Apparatus and method for treating bleeding arising from left atrial appendage
Bleeding arising from the left atrial appendage (LAA) can have fatal consequences because it can result in cardiac tamponade. The present invention provides apparatuses and methods for treating and preventing bleeding arising from the LAA, at the pre-hemorrhage and post-hemorrhage stages. In particular, catheters having inflatable catheter balloons are advanced into the LAA and the inflatable catheter balloons are inflated in and around the LAA in a manner that occludes the LAA ostium and the LAA cavity. Additionally, electromagnetic coils are present within the inflatable catheter balloons to create electromagnetic forces that help to further occlude the LAA ostium firmly. When the catheter balloons are inflated, these electromagnetic coils also expand. Alternatively, the LAA ostium can be occluded using electromagnetic coils present in an inflated endocardial catheter balloon and electromagnetic coils present in an inflated epicardial catheter balloon deployed around the circumference of the LAA ostium epicardially.
This application claims the benefit and priority of U.S. Provisional Patent Application No. 61/661,350, entitled “NOVEL TECHNOLOGY FOR TREATING HEMORRHAGE FROM LEFT ATRIAL APPENDAGE,” filed on Jun. 19, 2012, the entire contents and disclosures of which are hereby incorporated by reference herein.
BACKGROUND1. Field
The present invention relates generally to apparatuses and methods for treating and preventing bleeding arising from the left atrial appendage using catheters having inflatable catheter balloons, at the pre-hemorrhage and post-hemorrhage stages.
2. Description of the Related Art
The left atrial appendage (LAA) is a small, conical, ear-shaped muscular pouch projecting from the upper anterior portion of the left atrium of the heart. Thus, the LAA lies within the pericardial cavity, and is an extension of the left atrium. The LAA functions as a decompression chamber during left ventricular systole and during periods when left atrial pressure is high. The LAA is also commonly known as the left auricular appendix, the auricular, or the left auricle. The left atrium receives oxygenated blood from the lungs by way of the pulmonary veins, and pumps the oxygenated blood into the left ventricle via the mitral valve.
Over the past 8 to 10 years, the LAA has become the target of several invasive procedures due to the high likelihood of embolic strokes arising from the LAA. During these procedures, bleeding arising from the LAA can occur. Additionally during these procedures, there can be tearing of the LAA. It is also anticipated that in the next few years, the number of invasive procedures involving the LAA is going to rise significantly. Invasive procedures of the heart targeting or involving the LAA is especially expected in patients who have atrial fibrillation (AF) and who may be at an increased risk of stroke arising from the LAA.
Bleeding arising from the LAA into the pericardial cavity is an emergent situation that requires immediate attention to stabilize the patient. If the bleeding is severe, cardiac tamponade can result and there may not be sufficient time to transfer the patient to an operating room for the proper care. Additionally, elderly patients are often not candidates for cardiac surgery due to advanced age and other comorbid issues. Thus, there is a need for novel percutaneous technologies and procedural techniques to treat hemorrhage arising from the LAA without subjecting the patient to cardiac surgery.
Additionally, there may also be a need to prevent bleeding arising from the LAA at the pre-hemorrhage stage, i.e. prior to the actual bleeding especially if the patient is to undergo a procedure involving the LAA, particularly where, as part of the procedure, the LAA may be intentionally pierced or perforated. The novel technology presented in this invention allows a puncture from the LAA onto the pericardial space or vice versa in a controlled setting without the development of hemorrhage into the pericardial cavity.
AF causes rapid randomized contractions of the atrial myocardium, resulting in an irregular and rapid ventricular rate and is currently, the most common type of cardiac arrhythmia. It affects more than 3 million patients in the United States, and this number is expected to climb to 16 million by 2050. AF is the most common cause of strokes arising from the heart due a blood clot forming in the heart.
Embolic stroke interrupts blood flow to the brain, thereby causing the affected brain cells to die. When brain cells die, the abilities controlled by the dying brain cells are compromised and eventually lost. In the United States, stroke is the third leading cause of death, killing approximately 160,000 Americans each year. Additionally, stroke is the leading cause of adult disability and there are currently over four million Americans living with the effects of stroke.
AF patients have a five-fold increased risk of an embolic stroke resulting primarily from thromboembolic events. In non-rheumatic AF patients, the stroke-causing thrombus originates almost exclusively from the LAA. Typically, the thrombus formed in the LAA break away from the LAA and accumulates in other blood vessels, thereby blocking blood flow in these blood vessels, and ultimately leading to an embolic stroke. Thus, the occlusion, stapling or ligation of the LAA is believed to be an effective stroke prevention technique. Several existing medical procedures aim to prevent the migration of thrombus from the LAA.
