Computer interface device

- NCR Corporation

A computer terminal device includes a flat screen display element and a touch-sensitive element. Simulated keyboards can be displayed on the display element and, in response to the touching of the simulated keys, generate appropriate control signals. The same flat screen display can also be used to display computer output, either the result of calculations or the result of information retrieval requests. The slim silhouette of this terminal makes it ideal for hostile environments such as the factory floor or the hospital room.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

This invention relates to computers and computer terminals, and more particularly, to small, compact and light-weight terminal devices for computers and computer systems.

BACKGROUND OF THE INVENTION

Flat display electroluminescent and plasma display devices are well-known and have long been incorporated into computer terminal devices, particularly for portable terminals and for portable computers. Such portable computers are sometimes called “smart” terminals or personal computers or work stations. While such flat screen devices substantially reduce the size of computer terminals, the standard keyboard, key pads, “mice,” and other input devices have required that even “portable” terminals be relatively bulky despite the thin screen display.

It is also well-known to provide a touch-sensitive display screen for computer terminals. By touching the screen at or near indicia displayed on the screen, the user can select actions or graphic display portions for further consideration or action. Thus, in response to a touch, a command can be selected from a menu for execution, a graphical element can be selected for enlargement, movement or replication, or a data file can be selected for processing. Such touch-responsive selections have the disadvantage, however, of being totally dependent on the specific application for which they were designed. General purpose input devices, such as typewriter-type keyboards, were therefore also necessary for generalized inputting.

SUMMARY OF THE INVENTION

In accordance with the illustrative embodiment of the present invention, a light, portable, compact computer terminal is provided by combining a flat screen display device with a touch-sensitive overlayer. All or a portion of the display surface is used to simulate a standard input device such as a standard “q-u w-e-r-t-y” typewriter keyboard or a touch-tone numerical telephone keypad. Simultaneously with the display of the simulated input device, the areas of the display corresponding to specific signals (alphanumerics, for example) are correlated with the generation of the corresponding signals, ASCII codes, for example.

It can be seen that a touch-sensitive screen in accordance with the present invention can serve all of the input and output needs of a computer terminal. A programmed microprocessor associated with the terminal can be used to provide the screen displays and generate the appropriate signals in response to touching the corresponding selected portions of the screen. Such a device can be considerably more compact than heretofore available computer terminals. True portability of a computer terminal in accordance with the present invention, particularly in a busy, and sometimes hostile, work environment, permits such a terminal to be used as an electronic clipboard, but with all of the processing power of a large computer.

In accordance with one feature of the present invention, the electronic clipboard terminal can be connected, by wires or by standard wireless technology, to minicomputers or large main frame computers to obtain the advantages of complex computing capability and access to large data bases.

In accordance with another feature of the present invention, the portable terminal can be used to simulate a standard keyboard, a standard telephone key pad, a standard numerical key pad, a stenographic machine, or any other standard finger-operated data input device. Moreover, the same screen which is used as a simulated input device can also be used as a standard output or display device, either at different times or at different locations (“windows”) on the display surface. Finally, such versatility is entirely under the control of software in a digital computer and hence can be called upon automatically in response to computer-derived signals. In this way, a standard simulated keyboard is displayed only at those times when alphabetic input is appropriate, a numerical key pad is displayed only when numeric input is appropriate, a telephone key pad is displayed only when a telephone number must be supplied, and so forth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a plan view of a computer terminal in accordance with the present invention;

FIG. 2 is a side view of the computer terminal of FIG. 1;

FIG. 3 is an exploded perspective view of the terminal of the present invention showing the construction of the multilayer screen;

FIG. 4 is a graphical representation of a standard typewriter keyboard display for use with the terminal of the present invention;

FIG. 5 is a graphical representation of a telephone key pad display for use with the terminal of the present invention;

FIG. 6 is a graphical representation of a display for a special application of the terminal of the present invention in the hospital environment;

FIG. 7 is a flowchart showing one application of the terminal of the present invention for the generation of standard typewriter alphanumeric ASCII codes to control a computer;

FIG. 8 is a detailed block diagram of the electrical circuits of the terminal of FIGS. 1 through 6; and

FIG. 9 is a block diagram of one application of a computer system in which the terminal of FIGS. 1 through 6 might be a part.

