Iterative interference suppressor for wireless multiple-access systems with multiple receive antennas

- III HOLDINGS 1, LLC

This invention teaches to the details of an interference suppressing receiver for suppressing intra-cell and inter-cell interference in coded, multiple-access, spread spectrum transmissions that propagate through frequency selective communication channels to a multiplicity of receive antennas. The receiver is designed or adapted through the repeated use of symbol-estimate weighting, subtractive suppression with a stabilizing step-size, and mixed-decision symbol estimates. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard RAKE-based hardware either within the RAKE (i.e., at the finger level) or outside the RAKE (i.e., at the user or subchannel symbol level). Embodiments may be employed in user equipment on the forward link or in a base station on the reverse link. It may be adapted to general signal processing applications where a signal is to be extracted from interference.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/372,483, entitled “Iterative Interference Suppressor for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Feb. 13, 2012, which is a continuation of U.S. patent application Ser. No. 12/916,389, entitled “Iterative Interference Canceler for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Oct. 29, 2010, now U.S. Pat. No. 8,121,176, which is a continuation of U.S. patent application Ser. No. 11/491,674, entitled “An Iterative Interference Canceller for Wireless Multiple-Access Systems with Multiple Receive Antennas,” filed Jul. 24, 2006, now U.S. Pat. No. 7,826,516; which (1) is a Continuation in Part of U.S. patent application Ser. No. 11/451,932, filed Jun. 13, 2006, and entitled “Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes,” now U.S. Pat. No. 7,711,075; and (2) claims priority to U.S. Patent Application Ser. No. 60/736,204, filed Nov. 15, 2005, and entitled “Iterative Interference Cancellation Using Mixed Feedback Weights and Stabilizing Step Sizes,” which incorporates by reference (a) U.S. patent application Ser. No. 11/100,935, filed Apr. 7, 2005, entitled “Construction of Projection Operators for Interference Cancellation,” published as U.S. Patent Application Publication Number US 2005/0180364 A1, (b) U.S. patent application Ser. No. 11/233,636, filed Sep. 23, 2005, entitled “Optimal Feedback Weighting for Soft-Decision Cancellers,” published as U.S. Patent Application Publication Number US 2006/0227909 A1, and (c) U.S. patent application Ser. No. 11/266,928, filed Nov. 4, 2005, entitled “Soft Weighted Subtractive Cancellation for CDMA Systems,” now U.S. Pat. No. 7,876,810. The entirety of each of the foregoing patents, published patent applications and patent applications is incorporated by reference herein in its entirety.

BACKGROUND

1. Field of the Invention

The present invention relates generally to suppression of intra-channel and inter-channel interference in coded spread spectrum wireless communication systems with multiple receive antennas. More specifically, the invention takes advantage of the receive diversity afforded by multiple receive antennas in combination with multiple uses of an interference-suppression unit consisting of symbol-estimate weighting, subtractive suppression with a stabilizing step-size, and a mixed-decision symbol estimator.

2. Discussion of the Related Art

In an exemplary wireless multiple-access system, a communication resource is divided into code-space subchannels allocated to different users. A plurality of subchannel signals received by a wireless terminal (e.g., a subscriber unit or a base station) may correspond to different users and/or different subchannels allocated to a particular user.

If a single transmitter broadcasts different messages to different receivers, such as a base station in a wireless communication system serving a plurality of mobile terminals, the channel resource is subdivided in order to distinguish between messages intended for each mobile. Thus, each mobile terminal, by knowing its allocated subchannel(s), may decode messages intended for it from the superposition of received signals. Similarly, a base station typically separates signals it receives into subchannels in order to differentiate between users.

In a multipath environment, received signals are superpositions of time-delayed and complex-scaled versions of the transmitted signals. Multipath can cause several types of interference. Intra-channel interference occurs when the multipath time-spreading causes subchannels to leak into other subchannels. For example, forward-link subchannels that are orthogonal at the transmitter may not be orthogonal at the receiver. When multiple base stations (or sectors or cells) are active, inter-channel interference may result from unwanted signals received from other base stations. These types of interference can degrade communications by causing a receiver to incorrectly decode received transmissions, thus increasing a receiver's error floor. Interference may degrade communications in other ways. For example, interference may diminish the capacity of a communication system, decrease the region of coverage, and/or decrease maximum data rates. For these reasons, a reduction in interference can improve reception of selected signals while addressing the aforementioned limitations due to interference. Multiple receive antennas enable the receiver to process more information, allowing greater interference-reduction than can be accomplished with a single receive antenna.

In code division multiple access (such as used in CDMA 2000, WCDMA, EV-DO (in conjunction with time-division multiple access), and related standards), a set of symbols is sent across a common time-frequency slot of the physical channel and separated by the use of a set of distinct code waveforms, which are usually chosen to be orthogonal (or pseudo-orthogonal for reverse-link transmissions). The code waveforms typically vary in time, with variations introduced by a pseudo-random spreading code (PN sequence). The wireless transmission medium is characterized by a time-varying multi path profile that causes multiple time-delayed replicas of the transmitted waveform to be received, each replica having a distinct amplitude and phase due to path loss, absorption, and other propagation effects. As a result, the received code set is no longer orthogonal. Rather, it suffers from intra-channel interference within a base station and inter-channel interference arising from transmissions in adjacent cells.

SUMMARY OF THE INVENTION

In view of the foregoing background, embodiments of the present invention may provide a generalized interference-suppressing receiver for suppressing intra-channel and inter-channel interference in multiple-access coded-waveform transmissions that propagate through frequency-selective communication channels and are received by a plurality of receive antennas. Receiver embodiments may be designed, adapted, and implemented explicitly in software or programmed hardware, or implicitly in standard RAKE-based hardware. Embodiments may be employed in user equipment on the downlink or in a base station on the uplink.

An interference-suppression system configured for suppressing at least one of inter-cell and intra-cell interference in multiple-access communication signals received from a plurality of antennas comprises a front-end processing means coupled to an iterative interference-suppression means.

A front-end processing means is configured for generating initial symbol estimates to be coupled to an iterative interference-suppression means. The front-end processing means may include, by way of example, but without limitation, a combiner configured for combining received signals from each of a plurality of transmission sources across a plurality of antennas for producing combined signals, a despreader configured for resolving the combined signals onto a signal basis for the plurality of transmission sources to produce soft symbol estimates from the plurality of transmission sources, and a symbol estimator configured for performing a mixed decision on each of the soft symbol estimates to generate the initial symbol estimates.

In one embodiment, the front-end processing means may further comprise a synthesizer configured for synthesizing estimated Rake finger signals for each antenna that would be received if weighted symbol decisions were employed at the plurality of transmission sources, and a subtraction module configured for performing per-antenna subtraction of a sum of synthesized Rake finger signals from that antenna's received signal to produce an error signal.

In another embodiment, the front-end processing means may further comprise a despreader configured for resolving each of a plurality of error signals corresponding to each of a plurality of antennas onto a signal basis for the plurality of transmission sources for producing a plurality of resolved error signals, a first combiner configured for combining the resolved error signals across antennas for producing a combined signal, a stabilizing step-size module configured to scale the combined signal by a stabilizing step size for producing a scaled signal, and a second combiner configured for combining the combined signal with a weighted input vector.

An iterative interference-suppression means may include, by way of example, but without limitation, a sequence of interference-suppression units. In one embodiment, each interference-suppression unit is configured for processing signals received by each of the plurality of antennas, whereby constituent signals for each of a plurality of antennas are added back to corresponding scaled error signals to produce error signals for a plurality of transmission sources, followed by resolving the error signals for the plurality of transmission sources across the plurality of antennas onto a signal basis for the plurality of transmission sources.

In one embodiment, each interference-suppression unit may comprise a soft-weighting module configured to apply weights to a plurality of input symbol decisions to produce weighted symbol decisions, a synthesizer corresponding to each antenna of the plurality of antennas and configured for synthesizing constituent signals, a subtractive suppressor configured to perform a per-antenna subtraction of the synthesized signal from the received signal to produce a plurality of per-antenna error signals, a stabilizing step size module configured for scaling the plurality of antenna error signals by a stabilizing step size for producing a plurality of scaled error signals, a combiner configured for combining each of the constituent signals with its corresponding scaled error signal to produce a plurality of interference-suppressed constituents, a resolving module configured for resolving each of the interference-suppressed constituent signals onto a signal basis for a plurality of transmit sources to produce the interference-suppressed input symbol decisions, and a mixed-decision module configured for processing the interference-suppressed symbol decisions to produce the updated symbol decisions.

Embodiments of the invention may be employed in any receiver configured to support the standard offered by the 3rd-Generation Partnership Project 2 (3GPP2) consortium and embodied in a set of documents, including “TR-45.5 Physical Layer Standard for cdma2000 Spread Spectrum Systems,” “C.S0005-A Upper Layer (Layer 3) Signaling Standard for cdma2000 Spread Spectrum Systems,” and “C.S0024 CDMA2000 High Rate Packet Data Air Interface Specification” (i.e., the CDMA2000 standard).

