied and broadly described, there is provided a disk drive according to an embodiment of the invention comprising a main base, a pickup base installed on the main base and provided with parts for recording and reproducing signals on and from a disk, including an optical pickup linearly movable within a predetermined region, a board fixedly installed on a side of the main base and configured to control driving of the parts including the optical pickup, and a flexible cable having a folded portion formed by folding a portion of a flexible cable main body, wherein two strips of cable extend from the folded portion in the same direction and are connected, respectively, to the optical pickup and the board so as to transmit signals therebetween.
Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.
The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
Referring to
A pickup base 40 is installed on the main base 30. The pickup base 40 is provided with a variety of parts for recording signals and reproducing recorded signals on and from a disk D, as discussed below. A spindle motor 42 is installed on the pickup base 40, and a turntable 43 is mounted on a rotational shaft of the spindle motor 42. A disk D is seated on the turntable so as to be rotated therewith.
A tray 60 is installed on the main base 30. The tray 60 is installed so as to be movable inside and outside of the main base 30, and thus, functions to move the disk D between a loading position and an unloading position. The tray 60 has a disk-seating portion 62 configured for seating the disk D thereon.
A pickup window 45 having a predetermined area is formed in a center of the pickup base 40. An optical pickup 46 is installed in an area of the pickup window 45 so as to be movable along guide shafts 47 by an additional driving source (not shown). The guide shafts 47 are installed on the pickup base 40 and movably support both lateral ends of the optical pickup 46. The optical pickup 46 functions to record signals or reproduce recorded signals by irradiating a signal-recording surface of the disk D with light.
The optical pickup 46 and the main board 32 are connected using a flexible cable 50. A cable main body 51 is formed of a flexible material. One end of the cable main body 51 is connected to the optical pickup 46 and the other end is connected to the main board 32 by a connector 33. The cable main body 51 has a straight portion 51p, and a curved portion 51r having a predetermined curvature and which can be elastically deformed to allow changes in the curvature due to the movement of the optical pickup 46.
The cable main body 51 is divided into the straight portion 51p and the curved portion 51r by a folded portion 53. However, in practice, the curved portion 51r may not be formed upon manufacture of the flexible cable 50 but may be formed when the optical pickup 46 and the main board 32 are connected to each other using the flexible cable 50. In other words, the shape of the flexible cable 50 shown in the figures can be made when one end portion (straight portion 51p) of the flexible cable main body 51 is bent at the folded portion 53 and is connected to the optical pickup 46, and the other end portion, which becomes the curved portion 51r, is connected to the connector 33.
It can be seen from the figures that an end of the folded portion 53 is vertically aligned with and placed into the connector 33. In the embodiment of
As the optical pickup 46 moves when the disk drive is driven, the folded portion 53 is repeatedly subjected to forces causing a portion of the folded portion 53 to be unfolded, as shown in
Another embodiment of the flexible cable is shown in
The reinforcement folded-plate 156 may be made of, for example, synthetic resin or metal. It is possible to form the reinforcement folded-plate 156 in the desired shape during manufacture of the reinforcement folded-plate 156. Alternatively, it is also possible to form the reinforcement folded-plate in the desired shape by bringing a preform into contact with the folded portion 53 and folding, i.e. plastically deforming, the preform.
Hereinafter, operations of the flexible cable and the disc drive with the flexible cable in accordance with embodiments of the invention will be explained herein below with reference to the embodiments of
When a disk D is loaded into the disk drive and an operating signal is input, the disk D seated on the turntable 43 is rotated by the spindle motor 42 and the optical pickup 46 moves along the guide shafts 47 in a radial direction of the disk D so that signals can be recorded or reproduced.
The transmission of signals between the optical pickup 46 moving along the guide shafts 47 and the main board 32 are exchanged through the flexible cable 50. Examples of signals transmitted through the flexible cable 50 may include signals for operations of the optical pickup 46, signals to be recorded on the disk D, signals to be reproduced from the disk D, etc.
That is, in the state of
The invention provides at least the following advantages.
As described above, the flexible cable 50 does not protrude into a region A beyond the connector 33 when the optical pickup 46 is operated. Accordingly, the region A outside the connector 33 may be used as a space for installation of additional parts.
Further, since a space needed for installation of a flexible cable electrically connecting an optical pickup, which is a relatively movable part, to a fixed main board is minimized, it is possible to make the disk drive light, thin, and simple.