DETAILED DESCRIPTION

Referring more particularly to the drawings, FIGS. 1 and 2 are plan and elevation views, respectively, of a portable computer terminal in accordance with the illustrative embodiment of the present invention. As can be seen in FIG. 1, the terminal 10 has two planar surfaces 11 and 13 at an angle to each other. Planar surface 11 includes an opening 12 which provides visual access to a flat screen display divice device inside of terminal 1 10. As can best be seen in FIG. 2, the planar surfaces 11 and 13 define an angle of approximately 140 degrees therebetween. A retractile cord 14 may be attached to terminal 10 as means for connecting terminal 10 to computing facilities outside of terminal 10, should that be necessary or desireable desirable. Alternatively, terminal 10 can be electrically coupled to such external computing facilities by well-known wireless technology using ultrasonic sound waves, radio waves, infra-red waves or other wireless media.

In FIG. 3, there is shown an exploded view of portions of the terminal 10 to illustrate the construction of the display screen elements which fit into opening 12 of surface 11. This display area comprises a flat electroluminescent or plasma display screen 15, a touch-sensitive layer 16, and a transparent protective layer 17. These three layers are sandwiched together and are visible through the opening 12 on surface 11. Flat screen display devices are well-known in the art and will not be further described here. Not shown in FIG. 3 are the electrical wires and connections required to operate flat display screen 15.

Similarly, touch-sensitive layer 16 is also well-known in the art and will not be further described here. Not shown in FIG. 3 are the electrical wires and connectors required to operate the touch sensitive layer 16. It is sufficient for the present invention that touch-sensitive layer 16 be capable of discriminating between adjacent touched areas of a size commensurate with the size of the human fingertip.

It will be noted that the terminal device 10 is designed to be relatively thin and small for ease in portability. Moreover, the sandwich construction of the display screen assists in the terminal's thin profile and thus makes it possible for the terminal device of the present invention to be used as an electronic clipboard in relatively hostile environments such as the factory floor or the hospital patient's room. The transparent protective layer 17, for example, may be so constructed and so sealed to the surface 11 as to protect components inside of terminal 10 from corrosive or damaging elements in the environment in which terminal 10 is used.

In accordance with the present invention, the terminal 10 operates as both an input and an output device for a computer which may comprise a microprocessor included inside of the case of terminal 10 or which may comprise a separator separate computer to which terminal 10 is connected. The connection between terminal 10 and such a computer can be had by way of retractor cord 14 (to permit relative mobility of terminal 10) or by a wireless connection such as is commonly found in home entertainment units using wireless remote control devices. In any event, and in accordance with the present invention, the terminal 10 includes a display surface 20 on which there can be displayed a plurality of diverse keyboard simulations. The touch-sensitive layer 16 is then used to identify the various key areas of such displayed keyboards and to generate appropriate electrical signals in response to the touch of each of the graphically defined key areas. This capability permits the terminal 10 to operate as if it included a plurality of different mechanical keyboards. Indeed, and in further accordance with the present invention, different varieties of simulated keyboards can be displayed on surface 20, depending on the particular needs of the user.

On example of such a simulated keyboard is shown in FIG. 4, where there is shown a display of a standard typewriter keyboard which can be used as an input device for standard alpha-numeric characters for inputting standard text. The keyboard display of FIG. 4 may also be used for standard text processing chores such as editing. In the alternative, and as shown in FIG. 5, the display surface 20 may be used to display a standard telephone key pad which can be used to establish telephone connections with remote computers or remote data bases when desired by the user of terminal 10. Finally, and as illustrated in FIG. 6, the terminal 10 may have displayed in display area 20 keys which are totally dependent on the particular application for which the terminal 10 is used.

In FIG. 6, for example, there is shown a display suitable for a terminal 10 used in a hospital room environment where it is necessary to collect and record the vital signs for a particular patient. Across the top of the display of FIG. 6 appears identifying information concerning the particular patient. Also included in FIG. 6 are a plurality of key areas which the user may touch in order to indicate the particular type of data being submitted. Following the touching of one of these keys, a standard numerical keyboard can be displayed for inputting numerical data or a standard typewriter keyboard as shown in FIG. 4 may be displayed for inputting text. Thus, the application-dependent display of FIG. 6 can provide a mechanism for obtaining the use of application-independent input devices (FIGS. 4 and 5) for the collection of specific types of information. Each of the displays shown in FIGS. 4, 5 and 6 include a key 31 labelled “continue.” Key 31 is used to return the display to whatever display was present before the current display. Thus, if, during the display of FIG. 6, the user wishes to input text for the “REASON” field near the top of the display of FIG. 6, the keyboard of FIG. 4 will be displayed for text input. Following the text input, the “continue” key 31 of FIG. 4 will be touched, thereby restoring the display of FIG. 6.