Receivers and suppression systems described herein may be employed in subscriber-side devices (e.g., cellular handsets, wireless modems, and consumer premises equipment) and/or server-side devices (e.g., cellular base stations, wireless access points, wireless routers, wireless relays, and repeaters). Chipsets for subscriber-side and/or server-side devices may be configured to perform at least some of the receiver and/or suppression functionality of the embodiments described herein.

Various functional elements, separately or in combination as depicted in the figures, may take the form of a microprocessor, digital signal processor, application specific integrated circuit, field programmable gate array, or other logic circuitry programmed or otherwise configured to operate as described herein. Accordingly, embodiments may take the form of programmable features executed by a common processor or a discrete hardware unit.

These and other embodiments of the invention are described with respect to the figures and the following description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments according to the present invention are understood with reference to the following figures.

FIG. 1 is a general schematic illustrating an iterative interference suppressor for multiple receive antennas.

FIG. 2 is a block diagram illustrating a per-antenna front-end RAKE and combiner.

FIG. 3 is a block diagram illustrating a per base-station front-end combiner configured for combining like base-station signals across antennas, a de-spreading module, and an initial symbol decision module.

FIG. 4 is a general schematic of an ICU configured to process signals from multiple receive antennas.

FIG. 5a is a per-antenna block diagram illustrating part of an interference-suppression unit that synthesizes constituent finger signals.

FIG. 5b is a per-antenna block diagram illustrating part of an interference-suppression unit that synthesizes constituent subchannel signals.

FIG. 6 is a block diagram of a subtractive suppressor in which suppression is performed prior to signal despreading.

FIG. 7a is a block diagram illustrating per-antenna RAKE processing and combining on interference-suppressed finger signals.

FIG. 7b is a block diagram illustrating per-antenna RAKE processing and combining on interference-suppressed subchannel constituent signals.

FIG. 8 is a block diagram illustrating antenna combining, de-spreading, and symbol estimation in an ICU.

FIG. 9a is a block diagram illustrating an ICU wherein subtractive suppression is performed after signal de-spreading.

FIG. 9b shows an alternative embodiment of an ICU configured for performing subtractive suppression after signal de-spreading.

FIG. 9c shows another embodiment of an ICU.

FIG. 10 is a block diagram of an ICU configured for an explicit implementation.

FIG. 11a is a block diagram illustrating a method for evaluating a stabilizing step size implicitly in hardware.

FIG. 11b is a block diagram depicting calculation of a difference signal in accordance with an embodiment of the present invention.

FIG. 11c is a block diagram depicting implicit evaluation of step size in accordance with an embodiment of the present invention.

Various functional elements or steps, separately or in combination, depicted in the figures may take the form of a microprocessor, digital signal processor, application specific integrated circuit, field programmable gate array, or other logic circuitry programmed or otherwise configured to operate as described herein. Accordingly, embodiments may take the form of programmable features executed by a common processor or discrete hardware unit.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

The following formula represents an analog baseband signal received from multiple base stations by antenna a of a receiver,
ya(t)=Σs=1BΣl=1La,sαa,s,lΣk=1Ksbs,kus,k(t−τa,s,l)+wa(t),tε(0,T),  Equation 1
with the following definitions

    • a represents an ath antenna of a mobile and ranges from 1 to A;
    • (0, T) is a symbol interval;
    • B is a number of modeled base stations, which are indexed by subscript s, which ranges from 1 to B. The term “base station” may be used herein to convey cells or sectors;
    • La,s is the number of resolvable (or modeled) paths from base station s to antenna a of the mobile, and is indexed from 1 to La,s;
    • αa,s,l and τa,s,l are, respectively, the complex gain and delay associated with an lth path from base station s to antenna a of the mobile;
    • Ks represents a number of active subchannels in base station s that employ code division multiplexing to share the channel. The subchannels are indexed from 1 to Ks;
    • us,k(t) is a code waveform (e.g., spreading waveform) used to carry a kth subchannel's symbol for an sth base station (e.g., a chip waveform modulated by a subchannel-specific Walsh code and covered with a base-station specific PN cover);
    • bs,k is a complex symbol being transmitted for the kth subchannel of base station s; and
    • wa(t) denotes zero-mean complex additive noise on the ath antenna. The term wa (t) may include thermal noise and any interference whose structure is not explicitly modeled (e.g., inter-channel interference from unmodeled base stations, and/or intra-channel interference from unmodeled paths).

FIG. 1 illustrates an iterative interference suppressor in accordance with one embodiment of the invention. Received signals from each of a plurality of antennas 100.1-100.A are processed by corresponding RAKE receivers 101.1-101.A. Each RAKE receiver 101.1-101.A may comprise a maximal ratio combiner (not shown).

Multipath components received by each RAKE receiver 101.1-101.A are separated with respect to their originating base stations and processed by a plurality B of constituent-signal analyzers 102.1-102.B. Each constituent-signal analyzer 102.1-102.B comprises a combiner, a despreader, and a symbol estimator, such as combiner 111.s, despreader 112.s, and symbol estimator 113.s in constituent-signal analyzer 102.s.

Signals received from different antennas 100.1-100.A corresponding to an sth originating base station are synchronized, and then combined (e.g., maximal ratio combined) by combiner 111.s to produce an sth diversity-combined signal. The despreader 112.s resolves the sth diversity-combined signal onto subchannel code waveforms, and the symbol estimator 113.s produces initial symbol estimates, which are input to a first interference suppression unit (ICU) 104.1 of a sequence of ICUs 104.1-104.M.

ICU 104.1 mitigates intra-channel and/or inter-channel interference in the estimates in order to produce improved symbol estimates. Successive use of ICUs 104.2-104.M further improves the symbol estimates. The ICUs 104.1-104.M may comprise distinct units, or a single unit configured to perform each iteration.

FIG. 2 is a block diagram of a Rake receiver, such as RAKE receiver 101.a. One of a plurality of processors 201.1-201.B is associated with each base station. For example, processor 201.s associated with an sth base station comprises a plurality L of time-advance modules 202.1-202.L configured to advance the received signal in accordance with L multipath time offsets. Weighting modules 203.1-203.L provide corresponding maximal-ratio combining weights αa,s,l to the time-advanced signals, and a combiner 204 combines the weighted signals to produce an output for the ath antenna

y a , s mrc ( t ) = 1 E s l = 1 L a , s α a , s , l * y a ( t - τ a , s , l ) , where E s = l = 1 L a , s α a , s , l 2 . Equation 2

FIG. 3 is a block diagram of an exemplary constituent-signal analyzer, such as constituent-signal analyzer 102.s shown in FIG. 1. A combiner 301 for a given base station sums the signals over the plurality A of antennas to produce a combined signal for base station s over all paths and all antennas
ysmrc(t)=Σa=1Aya,smrc(t).  Equation 3

The combined signal is resolved onto subchannel code waveforms by a plurality K of despreading modules, comprising K code-waveform multipliers 302.1-302.K and integrators 303.1-303.K, to give

q s , k 1 E s 0 T u s , k * ( t ) y s mrc ( t ) t Equation 4
as a RAKE/Combine/De-Spread output for the kth subchannel of base station s. A column vector of these outputs is denoted
qs=[qs,1 qs,2 . . . qs,Ks]T  Equation 5
for base station s, where the superscript T denotes matrix transpose. Each qs,k is processed by one of a plurality of symbol estimators 304.1-304.K to produce
{circumflex over (b)}s,k[0]=Estimate Symbol {qs,k},  Equation 6
where the superscript [0] indicates the initial symbol estimate produced by front-end processing. Symbol estimators 304.1-304.K may include mixed-decision symbol estimators described in U.S. Patent Application Ser. No. 60/736,204, or other types of symbol estimators. An output vector of symbol estimates for base station s may be formed as {circumflex over (b)}s,k[0]=[{circumflex over (b)}s,1[0]{circumflex over (b)}s,2[0] . . . {circumflex over (b)}s,Ks[0]]T.

It should be appreciated that one or more of the functions described with respect to FIG. 3 may be implemented on discrete-time sequences generated by sampling (or filtering and sampling) continuous waveforms. More specifically, time advances (or delays) of waveforms become shifts by an integer number of samples in discrete-time sequences, and integration becomes summation.

