Immunoregulatory compounds and derivatives and methods of treating diseases therewith

- Biocon Limited

Compounds are disclosed having the structure of Formula I: where R1, R3, and R4 are independently hydrogen or C1 to C4 alkyl, and R2 is: where R5 is selected from the group consisting of hydrogen and C1 to C4 alkyl, or where R6, R7 and R8 are independently hydrogen or C1 to C4 alkyl; or the esters or pharmacologically acceptable salts thereof. Such compounds may be utilized for the prophylaxis or treatment of various diseases, particularly inflammatory conditions of the GI tract. Methods of treating inflammatory conditions of the GI tract such as inflammatory bowel disease using compounds having the following formula are also disclosed: where R9, R10 and R11 are independently selected from the group consisting of hydrogen and C1 to C4 alkyl, and R12 is selected from the group consisting of hydrogen and —C(O)R13, where R13 is a C1 to C6 alkyl or an aryl group.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 10/967,736, filed on Oct. 18, 2004 now U.S. Pat. No. 7,151,095, entitled “IMMUNOREGULATORY COMPOUNDS AND DERIVATIVES AND METHODS OF TREATING DISEASES THEREWITH”, naming Nnochiri Nkem Ekwuribe and Jennifer A. Riggs-Sauthier as inventors, now allowed, which in turn is a continuation and claims priority to U.S. patent application Ser. No. 10/444,668, filed May 23, 2003, now U.S. Pat. No. 6,903,082, which is a divisional of and claims priority to U.S. patent application Ser. No. 09/942,464, filed Aug. 29, 2001, now U.S. Pat. No. 6,583,128, which claims priority to U.S. Provisional Application Ser. No. 60/228,683, filed Aug. 29, 2000, the disclosures of each of which are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

The present invention relates to immunoregulatory compounds and methods of treating diseases therewith.

BACKGROUND OF THE INVENTION

Many people suffer from inflammatory bowel disease (IBD). IBD is a generic term used to refer to two inflammatory diseases, ulcerative colitis and Crohn's disease. Ulcerative colitis is a chronic inflammatory disease of unknown etiology that affects various portions of the gastrointestinal (GI) tract, particularly the lower GI tract, and more particularly the colon and/or rectum. Crohn's disease is a serious inflammatory disease of the GI tract. It predominates in the small intestine (ileum) and the large intestine (colon). Various medications are being used to treat inflammatory bowel disease.

It is known to use mesalamine, 5-aminosalicylic acid (5-ASA) to treat ulcerative colitis. While mesalamine may be active in treating ulcerative colitis, it may be absorbed as it passes through the GI tract. This absorption may adversely affect the amount of mesalamine that reaches the lower GI tract, particularly the colon and rectum.

Various mesalamine formulations have been introduced in an attempt to protect mesalamine as it passes through the gut and the upper GI tract One such formulation is a delayed-release formulation that relies on a pH-sensitive coating surrounding the mesalamine. The coating allows the mesalamine to pass through the gut and upper GI tract without being absorbed so that the mesalamine reaches the target (i.e. the lower GI tract, particularly the colon and/or rectum) intact. In another formulation, mesalamine microspheres surround a mesalamine core. This formulation releases mesalamine throughout the GI tract, rather than targeting the colon specifically. It may be difficult to predict the bioavailability of the various mesalamine formulations when administered to a wide variety of individuals. As a result, it may be difficult to determine the proper dosage for a given individual.

It is also known to use sulfasalazine having the following formula to treat ulcerative colitis.


However, sulfasalazine is metabolized in the body to form mesalamine (5-aminosalicylic acid (5-ASA)) and sulfapyridine. Several adverse side affects have been noted from the use of sulfasalazine including nausea, vomiting, abdominal discomfort, and headache to name just a few. These adverse side effects are usually attributed to the activity of sulfapyridine in the GI tract, as well as that absorbed into the system.

U.S. Pat. No. 4,412,992 to Chan proposes mesalamine derivatives. Unlike sulfalazine, the breakdown of these compounds in the intestinal tract may not give rise to undesirable metabolic products. In fact, the non-mesalamine metabolic products may be innocuous.

Olsalazine having the following formula has been used to treat ulcerative colitis.


In addition to being relatively expensive to make, olsalazine may have adverse side effects including diarrhea.

It is known to use azathioprine (6-(1-methyl4-nitoimidazol-5-ylthio)purine) in the treatment of inflammatory bowel disease. Azathioprine has the following chemical structure:

It is also known to use 6-mercaptopurine, a metabolite of azathioprine, to treat inflammatory bowel disease. 6-mercaptopurine has the following chemical structure:

Methotrexate (L4-amino-N10-methylpteroyl-glutamic acid) has also been used to treat inflammatory bowel disease. Methotrexate has the following chemical structure:

The polypeptide cyclosporine, which has traditionally been given to transplant patients to prevent organ rejection, has also been used to treat inflammatory bowel disease. The use of cyclosporine to treat IBD may be limited, however, by the various side effects associated with this medication. These side effects include high blood pressure, kidney damage, tremors, headaches, seizures, excessive hair growth, excessive gum growth confusion, coma, and gout.

SUMMARY OF THE INVENTION

According to embodiments of the present invention, compounds are provided having the following formula:

where R1, R3, and R4 are independently hydrogen or C1 to C4 alkyl, and R2 is:

where R5 is selected from the group consisting of hydrogen and C1 to C4 alkyl, or

where R6, R7 and R8 are independently hydrogen or C1 to C4 alkyl, as well as the esters or pharmaceutically acceptable salts of such compounds. Pharmaceutical compositions including compounds according to embodiments of the present invention are also provided, as are methods of treating inflammatory conditions with such compounds.

According to other embodiments of the present invention, methods of treating an inflammatory condition of the GI tract in a subject in need of such treatment include administering to the subject an effective amount of an active pharmaceutical ingredient that includes a compound of Formula II:


where R9, R10 and R11 are independently selected from the group consisting of hydrogen and C1 to C4 alkyl; and R12 is selected from the group consisting of hydrogen and —C(O)R where R13 is a C1 to C6 alkyl or an aryl group, or an ester or a pharmaceutically acceptable salt of such compound, in admixture with a solid or liquid pharmaceutical diluent or carrier. The active pharmaceutical ingredient may further comprise a compound of Formula III:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates embodiments of synthesis routes for compounds of the present invention.

FIG. 2 illustrates embodiments of synthesis routes for compounds of the present invention.

FIG. 3 illustrates the average reduction in colon:body weight [% BW] utilizing embodiments of the present invention (4-APAA/DNBS and Mixture/DNBS) in comparison with results achieved by the prior art (5-ASA/DNBS) and control (vehicle/DNBS).

FIG. 4 illustrates DNBS colitis adhesion scores achieved utilizing embodiments of the present invention (4-APAA/DNBS and Mixture/DNBS) in comparison with results achieved by the prior art (5-ASA/DNBS) and control (Vehicle/DNBS and Vehicle/Sham).

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The invention will now be described with respect to preferred embodiments described herein It should be appreciated however that these embodiments are for the purpose of illustrating the invention, and are not to be construed as limiting the scope of the invention as defined by the claims.

As used herein, the term “inflammatory bowel disease” includes ulcerative colitis and Crohn's disease.

