Establishing a multimodal personality for a multimodal application in dependence upon attributes of user interaction

Establishing a multimodal personality for a multimodal application, including evaluating, by the multimodal application, attributes of a user's interaction with the multimodal application; selecting, by the multimodal application, a visual demeanor in dependence upon the values of the attributes of the user's interaction with the multimodal application; and incorporating, by the multimodal application, the visual demeanor into the multimodal application.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application is a continuation of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 13/748,441, which was filed in the U.S. Patent and Trademark Office on Jan. 23, 2013, which is herein incorporated by reference in its entirety. U.S. patent application Ser. No. 13,748,441 is a continuation of and claims the benefit under 35 U.S.C. §120 of U.S. patent application Ser. No. 11/530,628, which was filed in the U.S. Patent and Trademark Office on Sep. 11, 2006, and which is herein incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more specifically, methods, apparatus, and products for establishing a multimodal personality for a multimodal application.

2. Description of Related Art

User interaction with applications running on small devices through a keyboard or stylus has become increasingly limited and cumbersome as those devices have become increasingly smaller. In particular, small handheld devices like mobile phones and PDAs serve many functions and contain sufficient processing power to support user interaction through other modes, such as multimodal access. Devices which support multimodal access combine multiple user input modes or channels in the same interaction allowing a user to interact with the applications on the device simultaneously through multiple input modes or channels. The methods of input include speech recognition, keyboard, touch screen, stylus, mouse, handwriting, and others. Multimodal input often makes using a small device easier.

Multimodal applications often run on servers that serve up multimodal web pages for display on a multimodal browser. A ‘multimodal browser,’ as the term is used in this specification, generally means a web browser capable of receiving multimodal input and interacting with users with multimodal output. Multimodal browsers typically render web pages written in XHTML+Voice (‘X+V’). X+V provides a markup language that enables users to interact with an multimodal application often running on a server through spoken dialog in addition to traditional means of input such as keyboard strokes and mouse pointer action. Visual markup tells a multimodal browser what the user interface is to took like and how the user interface is to behave when the user types, points, or clicks. Similarly, voice markup tells a multimodal browser what to do when the user speaks to it. For visual markup, the multimodal browser uses a graphics engine; for voice markup, the multimodal browser uses a speech engine. X+V adds spoken interaction to standard web content by integrating XHTML (eXtensible Hypertext Markup Language) and speech recognition vocabularies supported by VoiceXML. For visual markup, X+V includes the XHTML standard. For voice markup, X+V includes a subset of VoiceXML. For synchronizing the VoiceXML elements with corresponding visual interface elements, X+V uses events. XHTML includes voice modules that support speech synthesis, speech dialogs, command and control, and speech grammars. Voice handlers can be attached to XHTML elements and respond to specific events. Voice interaction features are integrated with XHTML and can consequently be used directly within XHTML content.

In addition to X+V, multimodal applications also may be implemented with Speech Application Tags (‘SALT’). SALT is a markup language developed by the Salt Forum. Both X+V and SALT are markup languages for creating applications that use voice input/speech recognition and voice output/speech synthesis. Both SALT applications and X+V applications use underlying speech recognition and synthesis technologies or ‘speech engines’ to do the work of recognizing and generating human speech. As markup languages, both X+V and SALT provide markup-based programming environments for using speech engines in an application's user interface. Both languages have language elements, markup tags, that specify what the speech-recognition engine should listen for and what the synthesis engine should ‘say.’ Whereas X+V combines XHTML, VoiceXML, and the XML Events standard to create multimodal applications, SALT does not provide a standard visual markup language or eventing model. Rather, it is a low-level set of tags for specifying voice interaction that can be embedded into other environments. In addition to X+V and SALT, multimodal applications may be implemented in Java with a Java speech framework, in C++, for example, and with other technologies and in other environments as well.

Current lightweight voice solutions require a developer to build a grammar and lexicon to limit the potential number of words that an automated speech recognition (‘ASR’) engine must recognize—as a means for increasing accuracy. Pervasive devices have limited interaction and input modalities due to the form factor of the device, and kiosk devices have limited interaction and input modalities by design. In both cases the use of speaker independent voice recognition is implemented to enhance the user experience and interaction with the device. The state of the art in speaker independent recognition allows for some sophisticated voice applications to be written as long as there is a limited vocabulary associated with each potential voice command. For example, if the user is prompted to speak the name of a city the system can, with a decent level of confidence, recognize the name of the city spoken. In the case where there is no explicit context, such as a blank text field for inputting any search query, this speaker independent recognition fails because a reasonably sized vocabulary is not available.

Incorporating speech into multimodal application, however, naturally leads users to expect or at least wish that the multimodal application would have some personality. Personality is characterized by dynamism, however, and in the current state of the art, the user interface, page after page, voice after voice, is static. Despite providing additional modes for user interaction, web applications today do not dynamically adjust to meet the user's rising expectation of speed and interaction quality.

SUMMARY OF THE INVENTION

Methods, apparatus, and computer program products are described for enabling developers of multimodal applications to portray more likeable technical features to the end user. A multimodal application according to embodiments of the present invention may interact quickly and starkly with a teenage user who is savvy with multimodal devices. The same multimodal application a few moments later may interact slowly and forgivingly with an elderly user who is not device-savvy. Mulitmodal personalities composed of vocal demeanors define how the multimodal application acts. More particularly, methods, apparatus, and computer program products are described for establishing a multimodal personality for a multimodal application that include evaluating, by the multimodal application, attributes of a user's interaction with the multimodal application; selecting, by the multimodal application, a vocal demeanor in dependence upon the values of the attributes of the user's interaction with the multimodal application; and incorporating, by the multimodal application, the vocal demeanor into the multimodal application.

The foregoing and other objects, features and advantages of the invention will be apparent from the following more particular descriptions of exemplary embodiments of the invention as illustrated in the accompanying drawings wherein like reference numbers generally represent like parts of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a network diagram illustrating an exemplary system for establishing a multimodal personality for a multimodal application according to embodiments of the present invention.

FIG. 2 sets forth a block diagram of automated computing machinery comprising an example of a computer useful as a voice server in establishing a multimodal personality for a multimodal application according to embodiments of the present invention.

FIG. 3 sets forth a functional block diagram of exemplary apparatus for establishing a multimodal personality for a multimodal application according to embodiments of the present invention.

FIG. 4 sets forth a block diagram of automated computing machinery comprising an example of a computer useful as a multimodal device in establishing a multimodal personality for a multimodal application according to embodiments of the present invention.

FIG. 5 sets forth a flow chart illustrating an exemplary method of establishing a multimodal personality for a multimodal application according to embodiments of the present invention.

FIG. 6 illustrates a Unified Modeling Language (‘UML’) model of matching vocal and visual demeanors.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

Exemplary methods, apparatus, and products for establishing a multimodal personality for a multimodal application according to embodiments of the present invention are described with reference to the accompanying drawings, beginning with FIG. 1. FIG. 1 sets forth a network diagram illustrating an exemplary system for establishing a multimodal personality for a multimodal application according to embodiments of the present invention. The system of FIG. 1 operates generally to establish a multimodal personality for a multimodal application according to embodiments of the present invention by evaluating, by the multimodal application, attributes of a user's interaction with the multimodal application; selecting, by the multimodal application, a vocal demeanor in dependence upon the values of the attributes of the user's interaction with the multimodal application; and incorporating, by the multimodal application, the vocal demeanor into the multimodal application.

A multimodal device is an automated device, that is, automated computing machinery or a computer program running on an automated device, that is capable of accepting from users more than one mode of input, keyboard, mouse, stylus, and so on, including speech input—and also displaying more than one mode of output, graphic, speech, and so on. A multimodal device is generally capable of accepting speech input from a user, digitizing the speech, and providing digitized speech to a speech engine for recognition. A multimodal device may be implemented, for example, as a voice-enabled browser on a laptop, a voice browser on a telephone handset, an online game implemented with Java on a personal computer, and with other combinations of hardware and software as may occur to those of skill in the art. Because multimodal applications may be implemented in markup languages (X+V, SALT), object-oriented languages (Java, C++), procedural languages (the C programming language), and in other kinds of computer languages as may occur to those of skill in the art, this specification uses the term ‘multimodal application’ to refer to any software application, server-oriented or client-oriented, thin client or thick client, that administers more than one mode of input and more than one mode of output, typically including visual and speech modes.

The system of FIG. 1 includes several example multimodal devices:

    • personal computer (107) which is coupled for data communications to data communications network (100) through wireline connection (120),
    • personal digital assistant (‘PDA’) (112) which is coupled for data communications to data communications network (100) through wireless connection (114),
    • mobile telephone (110) which is coupled for data communications to data communications network (100) through wireless connection (116), and
    • laptop computer (126) which is coupled for data communications to data communications network (100) through wireless connection (118).

