Tissue manipulation

An apparatus and method for manipulating and anchoring tissue is provided. The invention is directed to solving the problem of manipulating and anchoring tissue within a joint when access to that tissue is limited, for example, during arthroscopic surgery.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application is a continuation of application Ser. No. 08/048,922, filed Apr. 15, 1993, now U.S. Pat. Ser. No. 5,417,691, hereby incorporated by reference, which is a continuation of application Ser. No. 07/192,813, filed Apr. 20, 1988, abandoned, which is a continuation-in-part of application Ser. No. 06/848,341, filed Apr. 4, 1986, now U.S. Pat. Ser. No. 4,741,330, which is a continuation of application Ser. No. 06/496,116, filed May 19, 1983, abandoned, which is a continuation-in-part of application Ser. No. 06/380,043, filed May 20, 1982, now abandoned.

TECHNICAL FILED

This invention relates to an apparatus and method for manipulating and anchoring cartilage and similar fibrous tissue within a joint.

BACKGROUND ART

Conventional medical clamps have certain disadvantages when used for manipulating cartilage or other tissue within a joint during arthroscopic surgery. Primarily, the clamps have a tendency to slip off the cartilage. Additionally, the size of the clamps in relation to the relatively small space within the joint makes it difficult to maneuver other surgical instruments, such as a scalpel or arthroscope, within the confined space of the joint. Such clamps can also interfere with the view of the inside of the joint afforded by the arthroscope. Since the clamps must be .introduced into the joint through an incision, they are limited in their range of manipulation by the location of the incision. In order to apply a desired directional traction to the cartilage, it may be necessary to release the clamp from the cartilage, reintroduce the clamp through another incision, and reclamp the cartilage.

It is often necessary to repair torn fibrous tissue, such as a ligament or tendon, or reattach such tissue to bone. While in some instances it is possible to insert two needles into the joint and then thread both of them with a suture to form a loop to reattach torn parts of fibrous tissue, that procedure is undesirable because it is complex and time-consuming. The alternative of more radical arthrotomy is also undesirable because of the increased amount of trauma and resultant increased morbidity encountered in the use of such a procedure.

As is explained in the following summary and description, the present invention provides a relatively compact and easy to use apparatus for manipulating cartilage and other fibrous tissue, and for anchoring the tissue to other tissue or to bone. Some technical references that may be of general interest are as follows: Allen, U.S. Pat. 3,699,969; Shein, U.S. Pat. 3,527,223; Woo, U.S. Pat. 3,943,932; Almen, U.S. Pat. 3,500,820; Johnson et al., U.S. Pat. 3,871,368; and Smith, U.S. Pat. 4,243,037. None of these references discloses a method or apparatus suitable for manipulating fibrous tissue during arthroscopic surgery, or for effectively reattaching fibrous tissue to bone or to other fibrous tissue.

Disclosure of Invention

The aforementioned problems associated with use of conventional medical clamps for manipulating tissue are overcome by the present invention, which provides an apparatus and an associated method for manipulating and anchoring tissue during arthroscopic surgery. The apparatus provides adequate fixation of the tissue during such surgery and minimally interferes with the use of other instruments within the joint.

The apparatus particularly comprises an elongated anchor member having a suture attached proximate the midpoint of its length. The anchor member is inserted through the tissue with the suture extending therefrom to provide a mechanism for manipulating the tissue within the joint. The end faces of the anchor member may be slanted to facilitate movement of the anchor member through the tissue.

The preferred means of inserting the anchor member includes a hollow needle having a sharp tip and an open butt. A hollow tube of equal or greater length than the needle slides within the needle. A limiting mechanism is provided at the butt of the needle and at the corresponding portion of the hollow tube to selectively position the tube within the needle so that the tube does not extend outwardly beyond the tip of the needle.

The anchor member is located within the tip of the hollow needle in either a deformed U shape, or in its normal, substantially straight shape. The suture extends from the anchor member through the bore of the tube.

A removable shield fits over the tip of the needle to prevent the sharp tip from cutting the suture or the anchor member during the process of inserting the anchor member into the hollow needle.

With the anchor member located within the tip of the needle, the needle tip is inserted into a joint during a surgical procedure. The needle tip pierces the tissue to be anchored and passes substantially through the tissue. The limiting mechanism is manipulated so that the tube may be pushed forward to the tip of the needle, thereby expelling the anchor member from the tip of the needle into or behind the piece of tissue to be anchored. As the anchor member is expelled from the tip of the needle it assumes an orientation generally perpendicular to the length of the suture. The needle and tube are then removed from the joint, leaving the suture extending through the tissue and out of the joint. The tissue is manipulated by the application of tension on the suture.

If it is desirable to push the tissue, the suture may be rethreaded or left threaded in the tube and the tissue may then be securely held between the tube and the anchor member by applying tension to the suture. If it is desirable to control the tissue from a different angle, or through a different incision, a hook-ended instrument may be passed through another incision to hook the suture and pull the tissue. It will be apparent that moving the tissue in this manner is possible without detaching the anchor member from the tissue. If necessary, the tissue may be removed from the joint by tension on the suture once the tissue has been surgically freed from the joint.

It is often desirable to permanently reattach to bone fibrous tissue, such as tendons or ligaments. An alternative embodiment of a tissue anchoring apparatus is provided for that purpose. More particularly, the apparatus of this embodiment includes a deformable anchor member that has a base and at least two legs. Each leg is attached to the base and extends therefrom to terminate in an outer end. A suture is attached to the base of the anchor member. The anchor member is formed of resilient material for urging the anchor member into a relaxed position wherein the ends of the legs are spaced apart a maximum distance. The anchor member is deformable into a deformed position wherein the ends of the legs are spaced apart a minimum distance that is less than the maximum distance.

