Skin abrader
The present invention relates to devices, methods, and systems for abrading the skin in preparation for attachment of an electrode. In some embodiments, the invention may provide for a simple, low-cost device 120 with a flat, abrading surface that removes the topmost layer of the skin without causing undue injury.
Latest iRhythm Technologies, Inc. Patents:
- Device features and design elements for long-term adhesion
- Adhesive physiological monitoring device
- Methods and systems for processing data via an executable file on a monitor to reduce the dimensionality of the data and encrypting the data being transmitted over the wireless network
- Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
- Wearable device with bridge portion
This application claims the benefit of U.S. Provisional Application No. 61/809,817, filed Apr. 8, 2013, entitled SKIN ABRADER. The contents of the aforementioned application are hereby incorporated by reference in their entirety as if fully set forth herein. The benefit of priority to the foregoing application is claimed under the appropriate legal basis, including, without limitation, under 35 U.S.C. §119(e).
BACKGROUND OF THE INVENTION1. Field of the Invention
This application describes embodiments of apparatuses, methods, and systems for the abrasion of skin in preparation for application of an electrode for detection of cardiac and other low level electrical signals generated within the human body, allowing for improved short term and long-term adhesion and improved conductance through skin, resulting in better signal quality of recorded data.
2. Description of the Related Art
Skin contact electrodes are used extensively for detecting and transforming potentials generated within the body into electrical signals which may be monitored for a variety of functions, such as the preparation of electrocardiograms and electroencephalograms. Many disposable electrode assemblies and similar devices utilize an electrode together with an adhesive for holding the electrode in position on the skin. For the best electrical contact with mammalian skin, it is desirable to remove hair and a portion of the epidermis, as well as surface oils. Typically, the process involves removal of hair by shaving or other depilatory method. Next, the skin is abraded for the removal of the dry layers of stratum corneum, followed by cleaning and defatting of the skin using an alcohol wipe. The skin abrasion process exposes more conductive layers of skin to improve electric connection, promoting better transmission of a cleaner signal.
As mentioned previously, electrodes may contain an adhesive to keep the electrode in contact with the skin. The outer layers of the stratum corneum are typically the driest and nearest to being sloughed off by the body. Removing these cells prior to electrode placement allows the adhesive to come into newer, more anchored layers of the skin, promoting longer adhesion performance. With sensing applications that require longer-term wear periods, sufficient removal of skin takes on greater importance. The development of a long-term recording ECG patch has further created a need for a tool that is effective in thoroughly removing the stratum corneum layers, to allow for patch adhesion for periods up to and beyond 14 days.
As critical as the skin abrasion process is for good signal conduction and long term adhesion, it is a process that is often incomplete in practice. This is largely due to the limitations of existing abrasion tools in combination with the limited time and attention typically given to the abrasion process. Certain abrasion tools, resembling woven polymer sponges, have a coarse texture. Though the sensation of abrasion is heightened for the patient, the contours of the tool's surface are more conducive to creating scratches in the skin than evenly removing the outer stratum corneum layer. Other products, such as pumice-impregnated alcohol wipes, do an adequate job of abrading the skin without causing unwanted injury to the skin, however significant pressure and attention is required for an effective outcome. In combining the skin abrasion and cleaning step into a single tool, these instruments are easily confused for alcohol wipes intended for just cleaning, and the pressure required for abrasion is not achieved.
Because of the limitations of existing skin abrasion tools, there is need for a simple, one-piece, disposable and low-cost tool that can effectively abrade the skin while being easy to manipulate and that minimizes the amount of attention that must be given to this part of the prep process.
SUMMARY OF THE INVENTIONEmbodiments of the present invention relate to skin abrasion devices. In one embodiment, a skin abrasion device comprises: a flat abrasive surface with a rounded shape and a holding layer to facilitate handling the device while applying even pressure to the skin. The device can be used in advance of skin-surface application of electrodes or devices that contain electrodes for sensing biopotentials such as an ECG. In some embodiments, the skin abrasion tool enables even and thorough removal of the top layer of stratum corneum without causing injury to the skin in the form of scratches or gouges, regardless of the experience level of the user.
In one embodiment, a dermal preparation device for preparation of the stratum corneum of a patient for long term adhesion of an electrode to the patient, comprises:
-
- a support layer having an upper surface, a lower surface, a major axis extending through a geometrical center of the support layer and along the longest dimension of the support layer;
- an abrasive adhered to the lower surface;
- a handle secured to the upper layer; and
- wherein the handle is formed by bonding a first portion of a handle layer to the support layer, and folding a second portion of the handle layer to form the handle.