Each of the example multimodal devices (152) in the system of FIG. 1 includes a microphone, an audio amplifier, a digital-to-analog converter, and a multimodal application capable of accepting from a user (128) speech for recognition (315), digitizing the speech, and providing the digitized speech to a speech engine for recognition. The speech may be digitized according to industry standard codecs, including but not limited to those used for Distributed Speech Recognition as such. Methods for ‘COding/DECoding’ speech are referred to as ‘codecs.’ The European Telecommunications Standards Institute (‘ETSI’) provides several codecs for encoding speech for use in DSR, including, for example, the ETSI ES 201 108 DSR Front-end Codec, the ETSI ES 202 050 Advanced DSR Front-end Codec, the ETSI ES 202 211 Extended DSR Front-end Codec, and the ETSI ES 202 212 Extended Advanced DSR Front-end Codec. In standards such as RFC3557 entitled

    • RTP Payload Format for European Telecommunications Standards Institute (ETSI) European Standard ES 201 108 Distributed Speech Recognition Encoding
      and the Internet Draft entitled
    • RTP Payload Formats for European Telecommunications Standards institute (ETSI) European Standard ES 202 050, ES 202 211, and ES 202 212 Distributed Speech Recognition Encoding,
      the FETE provides standard RTP payload formats for various codecs. It is useful to note, therefore, that there is no limitation in the present invention regarding codecs, payload formats, or packet structures. Speech for establishing a multimodal personality for a multimodal application according to embodiments of the present invention may be encoded with any codec, including, for example:
    • AMR (Adaptive Multi-Rate Speech coder)
    • ARDOR (Adaptive Rate-Distortion Optimized sound codeR),
    • Dolby Digital (A/52, AC3),
    • DTS (DTS Coherent Acoustics),
    • MP1 (MPEG audio layer-1),
    • MP2 (MPEG audio layer-2) Layer 2 audio codec (MPEG-1, MPEG-2 and non-ISO MPEG-2.5),
    • MP3 (MPEG audio layer-3) Layer 3 audio codec (MPEG-1, MPEG-2 and non-ISO MPEG-2.5),
    • Perceptual Audio Coding,
    • FS-1015 (LPC-10),
    • FS-1016 (CELP),
    • G.726 (ADPCM),
    • G.728 (LD-CELP),
    • G.729 (CS-ACELP),
    • GSM,
    • HILN (MPEG-4 Parametric audio coding), and
    • others as may occur to those of skill in the art.

As mentioned, a multimodal device according to embodiments of the present invention, is capable of providing speech to a speech engine for recognition. A speech engine is a functional module, typically a software module, although it may include specialized hardware also, that does the work of recognizing and generating or ‘synthesizing’ human speech. The speech engine implements speech recognition by use of a further module referred to in this specification as a ASR engine, and the speech engine carries out speech synthesis by use of a further module referred to in this specification as a text-to-speech (‘TTS’) engine. As shown in FIG. 1, a speech engine (148) may be installed locally in the multimodal device (107) itself, or a speech engine (153) may be installed remotely with respect to the multimodal device, across a data communications network (100) in a voice server (151). A multimodal device that itself contains its own speech engine is said to implement a ‘thick multimodal client’ or ‘thick client,’ because the thick multimodal client device itself contains all the functionality needed to carry out speech recognition speech synthesis—through API calls to speech recognition and speech synthesis modules in the multimodal device itself with no need to send requests for speech recognition across a network and no need to receive synthesized speech across a network from a remote voice server. A multimodal device that does not contain its own speech engine is said to implement a ‘thin multimodal client’ or simply a ‘thin client,’ because the thin multimodal client itself contains only a relatively thin layer of multimodal device application software that obtains speech recognition and speech synthesis services from a voice server located remotely across a network from the thin client.

Each of the example multimodal devices (152) in the system of FIG. 1 may be configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention by evaluating, by the multimodal application, attributes of a user's interaction with the multimodal application; selecting, by the multimodal application, a vocal demeanor in dependence upon the values of the attributes of the user's interaction with the multimodal application; and incorporating, by the multimodal application, the vocal demeanor into the multimodal application. The multimodal application in a multimodal device configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention is often referred to in this specification as a ‘multimodal device application’ (195). For ease of illustration, only the personal computer (107) in the system of FIG. 1 is illustrated with a multimodal device application (195), but all multimodal devices (152) may contain multimodal device applications.

The use of these four example multimodal devices (152) is for explanation only, not for limitation of the invention. Any automated computing machinery capable of accepting speech from a user, providing the speech digitized to an ASR engine, and receiving and playing speech prompts and responses from the voice server may be improved to function as a multimodal device for establishing a multimodal personality for a multimodal application according to embodiments of the present invention.

The system of FIG. 1 also includes a voice server (151) which is connected to data communications network (100) through wireline connection (122). The voice server (151) is a computer that runs a speech engine (153) that provides voice recognition services for multimodal devices by accepting requests for speech recognition and returning text representing recognized speech. Voice server (151) also provides speech synthesis, text to speech (‘TTS’) conversion, for voice prompts and voice responses (314) to user input in multimodal applications such as, for example, X+V applications, SALT applications, or Java voice applications. The voice server (151) in the system of FIG. 1 is configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention by evaluating, by the multimodal application, attributes of a user's interaction with the multimodal application; selecting, by the multimodal application, a vocal demeanor in dependence upon the values of the attributes of the user's interaction with the multimodal application; and incorporating, by the multimodal application, the vocal demeanor into the multimodal application. The multimodal application in a voice server configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention is often referred to in this specification as a ‘multimodal server application’ (188).

The system of FIG. 1 includes a data communications network (100) that connects the multimodal devices (152) and the voice server (151) for data communications. A data communications network for establishing a multimodal personality for a multimodal application according to embodiments of the present invention is a data communications data communications network composed of a plurality of computers that function as data communications routers connected for data communications with packet switching protocols. Such a data communications network may be implemented with optical connections, wireline connections, or with wireless connections. Such a data communications network may include intranets, internets, local area data communications networks (‘LANs’), and wide area data communications networks (‘WANs’). Such a data communications network may implement, for example:

    • a link layer with the Ethernet™ Protocol or the Wireless Ethernet™ Protocol,
    • a data communications network layer with the Internet Protocol (‘IP’),
    • a transport layer with the Transmission Control Protocol (‘TCP’) or the User Datagram Protocol (‘UDP’),
    • an application layer with the HyperText Transfer Protocol (‘HTTP’), the Session Initiation Protocol (‘SIP’), the Real Time Protocol (‘RTP’), the Distributed Multimodal Synchronization Protocol (‘DMSP’), the Wireless Access Protocol (‘WAP’), the Handheld Device Transfer Protocol (‘HDTP’), the ITU protocol known as H.323, and
    • other protocols as will occur to those of skill in the art.

The system of FIG. 1 includes a web server (149) connected for data communications through wireline connection (123) to network (100) and therefore to the multimodal devices (152). The web server (149) may be any server that provides to client devices markup documents that compose multimodal applications. The web server (149) typically provides such markup documents via a data communications protocol, HTTP, HDTP, WAP, or the like. The markup documents themselves may be implemented in any markup language that supports speech elements for identifying which speech to recognize and which words to speak, grammars, form elements, and the like, including, for example, X+V and SALT. A multimodal application in a multimodal device then, upon receiving from the web sever (149) a markup document as part of a multimodal application, may execute speech elements by use of a speech engine (148) in the multimodal device itself or by use of a speech engine (153) located remotely from the multimodal device in a voice server (151).

The arrangement of the voice server (151), the multimodal devices (152), and the data communications network (100) making up the exemplary system illustrated in FIG. 1 are for explanation, not for limitation. Data processing systems useful for establishing a multimodal personality for a multimodal application according to various embodiments of the present invention may include additional servers, routers, other devices, and peer-to-peer architectures, not shown in FIG. 1, as will occur to those of skill in the art. Data communications networks in such data processing systems may support many data communications protocols in addition to those noted above. Various embodiments of the present invention may be implemented on a variety of hardware platforms in addition to those illustrated in FIG. 1.

Establishing a multimodal personality for a multimodal application according to embodiments of the present invention in a thin client architecture typically is implemented with one or more voice servers, computers, that is, automated computing machinery, that provide speech recognition and speech synthesis. For further explanation, therefore, FIG. 2 sets forth a block diagram of automated computing machinery comprising an example of a computer useful as a voice server (151) in establishing a multimodal personality for a multimodal application according to embodiments of the present invention. The voice server (151) of FIG. 2 includes at least one computer processor (156) or ‘CPU’ as well as random access memory (168) (‘RAM’) which is connected through a high speed memory bus (166) and bus adapter (158) to processor (156) and to other components of the voice server.

Stored in RAM (168) is a multimodal server application (188), a module of computer program instructions capable of operating a voice server in a system that is configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention. Multimodal server application (188) provides voice recognition services for multimodal devices by accepting requests for speech recognition and returning speech recognition results, including text representing recognized speech, text for use as variable values in dialogs, and text as string representations of scripts for semantic interpretation. Multimodal server application (188) also includes computer program instructions that provide text-to-speech (‘TTS’) conversion for voice prompts and voice responses to user input in multimodal applications such as, for example, X+V applications or Java Speech applications. Multimodal server application (188) in this example is also configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention by evaluating, by the multimodal application, attributes of a user's interaction with the multimodal application; selecting, by the multimodal application, a vocal demeanor in dependence upon the values of the attributes of the user's interaction with the multimodal application; and incorporating, by the multimodal application, the vocal demeanor into the multimodal application.