In order to better understand the operation of the terminal 10 of the present invention, the flowchart shown in FIG. 7 will now be discussed. In FIG. 7, there is shown a flow chart of a typical touch-screen keyboard operation. For illustrative purposes, a flowchart of the operation of the typewriter keyboard of FIG. 4 will be described, although the operation of other types of general purpose or application-dependent keying systems will be readily apparent to those skilled in the art from this description.

Turning then to FIG. 7, the keyboard operation starts at start box 30. In box 31, the current display which appears on the screen 20 is stored for later retrieval and restoral after the use of the typewriter keyboard is completed. In box 32, and under software control, the touchscreen areas which are to represent key areas are defined in x and y coordinates, and the visual appearances of the keys are drawn on the flat display screen 15 of FIG. 3. In box 33, the displayed key boxes are labelled labeled with labels appropriate to the particular use of the simulated keyboard. For a typewriter keyboard, the labels shown in FIG. 4 would be appropriate. Of course, for other keyboards, i.e., the telephone key pad of FIG. 5, other labelling labeling arrangements would be used. At box 34, the circuits of terminal 10 simply wait until the touch-sensitive screen 16 of terminal 10 detects the fact that the surface of the screen has been touched. When the screen is touched, box 34 translates the touch-responsive signals from layer 16 into x-y coordinates on the display surface. In decision box 35, the x-y coordinates of the touched point are compared to the predefined x-y coordinates associated with the displayed keys. If the touched point lies outside of all of such predefined key areas, then box 34 is reentered to await another touch-responsive signal.

If the coordinates of the touched point on the screen correspond to a predefined key area, then box 36 is entered to determine the particular character or numeral which that key is intended to generate. In decision box 37, it is determined whether that character corresponds to one of the shift keys on the typewriter display. If so, box 38 is entered to erase the current labels on the keys (as shown in FIG. 4) and replace these labels with labels corresponding to the shifted values of these keys, e.g. capital letter rather than lower case letters. Thus, unlike standard keyboards, it is possible to relabel the keys in a transient manner as key stroking takes place.

Once keys are relabeled in box 38, box 34 is re-entered to await the next touch on the screen surface. If the key touched is not a shift key, then decision box 39 is entered to determine whether or not the continue key 31, shown in FIGS. 4, 5 and 6, was touched. This continue key is utilized in all keyboard displays to permit a return to the immediately preceeding preceding display. Thus, if the continue key was touched, box 40 is entered which deletes the typewriter display and restores the previous display which was saved in box 31. If the continue key was not touched, then box 41 is entered, and the ASCII value of the key that was touched is transmitted to the connected computer or transmission link. Thereafter, box 34 is again re-entered to await the next touch on the touch-sensitive screen.

Referring more particularly to FIG. 8, there is shown a block diagram of the internal circuitry of the terminal 10. The internal circuitry of terminal 10 comprises, among other things, the flat display 15 and the touch-sensitive screen 16. A decoder circuit 50 is responsive to the touch screen 16 and translates the output from touch-sensitive screen 16 (which may well be analog electrical signals) into x-y coordinates. The touch screen decoder circuit, in turn, communicates with the video controller 51 which maintains the keyboard display on display device 15 and compares the x-y coordinates of the touched point to the predefined x-y coordinates of the displayed screen. In response to matches, controller 51 produces ASCII characters which are delivered to a central processor in computer 52.

Video controller 51 and computer 52 may, as illustrated in FIG. 8, be part of the hand-held terminal 10. In the alternative, controller 51 and computer 52 may be remotely located, and a flexible and retractile cord used to connect the portable elements 15, 16 and 50 to the balance of the circuitry. In the alternative, this connection can be had using wireless technology such as sonic, radio or infrared communication links. Indeed, computer 52 might well comprise an entry point to a vast computer network including large amounts of extremely complex computation capability or access to large databases, the contents of which may prove useful in the particular application in which terminal 10 is being used. Thus, terminal 10, although small and simple in itself, can be used as an access mechanism to much larger and much more complex data processing or data retrieval capabilities.