In some embodiments, the support layer of the dermal preparation device is approximately circular, and the major axis is a diameter of the circle. In certain embodiments, the major axis is no more than about 2.5 inches long. In further embodiments, the is no more than about 2.0 inches long. Certain embodiments may cal for the dermal preparation device to further comprise an atraumatic edge. In some embodiments, the atraumatic peripheral edge comprises a rounded surface formed by inclining a peripheral edge of the device away from a plane defined by the lower surface, in the direction of the upper surface. In further embodiments, the support layer is sufficiently flexible that when pressed against a dermal surface using the handle, the lower surface will deform into a convex surface against the dermal surface. In some embodiments, the handle is bonded to the support layer along a bond which extends at least about 50% of the maximum dimension of the support, along the axis of the bond. In certain embodiments, the handle is bonded to the support layer along a bond which extends at least about 85% of the maximum dimension of the support, along the axis of the bond. In further embodiments, the handle is bonded directly to the support layer. In certain embodiments, the handle is bonded to the support layer by a bond which covers at least about 15% of the total area of the upper surface of the support layer. In certain embodiments, the handle is bonded to the support layer by a bond which covers at least about 35% of the total area of the upper surface of the support layer. In some embodiments, the abrasive comprises a grit ranging from about 36-66 μm.
In further embodiments, in a dermal preparation device as described above where the handle is bonded to the support layer along a bond which extends at least about 50% of the maximum dimension of the support along the axis of the bond, the axis of the bond is substantially parallel to the major axis. In some embodiments, a transdermal electrode and surface preparation kit, comprises at least one transdermal electrode configured for adhesive attachment to a patient's skin, and at least one dermal preparation device as described above.
In some embodiments, a dermal preparation device for preparation of the stratum corneum of a patient for long term adhesion of an electrode to the patient, comprises:
-
- an abrasive surface;
- an inner layer; and,
- a holding layer further comprising a gripping portion.
In certain embodiments, a method of abrading the skin of patient via a dermal preparation device in preparation for the long term adhesion of an electrode, comprises:
-
- placing the dermal preparation device on the skin;
- grasping a gripping portion of the dermal abrasion device;
- applying pressure to the skin through the dermal abrasion device; and
- moving the device in a manner to remove a desirable amount of skin.
In some embodiments, the method may comprise preparing the skin for application of the dermal preparation device. Certain embodiments may call for the method to further comprise adhering a physiological monitoring device that comprises an electrode. In embodiments of the method, a physiological parameter may be measured with the physiological monitoring device. In embodiments, the desirable amount of skin comprises an amount of skin configured to improve the signal quality of the physiological monitoring device.
Embodiments disclosed herein relate to apparatuses and methods directed towards the use and manufacture of skin abrasion devices.
It will be understood by one skilled in the art that the geometric shapes of the peripheral edge of the skin abrasion device described herein are non-limiting. The embodiments of the skin abrasion device described herein are applicable to a wide variety of geometric shapes.
In some embodiments, the abrasive layer 102 can comprise a material sheet such as medical grade or equivalent sandpaper, where a range of grit sizes can be used depending upon the level of abrasion or gentleness desired as well as the type of skin that is being abraded. In some embodiments, the average diameter of the grit may range in size from about 16-93 microns (μm). For example, the grit can have an average diameter ranging from: about 20-90 μm, about 25-85 μm, about 30-80 μm, about 35-75 μm, about 40-70 μm, about 45-65 μm, or about 50-60 μm. Preferably, Grit diameters in the range of 36-66 μm can provide a level of abrasion that is effective with minimal pressure and a perception of minimal roughness by the subject being abraded.
In some embodiments, the abrasive surface 103 may be a surface that is embedded with or bonded to abrasive material, such as polymeric or mineral particles, or one that is textured through material properties or a manufacturing process.
Preferably, the abrasive surface 103 is biocompatible. In one embodiment, the abrasive surface 103 may comprise a biocompatible mineral such as silicon carbide. Another embodiment may be a biologically inert polymer that is formed or molded to have an abrasive texture, such as hook and loop fasteners. Further embodiments include the use of aluminum oxide, alumina-zirconia, chromium oxide, ceramic aluminum oxide or any other appropriately abrasive material.
In some embodiments, the abrasive surface 103 may comprise commercially available abrasive surfaces such as 426U Abrasive, available from 3M Innovative Properties Company. Further abrasive surfaces may also include those described in U.S. Pat. No. 6,136,008, SKIN ABRASION DEVICE FOR BIOMEDICAL ELECTRODE, filed Mar. 19, 1998 and hereby incorporated by reference. For example, as described in U.S. Pat. No. 6,136,008, an abrasive surface can comprise: a polymeric geometrically structured surface abrasive which minimizes and preferably avoids any use of mineral particle content, making the assembly of a skin abrasion device in a high-speed, low-cost biomedical electrode manufacturing facility possible under GMP/QSR conditions; and a predetermined pattern of geometrically structured surface abrasive, which permits assured, engineered surfaces for consistent abrading properties on a specific type of mammalian skin or a specific mammal, in order to achieve reduced skin impedance without undue damage or pain to the patient. Using these parameters, it is possible to engineer a geometrically structured surface abrasive based upon the tooling used to produce such surface.
As further described in U.S. Pat. No. 6,136,008, a portion of an abrasive surface can be engineered from a variety of polymeric materials. Non-limiting examples of such polymers include (meth)acrylates such as triacrylates prepared from one or more monomers such as trimethyolpropane triacrylate and triacrylate of trishydroxyethyl isocyanate. Additives can be added to such an abrasive surface and can include pigments, dyes, plasticizers, anti-oxidants, and fillers as desired by those skilled in the art.