The multimodal server application (188) in this example is configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention by evaluating attributes (504) of a user's interaction with the multimodal application, selecting a vocal demeanor (550) in dependence upon the values of the attributes of the user's interaction with the multimodal application, and incorporating the vocal demeanor into the multimodal application. The multimodal server application (188) in this example is configured to evaluate attributes of a user's interaction with the multimodal application by measuring or otherwise deriving values for the attributes (504). The multimodal application in this example may be viewed as a combination of the multimodal server application and a remote multimodal device application cooperating through a VOIP protocol to evaluate attributes of user interaction. The multimodal device application provides user input in the form of digitized speech which the multimodal server application can analyze for pitch, pitch range, richness, voice family, and so on. The multimodal device application can be configured to measure attributes of user interaction that are more appropriately measured on the client side, user response time to prompts, for example, or tracking of the modality of user response, that is, how often the user responds with speech, keyboard, or mouse. The multimodal device application can provide client-side measurement to the multimodal server application through messages of a VOIP protocol. The multimodal server application can statefidly maintain during a VOIP session as computer data the evaluations of attributes of user interaction and use them to select a vocal demeanor as a component of a multimodal personality.

The multimodal server application (188) can incorporate a selected vocal demeanor as a component of a multimodal personality into the multimodal server application by linking one or more markup elements of a markup document of the multimodal server application to one or more styles of a Cascading Style Sheet (‘CSS’) (514) and providing the CSS to a requesting multimodal device application that in turn loads the CSS into a multimodal device application and uses the CSS to control a multimodal user interface, the voice aspects of a multimodal user interface. The multimodal device application, located on a multimodal device across a network from the voice server, is the so-called ‘thin client,’ so-called because much of the functionality for establishing the multimodal personality is implemented on the voice server rather than on the multimodal device.

Cascading Style Sheets is a stylesheet language used to describe the presentation of a document written in a markup language. The common application of CSS is to style web pages written in HTML and XHTML, but the language can be applied to any kind of XML document, including Scalable Vector Graphics (“SVG”) and XML User Interface Language (“XUL”). The CSS specifications are maintained by the World Wide Web Consortium (“W3C”). CSS can control the vocal display of an X+V page as well as the visual display. The aural rendering of a document, already commonly used by the blind and print-impaired communities, combines speech synthesis and “auditory icons.” Often such aural presentation occurs by converting the document to plain text and feeding this to a screen reader—software or hardware that simply reads all the characters on the screen. This results in less effective presentation than would be the case if the document structure were retained. Style sheet properties for aural presentation may be used together with visual properties (mixed media or multimodal) or as an aural alternative to visual presentation. When using aural properties, the aural CSS canvas consists of a three-dimensional physical space (sound surrounds) and a temporal space (one may specify sounds before, during, and after other sounds). The CSS properties also allow authors to vary the quality of synthesized speech (voice type, frequency, inflection, etc.). Here are examples of vocal rules or styles of an aural CSS:

H1, H2, H3, H4, H5, H6 {  voice-family: paul;  stress: 20;  richness: 90;  cue-before: url(“ping.au”) } P.heidi { azimuth: center-left } P.peter { azimuth: right } P.goat { volume: x-soft }

These examples direct a speech synthesizer (TTS engine) to speak headers in a voice (a kind of “audio font”) called “paul,” on a flat tone, but in a very rich voice. Before speaking the headers, a sound sample will be played from the given URL. Paragraphs with class “heidi” will appear to come from front left (if the sound system is capable of spatial audio), and paragraphs of class “peter” from the right. Paragraphs with class “goat” will be rendered very softly.

Multimodal server application (188) in this example is a user-level, multimodal, server-side computer program that may be implemented with a set of VoiceXML documents which taken together comprise a VoiceXML application. Multimodal server application (188) may be implemented as a web server, implemented in Java, C++, or another language, that supports X+V, SALT, or another multimodal language, by providing responses to HTTP requests from X+V, SALT or other multimodal clients. Multimodal server application (188) may, for a further example, be implemented as a Java server that runs on a Java Virtual Machine (102) and supports a Java voice framework by providing responses to HTTP requests from Java client applications running on multimodal devices. And multimodal server applications that support establishing a multimodal personality for a multimodal application may be implemented in other ways as may occur to those of skill in the art, and all such ways are well within the scope of the present invention.

The voice server in this example includes a speech engine (153). The speech engine is a functional module, typically a software module, although it may include specialized hardware also, that does the work of recognizing and generating human speech. The speech engine (153) includes an automated speech recognition (‘ASR’) engine for speech recognition and a text-to-speech (‘TTS’) engine for generating speech. The speech engine also includes a grammar (104), a lexicon (106), and a language-specific acoustic model (108). The language-specific acoustic model (108) is a data structure, a table or database, for example, that associates SFVs with phonemes representing, to the extent that it is practically feasible to do so, all pronunciations of all the words in a human language. The lexicon (106) is an association of words in text form with phonemes representing pronunciations of each word; the lexicon effectively identifies words that are capable of recognition by an ASR engine.

The grammar (104) communicates to the ASR engine (150) the words and sequences of words that currently may be recognized. For precise understanding, distinguish the purpose of the grammar and the purpose of the lexicon. The lexicon associates with phonemes all the words that the ASR engine can recognize. The grammar communicates the words currently eligible for recognition. The set of words currently eligible for recognition and the set of words capable of recognition may or may not be the same.

Grammars for use in establishing a multimodal personality for a multimodal application according to embodiments of the present invention may be expressed in any format supported by any ASR engine, including, for example, the Java Speech Grammar Format (‘JSGF’), the format of the W3C Speech Recognition Grammar Specification (‘SRGS’), the Augmented Backus-Naur Format (‘ABNF’) from the IETF's RFC2234, in the form of a stochastic grammar as described in the W3C's Stochastic Language Models (N-Gram) Specification, and in other grammar formats as may occur to those of skill in the art. Grammars typically operate as elements of dialogs, such as, for example, a VoiceXML <menu> or an X+V<form>. A grammar's definition may be expressed in-line in a dialog. Or the grammar may be implemented externally in a separate grammar document and referenced from with a dialog with a URI. Here is an example of a grammar expressed in JSFG:

<grammar scope=“dialog”><![CDATA[   #JSGF V1.0;   grammar command;   <command> = [remind me to] call | phone | telephone <name>   <when>;   <name> = bob | martha | joe | pete | chris | john | artoush;   <when> = today | this afternoon | tomorrow | next week;   ]]> </grammar>

In this example, the elements named <command>, <name>, and <when> are rules of the grammar. Rules are a combination of a rulename and an expansion of a rule that advises an ASR engine which words presently can be recognized. In this example, expansion includes conjunction and disjunction, and the vertical bars ‘|’ mean ‘or.’ An ASR engine processes the rules in sequence, first <command>, then <name>, then <when>. The <command> rule accepts for recognition ‘call’ or ‘phone’ or ‘telephone’ plus, that is, in conjunction with, whatever is returned from the <name> rule and the <when> rule. The <name> rule accepts ‘bob’ or ‘martha’ or ‘joe’ or ‘pete’ or ‘chris’ or ‘john’ or ‘artoush’, and the <when> rule accepts ‘today’ or ‘this afternoon’ or ‘tomorrow’ or ‘next week.’ The command grammar as a whole accepts utterances like these, for example:

    • “phone bob next week,”
    • “telephone martha this afternoon,”
    • “remind me to call chris tomorrow,” and
    • “remind me to phone pete today.”

The multimodal server application (188) in this example is configured to receive, from a multimodal client located remotely across a network from the voice server, digitized speech for recognition from a user and pass the speech along to the ASR engine (150) for recognition. ASR engine (150) is a module of computer program instructions, also stored in RAM in this example. In carrying out automated speech recognition, the ASR engine receives speech for recognition in the form of at least one digitized word and uses frequency components of the digitized word to derive a Speech Feature Vector (‘SFV’). SFV may be defined, for example, by the first twelve or thirteen Fourier or frequency domain components of a sample of digitized speech. The ASR engine can use the SFV to infer phonemes for the word from the language-specific acoustic model (108). The ASR engine then uses the phonemes to find the word in the lexicon (106).

Also stored in RAM is a VoiceXML interpreter (192), a module of computer program instructions that processes VoiceXML grammars. VoiceXML input to VoiceXML interpreter (192) may originate from VoiceXML clients running remotely on multimodal devices, from X+V clients running remotely on multimodal devices, or from Java client applications running remotely on multimedia devices. In this example, VoiceXML interpreter (192) interprets and executes VoiceXML segments received from remote multimedia clients and provided to VoiceXML interpreter (192) through multimodal server application (188). Also stored in RAM (168) is a Text To Speech (‘TTS’) Engine (194), a module of computer program instructions that accepts text as input and returns the same text in the form of digitally encoded speech, for use in providing speech as prompts for and responses to users of multimodal systems.