FIG. 4 is a flow chart illustrating a functional embodiment of an ICU, such as one of the ICUs 104.1-104.M. Similar ICU embodiments are described in U.S. Patent Application Ser. No. 60/736,204 for a system with a single receive antenna. However, the embodiment shown in FIG. 4 conditions a plurality of received antenna signals for a parallel bank of ICUs and conditions ICU outputs prior to making symbol estimates. Symbol estimates for a plurality of sources are input to the ICU and weighted 401.1-401.B according to perceived merits of the symbol estimates. Any of the soft-weighting methods described in U.S. Patent Application Ser. No. 60/736,204 may be employed. The weighting of a kth subchannel of base station s is expressed by
γs,k[i]{circumflex over (b)}s,k[i]  Equation 7
where {circumflex over (b)}s,k[i], is the input symbol estimate, γs,k[i] is its weighting factor, and superscript [i] represents the output of the ith ICU. The superscript [0] represents the output of front-end processing prior to the first ICU. The symbol estimates may be multiplexed (e.g., concatenated) 402 into a single column vector
{circumflex over (b)}[i]=[({circumflex over (b)}1[i])T({circumflex over (b)}2[i])T . . . ({circumflex over (b)}B[i])T]T
such that the weighted symbol estimates are given by Γ[i]{circumflex over (b)}[i], where Γ[i] is a diagonal matrix containing the weighting factors along its main diagonal. The weighted symbol estimates are processed by a synthesizer used to synthesize 403.1-403.A constituent signals for each antenna. For each antenna, a synthesized signal represents a noise-free signal that would have been observed at antennas a with the base stations transmitting the weighted symbol estimates Γ[i]{circumflex over (b)}[i] over the multipath channels between base stations 1 through B and the mobile receiver.

For each antenna, a subtraction module performs interference suppression 404.1-404.A on the constituent signals to reduce the amount of intra-channel and inter-channel interference. The interference-suppressed constituents are processed via per-antenna RAKE processing and combining 405.1-405.A to produce combined signals. The combined signals are organized by base station, combined across antennas, resolved onto the subchannel code waveforms, and processed by symbol estimators 406.1-406.B. The terms {circumflex over (b)}s,k[i+1] denote the estimated symbol for the kth subchannel of base station s after processing by the (i+1)th ICU.

FIG. 5a illustrates an apparatus configured for generating multipath finger constituent signals and FIG. 5b shows an apparatus configured for generating subchannel constituents. A plurality of processors 501.1-501.B is configured for processing signals received from each base station. For an sth base station, a plurality Ks of multipliers 502.1-502.K scales each code waveform with a corresponding weighted symbol estimate to produce a plurality of estimated transmit signals, which are combined by combiner 503 to produce a superposition signal
Σk=0Ks−1γs,k[i]{circumflex over (b)}s,k[i]us,k(t)  Equation 8

A multipath channel emulator comprising path-delay modules 504.1-504.L and path-gain modules 505.1-505.L produces multipath finger constituent signals expressed by
{tilde over (y)}a,s,l[i](t)=αa,s,lΣk=0Ks−1γs,k[i]{circumflex over (b)}s,k[i]us,k(t−τa,s,l),  Equation 9
where {tilde over (y)}a,s,l[i](t) is the lth finger constituent for the channel between base station s and antenna a.

FIG. 5b shows an apparatus configured for generating subchannel constituents. For a particular antenna a, a processor 510.1-510.B is configured for processing signals received from each base station. Within each base station processor 510.1-510.B, a plurality of processors 511.1-511.K are configured for processing each subchannel. Each subchannel processor 511.1-511.K comprises a multiplier 512 that scales a kth code waveform with a corresponding weighted symbol estimate to produce an estimated transmit signal, which is processed by a multipath channel emulator comprising path delay modules 513.1-513.L path-gain modules 514.1-514.L, and a combiner of the multiple paths 515 to produce
{tilde over (y)}a,s,l[i](t)≡γs,k[i]{circumflex over (b)}s,k[i]Σl=oLa,sαa,s,lus,k(t−τa,s,l),  Equation 10
which is the synthesized constituent signal for the kth subchannel of base station s at the ath antenna of the mobile. Note that while Equation 9 and Equation 10 both show a signal with a three-parameter subscript for their left-hand sides, they are different signals; the subscript l (as in Equation 9) will be reserved for a finger constituent and the subscript k (as in Equation 10) will be reserved for a subchannel constituent.

FIG. 6 is a block diagram showing an apparatus configured for performing interference suppression on synthesized constituent signals for each antenna. Since, the constituent signals for each antenna a may comprise multipath finger constituents or subchannel constituents. The index jε{1, . . . Ja,s} is introduced, where

J a , s = { L a , s for finger constituents K s for subchannel constituents
A first processor 600 comprises a plurality B of subtractive suppressors 601.1-601.B configured for processing constituent signals relative to each of a plurality B of base stations.

Suppressor 601.s is illustrated with details that may be common to the other suppressors 601.1-601.B. A combiner 602 sums the constituent signals to produce a synthesized received signal associated with base station s, {tilde over (y)}a,s[i](t)≡Σj=oJa,s{tilde over (y)}a,s,j[i], where {tilde over (y)}a,s,j[i] is the jth constituent finger or subchannel signal on the ath antenna for base station s.

A second processor 610 comprises a combiner 611 configured for combining the synthesized received signals across base stations to produce a combined synthesized receive signal {tilde over (y)}a[i](t)=Σs=1B{tilde over (y)}a,s[i] corresponding to the ath antenna. A subtraction module 612 produces a signal from the difference between the combined synthesized receive signal and the actual received signal to create a residual signal ya(t)−{tilde over (y)}a[i](t). A step size scaling module 613 scales the residual signal with a complex stabilizing step size 613 to give a scaled residual signal μa[i](ya(t)−{tilde over (y)}a[i](t)). The scaled residual signal is returned to the suppressors 601.1-601.B in the first processor 601 where combiners, such as combiners 603.1-603.J in the suppressor 601.s add the scaled residual signal to the constituent signals to produce a set of interference-suppressed constituents expressed by
za,s,j[i](t)≡{tilde over (y)}a,s,l[i](t)+μa[i](ya(t)−{tilde over (y)}a[i](t))  Equation 11
for an interference-suppressed jth constituent finger or subchannel signal on the ath antenna for base station s. The term μa[i] may be evaluated as shown in U.S. patent application Ser. No. 11/451,932, which describes calculating a step size for a single receive antenna. In one embodiment the same step size may be employed for all antennas, meaning μa[i][i] for all a.

FIG. 7a is a block diagram of an apparatus configured for performing RAKE processing and combining 405.1-405.A on the interference-suppressed constituent signals for each antenna. Each of a plurality B of Rake processors 701.1-701.B is configured for processing finger constituents for each base station. Processor 701.s shows components that are common to all of the processors 701.1-701.B. A plurality L of time-advance modules 702.1-702.L advance finger signal inputs by multipath time shifts. Scaling modules 703.1-703.L scale the time-shifted inputs by complex channel gains, and the resulting scaled signals are summed 704 to yield the maximal ratio combined (MRC) output

z a , s mrc , [ i ] ( t ) = 1 E s l = 1 L a , s α a , s , l * z a , s , l ( t - τ a , s , l ) Equation 12
associated with antenna a and base station s,

In FIG. 7b, Rake processors 710.1-710.B may each comprise a combiner 711 configured for summing the subchannel constituent signals, a plurality L of time-advance modules 712.1-712.L configured for advancing the sum by multipath time offsets, scaling modules 713.1-713. L configured for scaling the sum by corresponding multipath channel gains, and a combiner 714 configured for summing the scaled signals to produce the MRC output

z a , s mrc , [ i ] ( t ) = 1 E s l = 1 L a , s α a , s , l * k = 1 K s z a , s , k ( t - τ a , s , l ) Equation 13
associated with antenna a and base station s.

FIG. 8 shows an apparatus configured for performing the steps 406.1-406.B shown in FIG. 4 to produce the updated symbol estimates. Each of a plurality B of processors 801.1-801.B is configured for processing the MRC outputs. Processor 801.s shows details that are common to all of the processors 801.1-801.B.

For each base station, the MRC signals for all antennas are summed 802 to form the overall MRC signal
zsmrc,[i](t)≡Σa=1Aza,smrc,[i](t),  Equation 14
which is resolved by code multipliers 803.1-803.K and integrators 804.1-804.K onto the subchannel code waveforms. Symbol estimators 805.1-805.K are employed for producing symbol estimates, such as mixed-decision symbol estimates as described in U.S. patent application Ser. No. 11/451,932.

Because of the linear nature of many of the ICU components, alternative embodiments of the invention may comprise similar components employed in a different order of operation without affecting the overall functionality. In one embodiment, antenna combining and de-spreading may be performed prior to interference suppression, such as illustrated in FIG. 9.

FIG. 9a illustrates a plurality of processing blocks 901.1-901.B configured for processing constituent finger or sub-channel signals received from each of a plurality of base stations. The constituent signals are subtracted from the received signal on antenna a by a subtraction module 902 to produce a residual signal. The residual signal is processed by a RAKE 903.1-903.L and maximal ratio combiner (comprising weighting modules 904.1-904.L and an adder 905) to produce an error signal ea,s[i](t) for antenna a and base station s.