The embodiments described herein may further include the use of open-coat abrasives or perforations, in order to minimize the collection of abraded skin that may reduce the effectiveness of the abrasive during the time of use.
In certain preferable embodiments, the material properties of the selected abrasive material sheet used in the abrasive layer 102 contribute to the flexibility and structural resilience of the abrasive device. In some embodiments, the abrasive surface 102 can be laminated to the inner sheet 106 via an adhesive layer 104. Adhesive layer 104 can comprise any suitable adhesive material, for example a double-sided rubber adhesive such as 300LSE manufactured by 3M Innovative Properties Company. In some embodiments, adhesive layer 104 is a glue or other adhesive material sheet or substance.
In certain embodiments, the inner sheet 106 can be a flexible sheet or film, preferably constructed from a polymer such as polythethylene terephthalate. In other embodiments, the inner sheet 106 can comprise any suitable polymer, for example polyethylenes, polypropylenes, polyesters, vinyl esters, other flexible polymer films. The thickness of the inner sheet 106 can range from about 0.002 inches to 0.015 inches. For example, the thickness of the inner sheet 106 can range from: about 0.003-0.014 inches, about 0.004-0.013 inches, about 0.005-0.012 inches, about 0.006-0.011 inches, about 0.007-0.010 inches, or about 0.008-0.009 inches. The use of a flexible polymer film advantageously contributes to the flexibility and structural resilience of the skin abrasion device.
In certain embodiments, the thickness of the inner sheet 106 is desirably selected to complement the material properties of the abrasive layer. For example, if the abrasive layer is particularly thick, then a thinner inner sheet layer may be more desirable.
Another advantage of laminating the inner sheet 106 to the abrasive surface 102 is the minimization of creases that can form on the abrasive surface, as certain abrasive materials can be prone to crease-forming due to bending. Such creasing can produce sharp corners which may scratch or break the skin, increasing the likelihood of skin irritation or sensitization to electrode materials.
In some embodiments, the inner sheet 106 is attached to an adhesive layer 108 that covers less than 100% of an upper surface of the inner sheet 106. The partial adhesive layer 108 can be comprised of any suitable adhesive material, for example a double-sided rubber adhesive such as 300LSE manufactured by 3M Innovative Properties Company. In other embodiments, the adhesive layer 108 is a type of glue or other adhesive substance. In some embodiments, the adhesive layer 108 can cover a portion of the inner sheet 106 ranging from approximately 5% to 100% of inner sheet 106. For example, the portion of inner sheet 106 covered by adhesive layer 108 can be at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 90%, or about 100% of the total top area of the inner sheet 106. In certain embodiments, the adhesive layer 108 covers no more than about 60% or no more than about 50% of the area of the inner sheets 106. In alternative embodiments, the inner sheet 106 can comprise multiple thinner sheets laminated together.
In some embodiments, the holding layer 110 can be attached to the inner sheet 106 via an adhesive layer 108. The adhesive layer 108 can be attached to only a portion of the holding layer 110. As will be described in greater detail below, the portion of the holding layer 110 that is not attached to the adhesive layer 108 functions as the gripping portion 112, which can be a tab, handle, or other protrusion. The gripping portion 112 can be grasped between the fingers of a user to control the movement and applied pressure of the skin abrasion device.
In some embodiments, the portion of the holding layer 110 attached to the adhesive layer 108 can be at least about 1%, at least about 5%, at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 30%, at least about 35%, at least about 40%, at least about 45%, at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 90%, or about 100% of the total area of the holding layer 110. In certain embodiments, the portion of the holding layer 110 that is attached to the inner sheet 106 by adhesive layer 108 is no more than about 70%, about 60%, or about 50% of the area of the holding layer 110.
In certain embodiments, the holding layer 110 can be a flexible sheet or film, preferably constructed from a polymer such as polythethylene terephthalate. In other embodiments, the holding layer 110 can comprise any suitable polymer, for example polyethylenes, polypropylenes, polyesters, vinyl esters, or other flexible polymer films. The thickness of the holding layer can range from about 0.001-0.010 inches. For example, the thickness of the holding layer 110 can range from: about 0.002-0.009 inches, about 0.003-0.008 inches, about 0.004-0.007 inches, or about 0.005-0.006 inches.
In some embodiments, the holding layer 110 can be printed to include text instructions, diagrams, images, or other labeling that facilitates use of the device for certain applications, or that aid in correct selection of the device as applicable to cases in which multiple abrasion devices are provided to the user. For example, a visual indicium such as a number symbol or color code may be provided on the holding layer, or visible through the holding layer, indicative of a particular coarseness of the abrasive layer 102. In certain embodiments, a plurality of abrasion devices may be provided, each having two unique abrasive characteristics and unique corresponding indicium.
In some embodiments, the abrasive layer is not comprised of a separate layer, but rather, the bottom layer of the abrasive device is comprised of grit as described above, directly adhered to the inner sheet 106 via an adhesive.