According to embodiments of the present invention, compounds are provided having the following formula:

R1, R3, and R4 are independently hydrogen or C1 to C4 alkyl. Preferably, R1, R3, and R4 are independently selected from the group consisting of H, CH3, CH2CH3, and CH(CH3)2. More preferably, R1, R3, and R4 are H or CH3.

R5 is selected from the group consisting of hydrogen and C1 to C4 alkyd. Preferably, R5 is selected from the group consisting of H, CH3, CH2CH3, and CH(CH3)2. More preferably, R5 is H or CH3 and, most preferably, R5 is H.

R6, R7 and R8 are independently hydrogen or C1 to C4 alkyl. Preferably, R6, R7 and R8 are independently selected from the group consisting of H, CH3, CH2CH3, and CH(CH3)2. More preferably, R6, R7 and R8 are independently H or CH3.

The compounds of the present invention may be made using known starting materials and reagents. For example, embodiments of synthesis paths may be illustrated as shown in FIGS. 1 and 2.

Compounds of the present invention may be utilized for the prophylaxis or treatment of various diseases, particularly inflammatory conditions of the GI tract including, but not limited to, inflammatory conditions of the mouth such as mucositis, infectious diseases (e.g., viral, bacterial, and fungal diseases), and Crohn's disease; inflammatory conditions of the esophogas such as esophagitis, conditions resulting from chemical injury (e.g., lye ingestion), gastroesophageal reflux disease, bile acid reflux, Barrett's esophogas, Crohn's disease, and esophageal stricture; inflammatory conditions of the stomach such as gastritis (e.g., Helicobacter pylori, acid-peptic disease and atrophic gastritis), peptic ulcer disease, pre-cancerous lesions of the stomach, non-ulcer dyspepsia, and Crohn's disease; inflammatory conditions of the intestine such as celiac disease, Crohn's disease, bacterial overgrowth, peptic ulcer disease, and fissures of the intestine; inflammatory conditions of the colon such as Crohn's disease, ulcerative colitis, infectious colitis (e.g., pseudomembranous colitis such as clostridium difficile colitis, salmonella enteritis, shigella infections, yersiniosis, cryptosporidiosis, microsporidial infections, and viral infections), radiation-induced colitis, colitis in the immunocompromised host (e.g., typhlitis), precancerous conditions of the colon (e.g., dysplasia, inflammatory conditions of the bowel, and colonic polyps), proctitis, inflammation associated with hemorrhoids, proctalgia fugax, and rectal fissures; liver gallbladder and/or bilary tract conditions such as cholangitis, sclerosing cholangitis, primary bilary cirrhosis, and cholecystitis; and intestinal abscess. The compounds of the present invention may also be utilized in diagnosis of constituents, conditions, or disease states in biological systems or specimens, as well as for diagnostic purposes in non-physiological systems. Furthermore, the compounds of the present invention may have application in prophylaxis or treatment of condition(s) or disease state(s) in plant systems. By way of example, the active component of the conjugate may have insecticidal, herbicidal, fungicidal, and/or pesticidal efficacy amenable to usage in various plant systems.

In some embodiments, compounds of the present invention may breakdown in the intestinal tract to form the metabolic product of Formula IV:


where R1, R3 and R4 are as described above with reference to Formula I, and the metabolic product of Formula V:


The metabolic product of Formula IV may possess anti-inflammatory activity and/or immunoregulatory activity. The metabolic product of Formula V may possess anti-inflammatory activity, and more particularly may provide inhibition of prostaglandin synthetase I & II.

In other embodiments, compounds of the present invention may breakdown in the intestinal tract to form the metabolic product of Formula IV and the metabolic product of Formula VI:


where R6, R7 and R8 are as described above with reference to Formula I. The metabolic product of Formula VI may possess anti-inflammatory activity and/or immunoregulatory activity. Accordingly, compounds of the present invention may provide immunoregulatory activity. Compounds of the present invention may also provide inhibition of prostaglandin synthetase I and II. Compounds of the present invention may be useful in treating various diseases, particularly ulcerative colitis, Crohn's disease and the like.

In therapeutic usage, the present invention contemplates a method of treating an animal subject having or latently susceptible to an intestinal condition(s) or disease state(s) and in need of treatment therefor, comprising administering to such animal an effective amount of a compound of the present invention that is therapeutically effective for said condition or disease state. Subjects to be treated by the compounds of the present invention include both human and non-human animal (e.g., bird, dog, cat cow, horse) subjects, and are preferably mammalian subjects, and most preferably human subjects.

Depending on the specific condition or disease state to be combatted, animal subjects may be administered compounds of the present invention at any suitable therapeutically effective and safe dosage, as may readily be determined within the skill of the art and without undue experimentation. For example, compounds of the present invention may be administered at a dosage between about 0.1 and 100 mg/kg, preferably between about 5 and 90 mg/kg, and more preferably between about 10 and 80 mg/kg.

The compounds of the present invention may be administered per se as well as in the form of pharmaceutically acceptable esters, salts, and other physiologically functional derivatives thereof.

The present invention also contemplates pharmaceutical formulations, both for veterinary and for human medical use, which comprise as the active pharmaceutical ingredient one or more compound(s) of the present invention. In such pharmaceutical and medicament formulations, the active pharmaceutical ingredient preferably is utilized together with one or more pharmaceutically acceptable carrier(s) therefor and optionally any other therapeutic ingredients. The carrier(s) must be pharmaceutically acceptable in the sense of being compatible with the other ingredients of the formulation and are preferably not unduly deleterious to the recipient thereof. The active pharmaceutical ingredient is provided in an amount effective to achieve the desired pharmacological effect, as described above, and in a quantity appropriate to achieve the desired daily dose.

The formulations include those suitable for parenteral as well as non-parenteral administration, and specific administration modalities include, but are not limited to, oral, rectal, buccal, topical, nasal, ophthalmic, subcutaneous, intramuscular, intravenous, transdermal, intrathecal, intra-articular, intra-arterial, sub-arachnoid, bronchial, lymphatic, vaginal, and intrauterine administration. Formulations suitable for oral and parenteral administration are preferred, with formulations suitable for oral administration most preferred.

When a compound of the present invention is utilized in a formulation comprising a liquid solution, the formulation advantageously may be administered orally or parenterally. When a compound of the present invention is employed in a liquid suspension formulation or as a powder in a biocompatible carrier formulation, the formulation may be advantageously administered orally, rectally, or bronchially.

When a compound of the present invention is utilized directly in the form of a powdered solid, the compound may advantageously be administered orally. Alternatively, it may be administered bronchially, via nebulization of the powder in a carrier gas, to form a gaseous dispersion of the powder that is inspired by the patient from a breathing circuit comprising a suitable nebulizer device.

The formulations comprising a compound of the present invention may conveniently be presented in unit dosage forms and may be prepared by any of the methods well known in the art of pharmacy. Such methods generally include the step of bringing a compound of the present invention into association with a carrier that constitutes one or more accessory ingredients. Typically, the formulations are prepared by uniformly and intimately bringing a compound of the present invention into association with a liquid carrier, a finely divided solid carrier, or both, and then, if necessary, shaping the product into dosage forms of the desired formulation.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules, cachets, tablets, or lozenges, each containing a predetermined amount of a compound of the present invention as a powder or granules; or a suspension in an aqueous liquor or a non-aqueous liquid, such as a syrup, an elixir, an emulsion, or a draught.