One particular application of terminal 10 is shown in FIG. 9. In FIG. 9, the terminal 10 is used as a bedside terminal in a hospital patient's room. Thus, a terminal similar to terminal 10 is available for each patient's bed in the hospital and is used much like the clipboard currently maintained manually for each patient's records. The bedside terminals 10 for each of the wards 70 are connected to medium-sized computers, each one servicing one of the wards in the hospital. These mini-computers, in turn, are connected, via communication path 74, to larger computers 71 and 72 which include financial and medical records for each of the patients (in computer 71) or hospital inventory and diagnostic tools available in another computer 72. A plurality of clinics 73 also associated with the hospital are likewise connected to backbone communication path 74, and communicate with standard computer terminals 75 to enter outpatient data into mini-computers servicing each of the clinics 73. Standard computer terminals 76 serve as input and output devices for computer 71 to permit patient registration, billing and other financial and administrative functions. Other hospital sub-systems, such as laboratories, pharmaceutical dispensories, visitors desks, and so forth, may be connected to the same computer system. The bedside terminals 10 therefore have access to all of the data generated and stored in these other sub-systems, as well as the computing power of the large mainframe computers 71 and 72.

The system illustrated in FIG. 9 might well also comprise a factory in which terminals 10 are used at the various workstations while the other sub-systems encompass functions such as inventory, new orders for output, purchasing, and so forth. The small size and rugged design of terminals 10 would serve extremely well in such an environment as well as the hospital room.

Claims

1. A terminal comprising:

a touch-sensitive electroluminescent display surface for simultaneously displaying information and for accepting input information through a touch-responsive area in said display surface, and
means for coupling said surface to a digital computer for controlling said displaying and for storing and processing said input information, and including means for defining in said touch responsive area an essentially arbitrary pattern A of primary information subareas of said touch-responsive area for providing information, with each defined subarea developing a preselected signal for said computer when touched, a first subarea B for recalling a previously displayed pattern of primary information subareas, and second subareas C for calling up for display preselected other patterns of primary information subareas.

2. The terminal of claim 1 wherein said first subarea B and said second subareas C direct said computer to carry out the respective functions when touched.

3. A method of simulating a typewriting keyboard on a touch-sensitive display surface comprising the steps of:

(a) displaying a typewriter keyboard arrangement on said display surface,
(b) responding to the touching of any of the key areas of said keyboard display by generating the electric code corresponding to the character assigned to the touched key area, and
(c) altering the labels on the key areas in response to the touching of a special key area corresponding to a shift or control key to assign different electric codes to these key areas corresponding to the altered labels.

4. A terminal comprising:

a touch-sensitive plasma display surface for simultaneously displaying information and for accepting input information through a touch-responsive area in said display surface, and
means for coupling said surface to a digital computer for controlling said displaying and for storing and processing said input information, and including means for defining in said touch responsive area (a) an essentially arbitrary pattern of primary information subareas of said touch-responsive area for providing information, with each defined subarea developing a preselected signal for said computer when touched, (b) a subarea for recalling a previously displayed pattern of primary information subareas, and (c) subareas for calling up for display preselected other patterns of primary information subareas.

5. The method of claim 3 wherein the step of displaying includes correlating of the key areas of the display corresponding to specific keyboard labels with electric signals generated by said areas.

6. The method of claim 5 wherein said specific keyboard labels include alphabetic labels.

7. The method of claim 6 further comprises the following steps:

responsive to the touching of a first special key area, deleting said alphabetic keyboard on said display surface; and
responsive to the touching of a second special key area, displaying a numeric keyboard on said display surface.

8. The method of claim 7 wherein at least one label is the same on each of said numeric and alphabetic keyboards.

9. The method of claim 6 further comprises the following steps:

responsive to the touching of a first special key area, deleting said alphabetic keyboard on said display surface; and
responsive to the touching of a second special key area, displaying a telephone keypad on said display surface.

10. The method of claim 5 wherein the specific keyboard labels comprise capital letters.

11. The method of claim 10 wherein said electric signals comprise ASCII codes.

12. The method of claim 11 wherein said ASCII codes are transmitted to a computer.

13. The method of claim 5 wherein the specific keyboard labels comprise lower case letters.

14. The method of claim 13 wherein said electric signals comprise ASCII codes.

15. The method of claim 14 wherein said ASCII codes are transmitted to a computer.

16. The method of claim 5 wherein said electric signals comprise ASCII codes.

17. The method of claim 3 wherein the typewriter keyboard arrangement is a standard “q- w - e - r - t - y” typewriter keyboard.