In some embodiments, the abrasive device comprises a major axis 114 comprising the longest dimension that extends across the geometric center of the device in a plane parallel to the plane of the abrasive device. The length of the major axis 114 can range from about 0.5-3.0 inches. For example, the length of the major axis can range from: about 0.75-2.75 inches, about 1.0-2.5 inches, about 1.25-2.25 inches, or about 1.5-2.0 inches. In a preferred embodiment, the length of the major axis is 1.625 inches.
In some embodiments, the abrasion device comprises a topmost support layer and a handle. In certain embodiments, the handle can be attached to the support layer via two or more attachment points. Preferably, the two or more attachment points can be spaced apart for further stability. In some embodiments, the attachment points for the handle can be located in any location across the top surface of the abrasion device.
As similarly described above in relation to
The shape and form of the abrasion device is conducive to flat and user-friendly packaging.
As described above, the abrasion device allows for versatility in its packaging. In one packaging embodiment, the abrasion device may be individually packaged and provided in multiple unit packaging 600. Alternately, many abrasion devices may be provided loose, in a box of multiple quantities 602.
In a kitted embodiment 700, the abrasion device's flat form factor allows for packaging within instructions along with other skin preparation materials, such as razors and alcohol wipes.
In certain embodiments, the handle contains cut-outs (semi-circular, triangular, rectangular, or any suitable shape) along its edge, giving the user a feature that helps peel the handle up from the main body of the device if it has not been folded up.
In some embodiments, the kit 700 may further include instructions for the use of the abrasion device in combination with a monitoring device. For example, the kit may include instructions 706 such as how to enroll in an online website related to the abrasion device. Further instructions may include advising a user as to properly planning for the placement of the physiological monitoring device, including shaving, abrading the skin, cleaning the skin, removal of the device, and proper application of the physiological monitoring device.
Claims
1. A dermal preparation system for preparation of a stratum corneum of a mammal for adhesion of an electrode to the mammal, comprising:
- an electrode configured for adhesive attachment to a mammal's skin; and
- a dermal preparation device separate from the electrode, the dermal preparation device comprising:
- a support layer having an upper surface, a lower surface, and a major axis extending through a geometrical center of the support layer and along the longest dimension of the support layer;
- an abrasive coating the lower surface, the abrasive coating comprising a polymeric grit with diameters ranging from about 36-66 μm, the abrasive coating configured to mechanically remove a portion of the stratum corneum of the mammal; and
- a handle secured to the upper surface, the handle formed by bonding a first portion of a handle layer to the support layer, and folding a second portion of the handle layer to form the handle.
2. A dermal preparation system as in claim 1,
- wherein the support layer is approximately circular, and the major axis is a diameter of a circle.
3. A dermal preparation system as in claim 1, wherein the major axis is no more than about 2.5 inches long.
4. A dermal preparation system as in claim 1, wherein the major axis is no more than about 2.0 inches long.
5. A dermal preparation system as in claim 1, wherein the support layer is sufficiently flexible that when pressed against a dermal surface using the handle, the lower surface will deform into a convex surface against the dermal surface.
6. A dermal preparation system as in claim 1, wherein the handle is bonded to the support layer along a bond which extends at least about 50% of a maximum dimension of the support layer, along an axis of the bond.
7. A dermal preparation system as in claim 6, wherein the axis of the bond is substantially parallel to the major axis.
8. A dermal preparation system as in claim 1, wherein the handle is bonded to the support layer along a bond which extends at least about 85% of a maximum dimension of the support layer, along an axis of the bond.
9. A dermal preparation system as in claim 1, wherein the handle is bonded to the support layer by a bond which covers at least about 15% of a total area of the upper surface of the support layer.
10. A dermal preparation system as in claim 1, wherein the handle is bonded to the support layer by a bond which covers at least about 35% of a total area of the upper surface of the support layer.
11. The system of claim 1, wherein the abrasive coating uniformly coats the entirety of the lower surface.
12. The system of claim 1, wherein the dermal preparation device further comprises an outer peripheral edge, the outer peripheral edge curving along the entirety of a circle and having no corners.
13. A dermal preparation kit for preparation of a stratum corneum of a mammal for adhesion of an electrode to the mammal, comprising:
- an electrode configured for adhesive attachment to a mammal's skin; and
- a dermal preparation device separate from the electrode, the dermal preparation device comprising:
- a support layer having an upper surface, a lower surface, and a major axis extending through a geometrical center of the support layer and along the longest dimension of the support layer;
- an abrasive coating the lower surface, the abrasive coating comprising a polymeric grit with diameters ranging from about 36-66 μm, the abrasive coating configured to mechanically remove a portion of the stratum corneum of the mammal; and
- a handle secured to the upper surface, the handle formed by bonding a first portion of a handle layer to the support layer, and folding a second portion of the handle layer to form a handle.