A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing in a suitable machine, with the active compound being in a free-flowing form such as a powder or granules which optionally is mixed with a binder, disintegrant, lubricant, inert diluent, surface active agent, or discharging agent. Molded tablets comprised of a mixture of the powdered active compound with a suitable carrier may be made by molding in a suitable machine.

A syrup may be made by adding a compound of the present invention to a concentrated aqueous solution of a sugar, for example sucrose, to which may also be added any accessory ingredient(s). Such accessory ingredient(s) may include, for example, flavorings, suitable preservatives, agents to retard crystallization of the sugar, and agents to increase the solubility of any other ingredient, such as a polyhydroxy alcohol, for example glycerol or sorbitol.

Formulations suitable for parenteral administration conveniently comprise a sterile aqueous preparation of a compound of the present invention, which preferably is isotonic with the blood of the recipient (e.g., physiological saline solution). Such formulations may include suspending agents and thickening agents or other microparticulate systems which are designed to target the compound to blood components or one or more organs. The formulations may be presented in unit-dose or multi-dose form.

Nasal spray formulations comprise purified aqueous solutions of a compound of the present invention with preservative agents and isotonic agents. Such formulations are preferably adjusted to a pH and isotonic state compatible with the nasal mucus membranes.

Formulations for rectal administration may be presented as a suppository with a suitable carrier such as cocoa butter, hydrogenated fats, or hydrogenated fatty carboxylic acid.

Ophthalmic formulations are prepared by a similar method to the nasal spray, except that the pH and isotonic factors are preferably adjusted to match that of the eye.

Topical formulations comprise a compound of the present invention dissolved or suspended in one or more media, such as mineral oil, petroleum, polyhydroxy alcohols, or other bases used for topical pharmaceutical formulations.

In addition to the aforementioned ingredients, the formulations of this invention may further include one or more accessory ingredient(s) selected from diluents, buffers, flavoring agents, disintegrants, surface active agents, thickeners, lubricants, preservatives (including antioxidants), and the like.

Accordingly, compounds according to the present invention may be utilized for the prophylaxis or treatment of various diseases, particularly diseases of the GI tract including, but not limited to, inflammatory bowel disease.

In still other embodiments of the present invention; methods of treating or preventing inflammatory bowel disease in a subject in need of such treatment or prevention include administering to the subject an effective amount of an active pharmaceutical ingredient that includes a compound of Formula II:


where R9, R10 and R11 are independently selected from the group consisting of hydrogen and C1 to C4 alkyl; and R12 is selected from the group consisting of hydrogen and —C(O)R13, where R13 is a C1, to C6 alkyl or an aryl group, or an ester or a pharmaceutically acceptable salt of such compound, in admixture with a pharmaceutical diluent or carrier.

The active pharmaceutical ingredient may further comprise one or more other medicaments including, but not limited to, anti-inflammatory agents such as mesalamine, sulfasalazine, balsalazide, and olsalazine; immunomodulators such as azathioprine, 6-mercaptorpurine, cyclosporine and methotrexate; steroidal compounds such as corticosteroids; and antibiotics such as metronidazole and cirpofloxacin. The active pharmaceutical ingredient preferably further comprises mesalamine, the compound of Formula III:


When the active pharmaceutical ingredient comprises compounds of Formula II and Formula III, the compound of Formula II is preferably from about 10 to 90 weight percent of the active pharmaceutical ingredient and is more preferably from about 40 to 60 weight percent of the active pharmaceutical ingredient. When the active pharmaceutical ingredient comprises compounds of Formula II and Formula III, the molar ratio of the compound of Formula I to the compound of Formula II is preferably between 1:10 and 10:1, and is more preferably between 1:2 and 2:1.

Subjects to be treated by methods according to these embodiments of the present invention include both human and non-human animal (e.g., bird, dog, cat, cow, horse) subjects, and are preferably mammalian subjects, and most preferably human subjects.

Depending on the specific condition or disease state to be combated, animal subjects may be administered the active pharmaceutical ingredient of the present invention at any suitable therapeutically effective and safe dosage, as may readily be determined within the skill of the art and without undue experimentation. For example, the active pharmaceutical ingredient of the present invention may be administered at a dosage between about 0.1 and 200 mg/kg, preferably between about 1 and 90 mg/kg, and more preferably between about 10 and 80 mg/kg.

The present invention will now be described with reference to the following examples. It should be appreciated that these examples are for the purposes of illustrating aspects of the present invention, and do not limit the scope of the invention as defined by the claims.

EXAMPLES Examples 1 Through 4 Synthesis of Compounds of the Present Invention

Melting points were taken on a Laboratory Devices Mel-Temp It capillary melting point apparatus and are uncorrected. 1HNMR spectra were obtained on a Varian Unity 600 MHz spectrometer. Chemical shifts (δ) are reported as parts per million (ppm) relative to the internal standard tetramethylsilane. Ultraviolet and visible spectra were obtained with a Beckman DU 640i spectrophotometer. Infrared spectroscopy was obtained on a Nicolet Impact 410 and fast atom bombardment (FAB) mass spectroscopy data was obtained by M-Scan Inc. All reagents were used as received from Aldrich Chemical Co.

Examples 1 and 2 Synthesis of 5-[4-(1-Carboxy-Ethyl)-Phenylazo]-2-Hydroxy-Benzoic Acid Example 1 2-(4-Amino-phenyl)-propionic acid

A 500-mL, oven dried, three-neck flask equipped with a stir bar, was charged with (R,S) 2-(4-nitrophenyl)propionic acid (5.00 g, 25.6 mmol), absolute ethyl alcohol (200 mL), and palladium (10 wt. % on activated carbon, 0.27 g, 2.56 mmol). A hydrogen environment was introduced into the flask and the mixture was then stirred at ambient temperature for 6 hours. The crude reaction mixture was filtered through Celite and the ethyl alcohol was removed under reduced pressure. The crude product was dried under vacuum overnight resulting in a light yellow solid (70%-yield, 2.98 g): mp 125-129° C., 1H NMR (DMSO-d6): δ 1.24 (3H, s), 1.26 (3H, s), 3.41 (1H, s), 3.43 (2H, s), 6.46 (2H, d, J=7.6 Hz), 6.91 (2H, d, J=7.6 Hz); IR (KBr), 2596, 2189, 1630, 1581, 1441, 1375, 1277, 1192, 1052, 876 cm−1;FAB-MS (NBA), m/z 165 (M+H)+.

Example 2 5-[4 (1-Carboxy-Ethyl)-Phenylazo]-2-Hydroxy-Benzoic Acid

As prepared in the above procedure, 2-(4-amino-phenyl)-propionic acid (3.90 g. 23.6 mmol) dissolved in an aqueous HCl solution (75 mL, 36.5-38.0% HCl in 8 mL H2O) was placed in a 200-mL beaker and cooled to 0° C. in an ice bath. When the solution was stabilized at 0° C., sodium nitrite (1.79 g, 26.0 mmol) in water (2 mL) was added dropwise. The temperature was maintained at 0-5° C. and the resulting diazonium salt solution stirred for 15 min.

