Nozzle end for multiple tipped injection molding nozzle
A nozzle end is provided for removable mounting to a nozzle body for use in multiple-tipped molding applications such as edge-gated systems. The nozzle end is made of a highly thermally conductive material and is preferably inserted at least partially inside the forward end of the heated nozzle body. Removable nozzle tips are insertable in the front end of the nozzle end.
Latest Mold-Masters (2007) Limited Patents:
This invention relates generally to injection molding and more particularly to an extension member for mounting to a heated multiple-tipped nozzle in a well in a mold.
BACKGROUND OF THE INVENTIONA key concern in injection molding is temperature of the pressurized melt as it passes through the runner system to the mold cavity. Thus, among other steps taken, the nozzle is usually heated, typically by an electrical element wrapped therearound. A difficulty arises, however, in the case of multiple-tipped nozzles, and particularly in the case of edge-gated nozzles, in that it is often difficult to extend the heating element all the way to the forward or mold end of the nozzle because it would interfere with the nozzle gating. Accordingly there is a need for a multiple-tipped injection molding nozzle offering improved temperature control adjacent the forward end of the nozzle.
SUMMARY OF THE INVENTIONIn one aspect of the present invention provides an injection molding apparatus comprising a plurality of mold cavities formed between at least one pair of mold plates, each cavity having a gate for communicating with an interior of the cavity, at least one injection molding nozzle body having a back end, a front end, at least one melt channel through the body and a heating member for heating the body, the at least one body capable of receiving heated pressurized melt from a source and capable of feeding the heated pressurized melt from the back end through the at least one melt channel to the front end, and a nozzle end mounted to the front end of the at least one body, the nozzle end having a bore therethrough extending from the melt channel at the body front end and communicating with at least two of the plurality of mold cavities, the nozzle end being made substantially of a material having a higher thermal conductivity than the at least one body.
In a second aspect, the present invention provides an improvement in an injection molding apparatus having at least one heated nozzle extending forwardly into a well in a mold, the well having a wall with a plurality of gates spaced therein, each gate extending to a cavity in the mold, the at least one nozzle having a rear end, a front end and a melt channel, the melt channel extending from an inlet at the rear end of the nozzle to an outlet at the front end of the nozzle, the improvement comprising a nozzle end mounted to the front end of the at least one nozzle, the nozzle end having a bore therethrough adapted to extend from the melt channel outlet at the front end of the nozzle and to communicate with the plurality of gates, the nozzle end being made substantially of a material having a higher thermal conductivity than the nozzle.
In a third aspect, the present invention provides an injection molding apparatus comprising at least one mold cavity formed between at least one pair of mold plates, the at least one cavity having a gate for communicating with an interior of the cavity, at least one injection molding nozzle body having a back end, a front end, at least one melt channel through the body and a heating member for heating the body, the at least one body capable of receiving heated pressurized melt from a source and capable of feeding the heated pressurized melt from the back end through the at least one melt channel to the front end, and a nozzle end mounted to the front end of the at least one body, the nozzle end having a bore threrethrough extending from the melt channel at the body front end and communicating with the at least one mold cavity, the bore having a portion extending substantially perpendicularly to the melt channel, the nozzle end being made substantially of a material having a higher thermal conductivity than the at least one body.
For a better understanding of the present invention, and to show more clearly how it may be carried into effect, reference will now be made by way of example to the accompanying drawings.
Referring to
In this embodiment, each nozzle 12 has a nozzle extension member or nozzle end 28 with a rear portion 30 which extends a distance inside a nozzle body portion 32 of nozzle 12. The distance by which rear portion 30 extends inside body 32 may be varied, as will be discussed further below. Nozzle end 28 is removably mounted to a seat 34 in nozzle body 32, as will also be discussed further below. Nozzle 12 is heated by a electrical heating element 36 extending around nozzle body 32 and to an external terminal 38. Nozzle body 32 has a thermocouple 40, a support flange 42, a forward end 44, and a rear end 46.