Also, even though a folded portion formed in the flexible cable is repeatedly subjected to forces as the optical pickup is operated, the folded portion is not unfolded due to the structure for maintaining the folded state of the folded portion. Thus, the durability of a product with the flexible cable is enhanced.
Further, the variety of embodiments for maintaining the folded state of the folded portion 51 of the flexible cable 50 described herein may be properly selected according to various conditions, such as design conditions of the disk drive. Although in certain circumstances the best performance can be obtained when the folding clip 256 is used, the folding clip 256 may not be suitable for, for example, a light, thin, and/or simple disk drive due to the thickness of the folding clip. In such a case, use of the adhesive member 56 or tape 356 may be more appropriate, improving workability, and making the disk drive light, thin, and simple.
The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the invention. The present teaching can be readily applied to other types of apparatuses. The description of the invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures.
Claims
1. A disk drive, comprising:
- a main base;
- a pickup base installed on the main base and provided with parts for recording and reproducing signals on and from a disk, including an optical pickup linearly movable within a predetermined region;
- a board fixedly installed on a side of the main base and configured to control driving of the parts including the optical pickup; and
- a flexible cable having a folded portion in the form of a portion of a flexible cable main body folded so that two opposing faces are in contact with each other, wherein two strips of cable extend from the folded portion in the same direction and are connected, respectively, directly to the optical pickup and to the board so as to transmit signals therebetween, wherein movement of the optical pickup is configured to be between an inner end and an outer end of said predetermined region and wherein corresponding movement of said flexible cable main body is configured to occur only to one side of a position of the folded portion when said optical pickup is at said outer end.
2. The disk drive as claimed in claim 1, further comprising:
- a tray configured to move inside and outside the main base so as to move the disk between a loading position and an unloading position.
3. The disk drive as claimed in claim 1, wherein the cable main body is divided into a straight portion and a curved portion with respect to the folded portion.
4. The disk drive claimed in claim 3, wherein the folded portion is formed adjacent one of the optical pickup and the board.
5. The disk drive as claimed in claim 1, further comprising a folded-state maintaining device configured to maintain a folded state of the cable main body.
6. The disk drive as claimed in claim 5, wherein the folded-state maintaining device comprises an adhesive member configured to bond both faces of the folded portion to each other.
7. The disk drive as claimed in claim 5, wherein the folded-state maintaining device comprises a reinforcement folded-plate attached to at least one side of both sides of the folded portion.
8. The disk drive as claimed in claim 5, wherein the folded-state maintaining comprises a folding clip with an insertion slot into winch the folded portion is inserted.
9. The disk drive as claimed in claim 5, wherein the folded-state maintaining device comprises a tape configured to wrap both sides of the folded portion.
10. The disk drive of claim 1, wherein said folded portion and said two strips of cable are vertically aligned.
11. The disk drive of claim 10, wherein said folded portion and said two strips of cable are vertically aligned throughout their respective entire lengths.
4967296 | October 30, 1990 | Wiens et al. |
5130499 | July 14, 1992 | Dijkshoorn |
5923501 | July 13, 1999 | Suzuki et al. |
6272090 | August 7, 2001 | Maeda |
6469970 | October 22, 2002 | Nishi |
6910218 | June 21, 2005 | Park et al. |
6981271 | December 27, 2005 | Minase et al. |
20030043508 | March 6, 2003 | Schulz et al. |
20030202447 | October 30, 2003 | Watanabe et al. |
20040205785 | October 14, 2004 | Takahashi et al. |
20060005215 | January 5, 2006 | Wu |
1426964 | September 2004 | EP |
2005-322349 | November 2005 | JP |
WO 02084665 | October 2002 | WO |
WO 03/017279 | February 2003 | WO |
- Buetow, Mike. “Designing Flexible Circuits”. Aug. 2004. Printed Circuit Design & Manufacture, v. 21, No. 8, p. 38-39.
Type: Grant
Filed: Feb 26, 2004
Date of Patent: Jul 29, 2008
Patent Publication Number: 20040233564
Assignee: LG Electronics Inc. (Seoul)
Inventor: Pyung-Lae Kim (Yongin-si)
Primary Examiner: Julie Anne Watko
Attorney: Ked & Associates, LLP
Application Number: 10/786,309
International Classification: G11B 33/12 (20060101); H05K 1/11 (20060101);