Commonly, rheumatic and non-rheumatic AF patients are administered warfarin, which is a therapeutic drug classified as an anticoagulant that helps prevent thromboembolism. An anticoagulant drug is a drug that suppresses, delays, or nullifies blood coagulation. Warfarin has the chemical name, 4-hydroxy-3-oxo-1-phenylbutyl-2H-benzopyran-2-one, and molecular formula, C19H16O4. However, a major drawback of warfarin is the difficulty of maintaining its therapeutic range, and thus, warfarin-administered patients require frequent monitoring and dose adjustments.
Alternatively, in patients intolerant of warfarin, occlusion of the LAA is believed to decrease the risk of an embolic stroke in non-valvular AF patients. Occlusion of the LAA is an obstruction or a closure of the LAA. By occluding the LAA, the thrombus formed in the LAA are unable to migrate to other blood vessels, thereby reducing the risks of thromboembolism and embolic stroke. Hence, the occlusion of the LAA is believed to be an effective stroke prevention strategy in non-valvular AF patients. Indeed, this concept of occluding the LAA as a stroke prevention strategy is being increasingly tested with implantable medical devices that occlude the LAA.
For example, the WATCHMAN device developed by Atritech Inc. (Plymouth, Minn.) is an implantable medical device designed to occlude the LAA in non-valvular AF patients. In particular, the WATCHMAN device is placed distal to the ostium of the LAA, thereby occluding the LAA. The occlusion of the LAA prevents the migration of the thrombus formed in the LAA, thereby reducing the risks of thromboembolism and embolic stroke. In the WATCHMAN device's clinical trial, PROTECT-AF trial, the results showed that in AF patients who were candidates for warfarin therapy, the closure of the LAA using the WATCHMAN device was associated with a reduction in hemorrhagic stroke risk as compared to warfarin therapy. Additionally, these results showed that all-cause stroke and all-cause mortality outcomes were non-inferior to warfarin.
However, a major drawback of the WATCHMAN device is the fixation of barbs or wires engaged in the walls of the LAA, thereby causing adverse events. As shown in the PROTECT-AF trial, a major adverse event is pericardial effusion, which is the abnormal accumulation of fluid in the pericardial cavity, which can negatively affect heart function. Another adverse event is the tearing of the walls of the LAA by the barb wires, thereby necessitating emergent surgery. The tearing of the LAA may lead to bleeding, which is an emergent situation that requires quick, decisive action to stop the bleeding and stabilize the patient.
Ligation of the LAA is yet another stroke prevention technique for patients intolerant of warfarin. In particular, the LAA is ligated with a suture using a percutaneous epicardial approach, resulting in a complete closure of the LAA. However, like the WATCHMAN device, a major drawback of this approach is the risks of bleeding and tears in the LAA.
Tears and bleeding arising from the LAA is particularly concerning for elderly patients because due to their advanced age, the walls of their LAA are fragile. As a result, elderly patients are more susceptible to tears and bleeding. Additionally, elderly patients are not candidates for cardiac surgery due to their advanced age and other significant comorbid issues.
In light of the foregoing, there is a compelling need for novel technologies and procedural techniques for treating and preventing bleeding arising from the LAA, at the pre-hemorrhage and post-hemorrhage stages, without subjecting the patient to cardiac surgery.
SUMMARY OF THE INVENTIONThe present invention addresses the foregoing needs with apparatuses and methods for treating and preventing bleeding arising from the LAA, at the pre-hemorrhage and post-hemorrhage stages, using catheters comprising of inflatable catheter balloons.
In an exemplary embodiment, a method for treating and preventing bleeding arising from the LAA comprises the steps of introducing a catheter into a body cavity, advancing a guide wire tip and a catheter sheath of the catheter to and through an ostium of the LAA, and into a cavity of the LAA, inflating a first inflatable catheter balloon having a first set of electromagnetic coils, wherein upon inflation of the first catheter balloon, the first set of electromagnetic coils also expand, performing a tug test on the inflated first catheter balloon to occlude the LAA ostium, inflating a second inflatable catheter balloon, and inflating a third inflatable catheter balloon having a second set of electromagnetic coils, and wherein upon inflation of the third catheter balloon, the second set of electromagnetic coils also expand. Alternatively, the third inflatable catheter balloon can be inflated before the second inflatable catheter balloon. The method further comprising the step of puncturing the LAA cavity, wherein the puncturing is in a direction from within the LAA cavity and into a pericardial cavity. The method, wherein the body cavity is a femoral vein, a jugular vein, an axillary vein, a subclavian vein, or an apex of a left ventricle.