In FIG. 9b, each of a plurality of processing blocks 911.1-911.B is configured to combine the error signals produced by the apparatus shown in FIG. 9a. In processing block 911.s, a combiner 912 combines the error signals corresponding to the sth base station across the antennas to produce es[i](t), the error signal for base station s. Despreaders comprising code multipliers 913.1-913.K and integrators 914.1-914.K resolve the error signal es[i] (t) onto code waveforms of subchannels associated with the sth base station.

The output for the kth subchannel of base station s is ∫0T uk*(t)es[i] (t)dt, which is equal to qs,k−{tilde over (q)}s,k[i], where qs,k is defined in Equation 4, and

q ~ s , k [ i ] = 1 E s a = 1 A 0 T u k * ( t ) l = 1 L a , s α a , s , l * j = 1 J a , s y ~ a , s , j ( t - τ a , s , l ) t
For each base station, the values qs,k and {tilde over (q)}s,k[i] may be stacked into a vector over the subchannel index k to form qs−{tilde over (q)}s[i]. These likewise may be stacked into a single vector over the base station index s to give q{tilde over (q)}[i]. This quantity may also be determined explicitly using a matrix multiplication.

FIG. 9c illustrates a final step of an interference-suppression process. A stabilizing step size module 921 scales the difference q{tilde over (q)}[i] by a stabilizing step size μ[i], and the result is added 923 to the weighted input vector Γ[i]{circumflex over (b)}[i] after being multiplied 922 by implementation matrix F to produce a vector sum. The value of the implementation matrix F depends on whether finger or subchannel constituents are used. A symbol estimator 924 produces symbol estimates for each element of the vector sum.

An explicit implementation of an ICU is illustrated in FIG. 10. The input symbol estimates are weighted 1000 and multiplied by a matrix R 1001. The resulting product is subtracted 1002 from front-end vector q and scaled with the stabilizing step size μ[i] by a stabilizing step size module 1003. The resulting scaled signal is summed 1004 with weighted symbol estimates multiplied 1005 by the implementation matrix F to produce a vector sum. A symbol estimator 1006 makes decisions on the vector sum.

Matrix R is the correlation matrix for all subchannels at the receiver after combining across antennas. It may be evaluated by
R=Σa=1ARa  Equation 15
where Ra is the correlation matrix for all subchannels at the ath antenna, and it may be determined as described in U.S. patent application Ser. No. 11/451,932 for a single antenna receiver. The matrix F is either the identity matrix when subchannel constituent signals are employed or the correlation matrix for all subchannels at the transmitter(s) when finger constituent signals are used, such as described in U.S. patent application Ser. No. 11/451,932. This functionality may be represented by the one-step matrix-update equation
{circumflex over (b)}[i−1]=Ψ(μ[i](q−RΓ[i]{circumflex over (b)}[i])+[i]{circumflex over (b)}[i]),  Equation 16
where Ψ(.) represents any function that returns a symbol estimate for each element of its argument (including, for example, any of the mixed-decision symbol estimation functions described in U.S. patent application Ser. No. 11/451,932) and all other quantities as previously described.

The stabilizing step size μ[i] may take any of the forms described in U.S. patent application Ser. No. 11/451,932 that depend on the correlation matrix R, the implementation matrix F, and the weighting matrix Γ[i]. Two of these forms of μ[i] are implicitly calculable, such as described in U.S. patent application Ser. No. 11/451,932 for a single receive antenna.

FIG. 11a illustrates a method for calculating a stabilizing step size when multiple receive antennas are employed. Preliminary processing 1101.1-1101.A for each antenna provides for RAKE processing, combining, and de-spreading 1102 on the received signal, and RAKE processing, combining, and de-spreading 1103 on the synthesized received signal and produces 1113 a difference signal. In an alternative embodiment for the preliminary processing 1101.1-1101.A shown in FIG. 11b, a difference signal calculated from the received signal and the synthesized received signal undergoes RAKE processing, combining, and de-spreading 1110.a.

The difference-signal vector corresponding to the ath antenna is denoted by βa[i]. The difference-signal vectors for all of the antennas are summed to produce a sum vector β[i]. A sum of the square magnitudes 1105 of the elements of the sum vector (i.e., ∥β[i]2) provides a numerator of a ratio from which the stabilizing step size is evaluated. The elements of β[i] are used as transmit symbols in order to synthesize 1106 received signals for each antenna. Synthesized received signals are expressed as

s = 1 B l = 1 L a , s α a , s , l * k = 1 K s β s , k [ i ] u s , k ( t - τ a , s , l )
for antenna a, where βs,k[i] is the kth element of β[i]. An integral of the square magnitude of each synthesized signal is calculated 1108.1-1108.A and summed 1109 to produce the denominator of the ratio. The ratio of the numerator and the denominator gives the first version of the step size μ[i].

FIG. 11c shows an implicit evaluation of the step size in accordance with another embodiment of the invention. The denominator of the ratio used to calculate the stabilizing step size is determined by weighting 1150 the vector β[i] by soft weights (such as contained in the diagonal matrix Γ[1]). The elements of the resulting weighted vector are used to produce 1151 synthesized received signals for all of the antennas. Integrals of the square magnitudes of the synthesized received signals are calculated 1152.1-1152.A and summed 1153 to provide the denominator.

The corresponding numerator is calculated by scaling 1154 symbol estimates produced at the ith iteration by the square of the soft weights (as contained in the diagonal matrix (Γ[i])2). The resulting scaled vector is used to synthesize 1155 received signals for all of the antennas. The synthesized signals and the received signals are processed by a parallel bank of processors 1156.1-1156.A, each corresponding to a particular antenna. The functionality of each processor 1156.1-1156.A may be equivalent to the processor 1101.a shown in FIG. 11a. The vector outputs of the processors 1156.1-1156.A are summed 1157, and the numerator is produced from the inner product 1158 of the sum vector with the weighted vector.

Explicit versions of both versions of the step size are given, respectively, by

μ [ i ] = ( q _ - R F Γ [ i ] b _ ^ [ i ] ) H ( q _ - R F Γ [ i ] b ^ _ [ i ] ) ( q _ - R Γ [ i ] b ^ _ [ i ] ) H R ( q _ - R Γ [ i ] b ^ _ [ i ] ) and Equation 17 μ [ i ] = ( q _ - R Γ [ i ] F Γ [ i ] b ^ _ [ i ] ) H Γ [ i ] ( q _ - R Γ [ i ] b ^ _ [ i ] ) ( q _ - R Γ [ i ] b ^ _ [ i ] ) H ( Γ [ i ] ) H R Γ [ i ] ( q _ - R Γ [ i ] b ^ _ [ i ] ) Equation 18
wherein all quantities shown are as previously defined.

Another form of the step size in U.S. patent application Ser. No. 11/451,932 depends only on the path gains, and may be generalized to multiple receive antennas according to

μ [ i ] = μ = max { C , max s , l a = 1 A α a , s , l p a = 1 A s = 1 B l = 1 L a , s α a , s , l p } , Equation 19
where μ[i] is fixed for every ICU and C and p are non-negative constants.

Embodiments of the invention are also applicable to the reverse-link, such as described for the single receive antenna in U.S. patent application Ser. No. 11/451,932. The primary difference (when compared to the forward-link) is that subchannels from distinct transmitters experience different multipath channels and, thus, the receiver must accommodate each subchannel with its own RAKE/Combiner/De-Spreader, and channel emulation must take into account that, in general, every subchannel sees its own channel. Such modifications are apparent to those knowledgeable in the art.

Embodiments of the invention may be realized in hardware or software and there are several modifications that can be made to the order of operations and structural flow of the processing. Those skilled in the art should recognize that method and apparatus embodiments described herein may be implemented in a variety of ways, including implementations in hardware, software, firmware, or various combinations thereof. Examples of such hardware may include Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), general-purpose processors, Digital Signal Processors (DSPs), and/or other circuitry. Software and/or firmware implementations of the invention may be implemented via any combination of programming languages, including Java, C, C++, Matlab™, Verilog, VHDL, and/or processor specific machine and assembly languages.

Computer programs (i.e., software and/or firmware) implementing the method of this invention may be distributed to users on a distribution medium such as a SIM card, a USB memory interface, or other computer-readable memory adapted for interfacing with a consumer wireless terminal. Similarly, computer programs may be distributed to users via wired or wireless network interfaces. From there, they will often be copied to a hard disk or a similar intermediate storage medium. When the programs are to be run, they may be loaded either from their distribution medium or their intermediate storage medium into the execution memory of a wireless terminal, configuring an onboard digital computer system (e.g. a microprocessor) to act in accordance with the method of this invention. All these operations are well known to those skilled in the art of computer systems.

The functions of the various elements shown in the drawings, including functional blocks labeled as “modules” may be provided through the use of dedicated hardware, as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be performed by a single dedicated processor, by a shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “module” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor OSP hardware, read-only memory (ROM) for storing software, random access memory (RAM), and non-volatile storage. Other hardware, conventional and/or custom, may also be included. Similarly, the function of any component or device described herein may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.