18. The method of claim 3 wherein the altering step includes erasing current labels on the keys and replacing the current labels corresponding to the altered labels of said keys.

19. The method of claim 18 wherein the current labels are lower case letters and altered labels are capital letters.

20. The method of claim 19 wherein the altering step is effected in response to the touching of the special key area corresponding to a shift key.

21. The method of claim 19 wherein the step of displaying is carried out on said display surface comprising a flat display and a touch- sensitive screen.

22. The method of claim 21 wherein an output is produced in response to the touching of the touch- sensitive screen, wherein the key areas of said keyboard including the special key area have associated x - y coordinates, and wherein the responding step includes:

translating the output from the touch - sensitive screen into touched x - y coordinates;
comparing the touched x - y coordinates to the x - y coordinates associated with the special key area;
producing an electric code associated with the special key if the touched x - y coordinates match the x - y coordinates of the special key area; and
delivering said electric code to a central processor.

23. The method of claim 22 wherein the delivering step is carried out inside a hand- held terminal.

24. The method of claim 22 wherein the delivering step is carried out using a cord.

25. The method of claim 24 wherein the cord is flexible and retractible.

26. The method of claim 22 wherein the delivering step is carried out using wireless technology.

27. The method of claim 26 wherein the delivering step is carried out using sonic communications links.

28. The method of claim 26 wherein the delivering step is carried out using radio communication links.

29. The method of claim 26 wherein the delivering step is carried out using infrared communication links.

30. The method of claim 3 wherein the step of responding includes:

determining whether the touched key area is a special key area or an alphanumeric key area.
Referenced Cited
U.S. Patent Documents
3377616 April 1968 Auer, Jr.
3433960 March 1969 Minott
3544769 December 1970 Hedin
3630015 December 1971 Lebovec
3651267 March 1972 Wittenberger
3675989 July 1972 Pietsch et al.
3680056 July 1972 Kropfl
3705986 December 1972 Sanders et al.
3757322 September 1973 Barkan et al.
3823388 July 1974 Chadima, Jr. et al.
3846622 November 1974 Meyer
3862360 January 1975 Dill et al.
3866175 February 1975 Seifert, Jr. et al.
3888491 June 1975 Bernard et al.
3934122 January 20, 1976 Riccitelli
3942157 March 2, 1976 Azure
3956615 May 11, 1976 Anderson et al.
3956740 May 11, 1976 Jones et al.
3956745 May 11, 1976 Ellis
3971916 July 27, 1976 Moreno
3974472 August 10, 1976 Gould, Jr.
3976840 August 24, 1976 Cleveland et al.
RE29057 November 30, 1976 Enikeieff et al.
4004133 January 18, 1977 Hannan et al.
4007355 February 8, 1977 Moreno
4007443 February 8, 1977 Bromberg et al.
4016542 April 5, 1977 Azure
4017848 April 12, 1977 Tannas, Jr.
4025757 May 24, 1977 McKay et al.
4053735 October 11, 1977 Foudos
4063083 December 13, 1977 Cathey et al.
4078257 March 7, 1978 Bagley
4090247 May 16, 1978 Martin
4092524 May 30, 1978 Moreno
4094462 June 13, 1978 Moschner
4096380 June 20, 1978 Eichweber
4107784 August 15, 1978 Van Bemmelen
4110749 August 29, 1978 Janko et al.
4112429 September 5, 1978 Tsuha et al.
4114151 September 12, 1978 Denne et al.