In another exemplary embodiment, a method for treating and preventing bleeding arising from the LAA comprises the steps of introducing a catheter into a body cavity, advancing a guide wire tip and an inner catheter sheath of the catheter to and through an ostium of the LAA, and into a cavity of the LAA, inflating a first inflatable catheter balloon, pulling the inflated first catheter balloon, from the LAA cavity and towards the LAA ostium, to occlude the LAA ostium, advancing an outer catheter sheath of the catheter towards the guide wire tip, inflating a second inflatable catheter balloon, and pushing the inflated second catheter balloon, from the left atrium and towards the LAA ostium, to occlude the LAA ostium. The method further comprises the step of deploying means for locking in place the inflated first catheter balloon and the inflated second catheter balloon. The method further comprising the step of puncturing the LAA cavity, wherein the puncturing is in a direction from within the LAA cavity and into a pericardial cavity. The method, wherein the body cavity is a femoral vein, a jugular vein, an axillary vein, a subclavian vein, or an apex of a left ventricle.
In another exemplary embodiment, a method for treating and preventing bleeding arising from the LAA comprises the steps of introducing a catheter into a cavity of the LAA, advancing a guide wire tip of the catheter to and through an ostium of the LAA, and into a left atrium, advancing a catheter sheath of the catheter towards the guide wire tip, inflating a first inflatable catheter balloon having a first set of electromagnetic coils, and wherein upon inflation of the first catheter balloon, the first set of electromagnetic coils also expand, pulling the inflated first catheter balloon from the left atrium and towards the LAA ostium, and inflating a second inflatable catheter balloon having a second set of electromagnetic coils.
In another exemplary embodiment, a method for treating and preventing bleeding arising from the LAA comprises the steps of introducing a catheter into a cavity of the LAA, advancing a guide wire tip of the catheter to and through an ostium of the LAA, and into a left atrium, advancing a catheter sheath of the catheter towards the guide wire tip, inflating a first inflatable endocardial catheter balloon having a first set of electromagnetic coils, and wherein upon inflation of the first endocardial catheter balloon, the first set of electromagnetic coils also expand, pulling the inflated first endocardial catheter balloon from the left atrium and towards the LAA ostium, deploying a constricting circumferential inflatable epicardial catheter balloon, having a second set of electromagnetic coils, around a circumference of the LAA ostium epicardially, inflating the epicardial catheter balloon, wherein upon inflation of the epicardial catheter balloon, the second set of electromagnetic coils also expand, and inflating a second inflatable endocardial catheter balloon affixed to the catheter sheath. Alternatively, the second inflatable endocardial catheter balloon comprises a third set of electromagnetic coils, wherein upon inflation of the second endocardial catheter balloon, the third set of electromagnetic coils also expand.
The contents of this summary section are provided only as a simplified introduction to the invention, and are not intended to be used to limit the scope of the appended claims.
Other systems, methods, features and advantages of the present invention will be or will become apparent to one of ordinary skill in the art upon examination of the following figures and detailed description. It is intended that all such additional apparatuses, systems, methods, features and advantages be included within this description, be within the scope of the present invention, and be protected by the appended claims. Component parts shown in the drawings are not necessarily to scale, and may be exaggerated to better illustrate the important features of the present invention. In the drawings, like reference numerals designate like parts throughout the different views, wherein:
Inflatable catheter balloon 102 is inflated with the input of air, or a liquid material that is mixed with radiopaque contrast, via inflation port 111 through catheter sheath openings 105a, 105b, and 105c. Inflatable catheter balloon 103 is inflated with the input of air, or a liquid material that is mixed with radiopaque contrast, via inflation port 111 through catheter sheath openings 106a, 106b, and 106c. Inflatable catheter balloon 104 is inflated with the input of air, or a liquid material that is mixed with radiopaque contrast, via inflation port 111 through catheter sheath opening 107. It is contemplated that the number of catheter sheath openings can vary. For example, inflatable catheter balloon 102 can be inflated via inflation port 111 through only one catheter sheath opening, or through more than three catheter sheath openings. Inflation port 111 provides the portal for the input of air, or a liquid material that is mixed with radiopaque contrast, by, for example, a balloon catheter inflation device.
When inflated, inflatable catheter balloon 102 has a larger area than that of inflatable catheter balloon 103, as shown in
Electromagnetic coils 113 are located within the proximal portions of inflatable catheter balloon 103. Electromagnetic coils 114 are located within the distal portions of inflatable catheter balloon 104. When inflatable catheter balloons 103 and 104 are inflated, electromagnetic coils 113 and 114 also expand, as shown in
Guide wire tip 109 is a J-hooked, soft-tipped guide wire. Guide wire tip 109 is the first component of catheter 100 introduced into the body cavity. Guide wire tip 109 guides catheter 100 to the desired location.
As duly noted by elongation identifier 110, the length of guide wire 115 can vary depending on where guide wire tip 109 is introduced into the body cavity, and the body cavity dimensions of the particular patient. Similarly, as duly noted by elongation identifier 110, the length of catheter sheath 101 can vary depending on where guide wire tip 109 is introduced into the body cavity, and the body cavity dimensions of the particular patient.