1497079 | June 1924 | Gullborg |
2179922 | November 1939 | Dana |
2201645 | May 1940 | Epner |
2311060 | February 1943 | Lurrain |
2500840 | March 1950 | Lyons |
3215136 | November 1965 | Holter et al. |
3547107 | December 1970 | Chapman et al. |
3870034 | March 1975 | James |
3882853 | May 1975 | Gofman |
3911906 | October 1975 | Reinhold |
4023312 | May 17, 1977 | Stickney |
4027664 | June 7, 1977 | Heavner et al. |
4121573 | October 24, 1978 | Crovella et al. |
4123785 | October 31, 1978 | Cherry et al. |
4126126 | November 21, 1978 | Bare |
4202139 | May 13, 1980 | Hong et al. |
4274419 | June 23, 1981 | Tam et al. |
4274420 | June 23, 1981 | Hymes |
4286610 | September 1, 1981 | Jones |
4333475 | June 8, 1982 | Moreno et al. |
4361990 | December 7, 1982 | Link |
4381792 | May 3, 1983 | Busch |
4438767 | March 27, 1984 | Nelson |
4459987 | July 17, 1984 | Pangburn |
4535783 | August 20, 1985 | Marangoni |
4537207 | August 27, 1985 | Gilhaus |
4572187 | February 25, 1986 | Schetrumpf |
4621465 | November 11, 1986 | Pangburn |
4658826 | April 21, 1987 | Weaver |
4712552 | December 15, 1987 | Pangburn |
4736752 | April 12, 1988 | Munck et al. |
4925453 | May 15, 1990 | Kannankeril |
4981141 | January 1, 1991 | Segalowitz |
5003987 | April 2, 1991 | Grinwald |
5027824 | July 2, 1991 | Dougherty et al. |
5086778 | February 11, 1992 | Mueller et al. |
5205295 | April 27, 1993 | Del Mar et al. |
5228450 | July 20, 1993 | Sellers |
5230119 | July 27, 1993 | Woods et al. |
5289824 | March 1, 1994 | Mills et al. |
5305746 | April 26, 1994 | Fendrock |
5309909 | May 10, 1994 | Gadsby |
5365935 | November 22, 1994 | Righter et al. |
5458141 | October 17, 1995 | Neil |
5483967 | January 16, 1996 | Ohtake |
5489624 | February 6, 1996 | Kantner et al. |
5511553 | April 30, 1996 | Segalowitz |
5515858 | May 14, 1996 | Myllymaki |
5536768 | July 16, 1996 | Kantner et al. |
5626140 | May 6, 1997 | Feldman et al. |
5634468 | June 3, 1997 | Platt et al. |
5645063 | July 8, 1997 | Straka |
5645068 | July 8, 1997 | Mezack et al. |
5730143 | March 24, 1998 | Schwarzberg |
5749365 | May 12, 1998 | Magill |
5749367 | May 12, 1998 | Gamlyn et al. |
5771524 | June 30, 1998 | Woods et al. |
5881743 | March 16, 1999 | Nadel |
5957854 | September 28, 1999 | Besson et al. |
5959529 | September 28, 1999 | Kail |
6013007 | January 11, 2000 | Root et al. |
6032060 | February 29, 2000 | Carim |
6044515 | April 4, 2000 | Zygmont |
6093146 | July 25, 2000 | Filangeri |
D429336 | August 8, 2000 | Francis et al. |
6102856 | August 15, 2000 | Groff et al. |
6117077 | September 12, 2000 | Del Mar et al. |
6134480 | October 17, 2000 | Minogue |
6136008 | October 24, 2000 | Becker et al. |
6161036 | December 12, 2000 | Matsumura et al. |
6169915 | January 2, 2001 | Krumbiegel et al. |
6178357 | January 23, 2001 | Gliner et al. |
6200265 | March 13, 2001 | Walsh et al. |
6225901 | May 1, 2001 | Kail |
6232366 | May 15, 2001 | Wang et al. |
6238338 | May 29, 2001 | DeLuca et al. |
6248115 | June 19, 2001 | Halk |
6290707 | September 18, 2001 | Street |
6379237 | April 30, 2002 | Gordon |
6385473 | May 7, 2002 | Haines et al. |
6416471 | July 9, 2002 | Kumar et al. |
6454708 | September 24, 2002 | Ferguson et al. |
6456872 | September 24, 2002 | Faisandier |
6464815 | October 15, 2002 | Beaudry |
6493898 | December 17, 2002 | Woods et al. |
6510339 | January 21, 2003 | Kovtun et al. |
6546285 | April 8, 2003 | Owen et al. |
6569095 | May 27, 2003 | Eggers |
6580942 | June 17, 2003 | Willshire |
6585707 | July 1, 2003 | Cabiri et al. |
6589187 | July 8, 2003 | Dirnberger et al. |
6605046 | August 12, 2003 | Del Mar |
6622035 | September 16, 2003 | Merilainen |
6626865 | September 30, 2003 | Prisell |
6664893 | December 16, 2003 | Eveland et al. |
6665385 | December 16, 2003 | Rogers et al. |
6690959 | February 10, 2004 | Thompson |
6694177 | February 17, 2004 | Eggers et al. |
6701184 | March 2, 2004 | Henkin |
6711427 | March 23, 2004 | Ketelhohn |
6730028 | May 4, 2004 | Eppstein |