The method and system embodiments described herein merely illustrate particular embodiments of the invention. It should be appreciated that those skilled in the art will be able to devise various arrangements, which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are intended to be only for pedagogical purposes to aid the reader in understanding the principles of the invention. This disclosure and its associated references are to be construed as applying without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.

Claims

1. A non-transitory computer-readable storage medium, comprising a plurality of instructions that, when executed, result in an apparatus:

generating input symbol decisions for constituent signals of multiple-access communication signals received by a plurality of antennas;
processing the input symbol decisions to obtain updated symbol decisions, wherein said processing includes: resolving each of a plurality of error signals corresponding to each of the plurality of antennas onto a signal basis for one or more transmission sources; combining the resolved error signals across antennas to produce a combined signal; scaling the combined signal by a stabilizing step size to produce a scaled signal; and combining the combined signal with a weighted input vector; and suppressing at least one of inter-cell and intracell interference in the multiple-access communication signals based on the updated symbol decisions.

2. The non-transitory computer-readable storage medium of claim 1, wherein the plurality of instructions further result in the apparatus generating the input decisions by:

combining received multiple-access communications signals from each of one or more transmission sources across the plurality of antennas to produce a first combined signal;
resolving the first combined signal onto a signal basis for the one or more transmission sources to produce soft symbol estimates from the one or more transmission sources; and
performing a mixed decision on each of the soft symbol estimates to generate the input symbol decisions.

3. The non-transitory computer-readable storage medium of claim 2, wherein the plurality of instructions further result in the apparatus suppressing interference from each of a plurality of base stations.

4. The non-transitory computer-readable storage medium of claim 1, wherein the plurality of instructions further result in the apparatus generating Rake-finger signals that comprise the constituent signals.

5. The non-transitory computer-readable storage medium of claim 1, wherein the plurality of instructions further result in the apparatus:

synthesizing estimated Rake finger signals for each antenna that would be received if weighted symbol decisions were employed at the one or more transmission sources; and
performing per-antenna subtraction of a sum of synthesized Rake finger signals from that antenna's received signal to produce an error signal.

6. The non-transitory computer-readable storage medium of claim 1, wherein the plurality of instructions further result in the apparatus synthesizing received signals associated with each of the one or more transmission sources for the constituent signals.

7. A non-transitory computer-readable storage medium, comprising a plurality of instructions, which when executed, result in an apparatus:

processing constituent signals from multiple-access communication signals received by a plurality of antennas to generate input symbol decisions; and
iteratively processing the input symbol decisions to suppress at least one of inter-cell and intracell interference in the multiple-access communication signals, wherein said iterative processing includes: resolving each of one or more error signals each corresponding to one of the plurality of antennas onto a signal basis for one or more transmission sources to produce one or more of resolved error signals; combining the one or more resolved error signals across antennas to produce a combined signal; scaling the combined signal by a stabilizing step size to produce a scaled signal; and combining the combined signal with a weighted input vector.

8. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus iteratively processing the input symbol decisions to convert the input symbol decisions into updated symbol decisions.

9. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus:

generating the stabilizing step size having a magnitude indicative of how far the input symbol decisions are from desired interference-suppressed symbol decisions; and
weighting an error signal with the stabilizing step size.

10. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions further result in the apparatus generating the stabilizing step size as a ratio of distance measures between received signals combined across the plurality of antennas and synthesized received signals combined across the plurality of antennas.

11. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions further result in the apparatus generating the stabilizing step size as a ratio of distance measures between received signals combined across the plurality of antennas and two differently synthesized received signals for each antenna that are combined across the plurality of antennas.

12. The non-transitory computer-readable storage medium of claim 9, wherein the plurality of instructions further result in the apparatus generating the stabilizing step as a function of channel quality parameters.

13. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus setting the stabilizing step equal to a predetermined fixed value.

14. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus:

combining one or more received signals from each of one or more transmission sources across the plurality of antennas to produce one or more combined signals;
resolving the one or more combined signals onto a signal basis for the one or more transmission sources to produce soft symbol estimates from the one or more transmission sources; and
performing a mixed decision on each of the soft symbol estimates to generate the input symbol decisions.

15. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus suppressing interference from each of a plurality of base stations.

16. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus generating Rake-finger signals that comprise the constituent signals.

17. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus:

synthesizing estimated Rake finger signals for each antenna that would be received if weighted symbol decisions were employed at the one or more transmission sources; and
performing per-antenna subtraction of a sum of synthesized Rake finger signals from that per-antenna received signal to produce one or more antenna error signals.

18. The non-transitory computer-readable storage medium of claim 7, wherein the plurality of instructions further result in the apparatus synthesizing received signals associated with each of the one or more transmission sources for the constituent signals.