Melt distribution manifold 18 has an inlet 48, adapted to communicate with an injection molding machine, and an electrical heating element 50. A melt passage 52 extends from inlet 48 to each nozzle 12, where it communicates with a nozzle melt channel 54 in nozzle body 32. Melt channel 54 communicates with a bore 56 in nozzle end 28 which, in turn, communicates with tip channels 58 in a plurality of nozzle tips 60. In this embodiment, tips 60 are tip edge gates adapted to deliver pressurized melt through melt gates 20 to cavities 22. Manifold 18 is mounted between support plate 24 and a back plate 62. Insulative and resilient spacer members 64 are located between manifold 18 and back plate 62 by pins (not shown). Bolts 68 which extend through the mold plates to hold them together apply a force through spacer members 64 to hold the manifold 18 and nozzles 12 securely in position. Bolts 70 which extend from manifold 18 into the mold also secure manifold 18 tightly against rear end 46 of the nozzle 12. A central locating ring 72 is seated between manifold 18 and nozzle mold plate 25 to accurately locate the manifold in place. This provides an insulative air space 74 between heated manifold 18 and adjacent support plate 24, nozzle mold plate 25 and back plate 62. Cooling conduits 76 circulate water through cavity plate 26 and back plate 62 for cooling the mold.
Referring specifically to
Nozzle end 28 is made of a highly thermally conductive material such as beryllium copper alloy or tungsten carbide. The material preferably has a thermal conductivity higher than that of steel. Nozzle body 32 may be of standard steel construction. Tips 60 are preferably made of a wear resistant material, such tungsten carbide, which advantageously also gives tips 60 good thermal conduction characteristics.
In use, injection molding system 10 is assembled as shown in FIG. 1. Electrical power is applied to heating element 50 in manifold 18 and to heating elements 36 in nozzles 12 to heat them to a predetermined operating temperature. Some heat energy transferred from heating element 36 to nozzle body 32 is subsequently transferred by conduction across interface 80 to nozzle end 28, and from nozzle end 28 to tips 60. Thermocouple 40 provides temperature feedback to a controller. Once at operating temperature, pressurized melt from an injection molding machine (not shown) is injected into the melt passage 52 according to a controlled cycle. Pressurized melt passes from inlet 48, through melt passage 52, melt channel 54, bore 56, tip channels 58 and edge gates 20 to fill cavities 22. After cavities 22 are filled, injection pressure is held momentarily to pack the molded products and then the pressure is released. After a short cooling period, the mold is opened to eject the molded products. After ejection, the mold is closed and injection pressure is reapplied to refill cavities 22. This cycle is continuously repeated with a frequency dependent, inter alia, on the size and shape of the cavities and the type of material being molded.
The heat energy transferred to nozzle end 28 is, by nature of the highly conductive nature of the material of which the nozzle end is made, readily available to permit melt in bore 56 and tip channels 58 to be maintained at a desired temperature. Unlike the prior art, heat control is more accurately in the vicinity of the nozzle end, where the placement of external heaters is often not feasible due to gate and tip configuration constraints. The present invention also offers a simpler and more economical manner in which heat control can be achieved in the melt passage near the tips.
By extending inside nozzle body 32, rear portion 30 provides an increased area to interface 80 over which heat energy may be transferred from heated nozzle body 32 to nozzle end 28. Furthermore, as one skilled in the art will appreciate, rear portion 30 provides additional mass to nozzle end 28 thereby increasing the thermal regulating characteristics of the nozzle end. The length of rear portion 30 may be varied to extend to shorten the length of bore 56, as required by the design of the particular system with which it is to be employed.
The system of the present invention may be used with any desired tip 60 style. Turning to
The system of the present invention may employ various means of mounting nozzle end 28 to nozzle body 32. Referring to
The nozzle end of the present invention may also be employed with other multiple nozzle tip configurations. It will be understood that in the following figures, reference numerals indicating elements similar to the system of
Although the present invention permits better heat control adjacent the nozzle tips without additional heaters, as shown in
Referring to
While the description of the present invention has been given with respect to a preferred embodiment, it will be evident that various modifications are possible without departing from the scope of the invention as understood by those skilled in the art and as defined in the following claims.
Claims
1. An injection molding apparatus comprising:
- a plurality of mold cavities formed between at least one pair of mold plates, each cavity having a gate for communicating with an interior of said cavity;
- at least one injection molding nozzle body having a back end, a front end, at least one melt channel through said body and a heating member for heating said body, said nozzle body capable of receiving heated pressurized melt from a source and capable of feeding said heated pressurized melt from said back end through said melt channel to said front end; and
- a nozzle end threadably coupled to said front end of said nozzle body, said nozzle end having a bore therethrough extending from said melt channel at said body front end and communicating with at least two tips, each of said at least two tips having a tip melt channel extending from said nozzle end and communicating with at least one of said mold cavities, said at least two tips being threadably coupled to said nozzle end.