Also stored in RAM (168) is an operating system (154). Operating systems useful in voice servers according to embodiments of the present invention include UNIX™, Linux™, Microsoft NT™, AIX™, IBM's i5/OS™, and others as will occur to those of skill in the art. Operating system (154), multimodal server application (188), VoiceXML interpreter (192), ASR engine (150), JVM (102), and TTS Engine (194) in the example of FIG. 2 are shown in RAM (168), but many components of such software typically are stored in non-volatile memory also, for example, on a disk drive (170).

Voice server (151) of FIG. 2 includes bus adapter (158), a computer hardware component that contains drive electronics for high speed buses, the front side bus (162), the video bus (164), and the memory bus (166), as well as drive electronics for the slower expansion bus (160). Examples of bus adapters useful in voice servers according to embodiments of the present invention include the Intel Northbridge, the Intel Memory Controller Hub, the Intel Southbridge, and the Intel I/O Controller Hub. Examples of expansion buses useful in voice servers according to embodiments of the present invention include Industry Standard Architecture (‘ISA’) buses and Peripheral Component Interconnect (‘PCF’) buses.

Voice server (151) of FIG. 2 includes disk drive adapter (172) coupled through expansion bus (160) and bus adapter (158) to processor (156) and other components of the voice server (151). Disk drive adapter (172) connects non-volatile data storage to the voice server (151) in the faint of disk drive (170). Disk drive adapters useful in voice servers include Integrated Drive Electronics (‘IDE’) adapters, Small Computer System Interface (‘SCSI’) adapters, and others as will occur to those of skill in the art. In addition, non-volatile computer memory may be implemented for a voice server as an optical disk drive, electrically erasable programmable read-only memory (so-called ‘EEPROM’ or ‘Flash’ memory), RAM drives, and so on, as will occur to those of skill in the art.

The example voice server of FIG. 2 includes one or more input/output (‘I/O’) adapters (178). I/O adapters in voice servers implement user-oriented input/output through, for example, software drivers and computer hardware for controlling output to display devices such as computer display screens, as well as user input from user input devices (181) such as keyboards and mice. The example voice server of FIG. 2 includes a video adapter (209), which is an example of an I/O adapter specially designed for graphic output to a display device (180) such as a display screen or computer monitor. Video adapter (209) is connected to processor (156) through a high speed video bus (164), bus adapter (158), and the front side bus (162), which is also a high speed bus.

The exemplary voice server (151) of FIG. 2 includes a communications adapter (167) for data communications with other computers (182) and for data communications with a data communications network (100). Such data communications may be carried out serially through RS-232 connections, through external buses such as a Universal Serial Bus (‘USB’), through data communications data communications networks such as IP data communications networks, and in other ways as will occur to those of skill in the art. Communications adapters implement the hardware level of data communications through which one computer sends data communications to another computer, directly or through a data communications network. Examples of communications adapters useful for establishing a multimodal personality for a multimodal application according to embodiments of the present invention include modems for wired dial-up communications, Ethernet (IEEE 802.3) adapters for wired data communications network communications, and 802.11 adapters for wireless data communications network communications.

For further explanation, FIG. 3 sets forth a functional block diagram of exemplary apparatus for establishing a multimodal personality for a multimodal application in a thin client architecture according to embodiments of the present invention. The example of FIG. 3 includes a multimodal device (152) and a voice server (151) connected for data communication by a VOIP connection (216) through a data communications network (100). A multimodal device application (195) runs on the multimodal device (152), and a multimodal server application (188) runs on the voice server (151). The multimodal client application (195) may be a set or sequence of X+V or SALT documents that execute on multimodal browser (196), a Java voice application that executes on the Java Virtual Machine (101), or a multimodal application implemented in other technologies as may occur to those of skill in the art. The example multimodal device of FIG. 3 also includes a sound card (174), which is an example of an I/O adapter specially designed for accepting analog audio signals from a microphone (176) and converting the audio analog signals to digital form for further processing by a codec (183).

In addition to the multimodal sever application (188), the voice server (151) also has installed upon it a speech engine (153) with an ASR engine (150), a grammar (104), a lexicon (106), a language-specific acoustic model (108), and a TTS engine (194), as well as a JVM (102), and a Voice XML interpreter (192). VoiceXML interpreter (192) interprets and executes VoiceXML grammars received from the multimodal device application and provided to VoiceXML interpreter (192) through multimodal server application (188). VoiceXML input to VoiceXML interpreter (192) may originate from the multimodal device application (195) implemented as a VoiceXML client running remotely the multimodal device (152), from the multimodal device application (195) implemented as an X+V client running remotely on the multimodal device (152). As noted above, the multimedia device application (195) also may be implemented as a Java client application running remotely on the multimedia device (152), a SALT application running remotely on the multimedia device (152), and in other ways as may occur to those of skill in the art.

VOIP stands for ‘Voice Over Internet Protocol,’ a generic term for routing speech over an IP-based data communications network. The speech data flows over a general-purpose packet-switched data communications network, instead of traditional dedicated, circuit-switched voice transmission lines. Protocols used to carry voice signals over the IP data communications network are commonly referred to as ‘Voice over IP’ or ‘VOIP’ protocols. VOIP traffic may be deployed on any IP data communications network, including data communications networks lacking a connection to the rest of the Internet, for instance on a private building-wide local area data communications network or ‘LAN.’

Many protocols are used to effect VOIP. The two most popular types of VOIP are effected with the IETF's Session Initiation Protocol (‘SIP’) and the ITU's protocol known as ‘H.323.’ SIP clients use TCP and UDP port 5060 to connect to SIP servers. SIP itself is used to set up and tear down calls for speech transmission. VOIP with SIP then uses RTP for transmitting the actual encoded speech. Similarly, H.323 is an umbrella recommendation from the standards branch of the International Telecommunications Union that defines protocols to provide audio-visual communication sessions on any packet data communications network.

The apparatus of FIG. 3 operates in a manner that is similar to the operation of the system of FIG. 2 described above. Multimodal device application (195) is a user-level, multimodal, client-side computer program presents a voice interface to user (128), provides audio prompts and responses (314) and accepts input speech for recognition (315). Multimodal device application (195) provides a speech interface through which a user may provide oral speech for recognition through microphone (176) and have the speech digitized through an audio amplifier (185) and a coder/decoder (‘codec’) (183) of a sound card (174) and provide the digitized speech for recognition to ASR engine (150). Multimodal device application (195) then packages the digitized speech in a recognition request message according to a VOIP protocol, and transmits the speech to voice server (151) through the VOIP connection (216) on the network (100).

Multimodal server application (188) provides voice recognition services for multimodal devices by accepting requests for speech recognition and returning speech recognition results, including text representing recognized speech, text for use as variable values in dialogs, and text as string representations of scripts for semantic interpretation. Multimodal server application (188) includes computer program instructions that provide text-to-speech (‘TTS’) conversion for voice prompts and voice responses to user input in multimodal applications such as, for example, X+V applications, SALT applications, or Java Speech applications.

The multimodal server application (188) receives speech for recognition from a user and passes the speech through API calls to an ASR engine (150) for recognition. The ASR engine receives digitized speech for recognition, uses frequency components of the digitized speech to derive an SFV, uses the SFV to infer phonemes for the word from the language-specific acoustic model (108), and uses the phonemes to find the speech in the lexicon (106). The ASR engine then compares speech founds as words in the lexicon to words in a grammar to deter mine whether words or phrases in speech are recognized by the ASR engine.

The multimodal server application (188) in this example, in a similar manner to that described above with reference to the system of FIG. 2, is configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention by evaluating attributes (504) of a user's interaction with the multimodal application, selecting a vocal demeanor (550) in dependence upon the values of the attributes of the user's interaction with the multimodal application, and incorporating the vocal demeanor into the multimodal application. The multimodal server application (188) in this example is configured to evaluate attributes of a user's interaction with the multimodal application by measuring or otherwise deriving values for the attributes.

The multimodal application in this example may be viewed as a combination of the multimodal server application (188) and a remote multimodal device application (195) cooperating through a VOIP protocol connection (216) to evaluate attributes of user interaction. The multimodal device application (195) provides user input in the form of digitized speech which the multimodal server application (188) can analyze for pitch, pitch range, richness, voice family, and so on. The multimodal device application (195) can be configured to measure attributes of user interaction that are more appropriately measured on the client side, user response time to prompts, for example, or tracking of the modality of user response, that is, how often the user responds with speech, keyboard, or mouse. The multimodal device application (195) can provide client-side measurement to the multimodal server application through messages of a VOIP protocol. The multimodal server application can statefully maintain during a VOIP session as computer data the evaluations of attributes of user interaction and use them to select a vocal demeanor as a component of a multimodal personality.

The multimodal server application (188) can incorporate a selected vocal demeanor (550) as a component of a multimodal personality into the multimodal server application by linking one or more markup elements of a markup document of the multimodal server application to one or more styles of a Cascading Style Sheet (‘CSS’) (514) and providing the CSS to a requesting multimodal device application (195) that in turn loads the CSS into the multimodal device application (195) and uses the CSS to control a multimodal user interface, that is, the voice aspects of a multimodal user interface.