4115870 September 19, 1978 Lowell
4117542 September 26, 1978 Klausner et al.
4125871 November 14, 1978 Martin
4131791 December 26, 1978 Lego, Jr.
4134537 January 16, 1979 Glaser et al.
4141078 February 20, 1979 Bridges, Jr. et al.
4143263 March 6, 1979 Eichweber
4143417 March 6, 1979 Wald et al.
4162610 July 31, 1979 Levine
4186871 February 5, 1980 Anderson et al.
4192006 March 4, 1980 Hausdorff
4211919 July 8, 1980 Ugon
4218760 August 19, 1980 Levy
4220815 September 2, 1980 Gibson et al.
4224615 September 23, 1980 Penz
4234969 November 18, 1980 Singh
4277037 July 7, 1981 Loose et al.
4277837 July 7, 1981 Stuckert
4280121 July 21, 1981 Crask
4288659 September 8, 1981 Atalla
4295039 October 13, 1981 Stuckert
4295041 October 13, 1981 Ugon
4297004 October 27, 1981 Nishimura et al.
4298793 November 3, 1981 Melis et al.
4305059 December 8, 1981 Benton
4306219 December 15, 1981 Main et al.
4310754 January 12, 1982 Check, Jr.
4313108 January 26, 1982 Yoshida
4317957 March 2, 1982 Sendrow
4320387 March 16, 1982 Powell
4326298 April 1982 Fromm et al.
4341951 July 27, 1982 Benton
4348740 September 7, 1982 White
4349695 September 14, 1982 Morgan et al.
4356545 October 26, 1982 West
4357529 November 2, 1982 Atalla
4359222 November 16, 1982 Smith, III et al.
4362930 December 7, 1982 Ehrat
4365314 December 21, 1982 Badagnani et al.
4379336 April 5, 1983 Yamamoto et al.
4388689 June 14, 1983 Hayman et al.
4390874 June 28, 1983 Woodside et al.
4413314 November 1, 1983 Slater et al.
4415065 November 15, 1983 Sandstedt et al.
4423299 December 27, 1983 Gurol et al.
4425625 January 10, 1984 Seligman et al.
4436376 March 13, 1984 Fergason
4439837 March 27, 1984 Aiena et al.
4450537 May 22, 1984 Oldham
4451895 May 29, 1984 Sliwkowski
4454414 June 12, 1984 Benton
4460965 July 17, 1984 Trehn et al.
4467209 August 21, 1984 Maurer et al.
4471216 September 11, 1984 Herve
4475806 October 9, 1984 Daughton et al.
4481574 November 6, 1984 DeFino et al.
4482802 November 13, 1984 Aizawa et al.
4484038 November 20, 1984 Dorman et al.
4490853 December 25, 1984 Nally et al.
4498000 February 5, 1985 Decavele et al.
4510568 April 9, 1985 Kishi et al.
4511970 April 16, 1985 Okano et al.
4516112 May 7, 1985 Chen
4521870 June 4, 1985 Babbel et al.
4523087 June 11, 1985 Benton
4523297 June 11, 1985 Ugon et al.
4527862 July 9, 1985 Arakawa
4529870 July 16, 1985 Chaum
4530068 July 16, 1985 Nakanishi et al.
4530069 July 16, 1985 Desrochers
4532416 July 30, 1985 Berstein
4534012 August 6, 1985 Yokozawa
4536647 August 20, 1985 Atalla et al.
4536739 August 20, 1985 Nobuta
4542375 September 17, 1985 Alles et al.
4544834 October 1, 1985 Newport et al.
4545023 October 1, 1985 Mizzi
4569421 February 11, 1986 Sandstedt
4575580 March 11, 1986 Jandrell
4575621 March 11, 1986 Dreifus
4582985 April 15, 1986 Lofberg
4587630 May 6, 1986 Straton et al.
4591974 May 27, 1986 Dornbush et al.
4593384 June 3, 1986 Kleijne
4602127 July 22, 1986 Neely et al.
4611306 September 9, 1986 Crehan et al.
4614861 September 30, 1986 Pavlov
4622437 November 11, 1986 Bloom et al.
4625276 November 25, 1986 Benton et al.
4628193 December 9, 1986 Blum
4630201 December 16, 1986 White
4634845 January 6, 1987 Hale et al.
4636951 January 13, 1987 Harlick
4637057 January 13, 1987 Kermisch
4639881 January 27, 1987 Zingher
4641135 February 3, 1987 Hilbrink
4644101 February 17, 1987 Jin et al.
4648062 March 3, 1987 Johnson et al.
4649499 March 10, 1987 Sutton et al.
4652698 March 24, 1987 Hale et al.