2. The apparatus of claim 1 wherein said nozzle end is made substantially of a material having a higher thermal conductivity than said nozzle body.
3. The apparatus of claim 1 wherein a rear portion of said nozzle end extends inside said nozzle body.
4. The apparatus of claim 3 wherein said rear portion of said nozzle end extends inside a heated portion of said nozzle body.
5. The apparatus of claim 3 wherein said rear portion of said nozzle end is made of a material having a higher thermal conductivity than said nozzle body.
6. The apparatus of claim 1 further comprising sealing means for inhibiting leakage of pressurized melt between said nozzle end and said mold.
7. In an injection molding apparatus having at least one heated nozzle extending forwardly into a well in a mold, said well having a wall with a plurality of gates spaced therein, each gate extending to a cavity in said mold, said nozzle having a rear end, a front end and a melt channel, said melt channel extending from an inlet at said rear end of said nozzle to an outlet at said front end of said nozzle, the improvement comprising:
- a nozzle end having a threaded rear portion that is coupled to said front end of said nozzle and a plurality of tips projecting from said nozzle end opposite said rear portion, said nozzle end having a bore extending therethrough, said bore extending between said melt channel outlet at said front end of said nozzle and said tips to communicate with said plurality of gates, said tips being removably attached to said nozzle via said threaded rear portion end.
8. The apparatus of claim 7 wherein said nozzle end is made substantially of a material having a higher thermal conductivity than said nozzle.
9. The apparatus of claim 7 wherein a rear portion of said nozzle end extends inside said nozzle.
10. The apparatus of claim 9 wherein said rear portion of said nozzle end extends inside a heated portion of said nozzle.
11. The apparatus of claim 9 wherein said rear portion of said nozzle end has a higher thermally conductivity than said nozzle.
12. An injection molding apparatus comprising:
- at least one heated nozzle extending forwardly into a well in a mold, said well having a wall with a plurality of gates spaced therein, each gate extending to a cavity in said mold, said nozzle having a rear end, a front end and a melt channel, said melt channel extending from an inlet at said rear end of said nozzle to an outlet at said front end of said nozzle;
- a nozzle end having a threaded rear portion that is coupled to said front end of said nozzle and an opposite end, said nozzle end having a bore extending therethrough, said bore extending between said melt channel at said front end of said nozzle and a plurality of tips located adjacent said opposite end of said nozzle end to communicate with said plurality of gates, said tips being removably attached to said nozzle via said threaded rear portion end.
13. An injection molding apparatus as claimed in claim 12, wherein each of said plurality of tips is removable from removably attached to said nozzle end by a separate sealing means.
14. An injection molding apparatus as claimed in claim 13 wherein each of said plurality of tips is independently removable from said nozzle end.
15. An injection molding apparatus as claimed in claim 14 13, wherein each of said plurality of tips includes a melt channel sealing surface that sealing engages the wall of the well.
16. An injection molding apparatus comprising:
- at least two mold cavities, wherein each mold cavity has a mold gate; and
- a nozzle including a nozzle body, a nozzle end and at least two nozzle tips, said nozzle body having a melt channel extending therethrough, said nozzle end being removably coupled to said nozzle body and having a melt bore extending between said nozzle body melt channel and respective melt channels of said at least two nozzle tips, said at least two nozzle tips being removably coupled to said nozzle end, wherein each of said nozzle tips includes a sealing means and is in fluid communication with one of said mold cavities via said mold gate to deliver melt thereto.
17. The injection molding apparatus of claim 16, wherein said sealing means is a separate nozzle seal sleeve.
18. The injection molding apparatus of claim 17, wherein each of said nozzle seal sleeves is threadably coupled to said nozzle end to secure said tips thereto.
19. The injection molding apparatus of claim 18, wherein said nozzle seal sleeves secure said tips within a side surface of said forward end of said nozzle end.
20. The injection molding apparatus of claim 18, wherein said nozzle seal sleeves secure said tips within a front surface of said forward end of said nozzle end.
21. The injection molding apparatus of claim 16, wherein said sealing means is a flat face of said nozzle tip for sealingly engaging against a wall surrounding said mold gate.
22. The injection molding apparatus of claim 16, wherein each of said nozzle tips is threadably coupled within a side surface of said forward end of said nozzle end.