Establishing a multimodal personality for a multimodal application according to embodiments of the present invention in thick client architectures is generally implemented with multimodal devices, that is, automated computing machinery or computers. In the system of FIG. 1, for example, all the multimodal devices (152) are implemented to some extent at least as computers. For further explanation, therefore, FIG. 4 sets forth a block diagram of automated computing machinery comprising an example of a computer useful as a multimodal device (152) in establishing a multimodal personality for a multimodal application according to embodiments of the present invention. In apparatus implementing thick multimodal clients as illustrated in FIG. 4, there is only a multimodal device (152), no network, no VOIP connection, and no voice server containing a remote speech engine. All the components needed for establishing a multimodal personality for a multimodal application according to embodiments of the present invention are installed or embedded in the multimodal device itself.

The example multimodal device (152) of FIG. 4 includes several components that are structured and operate similarly as do parallel components of the voice server, having the same drawing reference numbers, as described above with reference to FIG. 2: at least one computer processor (156), frontside bus (162), RAM (168), high speed memory bus (166), bus adapter (158), video adapter (209), video bus (164), expansion bus (160), communications adapter (167), I/O adapter (178), disk drive adapter (172), an operating system (154), a JVM (102), a VoiceXML Interpreter (192), and so on, including a speech engine (153). As in the system of FIG. 4, the speech engine in the multimodal device of FIG. 2 includes an ASR engine (150), a grammar (104), a lexicon (106), a language-dependent acoustic model (108), and a TTS engine (194). The speech engine (153) in this kind of embodiment often is implemented as an embedded module in a small form factor device such as a handheld device, a mobile phone, PDA, and the like. An example of an embedded speech engine useful for establishing a multimodal personality for a multimodal application according to embodiments of the present invention is IBM's Embedded ViaVoice Enterprise. The example multimodal device of FIG. 4 also includes a sound card (174), which is an example of an I/O adapter specially designed for accepting analog audio signals from a microphone (176) and converting the audio analog signals to digital form for further processing by a codec (183). The sound card (174) is connected to processor (156) through expansion bus (160), bus adapter (158), and front side bus (162).

Also stored in RAM (168) in this example is a multimodal device application (195), a module of computer program instructions capable of operating a multimodal device as an apparatus that supports establishing a multimodal personality for a multimodal application according to embodiments of the present invention. The multimodal device application (195) implements speech recognition by accepting speech for recognition from a user and sending the speech for recognition through API calls to the ASR engine (150). The multimodal device application (195) implements generally by sending words to be used as prompts for a user to the TTS engine (194). As an example of thick client architecture, the multimodal device application (195) in this example does not send speech for recognition across a network to a voice server for recognition, and the multimodal device application (195) in this example does not receive synthesized speech, TTS prompts and responses, across a network from a voice server. All grammar processing, voice recognition, and text to speech conversion in this example is performed in an embedded fashion in the multimodal device (152) itself.

More particularly, multimodal device application (195) in this example is a user-level, multimodal, client-side computer program that provides a speech interface through which a user may provide oral speech for recognition through microphone (176), have the speech digitized through an audio amplifier (185) and a coder/decoder (‘codec’) (183) of a sound card (174) and provide the digitized speech for recognition to ASR engine (150). The multimodal device application (195) may be implemented as a set or sequence of X+V documents executing in a multimodal browser (196) or microbrowser that passes VoiceXML grammars and digitized speech through API calls directly to an embedded VoiceXML interpreter (192) for processing. The embedded VoiceXML interpreter (192) may in turn issue requests for speech recognition through API calls directly to the embedded ASR engine (150). Multimodal device application (195) also can provide speech synthesis, TTS conversion, by API calls to the embedded TTS engine (194) for voice prompts and voice responses to user input.

In a further class of exemplary embodiments, the multimodal device application (195) may be implemented as a Java voice application that executes on Java Virtual Machine (102) and calls the ASR engine (150) and the TTS engine (194) directly through APIs for speech recognition and speech synthesis services. In further exemplary embodiments, the multimodal device application (195) may be implemented as a set or sequence of SALT documents executed on a multimodal browser (196) or microbrowser that calls the ASR engine (150) and the TTS engine (194) through APIs for speech recognition and speech synthesis services. In addition to X+V, SALT, and Java implementations, multimodal device application (195) may be implemented in other technologies as will occur to those of skill in the art, and all such implementations are well within the scope of the present invention.

The multimodal device application (195) in this example is configured to establish a multimodal personality for a multimodal application according to embodiments of the present invention by evaluating attributes (504) of a user's interaction with the multimodal application, selecting a vocal demeanor (550) in dependence upon the values of the attributes of the user's interaction with the multimodal application, and incorporating the vocal demeanor into the multimodal application. The multimodal device application (195) in this example is configured to evaluate attributes of a user's interaction with the multimodal application by measuring or otherwise deriving values for the attributes.

The multimodal device application (195) receives user input in the form of digitized speech through the sound card (174) which the multimodal device application (195) can analyze for pitch, pitch range, richness, voice family, and so on. The multimodal device application (195) in this example is configured also to measure other attributes of user interaction such as user response time to prompts, for example, or tracking of the modality of user response, that is, how often the user responds with speech, keyboard, or mouse. The multimodal device application can maintain as computer data the evaluations of attributes of user interaction and use them to select a vocal demeanor as a component of a multimodal personality.

The multimodal device application (195) can incorporate a selected vocal demeanor (550) as a component of a multimodal personality into the multimodal server application by linking one or more markup elements of a markup document of the multimodal server application to one or more styles of a Cascading Style Sheet (‘CSS’) (514), loading the CSS into the multimodal device application (195), and using the CSS to control a multimodal user interface, that is, the voice aspects of a multimodal user interface. The multimodal device application in this example, running on a stand-alone multimodal device with no network, no VOIP connection, and no voice server containing a remote speech engine and a remote multimodal server application, is the so-called ‘thick client,’ so-called because all of the functionality for establishing the multimodal personality is implemented on the multimodal device itself.

For further explanation, FIG. 5 sets forth a flow chart illustrating an exemplary method of establishing a multimodal personality for a multimodal application (189) according to embodiments of the present invention. The multimodal application may be implemented as described above with a thin client architecture in which part of the multimodal application functionality is implemented in a multimodal device application on a multimodal device and part of the multimodal application functionality is implemented in a multimodal server application in a voice server; or the multimodal application may be implemented in a thick client architecture in which all of the multimodal application functionality is implemented in a multimodal client application on a multimodal device.

The method of FIG. 5 includes evaluating (502), by the multimodal application (189), attributes (504) of a user's interaction with the multimodal application. Evaluating attributes of user interaction may be carried out by measuring or calculating values for attributes of user interaction and storing the values as computer data in association with names or other identifiers of the attributes. Attributes of user interaction may include interaction mode, user response rate to prompts, and attributes of user speech including, for example, speech rate, voice family, pitch, pitch range, stress, and richness.

Interaction mode is the user's chosen mode of providing input through a user interface and responding to prompts for input. Interaction modes may be vocal or non-vocal. Examples of interaction modes include keyboard, mouse movements, and speech. User response rate may be measured as the time elapsed between presentation of prompt by the multimodal application and a user's response to the prompt. Prompts may be vocal or visual.

Speech rate may be measured as the user's speaking rate in words per minute. Voice family in effect measures a font for speech, describing the overall nature and timbre of a voice either in generic terms, male, female, child, or in specific terms, Mary's voice, Jack's voice, and so on. The name of a voice family may be considered in effect to identify a vocal font for a vocal demeanor. Pitch is a measure of the average frequency of a user's speaking voice. Voice family may be inferred from pitch: An average pitch for a male voice is typically about 120 Hertz, while an average pitch for a female voice is typically about 210 Hertz. A measure of voice family therefore is a name of a voice family, from an available or supported set of voice families, whose overall timbre is most closely related to that of a user: a female voice for female user, a male voice for a male user, and so on.

Pitch range is a measure of variation in average pitch. The perceived pitch of a human voice is determined by its fundamental frequency and typically has a value of about 120 Hz for a male voice and about 210 Hz for a female voice. Human languages are spoken with varying inflection and pitch—variations that convey additional meaning and emphasis. A highly animated voice, that is, a voice that is heavily inflected, displays a high pitch range. The measure of pitch range specifies the range over which these variations occur, that is, how much the fundamental frequency deviates from the average pitch. Pitch range therefore may be measured in Hertz. The value of pitch range is a measure of the amount of inflection in a vocal utterance. A low pitch range value indicates a user speaking in a monotone; a high pitch range value identifies an animated voice. A medium pitch range value indicates normal inflection.

Richness is a measure of the brightness of a user's speaking voice. A rich voice will ‘carry’ in a large room, a smooth voice will not. The term ‘smooth’ refers to how a wave form of the voice looks when drawn. A rich voice has a higher ratio of peak amplitude values to average amplitude values than a smooth voice. A rich voice is more ‘condensed’ in effect than a smooth voice.