6775566 | August 10, 2004 | Nissila |
6801137 | October 5, 2004 | Eggers |
6801802 | October 5, 2004 | Sitzman et al. |
6881191 | April 19, 2005 | Oakley et al. |
6893396 | May 17, 2005 | Schulze et al. |
6940403 | September 6, 2005 | Kail |
6954163 | October 11, 2005 | Toumazou et al. |
6957107 | October 18, 2005 | Rogers et al. |
7002468 | February 21, 2006 | Eveland et al. |
7020508 | March 28, 2006 | Stivoric et al. |
7024248 | April 4, 2006 | Penner et al. |
7072708 | July 4, 2006 | Andresen et al. |
7072709 | July 4, 2006 | Xue |
7076283 | July 11, 2006 | Cho et al. |
7076287 | July 11, 2006 | Rowlandson |
7076288 | July 11, 2006 | Skinner |
7076289 | July 11, 2006 | Sarkar et al. |
7079977 | July 18, 2006 | Osorio et al. |
7082327 | July 25, 2006 | Houben |
7099715 | August 29, 2006 | Korzinov et al. |
7130396 | October 31, 2006 | Rogers et al. |
7179152 | February 20, 2007 | Rhoades |
7193264 | March 20, 2007 | Lande |
7194300 | March 20, 2007 | Korzinov |
7206630 | April 17, 2007 | Tarler |
7212850 | May 1, 2007 | Prystowsky et al. |
7242318 | July 10, 2007 | Harris |
7266361 | September 4, 2007 | Burdett |
7316671 | January 8, 2008 | Lastovich et al. |
7354423 | April 8, 2008 | Zelickson et al. |
7387607 | June 17, 2008 | Holt et al. |
7481772 | January 27, 2009 | Banet |
7482314 | January 27, 2009 | Grimes et al. |
7502643 | March 10, 2009 | Farringdon et al. |
7587237 | September 8, 2009 | Korzinov et al. |
7630756 | December 8, 2009 | Linker |
7632174 | December 15, 2009 | Gringer et al. |
7729753 | June 1, 2010 | Kremliovsky et al. |
D621048 | August 3, 2010 | Severe et al. |
7815494 | October 19, 2010 | Gringer et al. |
7841039 | November 30, 2010 | Squire |
7889070 | February 15, 2011 | Reeves et al. |
D634431 | March 15, 2011 | Severe et al. |
7907996 | March 15, 2011 | Prystowsky et al. |
7941207 | May 10, 2011 | Korzinov |
7996075 | August 9, 2011 | Korzinov et al. |
8002701 | August 23, 2011 | John et al. |
8077042 | December 13, 2011 | Peeters |
8116841 | February 14, 2012 | Bly et al. |
8150502 | April 3, 2012 | Kumar et al. |
8156945 | April 17, 2012 | Hart |
8160682 | April 17, 2012 | Kumar et al. |
D659836 | May 15, 2012 | Bensch et al. |
8200319 | June 12, 2012 | Pu et al. |
8214007 | July 3, 2012 | Baker et al. |
8244335 | August 14, 2012 | Kumar et al. |
8249686 | August 21, 2012 | Libbus et al. |
8261754 | September 11, 2012 | Pitstick |
RE43767 | October 23, 2012 | Eggers et al. |
8285356 | October 9, 2012 | Bly et al. |
8290129 | October 16, 2012 | Rogers et al. |
8326407 | December 4, 2012 | Linker |
8343116 | January 1, 2013 | Ignon |
8374688 | February 12, 2013 | Libbus et al. |
8406843 | March 26, 2013 | Tiegs et al. |
8412317 | April 2, 2013 | Mazar |
8425414 | April 23, 2013 | Eveland |
8452356 | May 28, 2013 | Vestel et al. |
8460189 | June 11, 2013 | Libbus et al. |
8473047 | June 25, 2013 | Chakravarthy et al. |
8515529 | August 20, 2013 | Pu et al. |
8538503 | September 17, 2013 | Kumar et al. |
8540731 | September 24, 2013 | Kay |
8560046 | October 15, 2013 | Kumar et al. |
8591430 | November 26, 2013 | Amurthur et al. |
8594763 | November 26, 2013 | Bibian |
8684925 | April 1, 2014 | Amurthur et al. |
8688190 | April 1, 2014 | Libbus et al. |
8718752 | May 6, 2014 | Libbus et al. |
8790257 | July 29, 2014 | Libbus et al. |
8795174 | August 5, 2014 | Manicka et al. |
8818481 | August 26, 2014 | Bly et al. |
8823490 | September 2, 2014 | Libbus et al. |
20010056262 | December 27, 2001 | Cabiri et al. |
20020067256 | June 6, 2002 | Kail |
20020082491 | June 27, 2002 | Nissila |
20020087167 | July 4, 2002 | Winitsky |
20030069510 | April 10, 2003 | Semler et al. |
20030083559 | May 1, 2003 | Thompson |
20030149349 | August 7, 2003 | Jensen |
20030176795 | September 18, 2003 | Harris et al. |
20030195408 | October 16, 2003 | Hastings |
20030199811 | October 23, 2003 | Sage |
20040032957 | February 19, 2004 | Mansy et al. |
20040077954 | April 22, 2004 | Oakley et al. |
20040215091 | October 28, 2004 | Lohman et al. |