4653086 March 24, 1987 Laube
4654818 March 31, 1987 Wetterau, Jr.
4659181 April 21, 1987 Mankedick et al.
4659873 April 21, 1987 Gibson et al.
4661655 April 28, 1987 Gibson et al.
4667088 May 19, 1987 Kramer et al.
4678869 July 7, 1987 Kable
4680429 July 14, 1987 Murdock et al.
4680729 July 14, 1987 Steinhart
4687885 August 18, 1987 Talmage, Jr. et al.
4689478 August 25, 1987 Hale et al.
4706090 November 10, 1987 Hashiguchi et al.
4710758 December 1, 1987 Mussler et al.
4712191 December 8, 1987 Penna
4717989 January 5, 1988 De Barros et al.
4720781 January 19, 1988 Crossland et al.
4727414 February 23, 1988 Ranf et al.
4728936 March 1, 1988 Guscott et al.
4731508 March 15, 1988 Gibson et al.
4739316 April 19, 1988 Yamaguchi et al.
4742573 May 3, 1988 Popovic
4763356 August 9, 1988 Day, Jr. et al.
4777328 October 11, 1988 Talmage, Jr. et al.
4785136 November 15, 1988 Mollet et al.
4785420 November 15, 1988 Little
4786767 November 22, 1988 Kuhlman
4796007 January 3, 1989 Heys, Jr.
4806709 February 21, 1989 Evans
4819194 April 4, 1989 Koizumi et al.
4821029 April 11, 1989 Logan et al.
4848496 July 18, 1989 Murakami et al.
4848876 July 18, 1989 Yamakawa
4853497 August 1, 1989 Landmeier
4853791 August 1, 1989 Ginther, Jr.
4885575 December 5, 1989 Williams
4885580 December 5, 1989 Noto et al.
4897511 January 30, 1990 Itaya et al.
4929935 May 29, 1990 Rysavy et al.
4941205 July 10, 1990 Horst et al.
5977954 November 2, 1999 Arimoto et al.
Foreign Patent Documents
1224527 July 1987 CA
1234423 March 1988 CA
2739157 March 1979 DE
3511353 October 1986 DE
0005179 April 1979 EP
0028965 October 1980 EP
0 029 894 June 1981 EP
0077238 September 1982 EP
0149762 July 1985 EP
0189476 August 1985 EP
0 348 076 December 1989 EP
2 066 540 July 1981 GB
2154349 September 1985 GB
52-115642 September 1977 JP
53005788 January 1978 JP
54-14369 February 1979 JP
54046434 April 1979 JP
55-85966 June 1980 JP
57146187 September 1982 JP
57182259 November 1982 JP
57182260 November 1982 JP
58014247 January 1983 JP
59-139438 January 1983 JP
58043028 March 1983 JP
59-105222 June 1984 JP
59-128664 July 1984 JP
59-149537 August 1984 JP
59-221691 December 1984 JP
60028354 February 1985 JP
60-138627 July 1985 JP
60-167024 August 1985 JP
61-7915 January 1986 JP
82/03484 October 1982 WO
83/03018 September 1983 WO
WO 86/01323 February 1986 WO
Other references
  • Steven B. Weinstein, Smart Credit Cards: The Answer to Cashless Shopping, at 43-49 (IEEE Specrum, Feb. 1984).
  • Tools & Toys, IEEE Spectrum, at 79 (Apr. 1986).
  • IBM Technical Disclosure Bulletin, Programmable Key/Display/Switch/Device, at 442-44 (Jul. 1978).
  • Nicholas Negroponte, One-Point Touch Input of Vector Information for Computer Displays, U.S. Army Research Institute for the Behavioral and Social Sciences (Oct. 1978).
  • Variable Keyboard for Terminal Displays, IBM Technical Disclosure Bulletin, at 575-76 (Jul. 1973).
  • J.A. Dickerson & F.E. Herin, Hospital Communications System, 18 IBM Technical Disclosure Bulletin, No. 6, at 1967-1972 (Nov. 1975).
  • P.C. Furois & L.F. Giaccone, Portable Inventory System and Method, 19 IBM Technical Disclosure Bulletin, No. 5, at 1828 (Oct. 1976).
  • Electronics Newsletter, Electronics, at 25 (Jun. 1976) (PALM-NCR 010723).
  • Electronics Review, Hand-held terminal to give field troops access to data nets, Electronics, at 29-30 (Nov. 1976).
  • Variable Data Input and Display Device, IBM Technical Disclosure Bulletin, at 3787-3788 (Feb. 1978).