The method of FIG. 5 also includes selecting (506), by the multimodal application (189), a vocal demeanor (550) in dependence upon the values of the attributes (504) of the user's interaction with the multimodal application. Vocal demeanor is the overall appearance of the voice used to provide speech prompts and responses from a multimodal application to a user. Attributes of a vocal demeanor can include non-vocal attributes such as interaction mode and user response time, and the attributes can include vocal attributes such as speech rate, voice family, pitch, pitch range, and so on. The attributes can also include additional characteristics such as age, gender, location (regional accent), time (businesslike during working hours, relaxed in the evening), application domain (businesslike for a voice representing a professional office, relaxed for a voice representing a spa), and so on, for any characterization of a demeanor as may occur to those of skill in the art.

The selected vocal demeanor (550) is selected from among a plurality (540) of predefined vocal demeanors. The predefined vocal demeanors may be implemented as computer data structures having data elements representing vocal characteristics, lists of computer data, objects instantiated from demeanor classes in an object-oriented programming language, records in tables of a database, and so on. Selecting a vocal demeanor means selecting a predefined demeanor whose vocal characteristics match the evaluated attributes (504) of user interaction with the multimodal application. A vocal demeanor and the attributes (504) of user interaction with the multimodal application ‘match’ according to embodiments of the present invention when each is characterized by similar attributes. The match is required to be merely ‘similar,’ not exact. ‘Similar’ means identical within some predefined margin of error. A failure to find for selection a vocal demeanor that matches the attributes of user interaction typically results in a multimodal application's use of a default vocal demeanor to formulate its multimodal personality.

The vocal demeanor is not necessarily the only component of a multimodal personality. A multimodal personality may include visual aspects, implemented for example with a visual demeanor, as well. Visual demeanor is the overall visual appearance of a multimodal application, background colors, text colors, text fonts, selection and placement of graphic elements, and so on. Visual demeanor may be characterized by attributes such as age (vibrant colors for young users, quieter colors for mature users), gender (sans serif fonts for women, serifs for men), location (Eiffel. Tower background for Parisians, the Alamo for Texans), time (bright color palettes in the morning, quieter palettes in the evening), application domain (more text for legal subjects, more graphics for architectural subjects), and so on.

The method of FIG. 5 also includes incorporating (510), by the multimodal application (189), the vocal demeanor (550) into the multimodal application. In the method of FIG. 5, incorporating (510) the vocal demeanor (550) into the multimodal application includes linking (512) one or more markup elements (556) of a markup document (554) of the multimodal application (189) to one or more styles (518) of a Cascading Style Sheet (‘CSS’) (514). The multimodal application can link (512) one or more markup elements (556) of a markup document (554) of the multimodal application (189) to one or more styles (518) of a CSS (514) as shown in the following example X+V page:

<html xmlns=“http://www.w3.org/1999/xhtml”   xmlns:vxml=“http://www.w3.org/2001/vxml”   xmlns:ev=“http://www.w3.org/2001/xml-events” > <head>   <link rel=“stylesheet” type=“text/css”     href=“http://www.ibm.com/style/demeanor.jsp” />   <title>What would you like to drink?</title>   <vxml:form id=“drinkform”>     <vxml:field name=“drink”>       <vxml:prompt src=“#p1”>       </vxml:prompt>       <vxml:grammar><![CDATA[         #JSGF V1.0;         grammar drinks;         public <drinks> = coffee | tea | milk | nothing;]]>       </vxml:grammar>       <vxml:filled>         <vxml:assign name=“document.fid.in1.value”         expr=“drink”/>       </vxml:filled>     </vxml:field>   <vxml:block>   Your <vxml:value expr=“drink”/> is coming right up!   </vxml:block>   </vxml:form> </head> <body bgcolor=“#FFFFFF”>   <h2 id=“p1” class=“server”>Would you like coffee, tea, milk, or   nothing?</h2>   <form name=“fid” action=“ctmn0-style,mxml”>     <table>       <tbody>         <tr><td>Breakfast Drink:</td>           <td>             <input type=“text” name=“in1”             ev:event=“focus”             ev:handler=“#drinkform”/>           </td>         </tr>       </tbody>     </table>   </form> </body> </html>

In this example X+V page, a VoiceXML form identified as “drinkform” voice enables an XHTML input form named “fid.” The table data field named “in1” registers “drinkform” as an event handler for “focus” events in the field; that is, when field “in1” gains focus, the multimodal application calls “drinkform” to administer vocal input to field “in1.” By use of the <drinks> grammar:

    • <drinks>=coffee|tea|milk|nothing;
      “drinkform” can recognize the words “coffee,” “tea,” “milk,” or “nothing” as vocal input to field “in1.”

This example X+V page shows a link, defined as a <link> element, to an external CSS identified by the URL “http://www.ibmcom/style/demeanor.jsp”:

<link rel=“stylesheet” type=“text/css”     href=“http://www.ibm.com/style/demeanor.jsp” />

This example X+V page defines a multimodal speech dialog as a VoiceXML <vxml:form> element with id=“drinkform.” The <vxml:form> element includes a prompt <vxml:prompt src=“#p1”> that refers to an <h2> heading element:

<h2 id=“p1” class=“server”>Would you like coffee, tea, milk, or nothing?</h2>

identified as id=“p1.” The <h2> heading element is controlled by a class attribute, class=“server,” that identifies the style to be returned from the reference to the external CSS, “demeanor.jsp.” The value of the style returned in this example is:

h2.server {voice-family: female} h3 {voice-family: male}

signifying that the spoken prompt for the <h2> heading is to be rendered in a female voice, and any prompts for <h3> headings are to be rendered in a male voice. Specific demeanor attributes may be implemented as session attributes, or as attributes that persist across sessions in a persistent user profile. Session-specific attributes may be passed as a cookie in the header of an HTTP request for the CSS. Analogous schemes as may occur to those of skill in the art can be constructed for the generation of grammars and the vocabulary used in prompts.

The fact that the referenced CSS is named “demeanor.jsp” indicates that the external CSS is returned from the computation of a Java Server Page. This effectively makes the referenced external CSS a variable. The multimodal application, through its operating environment, a browser or a JVM, can select and return a CSS whose styles effect the selected vocal demeanor. The vocal demeanor typically is selected to match evaluated attributes of user interaction, as described in more detail above. A CSS can be selected from among many, hundreds or thousands, according to the characteristics of a matching demeanor, age, gender, location, application domain, speech rate, voice family, pitch, pitch range, richness, and so on. Returning a selected CSS, loading it into the multimodal application, and using it to govern the presentation of the user interface, graphic and speech aspects in particular, is an example of an effective way of incorporating into the multimodal application a vocal demeanor as a component of multimodal personality.

For further explanation, FIG. 6 illustrates a Unified Modeling Language (‘UML’) model of vocal demeanor. The UML model of FIG. 6 illustrates relationships among system components that select vocal demeanor (540) and generate a Cascading Style Sheet (‘CSS’) (514) used to control the vocal and visual display for a specific prompt (544) in operation of a User interface of a multimodal application. The UML model shows vocal demeanors (540) selected on the basis of attributes (504) of user interaction. The vocal demeanors in turn form the basis for selection of a CSS (514) that provides a style (546) for a prompt (544), the style governing how the prompt is presented in both its visual aspects (542) and as a voice (548). As shown in the UML, a style (546), in an object oriented sense, can be instantiated from many style classes—so that the results returned fora demeanor can contain more than one prompt class. Similarly, a returned CSS can be an instance instantiated from any one of hundreds or thousands of CSS classes.

In view of the explanations set forth above in this paper, readers will recognize that establishing a multimodal personality for multimodal application according to embodiments of the present invention provides the technical tools to enable developers to provide personalities for multimodal applications that dynamically adapt to the characteristics of a particular user—including the particular attributes of the user's interactions with the multimodal application. By selecting vocal demeanors in dependence upon attributes of user interaction, a user is empowered to interact with a multimodal personality that in effect ‘fits’ the user's own approach to the computer, stow for slow users, fast for fast users, animated speech for animated speakers, calm speech for calm speakers, a personality of similar age and gender as the user, and so on, and so on.

Exemplary embodiments of the present invention are described largely in the context of a fully functional computer system for establishing a multimodal personality for a multimodal application. Readers of skill in the art will recognize, however, that the present invention also may be embodied in a computer program product disposed on signal bearing media for use with any suitable data processing system. Such signal bearing media may be transmission media or recordable media for machine-readable information, including magnetic media, optical media, or other suitable media. Examples of recordable media include magnetic disks in hard drives or diskettes, compact disks for optical drives, magnetic tape, and others as will occur to those of skill in the art. Examples of transmission media include telephone data communications networks for voice communications and digital data communications data communications networks such as, for example, Ethernets™ and data communications networks that communicate with the Internet Protocol and the World Wide Web. Persons skilled in the art will immediately recognize that any computer system having suitable programming means will be capable of executing the steps of the method of the invention as embodied in a program product. Persons skilled in the art will recognize immediately that, although some of the exemplary embodiments described in this specification are oriented to software installed and executing on computer hardware, nevertheless, alternative embodiments implemented as firmware or as hardware are well within the scope of the present invention.

It will be understood from the foregoing description that modifications and changes may be made in various embodiments of the present invention without departing from its true spirit. The descriptions in this specification are for purposes of illustration only and are not to be construed in a limiting sense. The scope of the present invention is limited only by the language of the following claims.