Referenced Cited
U.S. Patent Documents
3742201 June 1973 Groginsky
4088955 May 9, 1978 Baghdady
4309769 January 5, 1982 Taylor, Jr. et al.
4359738 November 16, 1982 Lewis
4601046 July 15, 1986 Halpern et al.
4665401 May 12, 1987 Garrard et al.
4670885 June 2, 1987 Parl et al.
4713794 December 15, 1987 Byington et al.
4780885 October 25, 1988 Paul et al.
4856025 August 8, 1989 Takai
4893316 January 9, 1990 Janc et al.
4922506 May 1, 1990 McCallister et al.
4933639 June 12, 1990 Barker
4965732 October 23, 1990 Roy, III et al.
5017929 May 21, 1991 Tsuda
5099493 March 24, 1992 Zeger et al.
5105435 April 14, 1992 Stilwell
5109390 April 28, 1992 Gilhousen et al.
5119401 June 2, 1992 Tsujimoto
5136296 August 4, 1992 Roettger et al.
5151919 September 29, 1992 Dent
5218359 June 8, 1993 Minamisono
5218619 June 8, 1993 Dent
5220687 June 15, 1993 Ichikawa et al.
5224122 June 29, 1993 Bruckert
5237586 August 17, 1993 Bottomley
5263191 November 16, 1993 Kickerson
5271042 December 14, 1993 Borth et al.
5280472 January 18, 1994 Gilhousen et al.
5305349 April 19, 1994 Dent
5325394 June 28, 1994 Bruckert
5343493 August 30, 1994 Karimullah
5343496 August 30, 1994 Honig et al.
5347535 September 13, 1994 Karasawa et al.
5353302 October 4, 1994 Bi
5377183 December 27, 1994 Dent
5386202 January 31, 1995 Cochran et al.
5390207 February 14, 1995 Fenton et al.
5394110 February 28, 1995 Mizoguchi
5396256 March 7, 1995 Chiba et al.
5423045 June 6, 1995 Kannan
5437055 July 25, 1995 Wheatley, III
5440265 August 8, 1995 Cochran et al.
5448600 September 5, 1995 Lucas
5467368 November 14, 1995 Takeuchi et al.
5481570 January 2, 1996 Winters
5506865 April 9, 1996 Weaver, Jr.
5513176 April 30, 1996 Dean et al.
5533011 July 2, 1996 Dean et al.
5553062 September 3, 1996 Schilling et al.
5553098 September 3, 1996 Cochran et al.
5568411 October 22, 1996 Batruni
5602833 February 11, 1997 Zehavi
5606560 February 25, 1997 Malek
5644592 July 1, 1997 Divsalar et al.
5736964 April 7, 1998 Ghosh et al.
5761237 June 2, 1998 Petersen
5787130 July 28, 1998 Kotzin et al.
5844521 December 1, 1998 Stephens et al.
5859613 January 12, 1999 Otto
5872540 February 16, 1999 Casabona et al.
5872776 February 16, 1999 Yang
5894500 April 13, 1999 Bruckert et al.
5926761 July 20, 1999 Reed et al.
5930229 July 27, 1999 Yoshida et al.
5953369 September 14, 1999 Suzuki
5978413 November 2, 1999 Bender
5995499 November 30, 1999 Hottinen et al.
6002727 December 14, 1999 Uesugi
6014373 January 11, 2000 Schilling et al.
6018317 January 25, 2000 Dogan et al.
6032056 February 29, 2000 Reudink
6088383 July 11, 2000 Suzuki et al.
6101385 August 8, 2000 Monte et al.
6104712 August 15, 2000 Robert et al.
6115409 September 5, 2000 Upadhyay et al.
6127973 October 3, 2000 Choi et al.
6131013 October 10, 2000 Bergstrom et al.
6137788 October 24, 2000 Sawahashi et al.
6141332 October 31, 2000 Lavean
6154443 November 28, 2000 Huang et al.
6157685 December 5, 2000 Tanaka et al.
6157842 December 5, 2000 Karlsson et al.
6157847 December 5, 2000 Buehrer et al.
6161209 December 12, 2000 Moher
6163696 December 19, 2000 Bi et al.
6166690 December 26, 2000 Lin et al.
6172969 January 9, 2001 Kawakami et al.
6175587 January 16, 2001 Madhow et al.
6175588 January 16, 2001 Visotsky et al.
6177906 January 23, 2001 Petrus
6185716 February 6, 2001 Riggle
6192067 February 20, 2001 Toda et al.
6201799 March 13, 2001 Huang et al.
6208683 March 27, 2001 Mizuguchi et al.
6215812 April 10, 2001 Young et al.
6219376 April 17, 2001 Zhodzishsky et al.
6222828 April 24, 2001 Ohlson et al.
6230180 May 8, 2001 Mohamed
6233229 May 15, 2001 Ranta et al.
6233459 May 15, 2001 Sullivan et al.
6240124 May 29, 2001 Wiedeman et al.
6252535 June 26, 2001 Kober et al.
6256336 July 3, 2001 Rademacher et al.
6259688 July 10, 2001 Schilling et al.
6263208 July 17, 2001 Chang et al.
6266529 July 24, 2001 Chheda
6275186 August 14, 2001 Kong
6278726 August 21, 2001 Mesecher et al.
6282231 August 28, 2001 Norman et al.
6282233 August 28, 2001 Yoshida
6285316 September 4, 2001 Nir et al.
6285319 September 4, 2001 Rose
6285861 September 4, 2001 Bonaccorso et al.
6301289 October 9, 2001 Bejjani et al.
6304618 October 16, 2001 Hafeez et al.
6307901 October 23, 2001 Yu et al.
6308072 October 23, 2001 Labedz et al.
6310704 October 30, 2001 Dogan et al.
6317453 November 13, 2001 Chang
6320919 November 20, 2001 Khayrallah et al.
6321090 November 20, 2001 Soliman
6324159 November 27, 2001 Mennekens et al.
6327471 December 4, 2001 Song
6330460 December 11, 2001 Wong et al.
6333947 December 25, 2001 van Heeswyk et al.
6351235 February 26, 2002 Stilp
6351642 February 26, 2002 Corbett et al.
6359874 March 19, 2002 Dent
6362760 March 26, 2002 Kober et al.
6363104 March 26, 2002 Bottomley
6377607 April 23, 2002 Ling
6377636 April 23, 2002 Paulraj et al.
6380879 April 30, 2002 Kober et al.
6385264 May 7, 2002 Terasawa et al.
6396804 May 28, 2002 Odenwalder
6404760 June 11, 2002 Holtzman et al.
6414949 July 2, 2002 Boulanger
6426973 July 30, 2002 Madhow et al.
6430216 August 6, 2002 Kober
6449246 September 10, 2002 Barton et al.
6459693 October 1, 2002 Park et al.
6466611 October 15, 2002 Bachu
6496534 December 17, 2002 Shimizu et al.
6501788 December 31, 2002 Wang et al.
6515980 February 4, 2003 Bottomley
6522683 February 18, 2003 Smee
6529495 March 4, 2003 Aazhang et al.
6535554 March 18, 2003 Webster et al.
6546043 April 8, 2003 Kong
6570909 May 27, 2003 Kansakoski et al.
6570919 May 27, 2003 Lee
6574270 June 3, 2003 Madkour et al.
6580771 June 17, 2003 Kenney
6584115 June 24, 2003 Suzuki
6590888 July 8, 2003 Ohshima
6594318 July 15, 2003 Sindhushayana
6647078 November 11, 2003 Thomas et al.
6678508 January 13, 2004 Koilpillai et al.
6680727 January 20, 2004 Butler et al.
6687723 February 3, 2004 Ding
6690723 February 10, 2004 Gosse
6711219 March 23, 2004 Thomas
6714585 March 30, 2004 Wang et al.
6724809 April 20, 2004 Reznik
6741634 May 25, 2004 Kim
6754340 June 22, 2004 Ding
6798737 September 28, 2004 Dabak et al.
6798850 September 28, 2004 Wedin
6801565 October 5, 2004 Bottomley et al.
6829313 December 7, 2004 Xu
6839390 January 4, 2005 Mills
6850772 February 1, 2005 Mottier
6882678 April 19, 2005 Kong et al.
6909742 June 21, 2005 Leonosky
6912250 June 28, 2005 Adireddy
6931052 August 16, 2005 Fuller
6947481 September 20, 2005 Citta et al.
6947506 September 20, 2005 Mills
6956893 October 18, 2005 Frank et al.
6959065 October 25, 2005 Sparrman et al.
6963546 November 8, 2005 Misra et al.
6975669 December 13, 2005 Ling et al.
6975671 December 13, 2005 Sindhushayana et al.
6986096 January 10, 2006 Chaudhuri et al.
6993070 January 31, 2006 Berthet et al.
6996385 February 7, 2006 Messier et al.
7010073 March 7, 2006 Black et al.
7020175 March 28, 2006 Frank
7027533 April 11, 2006 Abe et al.
7035316 April 25, 2006 Smee et al.
7035354 April 25, 2006 Karnin et al.
7039095 May 2, 2006 Takahashi
7042929 May 9, 2006 Pan et al.
7051268 May 23, 2006 Sindhushayana et al.
7054354 May 30, 2006 Gorokhov et al.
7069050 June 27, 2006 Yoshida
7072628 July 4, 2006 Agashe et al.
7092464 August 15, 2006 Mills
7133435 November 7, 2006 Papasakellariou et al.
7200183 April 3, 2007 Olson
7209511 April 24, 2007 Dent
7298805 November 20, 2007 Walton et al.
7394879 July 1, 2008 Narayan
7397842 July 8, 2008 Bottomley et al.
7397843 July 8, 2008 Grant et al.
7430253 September 30, 2008 Olson
7463609 December 9, 2008 Scharf
7477710 January 13, 2009 Narayan
7535969 May 19, 2009 Catreux et al.
7577186 August 18, 2009 Thomas
7623602 November 24, 2009 Guess et al.
7733941 June 8, 2010 McCloud
7826516 November 2, 2010 Guess et al.
8121176 February 21, 2012 Guess et al.
8446975 May 21, 2013 Guess et al.
8879658 November 4, 2014 Guess et al.
20010003443 June 14, 2001 Velazquez et al.
20010017883 August 30, 2001 Tirola et al.
20010020912 September 13, 2001 Naruse et al.
20010021646 September 13, 2001 Antonucci et al.
20010028677 October 11, 2001 Wang
20010046266 November 29, 2001 Rakib et al.
20010053143 December 20, 2001 Li et al.
20020001299 January 3, 2002 Petch et al.
20020009156 January 24, 2002 Hottinen et al.
20020021747 February 21, 2002 Sequeira