While the diazonium salt solution stirred, an 800-mL beaker fitted with a stir bar, thermometer, and pH probe (Orion model 420A with Orion semimicro pH probe) was charged with salicylic acid, sodium salt (11.3 g, 20.8 mmol) dissolved in sodium hydroxide (4.25 g, 106 mmol) and H2O (100 mL). Using an ice bath, the salicylic acid solution was cooled to 17° C. and the diazonium salt solution was slowly added in 10 mL portions. Throughout the addition, the pH was maintained at 13.27-13.3 with the addition of aqueous sodium hydroxide, and the temperature was kept between 17-18° C. with the addition of ice. After the addition was complete, the resulting dark red solution was allowed to warm to ambient temperature and stirring was continued for 90 min. Upon acidification to pH 3.5 with concentrated HCl (˜20 mL, 36.5-38%), a dark red solid precipitated and was collected by vacuum filtration.

The crude product (8.49 g, 27.0 mmol) was suspended in H2O (300 mL) and heated at 70° C. for 30 m to remove excess salicylic acid. The suspension was cooled to 50° C. and a solid was collected by suction filtration. The collected solid was then purified by flash chromatography (SiO2:ethyl acetate/hexanes, 1:1). The crude product (2.50 g. 7.95 mmol) in DMF (˜4.5 mL) was loaded and yellow colored fractions were collected, combined, and concentrated under reduced pressure. After drying under vacuum, the purified product was obtained as an orange solid in 55% yield (1.38 g): mp 147° C., 1H NMR (DMSO-d6): δ 1.38 (3H, s), 1.39 (3H, s), 3.76 (1H, s), 3.78 (1H, s), 7.11 (1H, d, J=8.4 Hz), 7.46 (2H, d, J=7.8 Hz), 7.80 (2H, d, J=8.4 Hz), 8.03 (1H, d, J=9.0 Hz), 8.30 (1H, s); IR (KBr), 2973, 1921, 1708, 1652, 1577, 1477, 1339, 1289, 1226, 1164, 1101, 1013, 857, 663 cm−1; UV-Vis (MeOH), λmax=355 nm, ε=23,700 mol−1 cm−1 L; FAB-MS (NBA), m/z 313 (M).

Example 3 Synthesis of 5-(4-Carboxymethyl-Phenylazo)-2-Hydroxy-Benzoic Acid [APAZA]

4-Aminophenylacetic acid (10.0 g, 66.2 mmol) dissolved in an aqueous HCl solution (20 mL, 36.5-38.0%, HCl in 200 mL H2O) was placed in a 500-mL beaker and cooled to 0° C. in an ice bath. When the solution was stabilized at 0° C., sodium nitrite (5.02 g, 72.8 mmol) in water (50 mL) was added slowly in 5 mL portions. The temperature was maintained at 0-5° C. and the resulting diazonium salt solution stirred for 15 min.

While the diazonium salt solution stirred, a 2 L beaker fitted with a stir bar, thermometer, and pH probe (Orion model 420A with Orion semimicro pH probe) was charged with salicylic acid, sodium salt (31.8 g, 198 mmol) dissolved in sodium hydroxide (11.9 g, 230 mmol) and water (200 mL). Using an ice bath, the salicylic acid solution was cooled to 17° C. and the diazonium salt solution was slowly added in 25 mL portions. Throughout the addition, the pH was maintained at 13.2-13.3 with the addition of aqueous sodium hydroxide, and the temperature kept between 17-18° C. with the addition of ice. After the addition was complete, the resulting dark red solution was allowed to warm to ambient temperature and stirring was continued for an additional 30 min. Upon acidification to pH 3 with concentrated HCl (˜50 mL, 36.5-38%), a brown solid precipitated and was collected by suction filtration.

The crude product was purified by flash chromatography (SiO2:ethyl acetate/hexanes, 1:1). On a column packed with 70-230 mesh, 60 Å silica gel with BET surface area of ˜500 m2/g and pore volume of 0.75 cm3/g, the crude product (11.5 g, 38.2 mmol) in DMF (˜12 mL) was loaded. Fractions were collected and combined based on color. The first band was yellow in color and contained excess salicylic acid as well as traces of the desired product. The second band was orange and contained the desired product, and the third band was red and contained unknown impurities. All fractions were combined and concentrated under reduced pressure and dried under vacuum.

The purified product was obtained as an orange solid in 28% yield (2.75 g): mp 204° C.; 1H NMR (DMSO-d6), δ 3.67 (2H,s), 7.11 (1H, d, J=9.0 Hz), 7.44 (2H, d, J=8.4 Hz), 7.79 (2H, d, J=8.4 Hz), 8.02 (1H, d of d, J=2.4 Hz, 9.0 Hz), 8.29 (1H, s); IR (KBr) 3098, 1696, 1614, 1458, 1345, 1195, 838 cm−1; UV-Vis (MeOH), λmax=350 nm, ε=25,700 mol−1 cm−1 L; positive FAB-MS (NBA), m/z 301 (M+H)+, negative FAB-MS(NBA), m/z 299 (M).

Example 4 Synthesis of 4-(4-Carboxymethyl-Phenylazo)-Phenylacetic Acid

4-Aminophenylacetic acid (3.75 g, 24.8 mmol) was suspended in water (75 mL) and concentrated hydrochloric acid (8 mL) was added. The solution was cooled to 0° C. in an ice bath with rapid stirring. Sodium nitrite (1.80 g, 26,1 mmol) in water (20 mL) was added dropwise to the 4-aminophenylacetic acid solution with rapid stirring. Care was taken to keep the temperature between 0-5° C. at all times, especially during the NaNO2 addition. The reaction was stirred for an additional 20 min. In the meantime, phenylacetic acid (10.1 g, 74.4 mmol) was dissolved in an aqueous NaOH solution (4.50 g, 113 mmol NaOH in 100 mL H2O). The solution was vigorously stirred at 17° C. and at pH 13.3. The diazonium salt solution was added dropwise to the phenylacetic acid solution. It is of utmost importance to keep the temperature of the phenylacetic acid solution between 17-18° C. and the pH between 13.2-13.3 at all times, especially during the diazonium salt addition. The temperature was regulated by the addition of ice and the pH regulated by the addition of 8 M NaOH. After addition was complete, the solution was allowed to warm to room temperature and stirred for an additional 30 min. The reaction mixture was suction filtered to remove any undissolved particulates or unwanted side products. The filtrate was acidified with aqueous HCl (10 mL conc. HCl in 20 mL H2O) which produced a dark red precipitate. The precipitate was collected by suction filtration and washed several times with cold H2O, until the filtrate was clear. The collected solid was air dried overnight to give the desired compound as a red solid in 37% yield: IR (KBr), 3030 (br), 1696, 1658, 1452, 1414, 1201,850, 675 cm−1 FABMS m/z 299 (M+H)+, 320 (M+Na); 1H NMR (DMSO-d6), δ 3.47 (s, 4H), 7.33 (4H, d, J=8.1 Hz), 7.84 (4H, d, J=8.4 Hz).

Example 5 Metabolism of APAZA Following Oral Delivery

The degradation of Apaza (5-(4-carboxymethyl-phenylazo)-2-hydroxy-benzoic acid), a compound of the present invention, and sulfasalazine (used as a control; not part of the present invention) and the generation of their metabolites when these compounds were orally dosed to rats were measured to be able to confirm that both Apaza and Sulfasalazine undergo bacterial azo reduction and yield their metabolites, 5-aminosalicylic acid (5-ASA) and sulfapyridine for sulfasalazine, 5-aminosalicylic acid (5-ASA) and 4-aminophenyl acetic acid (4-APAA) for Apaza.