Claims

1. A method of operating a multimodal application to tailor a multimodal personality presented by the multimodal application to a user of the multimodal application, the multimodal application comprising a visual interface and a speech interface, the method comprising:

evaluating speech data of speech of the user, received via the speech interface, to determine at least one attribute of the user's speech; and
selecting a selected visual demeanor for the multimodal application based at least in part on the determined at least one attribute of the user's speech, wherein the multimodal application can be configured to employ any of a plurality of visual demeanors, wherein the selecting comprises selecting the selected visual demeanor from among the plurality of visual demeanors, each visual demeanor of the plurality of visual demeanors identifying a manner in which to format content for presentation in the visual interface of the multimodal application, each one of the plurality of visual demeanors specifying one or more formatting characteristics to be applied to the content when the one of the plurality of visual demeanors is selected, the one or more formatting characteristics selected from the group consisting of a color in which to present at least some of the content presented in the visual interface, a font in which to present at least some of the content presented in the visual interface, one or more supplemental graphic elements to be added to the content presented in the visual interface, and positions in the visual interface at which to present the content and/or the one or more supplemental graphic elements.

2. The method of claim 1, wherein:

evaluating the speech data to determine the at least one determined attribute comprises determining a gender of the user based at least in part on the speech data; and
selecting the selected visual demeanor comprises selecting the selected visual demeanor based on the gender of the user.

3. The method of claim 2, wherein selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies a formatting characteristic that is a particular font and/or type of font to be used in presenting content to users having the gender.

4. The method of claim 1, wherein:

evaluating the speech data to determine the at least one determined attribute comprises determining an accent of the user based at least in part on the speech data; and
selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies a formatting characteristic that is a particular graphical element to be presented to users having the accent.

5. The method of claim 1, wherein:

at least some of the plurality of visual demeanors specify formatting characteristics relating to sets of colors to be used in presenting the content in the visual interface; and
selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies one or more formatting characteristics relating to a set of colors based at least in part on the at least one attribute.

6. The method of claim 1, wherein:

each visual demeanor of the plurality of visual demeanors is associated with at least one associated attribute; and
selecting the selected visual demeanor from the plurality of visual demeanors based on the at least one attribute comprises identifying one or more visual demeanors for which at least some of the at least one associated attribute matches the at least one attribute determined from the speech data of speech of the user.

7. At least one non-transitory computer-readable storage medium having encoded thereon executable instructions that, when executed by at least one processor, cause the at least one processor to carry out a method of operating a multimodal application to tailor a multimodal personality presented by the multimodal application to a user of the multimodal application, the multimodal application comprising a visual interface and a speech interface, the method comprising:

evaluating speech data of speech of the user, received via the speech interface, to determine at least one attribute of the user's speech; and
selecting a selected visual demeanor for the multimodal application based at least in part on the determined at least one attribute of the user's speech, wherein the multimodal application can be configured to employ any of a plurality of visual demeanors, wherein the selecting comprises selecting the selected visual demeanor from among the plurality of visual demeanors, each visual demeanor of the plurality of visual demeanors identifying a manner in which to format content for presentation in the visual interface of the multimodal application, each one of the plurality of visual demeanors specifying one or more formatting characteristics to be applied to the content when the one of the plurality of visual demeanors is selected, the one or more formatting characteristics selected from the group consisting of a color in which to present at least some of the content presented in the visual interface, a font in which to present at least some of the content presented in the visual interface, one or more supplemental graphic elements to be added to the content presented in the visual interface, and positions in the visual interface at which to present the content and/or the one or more supplemental graphic elements.

8. The at least one non-transitory computer-readable storage medium of claim 7, wherein:

evaluating the speech data to determine the at least one determined attribute comprises determining a gender of the user based at least in part on the speech data; and
selecting the selected visual demeanor comprises selecting the selected visual demeanor based on the gender of the user.

9. The at least one non-transitory computer-readable storage medium of claim 8, wherein selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies a formatting characteristic that is a particular font and/or type of font to be used in presenting content to users having the gender.

10. The at least one non-transitory computer-readable storage medium of claim 7, wherein:

evaluating the speech data to determine the at least one determined attribute comprises determining an accent of the user based at least in part on the speech data; and
selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies a formatting characteristic that is a particular graphical element to be presented to users having the accent.

11. The at least one non-transitory computer-readable storage medium of claim 7, wherein:

at least some of the plurality of visual demeanors specify formatting characteristics relating to sets of colors to be used in presenting the content in the visual interface; and
selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies one or more formatting characteristics relating to a set of colors based at least in part on the at least one attribute.

12. The at least one non-transitory computer-readable storage medium of claim 7, wherein:

the plurality of visual demeanors identify manners in which to present same content via the visual interface; and
the method further comprises: presenting the same content to the user in the selected visual demeanor via the visual interface; evaluating second speech data of speech of a second user, received via the speech interface, to determine at least one second attribute of the second user's speech; selecting a second selected visual demeanor for the multimodal application based at least in part on the at least one second attribute of the second user's speech; and presenting the same content to the second user in the second selected visual demeanor via the visual interface.

13. An apparatus comprising:

at least one processor; and
at least one non-transitory computer-readable storage medium having encoded thereon executable instructions that, when executed by at least one processor, cause the at least one processor to carry out a method of operating a multimodal application to tailor a multimodal personality presented by the multimodal application to a user of the multimodal application, the multimodal application comprising a visual interface and a speech interface, the method comprising: evaluating speech data of speech of the user, received via the speech interface, to determine at least one attribute of the user's speech; and selecting a selected visual demeanor for the multimodal application based at least in part on the determined at least one attribute of the user's speech, wherein the multimodal application can be configured to employ any of a plurality of visual demeanors, wherein the selecting comprises selecting the selected visual demeanor from among the plurality of visual demeanors, each visual demeanor of the plurality of visual demeanors identifying a manner in which to format content for presentation in the visual interface of the multimodal application, each one of the plurality of visual demeanors specifying one or more formatting characteristics to be applied to the content when the one of the plurality of visual demeanors is selected, the one or more formatting characteristics selected from the group consisting of a color in which to present at least some of the content presented in the visual interface, a font in which to present at least some of the content presented in the visual interface, one or more supplemental graphic elements to be added to the content presented in the visual interface, and positions in the visual interface at which to present the content and/or the one or more supplemental graphic elements.

14. The apparatus of claim 13, wherein:

evaluating the speech data to determine the at least one determined attribute comprises determining a gender of the user based at least in part on the speech data; and
selecting the selected visual demeanor comprises selecting the selected visual demeanor based on the gender of the user.

15. The apparatus of claim 14, wherein selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies a formatting characteristic that is a particular font and/or type of font to be used in presenting content to users having the gender.

16. The apparatus of claim 13, wherein:

evaluating the speech data to determine the at least one determined attribute comprises determining an accent of the user based at least in part on the speech data; and
selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies a formatting characteristic that is a particular graphical element to be presented to users having the accent.

17. The apparatus of claim 13, wherein:

at least some of the plurality of visual demeanors specify formatting characteristics relating to sets of colors to be used in presenting the content in the visual interface; and
selecting the selected visual demeanor comprises selecting one of the plurality of visual demeanors that specifies one or more formatting characteristics relating to a set of colors based at least in part on the at least one attribute.

18. The apparatus of claim 13, wherein:

evaluating the speech data to determine the at least one attribute comprises determining an age or age range of the user based at least in part on the speech data; and
selecting the selected visual demeanor comprises selecting a visual demeanor that specifies a set of colors to be used in the visual interface for users having the age or age range.

19. The apparatus of claim 13, wherein:

each visual demeanor of the plurality of visual demeanors is associated with at least one associated attribute; and
selecting the selected visual demeanor from the plurality of visual demeanors based on the at least one attribute comprises identifying one or more visual demeanors for which at least some of the at least one associated attribute matches the at least one attribute determined from the speech data of speech of the user.

20. The apparatus of claim 13, wherein the at least one attribute of the user's speech is unrelated to words used by the user in the speech.