20040254587 | December 16, 2004 | Park |
20040260189 | December 23, 2004 | Eggers et al. |
20050101875 | May 12, 2005 | Semler et al. |
20050118246 | June 2, 2005 | Wong et al. |
20050119580 | June 2, 2005 | Eveland |
20050165323 | July 28, 2005 | Montgomery et al. |
20050277841 | December 15, 2005 | Shennib |
20060030781 | February 9, 2006 | Shennib |
20060030782 | February 9, 2006 | Shennib |
20060047215 | March 2, 2006 | Newman et al. |
20060084883 | April 20, 2006 | Linker |
20060142648 | June 29, 2006 | Banet et al. |
20060142654 | June 29, 2006 | Rytky |
20060149156 | July 6, 2006 | Cochran et al. |
20060155173 | July 13, 2006 | Anttila et al. |
20060155183 | July 13, 2006 | Kroecker et al. |
20060155199 | July 13, 2006 | Logier et al. |
20060155200 | July 13, 2006 | Ng et al. |
20060161064 | July 20, 2006 | Watrous et al. |
20060161065 | July 20, 2006 | Elion |
20060161066 | July 20, 2006 | Elion |
20060161067 | July 20, 2006 | Elion |
20060161068 | July 20, 2006 | Hastings et al. |
20060224072 | October 5, 2006 | Shennib |
20060264767 | November 23, 2006 | Shennib |
20070003695 | January 4, 2007 | Tregub et al. |
20070010729 | January 11, 2007 | Virtanen et al. |
20070088419 | April 19, 2007 | Florina et al. |
20070156054 | July 5, 2007 | Korzinov et al. |
20070225611 | September 27, 2007 | Kumar et al. |
20070249946 | October 25, 2007 | Kumar et al. |
20070255153 | November 1, 2007 | Kumar et al. |
20070270678 | November 22, 2007 | Fadem et al. |
20070293776 | December 20, 2007 | Korzinov et al. |
20080039730 | February 14, 2008 | Pu et al. |
20080091089 | April 17, 2008 | Guillory et al. |
20080108890 | May 8, 2008 | Teng et al. |
20080139953 | June 12, 2008 | Baker et al. |
20080275327 | November 6, 2008 | Faarbaek et al. |
20080288026 | November 20, 2008 | Cross et al. |
20090073991 | March 19, 2009 | Landrum et al. |
20090076336 | March 19, 2009 | Mazar et al. |
20090076340 | March 19, 2009 | Libbus et al. |
20090076341 | March 19, 2009 | James et al. |
20090076342 | March 19, 2009 | Amurthur et al. |
20090076343 | March 19, 2009 | James et al. |
20090076344 | March 19, 2009 | Libbus et al. |
20090076345 | March 19, 2009 | Manicka et al. |
20090076346 | March 19, 2009 | James et al. |
20090076349 | March 19, 2009 | Libbus et al. |
20090076350 | March 19, 2009 | Bly et al. |
20090076397 | March 19, 2009 | Libbus et al. |
20090076401 | March 19, 2009 | Mazar et al. |
20090076559 | March 19, 2009 | Libbus et al. |
20090253975 | October 8, 2009 | Tiegs et al. |
20090292194 | November 26, 2009 | Libbus et al. |
20100022864 | January 28, 2010 | Cordero |
20100042113 | February 18, 2010 | Mah |
20100051039 | March 4, 2010 | Ferrara |
20100056881 | March 4, 2010 | Libbus et al. |
20100057056 | March 4, 2010 | Gurtner |
20100081913 | April 1, 2010 | Cross et al. |
20100145359 | June 10, 2010 | Keller |
20100191310 | July 29, 2010 | Bly |
20100234716 | September 16, 2010 | Engel |
20100249625 | September 30, 2010 | Lin |
20100268103 | October 21, 2010 | McNamara et al. |
20110087083 | April 14, 2011 | Poeze et al. |
20110144470 | June 16, 2011 | Mazar et al. |
20110166468 | July 7, 2011 | Prystowsky et al. |
20110306862 | December 15, 2011 | Hayes-Gill |
20120071730 | March 22, 2012 | Romero |
20120071731 | March 22, 2012 | Gottesman |
20120083670 | April 5, 2012 | Rotondo et al. |
20120108917 | May 3, 2012 | Libbus et al. |
20120108920 | May 3, 2012 | Bly et al. |
20120110226 | May 3, 2012 | Vlach et al. |
20120110228 | May 3, 2012 | Vlach et al. |
20120172676 | July 5, 2012 | Penders et al. |
20120271141 | October 25, 2012 | Davies |
20120310070 | December 6, 2012 | Kumar et al. |
20120323257 | December 20, 2012 | Sutton |
20130046151 | February 21, 2013 | Bsoul et al. |
20130085347 | April 4, 2013 | Manicka et al. |
20130096395 | April 18, 2013 | Katra et al. |
20130116585 | May 9, 2013 | Bouguerra |
20130225938 | August 29, 2013 | Vlach |
20130226018 | August 29, 2013 | Kumar et al. |
20130245415 | September 19, 2013 | Kumar et al. |