20020051433 May 2, 2002 Affes et al.
20020060999 May 23, 2002 Ma
20020118781 August 29, 2002 Thomas et al.
20020131534 September 19, 2002 Ariyoshi et al.
20020154717 October 24, 2002 Shima
20020159507 October 31, 2002 Flaig et al.
20020172173 November 21, 2002 Schilling et al.
20020176488 November 28, 2002 Kober
20020186761 December 12, 2002 Corbaton
20030005009 January 2, 2003 Usman
20030012264 January 16, 2003 Papasakellariou et al.
20030035468 February 20, 2003 Corbaton
20030035469 February 20, 2003 Frank et al.
20030050020 March 13, 2003 Erceg
20030053526 March 20, 2003 Reznik
20030086479 May 8, 2003 Naguib
20030095590 May 22, 2003 Fuller
20030156630 August 21, 2003 Sriram
20030198201 October 23, 2003 Ylitalo
20030210667 November 13, 2003 Zhengdi
20030219085 November 27, 2003 Endres
20040001537 January 1, 2004 Zhang et al.
20040008765 January 15, 2004 Chung
20040013190 January 22, 2004 Jayaraman
20040017867 January 29, 2004 Thomas
20040076224 April 22, 2004 Onggosanusi et al.
20040095907 May 20, 2004 Agee et al.
20040116078 June 17, 2004 Rooyen et al.
20040136445 July 15, 2004 Olson et al.
20040146024 July 29, 2004 Li et al.
20040146093 July 29, 2004 Olson
20040161065 August 19, 2004 Buckley
20040165675 August 26, 2004 Ito et al.
20040190601 September 30, 2004 Papadimitriou
20040196892 October 7, 2004 Reznik
20040248515 December 9, 2004 Molev Shteiman
20040264552 December 30, 2004 Smee
20050002445 January 6, 2005 Dunyak et al.
20050013349 January 20, 2005 Chae et al.
20050084045 April 21, 2005 Stewart
20050101259 May 12, 2005 Tong et al.
20050111408 May 26, 2005 Skillermark et al.
20050111566 May 26, 2005 Park et al.
20050129107 June 16, 2005 Park
20050152267 July 14, 2005 Song et al.
20050157811 July 21, 2005 Bjerke et al.
20050163196 July 28, 2005 Currivan et al.
20050180364 August 18, 2005 Nagarajan
20050185729 August 25, 2005 Mills
20050190868 September 1, 2005 Khandekar et al.
20050195889 September 8, 2005 Grant
20050201499 September 15, 2005 Jonsson
20050213529 September 29, 2005 Chow et al.
20050223049 October 6, 2005 Regis
20050243908 November 3, 2005 Heo
20050259770 November 24, 2005 Chen
20050265465 December 1, 2005 Hosur
20060007895 January 12, 2006 Coralli et al.
20060013289 January 19, 2006 Hwang
20060047842 March 2, 2006 McElwain
20060078042 April 13, 2006 Lee et al.
20060083202 April 20, 2006 Kent et al.
20060125689 June 15, 2006 Narayan et al.
20060126703 June 15, 2006 Karna
20060141933 June 29, 2006 Smee et al.
20060141934 June 29, 2006 Pfister et al.
20060141935 June 29, 2006 Hou et al.
20060142041 June 29, 2006 Tomasin et al.
20060153283 July 13, 2006 Scharf
20060215781 September 28, 2006 Lee et al.
20060227730 October 12, 2006 McCloud
20060227854 October 12, 2006 McCloud
20060227909 October 12, 2006 Thomas et al.
20060229051 October 12, 2006 Narayan
20060245509 November 2, 2006 Khan et al.
20070153935 July 5, 2007 Yang et al.
Foreign Patent Documents
4201439 July 1993 DE
4326843 February 1995 DE
4343959 June 1995 DE
0558910 January 1993 EP
0610989 January 1994 EP
1179891 February 2002 EP
2280575 February 1995 GB
2000-13360 January 2000 JP
WO 93/12590 June 1995 WO
WO 01/89107 November 2001 WO
WO 02/080432 October 2002 WO
Other references
  • Response to Notice to File Corrected Application Papers dated May 19, 2010 re U.S. Appl. No. 12/731,960 (63 Pages).
  • D. Guo, et al., “Linear parallel interference cancellation in long-code CDMA,” IEEE J. Selected Areas Commun., Dec. 1999, pp. 2074-2081, vol. 17., No. 12.
  • D. Guo, et al., “MMSE-based linear parallel interference cancellation in CDMA,” inProceedings of IEEE Int. Symp. Spread Spectrum Techniques and Appl., Sep. 1998, pp. 917-921.
  • L. Rassmussen, et al., “Convergence behaviour of linear parallel cancellation in CDMA,” IEEE Global Telecom. Conf. (San Antonio, Texas), Dec. 2001, pp. 3148-2152.
  • D. Guo, et al., “A Matrix-Algebraic Approach to Linear Parallel Interference Cancellation in CDMA,” IEEE Trans. Commun., Jan. 2000, pp. 152-161, vol. 48., No. 1.
  • L. Rasmussen, et al., “Ping-Pong Effects in Linear Parallel Interference Cancellation for CDMA,” IEEE Trans. Wireless Commun., Mar. 2003, pp. 357-363, vol. 2., No. 2.
  • T. Lin, et al., “Iterative Multiuser Coding with Maximal Ratio Combining,” Australian Workshop on Commun. Theory, (Newcastle, Australia), Feb. 2004, pp. 42-46.
  • T. Lin et al., “Truncated Maximal Ratio Combining for Iterative Multiuser Decoding,” Australian Workshop on Commun. Theory, (Brisbane, Australia), Feb. 2005.
  • X. Wang, et al., “Iterative (Turbo) Soft Interference Cancellation and Decoding for Coded CDMA,” IEEE Transactions on Communications, Jul. 1999, pp. 1046-1061, vol. 47, No. 7.
  • D. Divsalar, et al., “Improved Parallel Interference Cancellation for CDMA,” IEEE Trans. on Comm., Feb. 1998, pp. 258-268, vol. 46, No. 2.
  • M. Ali-Hackl, et al., “Error Vector Magnitude as a Figure of Merit for CDMA Receiver Design,” The 5th European Wireless Conf., Feb. 2004.
  • J. Robler, et al., “Matched-Filter-and MMSE-Based Iterative Equalization with Soft Feedback for QPSK Transmission,” International Zurich Seminar on Broadband Communications (IZS '02) pp. 19-1-19-6, Feb. 2002.
  • Lin, et al., Digital Filters for High Performance Audio Delta-sigma Analog-to-digital and Digital-to-analog Conversions, Proceedings of ICSP, Crystal Semiconductor Corporation, 1996, Austin, TX, US.
  • D. Brown, et al., “On the Performance of Linear Parallel Interference Cancellation,” IEEE Trans. Information Theory, V. 47, No. 5, Jul. 2001, pp. 1957-1970.
  • M. Kobayashi, et al., “Successive Interference Cancellation with SISO Decoding and EM Channel Estimation,” IEEE J. Sel. Areas Comm., V. 19, No. 8, Aug. 2001, pp. 1450-1460.
  • J. Proakis, Digital Communications (4th ed. 2000), pp. 622-626, 956-959.
  • P. Naidu, Modern Digital Signal Procesing: An Introduction (2003), pp. 124-126.
  • S. Verdu, Multiuser Detection (1998), pp. 291-306.
  • G. Xue, et al., “Adaptive Multistage Parallel Interference Cancellation for CDMA over Multipath Fading Channels,” IEEE J. on Selected Areas in Comm. Oct. 1999, V. 17, No. 10.
  • K. Hooli, et al., “Chip-Level Channel Equalization in WCDMA Downlink,” Eurasip J. on Applied Signal Processing 2002:8, pp. 757-770.
  • L. Rasmussen, et al., “A Matrix-Algebraic Approach to Successive Interference Cancellation in CDMA,” IEEE Trans. Comm, Jan. 2000, V. 48, No. 1, pp. 145-151.
  • P. Tan, et al. “Linear interference Cancellation in CDMA Based on Iterative Techniques for Linear Equation Systems,” IEEE Trans. Comm., Dec. 2000, V. 48, No. 12, pp. 2099-2108.
  • A. Yener, et al., “CDMA Multiuser Detection: A Nonlinear Programming Approach,” IEEE Trans. Comm, Jun. 2002, V. 50, No. 6, pp. 1016-1024.
  • A. Persson, et al., “Time-Frequency Localization CDMA for Downlink Multi-Carrier Systems,” 2002 IEEE 7th Int. Symp. Spread Spectrum, 2002, vol. 1, pp. 118-122.
  • H. Ping, et al. “Decision-Feedback Blind Adaptive Multiuser Detector for Synchronous CDMA System,” IEEE Trans. Veh. Tech., Jan. 2000, V. 49, No. 1, pp. 159-166.
  • H. Dai, et al., “Iterative Space-Time Processing for Multiuser Detection in Multipath CDMA Channels,” IEEE Trans. Signal Proc., Sep. 2002, V. 50, N. 6.
  • Y. Guo, “Advanced MIMO-CDMA Receiver for Interference Suppression: Algorithms, System-on-Chip Architecture and Design Methodology,” PhD Thesis, Rice U., May 2005, pp. 165-185.
  • S. Kim, et al., “Adaptive Weighted Parallel Interference Cancellation for CDMA Systems,” Electronic Letters, Oct. 29, 1998, V. 34, N. 22.
  • H. Yan, et al., “Paralle Interference Cancellation for Uplink Multirate Overlay CDMA Channels,” IEEE Trans. Comm. V. 53, No. 1, Jan. 2005, pp. 152-161.
  • J. Winters, “Optimal Combining in Digital Mobile Radio with Cochannel Interference,” IEEE J. Selected Areas in Comm., V SAC-2, No. 4, Jul. 1984, pp. 538-539.
  • D. Athanasios, et al., “SNR Estimation Algorighms in AWGN for HiperLAN/2 Transceiver,” MWCN 2005 Morocco, Sep. 19-21, 2005.
  • D. Divsalar, “Improved Parallel Interference Cancellation for CDMA,” IEEE Trans., Comm., V. 46, No. 2, Feb. 1998, pp. 258-268.