This experiment was performed to confirm that an azo compound, Apaza, undergoes bacterial reduction process and yields its metabolites in in-vivo metabolism. The quantification of its metabolites was also carried out. Sulfasalazine, not part of the present invention, was used as a control since similar azo bond cleavage by bacteria occurs with it, which results in 5-aminosalicylic acid and sulfapyridine as its metabolites. Both Apaza and sulfasalzine were degraded and their metabolites were produced as expected.

For urine, the parent compounds and their metabolites were detected with day 1 collection only. The rest of the collections did not show any compounds. For feces, compounds were detectable up to day 2 collection.

Rats that were dosed with Apaza (rat 1, 2, and 3) showed Apaza, 4-APAA, actarit, and acetylated 5-ASA in urine. Rats with sulfasalazine dosage (rat 4, 5, and 6) showed sulfasalazine, sulfapyridine, and acetylated 5-ASA in urine. Only acetylated 5-ASA was detected in feces regardless of what compounds were given. 5-ASA was quickly converted to acetylated 5-ASA.

It is interesting to note that while sulfasalazine dosed rats produced their metabolites, 5-ASA (acetylated 5-ASA in this case) and sulfapyridine, in 1:1 ratio, rats with Apaza dosage produced 7 to 10 times more of 4-APAA than acetylated 5-ASA.

It is believed that the majority of the ingested sulfasalazine travels down the small intestine to the colon and undergoes bacterial azo reduction to liberate sulfapyridine and 5-ASA molecules. The results from this study confirm this belief and show that Apaza undergoes a similar bacterial azo reduction.

A total of 8 rats were used for the experiment and methylcellulose was used as a vehicle. The dosage amount was 100 mg/kg per rat. Three rats were dosed with Apaza and the other three rats were dosed with sulfasalazine. Two rats were used as a control and dosed with methylcellulose. Both urine and feces were collected over 4 days and analyzed by HPLC.

Urine was collected each day and 300 μL of aliquot from each sample was centrifuged for 10 minutes at 5000 g. 80 μL of supernatant was injected for analysis. Feces was also collected each day and homogenized with 1:1 mixture of water and acetonitrile. This mixture was then centrifuged for 20 minutes at 5000 g. 80 μL of supernatant was injected for analysis.

A Waters 2690 HPLC was used for sample analysis as follows:

Mobile phase programming: Gradient Mobile phase: A = Water + 0.1% TFA B = Acetonitrile + 0.1% TFA Flow rate: 1 mL/min. Column: Phenomenex Max RP, 80 Å, 4.6 mm × 250 mm PDA settings: Collected spectrum: 210-400 nm Extracted chromatogram: 280 and/or other Run time/sample: Approximately 50 min.

Flow Time (mL/minute) % Mobile Phase A % Mobile Phase B 1 100 0 40 1 50 50 43 1 5 95 44 1 95 5 50 1 95 5

5-ASA was quickly converted to acetylated 5-ASA. The same amount of acetylated 5-ASA was generated from both Apaza and sulfasalazine in urine. Acetylated 5-ASA and sulfapyridine were produced in 1:1 ratio from sulfasalazine dosed rat urine. Approximately 7 to 10 times more of 4-APAA was produced than acetylated 5-ASA from Apaza dosed rat urine. Only acetylated 5-ASA was detected from feces regardless of dosed compound. More acetylated 5-ASA was detected in feces than urine.

Day 1 Urine Apaza Dosed Total Acetylated Dosage Apaza 4APAA Actarit 5ASA (mg) (mg) (mg) (mg) (mg) Rat 1 22.0 0.48 3.456 0.0717 0.299 Rat 2 23.5 0.3546 3.177 0.422 Rat 3 22.5 0.4707 4.674 0.298 Urine Sulfasalazine Dosed Total Acetylated Dosage Sulfasalazine Sulfapyridine 5ASA (mg) (mg) (mg) (mg) Rat 4 21 0.00882 0.337 0.288 Rat 5 22.5 0.01279 0.305 0.328 Rat 6 21 0.01092 0.41  0.39  Stool Total Dosage Acetylated (mg) 5ASA (mg) Apaza Dosed Rat 1 22 1.9254 Rat 2 23.5 1.9519 Rat 3 22.5 1.2437 Sulfasalazine Dosed Rat 4 21 1.2158 Rat 5 22.5 1.3708 Rat 6 21 0.9033 Day 2 Stool Total Dosage Acetylated (mg) 5ASA (mg) Apaza Dosed Rat 1 22 0.2562 Rat 2 23.5 0.7755 Rat 3 22.5 0.1827 Sulfasalazine Dosed Rat 4 21 0.2 Rat 5 22.5 0.2584 Rat 6 21 0.1458

Example 6 Biological Effects of Compounds of the Present Invention

The purpose of this study was to histologically evaluate and compare the effects of three different active pharmaceutical ingredients administered intrarectally (twice daily for four days) to male Lewis rats following intrarectal administration of dinitrobenzene sulfonic acid (DNBS). DNBS induced colitis in rats according to an established experimental model (Richard et al., 2000; Bertran et al., 1996; Blau et al., 2000; Kimura et al., 1998; Hogaboam et al., 1996). SHAM and DNBS groups served as negative and positive controls, respectively. The distribution of animals to each group is presented in Table 1:

TABLE 1 GROUP NUMBER OF ANIMALS SHAM 6 DNBS 5 5-ASA 6 4-APAA 6 Mixture of 5-ASA 4 and 4-APAA

Materials And Methods

Trimmed specimens of colon from 27 male rats were tested, including microtoming, and hematoxylin and eosin staining. The resulting 27 slides (1 transverse section per slide) were examined microscopically. Except for one rat from the SHAM group and one rat from the DNBS group, all slides had their labels taped over to facilitate blind reading. Lesions were graded on a scale of 1-5 (1=minimal; 2=mild; 3=moderate; 4=moderately-severe; 5=severe).

Results

The principal histomorphologic change observed in the colon sections of all rats treated with DNBS (regardless of any additional treatment) was partial to full-thickness, fill-length, coagulative-type necrosis. Necrosis was not observed in the saline/methylcellulose treated rats (SHAM group). In all cases, necrotic areas were characterized by a dramatic loss of cellular detail and staining affinity; in such areas only “ghost” outlines of the colonic architecture remained. Occasionally, segmental collapse or “dropout” of an intestinal tissue layer was evident. Necrotic tissues were heavily invaded by mixed types of bacteria. In sections that were not completely necrotic, the pattern of necrosis tended to be laminar, typically affecting the mucosa and submucosa while sparing portions of the muscularis externa and/or aciventitia (serosa and adjacent mesentery). In these sections, a dense zone of karyorrhectic neutrophils divided the necrotic inner layers from the less affected outer layers. Fibrinoid necrotizing vasculitis of submucosal blood vessels was observed in all DNBS-treated rats. Vasculitis was observed in both necrotic and non-necrotic regions, often accompanied by thrombosis (fibrinous, fibrinocellular, and/or bacterial thrombi), and minimal to moderate submucosal hemorrhage (with or without fibrin accumulation). Some hemorrhagic sites contained pigment-laden macrophages (siderophages—not separately diagnosed). In all sections from DNBS-treated rats, the serosa and adjoining mesentery were expanded by mild to moderately severe fibrovascular proliferation (early granulation tissue). Sections from two rats (#4 and #11, Mixture of 5-ASA and 4-APAA group), each contained a single, short, sharply demarcated segment of non-necrotic, non-ulcerated mucosa. Changes within these comparatively unaffected mucosal segments were limited to minimal to mild crypt epithelial hyperplasia, minimal crypt dilation, and minimal neutrophilic infiltration.