  • Personal Portable Terminal for Credit Transactions, IBM Technical Disclosure Bulletin, at 5073-5076 (Apr. 1978).
  • Interactive Work Station, IBM Technical Disclosure Bulletin, at 1246-1247 (Aug. 1978).
  • Buffered and Unattended Dial Unit, IBM Technical Disclosure Bulletin, at 5023-5024 (Apr. 1981).
  • Restaurant System, IBM Technical Disclosure Bulletin, at 4630-4631 (Feb. 1982).
  • Portable General Purpose Intelligent Console, IBM Technical Disclosure Bulletin, at 4728-4730 (Feb. 1983).
  • George Stewart, The New Home Computers, Popular Computing, at 233-237 (Nov. 1983).
  • Ultrasonic I/O Device for Distributed Systems, IBM Technical Disclosure Bulletin, at 3883-3886 (Dec. 1983).
  • Michael J. Miller, The Workslate, Popular Computing, at 91-94 (Jan. 1984).
  • Clifford Barney, Pocket Basic Engine Calculates, Controls, Electronics, at 189-190 (Jan. 1984).
  • The HP 110, Byte Magazine, at 111-115 (Jun. 1984).
  • Michael J. Miller, The HP Portable, Popular Computing, at 136-142 (Jul. 1984).
  • Michael J. Miller, Data General One, Popular Computing, at 104-109 (Dec. 1984).
  • William M. Raike, Hand-held Computers and MSX Standards, Byte, at 365-370 (Dec. 1984).
  • Canon XO-7 Product Information (1983).
  • Digilux Touch Sensitive Panel, Peter F. Bird, International Conference on Displays for Man-Machine Systems, Lancaster, England, Apr. 4, 1977, pp. 28-30.
  • Electronic Blackboard Have Chalk Will Travel, G.P. Torok, International Conference on Communications, Chicago, Ill., Jun. 12, 1977, pp. 19.1-22—19.1-25.
  • Touch Sensitive Screen Proximate and Electronically Composable Display, D.B. Hildebrand, IBM Technical Disclosure Bulletin, vol. 27 No. 1A, Jun. 1984, pp. 43-44.
  • Universal Keyboard, IBM Technical Disclosure Bulletin, Jun. 1975, pp. 263-264.
  • Touch Sensitive Colour Graphics Enhance Monitoring of Loss-of-Coolant Accident Tests in the IEEE Transactions on Nuclear Science, vol. NS-29, No. 1, Feb. 1982, pp. 642-645.
  • ULTICARE puts a terminal in every patient room to save millions in nursing costs, Hospitals, Jan. 1, 1985, pp. 85-87.
  • IBM Technical Disclosure Bulletin, Control Panel, at 405-06 (Jul. 1976).
  • IBM Technical Disclosure Bulletin, Transparent Keyless Keyboard for Variable Terminal Applications, at 1609-11 (Sep. 1977).
  • IBM Technical Disclosure Bulletin, Transparent Touch Panel Copier Console, at 812-14 (Jun. 1981).
  • IBM Technical Disclosure Bulletin, Liquid Crystal Display and Touch Panel Keyboard Input, at 1888-90 (Sep. 1981).
  • “Computing Without Keyboards,” Engineering, Nov. 1982, pp. 804-805.
  • “La Carte A Memoire Pour La Protection des Logiciels,” Electronique Industrielle, No. 68, Apr. 1, 1984, p. 9, (and translation of column 2, lines 7-23).
  • “TDB: Variable Read Keyboard,” Delphion, https://www.delphion.com/tdbs/tdb?order=73C+01036, Mar. 16, 2002.
Patent History
Patent number: RE38419
Type: Grant
Filed: Mar 15, 2001
Date of Patent: Feb 10, 2004
Assignee: NCR Corporation (Dayton, OH)
Inventors: Carol M. Auer (Middletown, NJ), Daniel L. Castagno (Pickerington, OH), Allen W. Haley, Jr. (Columbus, OH), Harry J. Moore, IV (Lincroft, NJ), Sean E. O'Leary (Eatontown, NJ), Steven J. Paley (Aberdeen, NJ), Thomas E. Rutt (Asbury Park, NJ)
Primary Examiner: Kent Chang
Attorney, Agent or Law Firm: Jenkens & Gilchrist
Application Number: 09/808,917
Classifications
Current U.S. Class: Touch Panel (345/173); 345/811; 345/820
International Classification: G09G/500; G08C/2100; G02F/113;