  • T. Lim, S. Roy, “Adaptive filters in multiuser (MU) CDMA detection,” Wireless Networks 4 (1998) pp. 307-318.
  • D. Guo, et al., “A Matrix-Algebraic Approach to Linear Parallel Interference Cancellation in CDMA,” IEEE TRans. Comm., V. 48, No. 1, Jan. 2000, pp. 152-161.
  • L. Rasmussen, et al., “A Matrtix-Algebraic Approach to Successive Interference Cancellation in CDMA,” IEEE Trans. Comm., V. 48, No. 1, Jan. 2000, pp. 145-151.
  • D. Guo, et al., “Linear Parallel Interference Cancellation in Long-Code CDMA Multiuser Detection,” IEEE J. Sel. Areas Comm., V. 17, No. 12, Dec. 1999, pp. 2074-2081.
  • Response dated May 6, 2010 to Non-Final Office Action mailed Dec. 14, 2009 re U.S. Appl. No. 11/266,928. 43 Pages.
  • Wang, Xiaodong et al., “Space-Time Multiuser Detection in Multipath CDMA Channels”, IEEE Transactions on Signal Processing, vol. 47, No. 9, Sep. 1999. 19 Pages.
  • Marinkovic, Slavica et al., “Space-Time Iterative and Multistage Receiver Structures for CDMA Mobile Communications Systems”, IEEE Journal on Selected Areas in Communications, vol. 19, No. 8, Aug. 2001. 11 Pages.
  • Jayaweera, Sudharman K. et al., “A RAKE-Based Iterative Receiver for Space-Time Block-Coded Multipath CDMA”, IEEE Transactions on Signal Processing, vol. 52, No. 3, Mar. 2004. 11 Pages.
  • Mohamed, Nermin A. et al., “A Low-Complexity Combined Antenna Array and Interference Cancellation DS-CDMA Receiver in Multipath Fading Channels”, IEEE Journal on Selected Areas in Communications, vol. 20, No. 2, Feb. 2002. 9 Pages.
  • Response dated May 13, 2010 to final Office Action mailed Apr. 19, 2010 re U.S. Appl. No. 11/272,411 includes Terminal Disclaimer. 6 Pages.
  • Notice of Allowance and Fee(s) Due with mail date of May 28, 2010 for U.S. Appl. No. 11/272,411. 7 pages.
  • Lin, Kun; Zhao, Kan; Chui, Edmund; Krone, Andrew; and Nohrden, Jim; “Digital Filters for High Performance Audio Delta-sigma Analog-to-Digital and Digital-to-Analog Conversions,” Proceedings of ICSP '96, Crystal Semiconductor Corporation. Austin, TX, US. 5 pages, Oct. 1996.
  • Response dated Aug. 17, 2010 to the Final Office Action of Jun. 28, 2010, re U.S. Appl. No. 11/266,928. 47 pages.
  • PCT Notification of Transmittal of International Search Report and Written Opinion of International Searching Authority date of mailing Sep. 21, 2007, re Int'l Application No. PCT/US 06/36018. 10 pages.
  • Advisory Action Before the Filing of an Appeal Brief Office Action for reply filed Aug. 17, 2010, dated Sep. 1, 2010, in re U.S. Appl. No. 11/266,928. 2 pages.
  • Office Action dated May 6, 2007, with mail date of Jun. 28, 2010, re U.S. Appl. No. 11/266,928. 17 pages.
  • Notice of Allowance and Fees Due with mail date of Nov. 30, 2010 for U.S. Appl. No. 11/266,928 includes excerpt from Response to Final Office Action and Examiner's comments. 21 Pages.
  • Mitra, et al., “Adaptive Decorrelating Detectors for CDMA Systems,” accepted for Wireless Communications Journal, accepted May 1995. 25 pages.
  • Schneider, “Optimum Detection of Code Division Multiplexed Signals,” IEEE Transactions on Aerospace and Electronic Systems, vol. AES-15, No. 1, Jan. 1979.
  • Mitra, et al., “Adaptive Receiver Algorithms for Near-Far Resistant CDMA,” IEEE Transactions on Communications, Apr. 1995.
  • Lupas, et al., “Near-Far Resistance of Multiuser Detectors in Asynchronous Channels,” IEEE transactions on Communications, vol. 38, No. 4, Apr. 1990.
  • Lupas, et al., “Linear Multiuser Detectors for Synchronous Code-Division Multiple-Access Channels,” IEEE Transactions on Information Theory, vol. 35, No. 1, Jan. 1989.
  • Kohno, et al., “Cancellation Techniques of Co-Channel Interference in Asynchronous Spread Spectrum Multiple Access Systems,” May 1983, vol. J 56-A, No. 5.
  • Garg, et al., “Wireless and Personal Communications Systems,” Prentice Hall, Upper Saddle River, NJ, US, 1996. pp. 79-151.
  • Cheng, et al., “Spread-Spectrum Code Acquisition in the Presence of Doppler Shift and Data Modulation,” IEEE Transactions on Communications, vol. 38, No. 2, Feb. 1990.
  • Behrens, et al., “Parameter Estimation in the Presence of Low Rank Noise,” pp. 341-344, Maple Press, 1988.
  • Best, “Phase-Locked Loops—Design, Simulation, and Applications,” McGraw-Hill, 1999. pp. 251-287.
  • Iltis, “Multiuser Detection of Quasisynchronous CDMA Signals Using Linear Decorrelators,” IEEE Transactions on Communications, vol. 44, No. 11, Nov. 1996.
  • Rappaport, “Wireless Communications—Principles & Practice,” Prentice Hall, Upper Saddle River, NJ, US. 1996, pp. 518-533.
  • Scharf, et al., “Matched Subspace Detectors,” IEEE Transactions on Signal Processing, vol. 42, No. 8, Aug. 1994.
  • Price, et al., “A Communication Technique for Multipath Channels,” Proceedings of the IRE, vol. 46, The Institute of Radio Engineers, New York, NY, US, 1958. 16 pages.
  • Affes, et al., “Interference Subspace Rejection: A Framework for Multiuser Detection in Wideband CDMA,” IEEE Journal on Selected Areas in Communications, vol. 20, No. 2, Feb. 2002.
  • Schlegel, et al., “Coded Asynchronous CDMA and Its Efficient Detection,” IEEE Transactions on Information Theory, vol. 44, No. 7, Nov. 1998.
  • Xie, et al., “A Family of Suboptimum Detectors for Coherent Multiuser Communications,” IEEE Journal on Selected Areas in Communications, vol. 8, No. 4, May 1990.
  • Viterbi, “Very Low Rate Convolutional Codes for Maximum Theoretical Performance of Spread-Spectrum Multiple-Access Channels,” vol. 8, No. 4, May 1990.
  • Viterbi, “CDMA—Principles of Spread Spectrum Communication,” Addison-Wesley, Reading, MA, US. 1995, pp. 11-75 and 179-233.
  • Verdu, “Mimimum Probability of Error for Asynchronous Gaussian Multiple-Access Channels,” IEEE Transactions on Information Theory, vol. IT-32, No. 1, Jan. 1986.
  • Kalpan, “Understanding GPS—Principles and Applications,” Artech House, Norwood MA, 1996, pp. 83-236.
  • Scharf, “Statistical Signal Processing—Detection, Estimation, and Time Series Analysis,” Addison-Wesley, Reading, MA, US. 1990, pp. 23-75 and 103-178.
  • Stimson, “Introduction to Airborne Radar,” 2nd Edition, SciTech Publishing, Mendham, NJ, US. 1998, pp. 163-176 and 473-491. 40 pages.
  • Behrens et al., “Signal Processing Applications of Oblique Projection Operators,” IEEE Transactions on Signal Processing, vol. 42, No. 6, Jun. 1994, pp. 1413-1424.
  • Alexander, et al., “A Linear Receiver for Coded Multiuser CDMA,” IEEE transactions on Communications, vol. 45, No. 5, May 1997.
  • Schlegel et al., “Multiuser Projection Receivers,” IEEE Journal on Selected Areas in Communications, vol. 14, No. 8, Oct. 1996. 9 pages.
  • Halper, et al., “Digital-to-Analog Conversion by Pulse-Count Modulation Methods,” IEEE Transactions on Instrumentation and Measurement, vol. 45, No. 4, Aug. 1996.
  • Ortega, et al., “Analog to Digital and Digital to Analog Conversion Based on Stochastic Logic,” IEEE 0-7803-3026-9/95, 1995. 5 pages.
  • Frankel et al., “High-performance photonic analogue-digital converter,” Electronic Letters, Dec. 4, 1997, vol. 33, No. 25, pp. 2096-2097. 2 pages.
  • Thomas, “Thesis for the Doctor of Philosophy Degree,” UMI Dissertation Services, Jun. 28, 1996.Ann Arbor, MI, US.
  • Schlegel et al, “Projection Receiver: A New Efficient Multi-User Detector,” IEEE 0-7803-2509-5/95, 1995. 5 pages.
  • Behrens, “Subspace Signal Processing in Structured Noise,” UMI Dissertation Services, Ann Arbor, MI, US. Jun. 1990. 117 pages.
  • Non-Final Office Action dated Jul. 31, 2008 for U.S. Appl. No. 11/100,935 dated Apr. 7, 2005.
Patent History
Patent number: 9172456
Type: Grant
Filed: Oct 22, 2014
Date of Patent: Oct 27, 2015
Patent Publication Number: 20150139280
Assignee: III HOLDINGS 1, LLC (Wilmington, DE)
Inventors: Tommy Guess (Lafayette, CO), Michael L. McCloud (Boulder, CO), Vijay Nagarajan (Boulder, CO), Gagandeep Singh Lamba (Thornton, CO)
Primary Examiner: David B. Lugo
Application Number: 14/520,626
Classifications
Current U.S. Class: 235/156
International Classification: H04B 7/02 (20060101); H04L 1/02 (20060101); H04B 7/08 (20060101); H04B 1/7107 (20110101); H04J 11/00 (20060101); H04B 1/712 (20110101);