20130253285 | September 26, 2013 | Bly et al. |
20130274584 | October 17, 2013 | Brion et al. |
20130331665 | December 12, 2013 | Bly et al. |
20130338448 | December 19, 2013 | Libbus et al. |
20140012154 | January 9, 2014 | Mazar |
20150082623 | March 26, 2015 | Felix et al. |
20150087921 | March 26, 2015 | Felix et al. |
20150087922 | March 26, 2015 | Bardy et al. |
20150087923 | March 26, 2015 | Bardy et al. |
20150087948 | March 26, 2015 | Bishay et al. |
20150087949 | March 26, 2015 | Felix et al. |
20150087950 | March 26, 2015 | Felix et al. |
20150087951 | March 26, 2015 | Felix et al. |
20150088007 | March 26, 2015 | Bardy et al. |
20150088020 | March 26, 2015 | Dreisbach et al. |
2262419 | December 2010 | EP |
2348707 | October 2000 | GB |
08-317913 | March 1996 | JP |
2000-126145 | May 2000 | JP |
2007-296266 | November 2007 | JP |
2009-525816 | July 2009 | JP |
WO 99/23943 | May 1999 | WO |
WO 01/16607 | March 2001 | WO |
WO 2005/037946 | April 2005 | WO |
WO 2005/084533 | September 2005 | WO |
WO 2006/094513 | September 2006 | WO |
WO 2007/049080 | March 2007 | WO |
WO 2007/036748 | April 2007 | WO |
WO 2007/063436 | June 2007 | WO |
WO 2007/072069 | June 2007 | WO |
WO 2008/057884 | May 2008 | WO |
WO 2011/077097 | June 2011 | WO |
WO 2011/149755 | December 2011 | WO |
WO 2012/009453 | January 2012 | WO |
- US 8,750,980, 6/2014, Katra et al. (withdrawn).
- 3M Corporation, “3M Surgical Tapes—Choose the Correct Tape” quicksheet (2004).
- Del Mar et al.; The history of clinical holter monitoring; A.N.E.; vol. 10; No. 2; pp. 226-230; Apr. 2005.
- Enseleit et al.; Long-term continuous external electrocardiographic recording: a review; Eurospace; vol. 8; pp. 255-266; 2006.
- Hoefman et al.; Optimal duration of event recording for diagnosis of arrhythmias in patients with palpitations and light-headedness in the general practice; Family Practice; Dec. 7, 2006.
- International Search Report issued on Sep. 23, 2014 for International Application No. PCT/US2013/033064.
- Kennedy et al.; The history, science, and innovation of holter technology; A.N.E.; vol. 11; No. 1; pp. 85-84; 2006.
- Reiffel et al., Comparison of autotriggered memory loop recorders versus standard loop recorders versus 24-hour holer monitors for arrhythmia detection; Am. J. Cardiology; vol. 95; pp. 1055-1059; May 1, 2005.
- Scapa Medical product listing and descriptions (2008) available at http://www.caapana.com/productlist.jsp and http://www.metplus.co.rs/pdf/prospekti/Samolepljivemedicinsketrake.pdf; retrieved via WayBack Machine Sep. 24, 2012.
- Ward et al., Assessment of the diagnostic value of 24-hou ambulatory electrocardiographic monitoring; Biotelemetry Patient monitoring; vol. 7; 1980.
- Ziegler et al; Comparison of continuous versus intermittent monitoring of atrial arrhythmias; Heart Rhythm; vol. 3; No. 12; pp. 1445-1452; Dec. 2006.
- Zimetbaum et al., The evolving role of ambulatory arrhythmia monitoring in general clinic practice; Ann. Intern. Med.; vol. 130; pp. 848-8556; 1999.
- Zimetbaum et al.; Utility of patient-activated cardiac event recorders in general clinical practice; The Amer. J. of Cardiology; vol. 79; Feb. 1, 1997.
- Mundt et al. “A Multiparameter Wearable Physiologic Monitoring System for Space and Terrestrial Applications” IEEE Transactions on Information Technology in Biomedicine, vol. 9, No. 3, pp. 382-384, Sep. 2005.
- Request for Reexamination of U.S. Pat. No. 7,020,508 under 35 U.S.C. §§ 311-318 and 37 C.F.R. § 1.913 as submitted Sep. 14, 2012 in 78 pages.
Type: Grant
Filed: Apr 7, 2014
Date of Patent: Nov 3, 2015
Patent Publication Number: 20140303647
Assignee: iRhythm Technologies, Inc. (San Francisco, CA)
Inventors: Genaro Sebastian Sepulveda (San Francisco, CA), Timothy Jon Bahney (San Francisco, CA), Shena Hae Park (San Francisco, CA)
Primary Examiner: Amy R Weisberg
Application Number: 14/247,014
International Classification: A61B 17/50 (20060101); A61B 17/32 (20060101); A61B 5/0402 (20060101); A61B 5/0408 (20060101); A61B 17/54 (20060101); A61B 19/02 (20060101);