Radiopaque marker bands 108a, 108b, 108c, and 108d are thin metal tubes affixed along catheter sheath 101 to provide spatial guidance under an X-ray fluoroscope. Radiopaque marker band 108a marks the distal end of inflatable catheter balloon 102. Radiopaque marker band 108b marks the intersection of the proximal end of inflatable catheter balloon 102 and the distal end of inflatable catheter balloon 103. Radiopaque marker band 108c marks the intersection of the proximal end of inflatable catheter balloon 103 and the distal end of inflatable catheter balloon 104, and when catheter 100 is introduced into the body cavity, radiopaque marker band 108c marks the mid-point of the LAA ostium, as shown in
Control port 112 provides the portal for connection to catheter handling devices designed to control and navigate guide wire tip 109 and guide wire 115 to the desired location. Control port 112 also provides the portal for the insertion of additional guide wire for guide wire 115.
Inflatable catheter balloon 202 is inflated with the input of air, or a liquid material that is mixed with radiopaque contrast, via inflation port 212 through catheter sheath openings 205a, 205b, and 205c. Similarly, inflatable catheter balloon 204 is inflated with the input of air, or a liquid material that is mixed with radiopaque contrast, via inflation port 212 through catheter sheath openings 206a and 206b. It is contemplated that the number of catheter sheath openings can vary. For example, inflatable catheter balloon 202 can be inflated via inflation port 212 through only one catheter sheath opening, or through more than three catheter sheath openings. Inflation port 212 provides the portal for the input of air by, or a liquid material that is mixed with radiopaque contrast, by, for example, a balloon catheter inflation device.
When inflated, inflatable catheter balloon 204 has a larger diameter than that of the LAA ostium, and that of inflatable catheter balloon 202, as shown in
Guide wire tip 208 is a J-hooked, soft-tipped guide wire. Guide wire tip 208 is the first component of catheter 200 introduced into the body cavity. Guide wire tip 208 guides catheter 200 to the desired location.
As duly noted by elongation identifier 211, the length of guide wire 214 can vary depending on where guide wire tip 208 is introduced into the body cavity, and the body cavity dimensions of the particular patient. Similarly, as duly noted by elongation identifier 211, the length of inner catheter sheath 201 and outer catheter sheath 203 can vary depending on where guide wire tip 208 is introduced into the body, and the body cavity dimensions of the particular patient.
Radiopaque marker bands 207a and 207b are thin metal tubes placed along inner catheter sheath 201 to provide spatial guidance under an X-ray fluoroscope. Radiopaque marker band 207a marks the distal end of inflatable catheter balloon 202. Radiopaque marker band 207b marks the intersection of the proximal end of inflatable catheter balloon 202 and the distal end of inflatable catheter balloon 204, and when catheter 200 is introduced into the body cavity, radiopaque marker band 207b marks the mid-point of the LAA ostium, as shown in
After inflatable catheter balloons 202 and 204 are inflated, locking means 209 is deployed, as shown in
Control port 213 provides the portal for connection to catheter handling devices designed to control and navigate guide wire tip 208 and guide wire 214 to the desired location. Control port 213 also provides the portal for the insertion of additional guide wire for guide wire 214.
Inflatable catheter balloon 302 is inflated with the input of air, or a liquid that is mixed with radiopaque contrast, via inflation port 309 through catheter sheath openings 304a, 304b, and 304c. Similarly, inflatable catheter balloon 303 is inflated with the input of air, or a liquid that is mixed with radiopaque contrast, from inflation port 309 via catheter sheath openings 305a, 305b, and 305c. It is contemplated that the number of catheter sheath openings can vary. For example, inflatable catheter balloon 302 can be inflated via inflation port 309 through only one catheter sheath opening, or through more than three catheter sheath openings. Inflation port 309 provides the portal for the input of air, or a liquid that is mixed with radiopaque contrast, by, for example, a balloon catheter inflation device.
Electromagnetic coils 311 are located within the proximal portions of inflatable catheter balloon 302. Electromagnetic coils 312 are located within the distal portions of inflatable catheter balloon 303. When inflatable catheter balloons 302 and 303 are inflated, electromagnetic coils 311 and 312 also expand, as shown in
Guide wire tip 307 is a J-hooked, soft-tipped guide wire. Guide wire tip 307 is the first component of catheter 300 introduced into the body cavity. Guide wire tip 307 guides catheter 300 to the desired location.
As duly noted by elongation identifier 308, the length of guide wire 313 can vary depending on where guide wire tip 307 is introduced into the body cavity, and the body cavity dimensions of the particular patient. Similarly, as duly noted by elongation identifier 308, the length of catheter sheath 301 can vary depending on where guide wire tip 307 is introduced into the body cavity, and the body cavity dimensions of the particular patient.
Radiopaque marker band 306 is a thin metal tube placed along catheter sheath 301 to provide spatial guidance under an X-ray fluoroscope. Radiopaque marker band 306 marks the intersection of the proximal end of inflatable catheter balloon 302 and the distal end of inflatable catheter balloon 303.