23. The injection molding apparatus of claim 16, wherein each of said nozzle tips is threadably coupled within a front surface of said forward end of said nozzle end.
24. The injection molding apparatus of claim 16, wherein said heated nozzle further comprises:
- a first heating element attached to said nozzle body; and
- a second heating element attached to said nozzle end.
25. The injection molding apparatus of claim 24, wherein said first and second heating elements are separately controllable.
26. The injection molding apparatus of claim 24, further comprising:
- a first thermocouple positioned within said nozzle body for monitoring said first heating element; and
- a second thermocouple positioned within said nozzle end for monitoring said second heating element.
27. The injection molding apparatus of claim 24, further comprising:
- at least one thermocouple for monitoring said first and second heating element.
28. An injection molding apparatus comprising:
- at least two injection molding cavities each having a mold gate;
- an injection nozzle having a nozzle body, a nozzle end and at least two nozzle tips, said nozzle body having a nozzle melt channel, said nozzle end having a melt bore in fluid communication with said nozzle melt channel, and said at least two nozzle tips having enclosed melt channels in fluid communication with said nozzle end melt bore, wherein said nozzle end is removably coupled to said nozzle body and said at least two nozzle tips are removably coupled to said nozzle end and wherein each of said nozzle tip melt channel communicates with a respective mold gate of a respective mold cavity;
- a first heater for heating said nozzle body;
- a second heater for heating said nozzle end; and
- nozzle tip seal means associated with each nozzle tip for sealingly engaging against a wall surrounding said mold gate.
29. The injection molding apparatus of claim 28, wherein said first heater is embedded within an outer surface of said nozzle body and said second heater is embedded within an outer surface of said nozzle end.
30. The injection molding apparatus of claim 28, wherein said first and second heaters are separately controllable.
31. The injection molding apparatus of claim 28, further comprising:
- a first thermocouple positioned within said nozzle body for monitoring said first heater; and
- a second thermocouple positioned within said nozzle end for monitoring said second heater.
32. The injection molding apparatus of claim 28, further comprising:
- at least one thermocouple for monitoring said first and second heaters.
4344750 | August 17, 1982 | Gellert |
4345892 | August 24, 1982 | Schulte et al. |
4492555 | January 8, 1985 | Schulte |
4663811 | May 12, 1987 | Gellert |
4711602 | December 8, 1987 | Baker |
4755126 | July 5, 1988 | Leverenz |
4965028 | October 23, 1990 | Maus et al. |
4981431 | January 1, 1991 | Schmidt |
5217730 | June 8, 1993 | Teng |
5268184 | December 7, 1993 | Gellert |
5269676 | December 14, 1993 | Gellert |
5324191 | June 28, 1994 | Schmidt |
5326251 | July 5, 1994 | Gellert |
5334006 | August 2, 1994 | Hepler et al. |
5464343 | November 7, 1995 | Hepler |
5474439 | December 12, 1995 | McGrevy |
5494433 | February 27, 1996 | Gellert |
5513976 | May 7, 1996 | McGrevy |
5536165 | July 16, 1996 | Gellert |
5545028 | August 13, 1996 | Hume et al. |
5554395 | September 10, 1996 | Hume et al. |
5591465 | January 7, 1997 | Babin |
5820899 | October 13, 1998 | Gellert et al. |
5885628 | March 23, 1999 | Swenson et al. |
5980237 | November 9, 1999 | Swenson et al. |
6009616 | January 4, 2000 | Gellert |
6162044 | December 19, 2000 | Babin |
6302680 | October 16, 2001 | Gellert et al. |
6390803 | May 21, 2002 | Christen |
6688875 | February 10, 2004 | Babin |
3433783 | March 1986 | DE |
3706691 | September 1988 | DE |
0854027 | July 1998 | EP |
1231041 | September 2004 | EP |
09123222 | May 1997 | JP |
2005132026 | May 2005 | JP |
WO-01/28750 | April 2001 | WO |
Type: Grant
Filed: Feb 10, 2006
Date of Patent: Nov 25, 2008
Assignee: Mold-Masters (2007) Limited (Georgetown, Ontario)
Inventor: Denis Babin (Georgetown)
Primary Examiner: Tim Heitbrink
Attorney: Medler Ferro PLLC
Application Number: 11/352,519
International Classification: B29C 45/22 (20060101);