Severity scoring of colonic necrosis was based upon the degree of tissue involvement; however, grade 5 (severe) was reserved for lesions in which necrosis resulted in extensive tissue loss. Because the pattern of necrosis often varied from section to section, the individual intestinal layers were scored separately. Generally, the average severity scores for necrosis were comparable among the four groups of DNBS-treated rats (Table 2). The average score for mucosal necrosis in the Mixture of 5-ASA and 4-APAA group was lower than scores in the other groups of DNBS-treated rats due to the spared areas of mucosa in two animals from the Mixture of 5-ASA and 4-APAA group.

TABLE 2 Average Tissue Necrosis Scores Mixture 5-ASA & Group SHAM DNBS 5-ASA 4-APAA 4-APAA No. Animals (6) (5) (6) (6) (4) Mucosa 0.00 4.20 4.50 4.33 3.50 Submucosa 0.00 4.20 4.17 4.00 4.25 Muscularis 0.00 3.60 3.5  3.17 3.00 Adventitia 0.00 1.40 1.67 1.67 1.50

SUMMARY

The principal histomorphologic change observed in the colon sections of all rats treated with DNBS (regardless of any additional treatment) was partial to full-thickness, full-length, coagulative-type necrosis. Associated changes included massive bacterial invasion of the necrotic tissue, fibrinoid necrotizing vasculitis with thrombosis and hemorrhage, and heavy neutrophilic infiltration. Necrosis was not observed in the saline/methylcellulose-treated rats (SHAM group). The severity (extent) of necrosis was comparable among the four groups of DNBS-treated rats (DNBS, 5-ASA, 4-APAA, and Mixture of 5-ASA and 4-APAA), except that single segments of mucosa were comparatively spared in 2/4 rats from the Mixture of 5-ASA and 4-APAA group.

Example 7 Anti-Inflammatory Activity of Drug Mixture

Dinitrobenzene sulfonic acid (DNBS) colitis was induced (no ether anesthesia) in 4 groups of 6 Lewis rats each. One DNBS group was dosed with vehicle (0.7% methyl cellulose) as well as an additional sham group of 6 animals that received a saline enema instead of DNBS. Intrarectal (ir) dosing was performed in conscious animals b.i.d-for 4 days. Drug treatments were as follows:

5-aminosalicylic acid (5-ASA): 50 mg/kg

4aminophenylacetic acid (4-APAA): 49.5 mg/kg (equimolar to 5-ASA)

Mixture: 5-ASA+4-APAA: 50 mg/kg+49.5 mg/kg

Drugs were suspended in the above mentioned vehicle and staff blinded to drug groups. Daily weights and diarrhea scores were recorded. On the 5th day post-irritant rats were sacrificed, laparotomies performed and scored for intestinal adhesions and strictures; colectomized and colon weights recorded, colons opened longitudinally and inflammation/ulcerations scored.

Results illustrated in FIGS. 3 and 4 indicated that 5-ASA, 4-APAA, and the mixture produce similar anti-inflammatory activity (˜31% reduction in colon:body weight [% BW]). The severity of inflammation approached maximum. It is possible that the severity could be titrated by reduction of the DNBS dose and a small study was performed to test this hypothesis. It is possible that with a milder insult there may be evidence of greater separation of treatment effects.

DNBS colitis was induced in 6 Lewis rats (3 at 30 and 3 at 15 mg/rat DNBS) and allowed to develop for 5 days with no treatment in order to citrate the severity of inflammation. Diarrhea was noted on days 1-4 and the rats were sacrificed on day 5, scored, and colon:body weight determined. Results indicate that 15 mg/rat DNBS produces milder but inconsistent inflammation compared to 30 mg. The 30 mg/kg DNBS result was consistent with that seen previously.

The foregoing is illustrative of the present invention, and is not to be construed as limiting thereof. The invention is defined by the following claims, with equivalents of the claims to be included therein.

Claims

1. A method of treating an inflammatory condition of the GI tract in a subject comprising administering to a subject in need of such treatment an effective amount of an active pharmaceutical ingredient comprising a compound of Formula II: where R9, R10 and R11 are independently selected from the group consisting of hydrogen and C1 to C4 alkyl; and R12 is selected from the group consisting of hydrogen and —C(O)R13, where R13 is a C1 to C6 alkyl or an aryl group; or an ester or a pharmaceutically acceptable salt of such compound, in admixture with pharmaceutical diluent or carrier.

2. The method according to claim 1, wherein the active pharmaceutical ingredient further comprises a compound of Formula (III): or an ester or a pharmaceutically acceptable salt thereof.

3. The method according to claim 1, wherein the compound of Formula II is from about 10 to 90 weight percent of the active pharmaceutical ingredient.

4. The method according to claim 1, wherein the molar ratio of the compound of Formula II to the compound of Formula III is between about 1:10 and 10:1.

5. The method according to claim 1, wherein R9, R10, and R11 are independently selected from the group consisting of H, CH3, CH2CH3, and CH(CH3)2.

6. The method according to claim 1, wherein R9, R10, and R11 are independently selected from the group consisting of H, and CH3.

7. The method according to claim 1, wherein R12 is hydrogen.

8. An in vivo method of generating active metabolites for the treatment of an inflammatory condition of the GI tract, the method comprising orally administering to a subject having intestinal bacterial a compound having the structure: 5-(4-carboxymethylphenylazo)-2-hydroxy-benzoic acid or an ester or a pharmaceutically acceptable salt thereof, wherein the active metabolites comprise at least one compound selected from the group consisting of 5-aminosalicylic acid (5-ASA) and 4-aminophenyl acetic acid (4-APAA).

9. The in vivo method of claim 8, wherein the active metabolite further includes acetylated 5-ASA and acetylated 4-APAA.

10. The in vivo method of claim 8, wherein the 5-(4-carboxymethylphenylazo)-2-hydroxy-benzoic acid or an ester or a pharmaceutically acceptable salt thereof is in a liquid solution comprising a biocompatible carrier.

11. The in vivo method of claim 8, wherein the 5-(4-carboxymethylphenylazo)-2-hydroxy-benzoic acid or an ester or a pharmaceutically acceptable salt thereof is in a powder form.

12. The in vivo method of claim 8, wherein the inflammatory condition of the GI tract is ulcerative colitis.

13. The in vivo method of claim 8, wherein the inflammatory condition of the GI tract is Crohn's disease.

14. The in vivo method of claim 8, wherein the active metabolites were generated within 24 hours of administration.

15. The in vivo method of claim 14, wherein the active metabolites were located in urine or feces matter of subject.

16. A liquid solution comprising: 5-(4-carboxymethylphenylazo)-2-hydroxy-benzoic acid, 5-aminosalicylic acid (5-ASA) and 4-aminophenyl acetic acid (4-APAA).

17. The liquid solution of claim 16 further comprising 4-aminophenyl acetic acid (4-APAA), acetylated 5-ASA and acetylated 4-APAA.

18. A method for generating active metabolites; the method comprising contacting intestinal bacteria with 5-(4-carboxymethylphenylazo)-2-hydroxy-benzoic acid or an pharmaceutically acceptable salt thereof under conditions for metabolism thereof by the bacteria.

19. The method of claim 18, wherein the active metabolites comprises at least one metabolite selected from the group consisting of 5-aminosalicylic acid (5-ASA) and 4-aminophenyl acetic acid (4-APAA).