Control port 310 provides the portal for connection to catheter handling devices designed to control and navigate guide wire tip 307 and guide wire 313 to the desired location. Control port 310 also provides the portal for the insertion of additional guide wire for guide wire 313.
Inflatable endocardial catheter balloon 402 is inflated with the input of air, or a liquid that is mixed with radiopaque contrast, via inflation port 409 through catheter sheath openings 404a, 404b, and 404c. Similarly, inflatable endocardial catheter balloon 403 is inflated with the input of air, or a liquid that is mixed with radiopaque contrast, via inflation port 409 through catheter sheath openings 405a, 405b, and 405c. It is contemplated that the number of catheter sheath openings can vary. For example, inflatable endocardial catheter balloon 402 can be inflated via inflation port 409 through only one catheter sheath opening, or through more than three catheter sheath openings. Inflation port 409 provides the portal for the input of air, or a liquid that is mixed with radiopaque contrast, by, for example, a balloon catheter inflation device.
When inflated, the distal portions of inflatable endocardial catheter balloon 402 has a larger diameter than that of the LAA ostium, and that of inflatable endocardial catheter balloon 403, as shown in
Electromagnetic coils 411 are located within the proximal portions of inflatable endocardial catheter balloon 402. When inflatable endocardial catheter balloon 402 is inflated, electromagnetic coils 411 also expand, as shown in
Guide wire tip 406 is a J-hooked, soft-tipped guide wire. Guide wire tip 406 is the first component of catheter 400 introduced into the body cavity. Guide wire tip 406 guides catheter 400 to the desired location.
As duly noted by elongation identifier 408, the length of guide wire 412 can vary depending on where guide wire tip 406 is introduced into the body cavity, and the body cavity dimensions of the particular patient. Similarly, as duly noted by elongation identifier 408, the length of catheter sheath 401 can vary depending on where guide wire tip 406 is introduced into the body, and the body cavity dimensions of the particular patient.
Radiopaque marker band 407 is a thin metal tube placed along catheter sheath 401 to provide spatial guidance under an X-ray fluoroscope. Radiopaque marker band 407 marks the intersection of the proximal end of inflatable endocardial catheter balloon 402 and the distal end of inflatable endocardial catheter balloon 403, as shown in
Control port 410 provides the portal for connection to catheter handling devices designed to control and navigate guide wire tip 406 and guide wire 412 to the desired location. Control port 410 also provides the portal for the insertion of additional guide wire for guide wire 412.
At step 502, guide wire tip 109 is advanced to and through the LAA ostium, and into the LAA cavity. For example, if guide wire tip 109 was introduced into the body cavity via the femoral vein, then guide wire tip 109 can be advanced transseptally to and through the LAA ostium, and into the LAA cavity using an endovascular approach.
At step 503, catheter sheath 101 is advanced towards the direction of guide wire tip 109. For example, if guide wire tip 109 was introduced into the body cavity via the femoral vein, then catheter sheath 101 can be advanced transseptally to and through the LAA ostium, and into the LAA cavity using an endovascular approach. As shown in
At step 504, inflatable catheter balloon 103 having electromagnetic coils 113 is inflated distal to the LAA ostium, as shown in
At step 505, a tug test is performed to ensure that inflatable catheter balloon 103 firmly occludes the LAA ostium, as shown in
At step 506, inflatable catheter balloon 102 is inflated distal to inflatable catheter balloon 103, as shown in
At step 507, inflatable catheter balloon 104 having electromagnetic coils 114 is inflated proximal to the LAA ostium, as shown in
Finally, at step 508, the LAA cavity is punctured in a direction from within the LAA cavity and into the pericardial cavity so that there is no risk of bleeding into the pericardial space. In particular, a tip of the LAA cavity can be punctured using catheter sheath 101.
At step 902, guide wire tip 307 is advanced to and through the LAA ostium, and into the left atrium, as shown in
At step 903, catheter sheath 301 is advanced towards the direction of guide wire tip 307, as shown in
At step 904, inflatable catheter balloon 302 having electromagnetic coils 311 is inflated at the tip of catheter sheath 301, as shown in
At step 905, the inflated catheter balloon 302 is pulled back, from the left atrium towards the LAA ostium, to occlude the LAA ostium, as shown in
Finally, at step 906, inflatable catheter balloon 303 having electromagnetic coils 312 is inflated near the LAA ostium, as shown in
At step 1302, guide wire tip 406 is advanced to and through the LAA ostium, and into the left atrium, as previously shown in
At step 1303, catheter sheath 401 is advanced towards the direction of guide wire tip 406. Accordingly, catheter sheath 401 is advanced to and through the LAA ostium, and into the left atrium. Catheter sheath 401 is advanced until it is close to, but prior to, guide wire tip 406.