Referenced Cited
U.S. Patent Documents
5406492 April 11, 1995 Suzuki
5577165 November 19, 1996 Takebayashi et al.
5584052 December 10, 1996 Gulau et al.
5966691 October 12, 1999 Kibre et al.
5969717 October 19, 1999 Ikemoto
6144938 November 7, 2000 Surace et al.
6208972 March 27, 2001 Grant et al.
6212502 April 3, 2001 Ball et al.
6243375 June 5, 2001 Speicher
6275806 August 14, 2001 Pertrushin
6301560 October 9, 2001 Masters
6334103 December 25, 2001 Surace et al.
6404438 June 11, 2002 Hatlelid
6513011 January 28, 2003 Uwakubo
6606599 August 12, 2003 Grant et al.
6708153 March 16, 2004 Brittan et al.
6728679 April 27, 2004 Strubbe et al.
6856960 February 15, 2005 Dragosh et al.
6920425 July 19, 2005 Will et al.
6999930 February 14, 2006 Roberts et al.
7035805 April 25, 2006 Miller
7050977 May 23, 2006 Bennett
7171243 January 30, 2007 Watanabe et al.
7188067 March 6, 2007 Grant et al.
7330890 February 12, 2008 Partovi et al.
7349527 March 25, 2008 Yacoub et al.
7376586 May 20, 2008 Partovi et al.
7398209 July 8, 2008 Kennewick et al.
7487085 February 3, 2009 Ativanichayaphong et al.
7509659 March 24, 2009 McArdle
20020065944 May 30, 2002 Hickey et al.
20020092019 July 11, 2002 Marcus
20020095295 July 18, 2002 Cohen et al.
20020099553 July 25, 2002 Brittan et al.
20020120554 August 29, 2002 Vega
20020135618 September 26, 2002 Maes et al.
20020147593 October 10, 2002 Lewis et al.
20020184610 December 5, 2002 Chong et al.
20030033152 February 13, 2003 Cameron
20030039341 February 27, 2003 Burg et al.
20030046316 March 6, 2003 Gergic et al.
20030046346 March 6, 2003 Mumick et al.
20030101451 May 29, 2003 Bentolila et al.
20030125945 July 3, 2003 Doyle
20030179865 September 25, 2003 Stillman et al.
20030182622 September 25, 2003 Sibal et al.
20030195739 October 16, 2003 Washio
20030217161 November 20, 2003 Balasuriya
20030229900 December 11, 2003 Reisman
20030235282 December 25, 2003 Sichelman et al.
20040019487 January 29, 2004 Kleindienst et al.
20040025115 February 5, 2004 Sienel et al.
20040031058 February 12, 2004 Reisman
20040044516 March 4, 2004 Kennewick et al.
20040049390 March 11, 2004 Brittan et al.
20040049391 March 11, 2004 Polanyi
20040059705 March 25, 2004 Wittke et al.
20040083109 April 29, 2004 Halonen et al.
20040120472 June 24, 2004 Popay et al.
20040120476 June 24, 2004 Harrison et al.
20040138890 July 15, 2004 Ferrans et al.
20040153323 August 5, 2004 Charney et al.
20040179038 September 16, 2004 Blattner et al.
20040215453 October 28, 2004 Orbach
20040216036 October 28, 2004 Chu et al.
20040236574 November 25, 2004 Ativanichayaphong et al.
20040260562 December 23, 2004 Kujirai
20050060158 March 17, 2005 Endo et al.
20050075884 April 7, 2005 Badt
20050091059 April 28, 2005 Lecoeuche
20050131701 June 16, 2005 Cross et al.
20050138219 June 23, 2005 Bou-Ghannam et al.
20050138647 June 23, 2005 Bou-ghannam et al.
20050154580 July 14, 2005 Horowitz et al.
20050160461 July 21, 2005 Baumgartner et al.
20050188412 August 25, 2005 Dacosta
20050203729 September 15, 2005 Roth et al.
20050203747 September 15, 2005 Lecoeuche
20050261908 November 24, 2005 Cross et al.
20050273769 December 8, 2005 Eichenberger et al.
20050283367 December 22, 2005 Ativanichayaphong et al.
20060047510 March 2, 2006 Ativanichayaphong et al.
20060064302 March 23, 2006 Ativanichayaphong et al.
20060069564 March 30, 2006 Allison et al.
20060074680 April 6, 2006 Cross et al.
20060075120 April 6, 2006 Smit
20060111906 May 25, 2006 Cross et al.
20060122836 June 8, 2006 Cross et al.
20060123358 June 8, 2006 Lee et al.
20060136222 June 22, 2006 Cross et al.
20060146728 July 6, 2006 Engelsma et al.
20060168095 July 27, 2006 Sharma et al.
20060168595 July 27, 2006 McArdle
20060184626 August 17, 2006 Agapi et al.
20060190264 August 24, 2006 Jaramillo et al.
20060218039 September 28, 2006 Johnson
20060229880 October 12, 2006 White et al.
20060235694 October 19, 2006 Cross et al.
20060287845 December 21, 2006 Cross et al.
20060287865 December 21, 2006 Cross et al.
20060287866 December 21, 2006 Cross et al.
20060288309 December 21, 2006 Cross et al.
20070265851 November 15, 2007 Ben-David et al.
20070274296 November 29, 2007 Cross et al.
20070274297 November 29, 2007 Cross et al.
20070288241 December 13, 2007 Cross et al.
20070294084 December 20, 2007 Cross et al.
20080065386 March 13, 2008 Cross et al.
20080065387 March 13, 2008 Cross, Jr. et al.
20080065388 March 13, 2008 Cross et al.
20080065389 March 13, 2008 Cross et al.
20080065390 March 13, 2008 Ativanichayaphong et al.
20080086564 April 10, 2008 Putman et al.
20080140410 June 12, 2008 Ativanichayaphong et al.
20080162136 July 3, 2008 Agapi et al.
20080177530 July 24, 2008 Cross et al.
20080195393 August 14, 2008 Cross et al.
20080208584 August 28, 2008 Ativanichayaphong et al.
20080208585 August 28, 2008 Ativanichayaphong et al.
20080208586 August 28, 2008 Ativanichayaphong et al.
20080208587 August 28, 2008 Ben-David et al.
20080208588 August 28, 2008 Ativanichayaphong et al.
20080208589 August 28, 2008 Cross et al.
20080208590 August 28, 2008 Cross et al.
20080208591 August 28, 2008 Ativanichayaphong et al.
20080208592 August 28, 2008 Cross et al.
20080208593 August 28, 2008 Ativanichayaphong et al.
20080208594 August 28, 2008 Cross et al.
20080228494 September 18, 2008 Cross
20080228495 September 18, 2008 Cross, Jr. et al.
20080235021 September 25, 2008 Cross et al.
20080235022 September 25, 2008 Bergl et al.
20080235027 September 25, 2008 Cross
20080235029 September 25, 2008 Cross et al.
20080249782 October 9, 2008 Ativanichayaphong et al.
20080255850 October 16, 2008 Cross et al.
20080255851 October 16, 2008 Ativanichayaphong et al.
Foreign Patent Documents
1385783 December 2002 CN
1564123 January 2005 CN
0 794 670 September 1997 EP
1 450 350 August 2004 EP
0507148.5 April 2005 GB
2000155529 June 2000 JP
2003140672 May 2003 JP
WO 99/48088 September 1999 WO
WO 00/51106 August 2000 WO
WO 02/32140 April 2002 WO
WO 2004/062945 July 2004 WO
WO 2006/108795 October 2006 WO
Other references
  • Axelsson, et al.; “XHTML+Voice Profile 1.2” Internet, [Online] Mar. 16, 2004, pp. 1-53, XP002484188 Retrieved from theInternet: URL:http://www.voicexml.org/specs/mutlimodal/x+v/12/spec.html [retrieved on Jun. 12, 2008].
  • W3C: “Voice Extensible Markup Language (VoiceXML) Version 2.0” Internet Citation, [Online] XP002248286 Retrieved from the Internet: URL:http://www.w3.org/TR/voicexml20 [retrieved on Jul. 18, 2003].
  • W3C: “Voice Extensible Markup Language (VoiceXML) 2.1, W3C Candidate Recommendation Jun. 13, 2005” Internet, [Online] Jun. 13, 2005, pp. 1-34, XP002484189 Retrieved from the Internet: URL:http://www.w3.org/TR/2005/CR-voicexml21-20050613/ [retrievedon Jun. 12, 2008].
  • PCT Search Report, Jun. 25, 2008; PCT Application No. PCT/EP2008/051358.
  • PCT Search Report, Jun. 18, 2008; PCT Application No. PCT/EP2008/051363.
  • Didier Guillevic, et al.,Robust Semantic Confidence Scoring ICSLP 2002: 7.sup.th International Conference on Spoken Language Processing. Denver Colorado, Sep. 16-20, 2002 International Conference on Spoken Language Processing (ICSLP), Adelaide:Causal Productions, AI, Sep. 16, 2002, p. 853, XP007011561 ISBN:9788-1-876346-40-9.
  • U.S. Appl. No. 10/919,005, filed Dec. 2005, Eichenberger, et al.
  • U.S. Appl. No. 12/109,151, filed Apr. 2008, Agapi, et al.
  • U.S. Appl. No. 12/109,167, filed Apr. 2008, Agapi, et al.
  • U.S. Appl. No. 12/109,204, filed Apr. 2008, Agapi, et al.
  • U.S. Appl. No. 12/109,227, filed Apr. 2008, Agapi, et al.
  • U.S. Appl. No. 12/109,214, filed Apr. 2008, Agapi, et al.
Patent History
Patent number: 9343064
Type: Grant
Filed: Nov 26, 2013
Date of Patent: May 17, 2016
Patent Publication Number: 20140122091
Assignee: Nuance Communications, Inc. (Burlington, MA)
Inventors: Charles W. Cross, Jr. (Wellington, FL), Hilary A. Pike (Boca Raton, FL)
Primary Examiner: Shaun Roberts
Application Number: 14/090,354
Classifications
Current U.S. Class: Animation (345/473)
International Classification: G10L 21/00 (20130101); G10L 15/22 (20060101); G10L 17/00 (20130101); G10L 13/00 (20060101); H04M 3/493 (20060101);