20. The method of claim 19, further comprising 4-aminophenyl acetic acid (4-APAA), acetylated 5-ASA and acetylated 4-APAA.

Referenced Cited
U.S. Patent Documents
1157169 October 1915 Mettler
2270676 January 1942 Behnisch et al.
2314023 March 1943 Straub et al.
2336275 December 1943 McNally et al.
2396019 March 1946 Murray
3244694 April 1966 May et al.
3641040 February 1972 Carney et al.
3915951 October 1975 Agback et al.
4189607 February 19, 1980 Amano et al.
4298595 November 3, 1981 Parkinson et al.
4348399 September 7, 1982 Shepherd
4374932 February 22, 1983 Pitzele et al.
4412992 November 1, 1983 Chan
4455305 June 19, 1984 Rokos
4472433 September 18, 1984 Ueda et al.
4493823 January 15, 1985 Moller et al.
4496553 January 29, 1985 Halskov
4504494 March 12, 1985 Grollier et al.
4528367 July 9, 1985 Agback et al.
4539198 September 3, 1985 Powell et al.
4540685 September 10, 1985 Bauer
4559330 December 17, 1985 Agback et al.
4591584 May 27, 1986 Agback
4595699 June 17, 1986 Terada et al.
4628083 December 9, 1986 Agback
4632921 December 30, 1986 Bauer
4657900 April 14, 1987 Powell et al.
4663308 May 5, 1987 Saffran et al.
4664256 May 12, 1987 Halskov
4670112 June 2, 1987 Lund
4699902 October 13, 1987 Bauer
4720506 January 19, 1988 Munakata et al.
4725676 February 16, 1988 Agback et al.
4737240 April 12, 1988 Davis et al.
4780318 October 25, 1988 Appelgren et al.
4788331 November 29, 1988 Sjöstrand
4837229 June 6, 1989 Rokos et al.
4849416 July 18, 1989 Pendleton et al.
4873321 October 10, 1989 Omura et al.
4880794 November 14, 1989 Halskov
4889846 December 26, 1989 Crossley
4904765 February 27, 1990 Derber et al.
4911922 March 27, 1990 Masuhara et al.
4920206 April 24, 1990 Behringer et al.
RE33239 June 26, 1990 Halskov
4933330 June 12, 1990 Jorgensen et al.
4960765 October 2, 1990 Halskov
4999347 March 12, 1991 Sorenson
5010069 April 23, 1991 Bottom et al.
5013727 May 7, 1991 Halskov
5026560 June 25, 1991 Makino et al.
5037968 August 6, 1991 Simon et al.
5041431 August 20, 1991 Halskov
5082651 January 21, 1992 Healey et al.
5089468 February 18, 1992 Yoshida et al.
5137916 August 11, 1992 Ulrich et al.
5244922 September 14, 1993 Burzynski
5254587 October 19, 1993 Burzynski
5272176 December 21, 1993 Ulrich et al.
5274002 December 28, 1993 Hawkins
5330981 July 19, 1994 Rosini et al.
5352681 October 4, 1994 Wittebrood et al.
5378470 January 3, 1995 Lahr
5391575 February 21, 1995 Burzynski
5393779 February 28, 1995 Holloway et al.
5409711 April 25, 1995 Mapelli et al.
5434184 July 18, 1995 Holloway et al.
5476849 December 19, 1995 Ulrich et al.
5480910 January 2, 1996 Holloway et al.
5484605 January 16, 1996 Scheiffele et al.
5487770 January 30, 1996 Dyllick-Brenzinger et al.
5498608 March 12, 1996 Johnson et al.
5502078 March 26, 1996 Holloway et al.
5514676 May 7, 1996 Ulrich et al.
5519014 May 21, 1996 Borody
5541170 July 30, 1996 Rhodes et al.
5541171 July 30, 1996 Rhodes et al.
5574050 November 12, 1996 Carrell et al.
5593971 January 14, 1997 Tschollar et al.
5602183 February 11, 1997 Martin et al.
5629012 May 13, 1997 Halskov
5629020 May 13, 1997 Leone-Bay et al.
5631294 May 20, 1997 Kurtz et al.
5635533 June 3, 1997 Samid
5637618 June 10, 1997 Kurtz et al.
5646182 July 8, 1997 Burzynski
5648380 July 15, 1997 Martin
5654333 August 5, 1997 Samid
5661179 August 26, 1997 Samid
5663208 September 2, 1997 Martin
5667789 September 16, 1997 Collin et al.
5668123 September 16, 1997 Berry
5674912 October 7, 1997 Martin
5696243 December 9, 1997 Beckmann et al.
5703073 December 30, 1997 Garvey et al.
5708025 January 13, 1998 Samid
5716648 February 10, 1998 Halskov et al.
5725872 March 10, 1998 Stamm et al.
5731302 March 24, 1998 Farolfi et al.
5739299 April 14, 1998 Hall
5747477 May 5, 1998 Carceller et al.
5747532 May 5, 1998 Lai
5770708 June 23, 1998 Bermes
5817321 October 6, 1998 Alakhov et al.
5827332 October 27, 1998 Zeidler et al.
5840724 November 24, 1998 Fenton et al.
5840966 November 24, 1998 Kumarathasan et al.
5843994 December 1, 1998 Samid
5852056 December 22, 1998 Samid
5861426 January 19, 1999 Del Soldato et al.
5866608 February 2, 1999 Kurtz et al.
5874479 February 23, 1999 Martin
5877213 March 2, 1999 Samid
5883124 March 16, 1999 Samid
5905073 May 18, 1999 Johnson et al.
5935601 August 10, 1999 Leone-Bay et al.
5939455 August 17, 1999 Rephaeli
5939456 August 17, 1999 Perrine
5945411 August 31, 1999 Larson et al.
5955472 September 21, 1999 Hays et al.
5962710 October 5, 1999 Gschneidner et al.
5973126 October 26, 1999 Ueno et al.
5985927 November 16, 1999 Kreutz
6008208 December 28, 1999 Petrie et al.
6008250 December 28, 1999 Kurtz et al.
6037376 March 14, 2000 Samid
6043233 March 28, 2000 Garvey et al.
6124504 September 26, 2000 Hupperts et al.
6127349 October 3, 2000 Chasalow
6183549 February 6, 2001 Wight
6191265 February 20, 2001 Hamprecht
6197341 March 6, 2001 Friess et al.
6225296 May 1, 2001 Kapadia
6245735 June 12, 2001 Pier
6245802 June 12, 2001 Iyengar et al.
6277412 August 21, 2001 Otterbeck
6277836 August 21, 2001 Borody
6281203 August 28, 2001 Touzan et al.
6294186 September 25, 2001 Beerse et al.
6313107 November 6, 2001 Vasudevan et al.
6319951 November 20, 2001 Chege
6326364 December 4, 2001 Lin et al.
6344561 February 5, 2002 Vuligonda
6348497 February 19, 2002 Billingham
6369261 April 9, 2002 Johnson et al.
6375733 April 23, 2002 Bindra
6380256 April 30, 2002 Vasudevan et al.
6383471 May 7, 2002 Chen et al.
6384023 May 7, 2002 Singleton
6387892 May 14, 2002 Vasudevan et al.
6387952 May 14, 2002 Mazurek et al.
6391832 May 21, 2002 Lyons et al.
6399647 June 4, 2002 Kalgutkar et al.
6403646 June 11, 2002 Perimutter et al.