At step 1304, inflatable endocardial catheter balloon 402 having electromagnetic coils 411 is inflated at the tip of catheter sheath 401. Inflatable endocardial catheter balloon 402 is inflated by the input of air, or a liquid that is mixed with radiopaque contrast, via inflation port 409 through catheter sheath openings 404a, 404b, and 404c. When inflatable endocardial catheter balloon 411 is inflated, electromagnetic coils 411 located within the distal portions of inflatable endocardial catheter balloon 402 also expand, as shown in
At step 1305, inflated endocardial catheter balloon 402 is pulled back from the left atrium towards the LAA ostium, and slightly into the LAA cavity, as shown in
At step 1306, constricting circumferential epicardial balloon 1801 having electromagnetic coils 1802 is deployed around the circumference of the LAA ostium in the epicardium layer of the heart, as shown in
At step 1307, constricting circumferential inflatable epicardial catheter balloon 1801 is inflated. Inflatable epicardial catheter balloon 1801 is inflated by the input of air, or a liquid that is mixed with radiopaque contrast, via inflation port 1805 through catheter sheath openings 1803a-1803h. When inflated, electromagnetic coils 1802 located within constricting circumferential epicardial balloon 1802 also expand, as shown in
Finally, at step 1308, inflatable endocardial catheter balloon 403 is inflated in the LAA cavity, as shown in
At step 1502, guide wire tip 208 is advanced to and through the LAA ostium, and into the LAA cavity. For example, if guide wire tip 208 was introduced into the body cavity via the femoral vein, then guide wire tip 208 can be advanced transseptally to and through the LAA ostium, and into the LAA cavity using an endovascular approach.
At step 1503, inner catheter sheath 201 is advanced towards the direction of guide wire tip 208. As shown in
At step 1504, inflatable catheter balloon 202 is inflated distal to the LAA ostium, as shown in
At step 1505, inflated catheter balloon 202 is pulled, from the LAA cavity and towards the LAA ostium, to occlude the LAA ostium. Also, the shape of inflated catheter balloon 202 assumes the contours of its surroundings in the LAA cavity. By assuming the contours of its surroundings, inflatable catheter balloon 202 occludes the potential sites for tear or perforation in the LAA cavity, thereby treating and preventing bleeding arising from the LAA.
At step 1506, outer catheter sheath 203 is advanced towards the direction of guide wire tip 208. However, as shown in
At step 1507, inflatable catheter balloon 204 is inflated while it is in the left atrium. Inflatable catheter balloon 204 is inflated by the input of air, or a liquid that is mixed with radiopaque contrast, via inflation port 212 through catheter sheath openings 206a and 206b.
At step 1508, inflated catheter balloon 204 is from the left atrium and towards the LAA ostium. When inflated, inflatable catheter balloon 204 has a diameter larger than that of the LAA ostium, and larger than that of inflatable catheter balloon 202, as shown in
At step 1509, locking means 209 is deployed to render inflated catheter balloons 202 and 204 stationary. Locking means 209 is a spring-loaded device housed in inner catheter sheath 202 that upon deployment, it would bulge out through the corresponding slots in outer catheter sheath 203, thereby locking in place inflated catheter balloons 202 and 204.
Finally, at step 1510, the LAA cavity is punctured in a direction from within the LAA cavity and into the pericardial cavity so that there is no risk of bleeding into the pericardial space. In particular, a tip of the LAA cavity can be punctured using inner catheter sheath 202.
Constricting circumferential epicardial balloon 1801 is inflated by the input of air, or a liquid that is mixed with radiopaque contrast, via inflation port 1805 through catheter sheath openings 1803a-1803h. It is contemplated that the number of catheter sheath openings can vary. For example, constricting circumferential epicardial balloon 1801 can be inflated via inflation port 1805 through only one catheter sheath opening, or through more than eight catheter sheath openings. Inflation port 1805 provides the portal for the input of air, or a liquid that is mixed with radiopaque contrast, by, for example, a balloon catheter inflation device.
Electromagnetic coils 1802 are located within constricting circumferential epicardial balloon 1801. When constricting circumferential epicardial balloon 1801 is inflated, electromagnetic coils 1802 also expand, as shown in
As duly noted by elongation identifier 1806, the length of catheter sheath 1804 can vary depending on the circumference of the particular patient's LAA ostium. Similarly, the length of constricting circumferential epicardial balloon 1801 can also vary depending on the circumference of the particular patient's LAA ostium.
Exemplary embodiments of the invention have been disclosed in an illustrative style. Accordingly, the terminology employed throughout should be read in a non-limiting manner. Although minor modifications to the teachings herein will occur to those well versed in the art, it shall be understood that what is intended to be circumscribed within the scope of the patent warranted hereon are all such embodiments that reasonably fall within the scope of the advancement to the art hereby contributed, and that that scope shall not be restricted, except in light of the appended claims and their equivalents.
ADDITIONAL DISCLOSURESThe following disclosures provide a summary of the invention's various apparatuses used with the appended claims. In an exemplary embodiment, a catheter for treating and preventing bleeding arising from a LAA comprises a guide wire with a guide wire tip, a catheter sheath, a first inflatable catheter balloon affixed to the catheter sheath, wherein the first catheter balloon is proximal to the guide wire tip, a second inflatable catheter balloon affixed to the catheter sheath, wherein the second catheter balloon is proximal to the first catheter balloon, a first set of electromagnetic coils located within the second catheter balloon, a third inflatable catheter balloon affixed to the catheter sheath, wherein the third catheter balloon is proximal to the second catheter balloon, a second set of electromagnetic coils located within the third catheter balloon, a plurality of catheter sheath openings on the catheter sheath, wherein each catheter sheath opening is enclosed by one of the catheter balloons, and wherein each of the catheter balloons encloses at least one catheter sheath opening, an inflation port, and a control port. The catheter further comprises at least one radiopaque marker band affixed to the catheter sheath. The catheter wherein the first catheter balloon is more compliant than the second catheter balloon. The catheter wherein the second catheter balloon is more compliant the third catheter balloon. The catheter wherein the third catheter balloon, when inflated, has a larger circumference than that of an ostium of the LAA. The catheter wherein the third catheter balloon, when inflated, has a larger circumference than that of the second catheter balloon. The catheter wherein the second catheter balloon, when inflated, has a larger circumference than that of the first catheter balloon. The catheter wherein the first set of electromagnetic coils is located within a proximal end of the second catheter balloon. The catheter wherein the second set of electromagnetic coils is located within a distal end of the third catheter balloon. The catheter wherein the guide wire tip is J-hooked. Furthermore, the catheter sheath can be used for puncturing the LAA cavity.
In another exemplary embodiment, a catheter for treating and preventing bleeding arising from a LAA comprises a guide wire with a guide wire tip, an inner catheter sheath, an outer catheter sheath, a first inflatable catheter balloon affixed to the inner catheter sheath, wherein the first catheter balloon is proximal to the guide wire tip, at least one catheter sheath opening on the inner catheter sheath, wherein each catheter sheath opening is enclosed by the first catheter balloon, a second inflatable catheter balloon affixed to the outer catheter sheath, wherein the second catheter balloon is proximal to the first catheter balloon, at least one catheter sheath opening on the distal end of the outer catheter sheath, wherein each catheter sheath opening is enclosed by the second catheter balloon, an inflation port, and a control port. The catheter further comprises means for locking in place the inflated first and second catheter balloons. The catheter further comprises at least one radiopaque marker band affixed to the inner catheter sheath. The catheter further comprises at least one radiopaque marker band affixed to the outer catheter sheath. The catheter wherein the first catheter balloon is more compliant than the second catheter balloon. The catheter wherein the second catheter balloon, when inflated, has a larger circumference than that of an ostium of the LAA. The catheter wherein the second catheter balloon, when inflated, has a larger circumference than that of the first catheter balloon. The catheter wherein the guide wire tip is J-hooked. Furthermore, the inner catheter sheath has an additional lumen that can be used for puncturing the LAA cavity.
In another exemplary embodiment, a catheter for treating and preventing bleeding arising from a LAA comprises a guide wire with a guide wire tip, a catheter sheath, a first inflatable catheter balloon affixed to the catheter sheath, wherein the first catheter balloon is proximal to the guide wire tip, a first set of electromagnetic coils located within the first catheter balloon, a second inflatable catheter balloon affixed to the catheter sheath, wherein the second catheter balloon is proximal to the first catheter balloon, a plurality of catheter sheath openings on the catheter sheath, wherein each catheter sheath opening is enclosed by one of the catheter balloons, and wherein each of the catheter balloons encloses at least one catheter sheath opening, an inflation port, and a control port. The catheter further comprises at least one radiopaque marker band affixed to the catheter sheath. The catheter wherein the second catheter balloon is more compliant than the first catheter balloon. The catheter wherein the first catheter balloon, when inflated, has a larger circumference than that of an ostium of the LAA. The catheter wherein the first catheter balloon, when inflated, has a larger circumference than that of the second catheter balloon. The catheter wherein the first set of electromagnetic coils is located within a proximal end of the first catheter balloon. The catheter wherein the guide wire tip is J-hooked. The catheter wherein the distal portions of the first catheter balloon have a larger diameter than that of the proximal portions of the first catheter balloon. The catheter wherein the second catheter balloon further comprises a second set of electromagnetic coils. The catheter wherein the second set of electromagnetic coils is located within a distal end of the second catheter balloon. Furthermore, the catheter sheath can be used for puncturing the LAA cavity.