6409812 June 25, 2002 Ueno et al.
6413494 July 2, 2002 Lee et al.
6414026 July 2, 2002 Billingham
6423696 July 23, 2002 Collins et al.
6426338 July 30, 2002 Borody
6437104 August 20, 2002 Nickel et al.
6444221 September 3, 2002 Shapiro
6458776 October 1, 2002 Ekwuribe et al.
6479528 November 12, 2002 Kuret et al.
6488947 December 3, 2002 Bekele
6495552 December 17, 2002 Vasudevan et al.
6528076 March 4, 2003 Small et al.
6541670 April 1, 2003 Ottosen
6551620 April 22, 2003 Otterbeck et al.
6551632 April 22, 2003 Borody
6552077 April 22, 2003 Cohen
6566507 May 20, 2003 Wood et al.
6573252 June 3, 2003 Del Soldato
6583128 June 24, 2003 Ekwuribe et al.
6583273 June 24, 2003 Bacher et al.
6589944 July 8, 2003 Rahbar
6599748 July 29, 2003 Nakajima et al.
6602987 August 5, 2003 Wilchek et al.
6613807 September 2, 2003 Uhrich
6630463 October 7, 2003 Kikuchi et al.
6653352 November 25, 2003 Barr et al.
6660283 December 9, 2003 Breton et al.
6720344 April 13, 2004 Kerwin et al.
6727235 April 27, 2004 Kreutz
6791788 September 14, 2004 Gustafson et al.
6808616 October 26, 2004 Sanchez-Cano
6809087 October 26, 2004 Carceller et al.
6824786 November 30, 2004 Yu et al.
6867233 March 15, 2005 Roselle et al.
6881553 April 19, 2005 Kabbash et al.
6884808 April 26, 2005 Kikuchi et al.
6887632 May 3, 2005 Saminathan et al.
6903082 June 7, 2005 Ekwuribe et al.
6907736 June 21, 2005 Ohnishi et al.
6919325 July 19, 2005 Linz et al.
6943192 September 13, 2005 Burzynski
6949555 September 27, 2005 Guitard et al.
7022333 April 4, 2006 Syverson et al.
7030146 April 18, 2006 Baynes et al.
7053071 May 30, 2006 Dawson et al.
7064185 June 20, 2006 Lau
7151095 December 19, 2006 Ekwuribe et al.
7189518 March 13, 2007 Schönbeck et al.
7238680 July 3, 2007 Rosen
7265153 September 4, 2007 Faller et al.
20010046509 November 29, 2001 Breton et al.
20020061339 May 23, 2002 Stognlew et al.
20020120008 August 29, 2002 Benzer et al.
20020143011 October 3, 2002 Warrellow
20020160986 October 31, 2002 Vasudevan et al.
20020183285 December 5, 2002 Vasudevan et al.
20030013746 January 16, 2003 Hudson et al.
20030017995 January 23, 2003 Khalifah et al.
20030018077 January 23, 2003 Billingham et al.
20030119792 June 26, 2003 Roca
20030125306 July 3, 2003 Lan Hargest et al.
20030162754 August 28, 2003 Ligon
20030171306 September 11, 2003 Davis et al.
20030181618 September 25, 2003 Saminathan
20050090553 April 28, 2005 Shapiro
Foreign Patent Documents
4121849 January 1993 DE
0094599 November 1983 EP
0036636 February 1984 EP
0465802 January 1992 EP
8606254 May 1985 ES
2203434 October 1988 GB
WO 94/00135 January 1994 WO
WO 95/31194 November 1995 WO
Other references
  • Database Crossfire Beilstein Online; Beilstein Institut Zur Foerderung Der Chemischen Wissenschaften, Frankfurt, AM Main, De; Database-Accession No. 926638 (BRN), XP002192315 & Journal of Organic Chemistry, vol. 55, No. 17, 1990, pp. 5165-5170; Easton, US.
  • Tse-Tsing Chu et al.; A Proof of the Unsymmetrical Structure of the Azoxy Group; Journal of the American Chemical Society; 1993; pp. 2841-2850; 55; USA.
  • Par E. Frommel et al.; La paraminobenzolsulfonesuccinylimide, sulfamide soluble neutre et injectable; Holv. Physiol. Acta; 1945; pp. 264-268; 3.
  • E. Hackmann et al.; Nuovi Azoderivati Solfammidici; Boll. Chim. Farm.; 1975; pp. 501-508, 114.
  • B.C. Jain et al.; Studies in Sulphanilamides. Part XIII Reaction with Dicarboxylic Acids. Some New N1—N4—Acyl and Heterocyclic Derivatives; J. Indian Chem. Soc.; 1947; pp. 173-176; 24.
  • Isami Kimura et al.; Determination of the Active Moiety of BX661A, a New Therapeutic Agent for Alcerative Colitis, by Studying Its Therapeutic Effects on Ulcerative Colitis Induced by Dextran Sulfate Sodium in Rats; Drug Res.; 1998; pp. 1091-1096; 48 (II) (11).
  • S. A. A. Osman et al.; Synthesis of Sulfanilamido-Naphthoquinones as Potential Antituberculous Agents; Journal of Pharmaceutical Sciences; Jan. 1983; pp. 68-71; vol. 72, No. 1; American Pharmaceutical Association.
  • Antonio Gómez-Muñoz et al.; 5-Aminosalicylate stimulates phospholipase D activity in macrophages; Biochimica et Biophysica Acta; 2001; pp. 110-118; 1533; Elsevier Science B. V.
  • Rosalind P. Chan et al.; Studies of Two Novel Sulfasalazine Analogs, Ipsalazide and Balsalazide; Digestive Diseases and Sciences; Jul. 1983; vol. 28, No. 7; Digestive Disease Systems, Inc.
  • Paul Retgeerts; Strategies in the prevention of post-operative recurrence in Crohn's Disease; Best Practice & Research Clinical Gastroenterology; 2003; pp. 63-73; vol. 17, No. 1; Elsevier Science Ltd.
  • M.C. Di Paolo et al.; Sulphasalazine and 5-aminosalicylic acid in long-term treatment of ulcerative colitis: report on tolerance and side-effects; Digest Liver Dis.; 2001; pp. 563-569; 33.
  • E. K. Fields et al.; Diaryl Substituted Maleic Anhydrides; J. Org. Chem.; 1990; pp. 5165-6170; 55; American Chemical Society.
  • Friedrich Nerdel et al.; Chemical Abstracts; 1961; pp. 443-444; vol. 55.
  • Beilstein Search Results, 5522653.
  • Frank D. King; Bioisosteres, Conformational Restriction, and Pro-drugs—Case History: An Example of a Conformational Restriction Approach; Medicinal Chemistry : Principles and Practice; 1994; pp. 208-225 (pp. 216-217, Table 4); Cambridge, RSC, GB.
Patent History
Patent number: 7425578
Type: Grant
Filed: Sep 7, 2006
Date of Patent: Sep 16, 2008
Patent Publication Number: 20070004800
Assignee: Biocon Limited
Inventors: Nnochiri N. Ekwuribe (Cary, NC), Jennifer Riggs-Sauthier (Huntsville, AL)
Primary Examiner: Kamal A. Saeed
Assistant Examiner: Janet L. Coppins
Attorney: Moore & Van Allen PLLC
Application Number: 11/470,655