In another exemplary embodiment, a catheter for treating and preventing bleeding arising from a LAA comprises a guide wire with a guide wire tip, a catheter sheath, a first inflatable endocardial catheter balloon affixed to the catheter sheath, wherein the first endocardial catheter balloon is proximal to the guide wire tip, a first set of electromagnetic coils located within the first catheter balloon, a second inflatable endocardial catheter balloon affixed to the catheter sheath, wherein the second endocardial catheter balloon is proximal to the first endocardial catheter balloon, a plurality of catheter sheath openings on the catheter sheath, wherein each catheter sheath opening is enclosed by one of the endocardial catheter balloons, and wherein each of the endocardial catheter balloons encloses at least one catheter sheath opening, an inflation port, and a control port. The catheter further comprises at least one radiopaque marker band affixed to the catheter sheath. The catheter wherein the second endocardial catheter balloon is more compliant than the first endocardial catheter balloon. The catheter wherein the first endocardial catheter balloon, when inflated, has a larger circumference than that of an ostium of the LAA. The catheter wherein the first endocardial catheter balloon, when inflated, has a larger circumference than that of the second endocardial catheter balloon. The catheter wherein the first set of electromagnetic coils is located within a proximal end of the first endocardial catheter balloon. The catheter wherein the guide wire tip is J-hooked. The catheter wherein the distal portions of the first endocardial catheter balloon have a larger diameter than that of the proximal portions of the first endocardial catheter balloon. Furthermore, the catheter sheath can be used for puncturing the LAA cavity.
In another exemplary embodiment, a catheter for treating and preventing bleeding arising from a LAA comprises a catheter sheath, an inflatable constricting circumferential epicardial catheter balloon affixed to the catheter sheath, a set of electromagnetic coils located within the epicardial catheter balloon, a plurality of catheter sheath openings on the catheter sheath, wherein each catheter sheath opening is enclosed by the epicardial catheter balloon, and an inflation port. The catheter further comprises a control port. The catheter further comprises at least one radiopaque marker bands affixed to the catheter sheath. The catheter further comprises a guide wire with a guide wire tip. The catheter wherein the set of electromagnetic coils is located across the length of the epicardial catheter balloon. The catheter wherein the guide wire tip is J-hooked.
Finally, it is contemplated that the present invention can be used as an alternative approach to replace percutaneous aortic valves. Additionally, it is contemplated that the present invention can be used to perform a percutaneous repair of a mitral valve such as by an application of a clip to the mitral valve.
Exemplary embodiments of the invention have been disclosed in an illustrative style. Accordingly, the terminology employed throughout should be read in a non-limiting manner. Although minor modifications to the teachings herein will occur to those well versed in the art, it shall be understood that what is intended to be circumscribed within the scope of the patent warranted hereon are all such embodiments that reasonably fall within the scope of the advancement to the art hereby contributed, and that that scope shall not be restricted.
Claims
1. A method for treating and preventing bleeding arising from a left atrial appendage (LAA), comprising the steps of:
- introducing a catheter into a body cavity;
- advancing a guide wire tip of the catheter to and past an ostium of the LAA, and into a cavity of the LAA;
- advancing a catheter sheath of the catheter towards the guide wire tip until the catheter sheath advances past the LAA ostium and into the LAA cavity;
- inflating, distal to the LAA ostium, a first inflatable catheter balloon having a first set of electromagnetic coils, wherein the first catheter balloon is affixed to the catheter sheath, and wherein upon inflation of the first catheter balloon, the first set of electromagnetic coils also expand;
- performing a tug test on the inflated first catheter balloon to occlude the LAA ostium; and
- inflating, proximal to the LAA ostium, a second inflatable catheter balloon having a second set of electromagnetic coils, wherein the second catheter balloon is affixed to the catheter sheath, and wherein upon inflation of the second catheter balloon, the second set of electromagnetic coils also expand.
2. The method of claim 1, further comprising the step of:
- puncturing the LAA cavity, wherein the puncturing is in a direction from within the LAA cavity and into a pericardial cavity.
3. The method of claim 1, further comprising the step of:
- inflating, distal to the first catheter balloon, a third inflatable catheter balloon, wherein the third catheter balloon is affixed to the catheter sheath.
4. The method of claim 3, further comprising the step of:
- puncturing the LAA cavity, wherein the puncturing is in a direction from within the LAA cavity and into a pericardial cavity.
5. The method of claim 1, wherein the body cavity is a femoral vein.
6. The method of claim 1, wherein the body cavity is a jugular vein.
7. The method of claim 1, wherein the body cavity is an axillary vein.
8. The method of claim 1, wherein the body cavity is a subclavian vein.
9. The method of claim 1, wherein the body cavity is an apex of a left ventricle.
6610072 | August 26, 2003 | Christy et al. |
20080033457 | February 7, 2008 | Francischelli et al. |
Type: Grant
Filed: Jun 19, 2013
Date of Patent: Nov 17, 2015
Patent Publication Number: 20140379021
Inventor: Subramaniam Chitoor Krishnan (Sacramento, CA)
Primary Examiner: Victor Nguyen
Application Number: 13/922,070
International Classification: A61M 29/00 (20060101); A61B 17/12 (20060101);