While in the deformed position, the anchor member is insertable into a hole that is drilled into the bone at the location the tissue is to be attached to the bone. The hole has a diameter that is less than the maximum distance between the ends of the anchor member legs. Consequently, upon insertion of the anchor member into the hole, the ends of the anchor member legs bear, upon the bone within the hole, and the suture extends from the hole. Whenever tension is applied to the suture, the ends of the legs dig into the bone and resist removal of the anchor member from the hole.

With the anchor member anchored in the hole, the suture is available for securing the tissue to the bone. One way of using the suture to secure the tissue to the bone is to attach a retainer to the suture for pressing the tissue against the bone. The retainer includes resilient suture-engaging edges and corners, and is slidable along the suture in one direction, but grips the suture to resist sliding in the opposite direction. The retainer thereby holds tissue against the bone during healing so that the tissue will properly reattach to the bone.

To avoid prolonged irritation of surrounding tissues, the anchor member, suture, and retainer of the present invention may be made of material that is gradually absorbable by the body.

The foregoing and other features of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an elevational view of an apparatus for manipulating and anchoring tissue according to the present invention, with a portion of the apparatus sectionally cut away.

FIG. 2 is a sectional elevational view of the apparatus shown in FIG. 1, illustrating the manner of deformably lodging an anchor member within the tip of a hollow needle.

FIG. 3 is a fragmentary, sectional elevational view of the apparatus of FIG. 1, showing the apparatus piercing cartilage.

FIG. 4 is a fragmentary, sectional elevational view of the apparatus of FIG. 1, illustrating the manner of expelling the anchor member between cartilage and bone.

FIG. 5 is a sectional elevational view of the apparatus of FIG. 1, showing cartilage secured by the anchor member and suture components of the apparatus.

FIG. 6 is an enlarged perspective view of the anchor member and suture, showing the normal and deformed configuration of the anchor member.

FIG. 7 is a foreshortened perspective view of a hook-ended instrument usable with the apparatus of FIG. 1.

FIG. 8 is a sectional elevational view of an apparatus for manipulating and anchoring tissue, illustrating an alternative manner of lodging the anchor member within the tip of the needle.

FIG. 9 is a sectional elevational view of the apparatus shown in FIG. 8, illustrating expulsion of the anchor member from the tip of the needle.

FIG. 10 is a perspective view of the inner surface and an edge of a retainer used in association with the suture and the anchor member for securing tissue to bone or to other tissue.

FIG. 11 is a perspective view of the outer surface and an edge of the retainer shown in FIG. 10.

FIG. 12 is a perspective view of an alternative retainer.

FIG. 13 illustrates a portion of a joint in which the anchor member, suture, and retainer are used to connect and retain a piece of cartilage in position against another piece of cartilage from which it had been torn.

FIG. 14 is a sectional view taken along line 14-14 of FIG. 13.

FIG. 15 is a side elevational view, partly in section, of an anchor member and suture that can be anchored to a bone.

FIG. 16 is a sectional elevational view of the anchor member and suture of FIG. 15, positioned within the preferred mechanism for inserting the anchor member into a hole in a bone.

FIG. 17 is a sectional elevational view showing the anchor member of FIG. 16 anchored within a hole in a bone and used, in conjunction with the suture and a retainer, to hold tissue against the bone.

FIG. 18 is a sectional elevational view showing an alternative method of using an anchor member and suture to hold tissue against the bone.

FIG. 19 is a side cross-sectional view of an alternative embodiment of an anchor member that has a hole formed therethrough to permit a suture to be looped through it.

FIG. 20 is a cross-sectional view of another alternative embodiment of an anchor member that can be anchored to a bone.

FIG. 21 is .a top view of the anchor member of FIG. 20.

Modes for Carrying out the Invention

One preferred embodiment of the present invention, shown assembled in FIGS. 1 and 2, provides a resiliently deformable anchor member 10, which is attached to a suture 12 and adapted to fit deformably within the tip 26 of a hollow needle 14. A hollow tube 16, also adapted to fit within the needle 14, is used to expel the anchor member from the tip 26 of the needle after the needle has pierced a piece of fibrous tissue, such as the cartilage 18, as shown in FIGS. 3 and 4. Once expelled between the cartilage 18 and bone 38, the anchor member resiliently resumes its normal shape, as shown in FIG. 5. The anchor member of the invention might also be used to secure ligament or tendon, as will be described hereinafter, and the term tissue will be broadly used herein to encompass cartilage, tendons, ligaments and similar tissue.

The anchor member 10, shown in perspective view in FIG. 6, is an elongated cylindrical member. The anchor member 10 has end faces 20 and 22,at the respective extremities thereof. The end faces 20 and 22 are slanted relative to the longitudinal axis of the anchor member and preferably lie in respective planes that intersect one another. The suture 12 is attached to the anchor member 10 at a location 24 between the end faces 20 and 22. The suture 12 may be attached to the anchor member 10 during formation of the anchor member.

The anchor member 10 is preferably comprised of a resilient material such as a plastic. As a result, the anchor member is capable of being deformed from its relaxed, straight shape into a U-shape as shown in broken line in FIG. 6. Although the anchor member is shown to have a circular cross-section, other cross-sectional shapes could be utilized without departing from the principles of this invention.

The anchor member 10 is formed with sufficient rigidity to cause it to resist deformation under moderate pressure, but not so rigid as to prohibit the U-shaped deformation when the anchor member is lodged within the needle as shown in FIGS. 2 and 3. The material comprising the anchor member has sufficient elasticity to restore the anchor member substantially to its relaxed, straight configuration shown in FIGS. 1, 4, 5 and 6.

The needle 14 shown in FIGS. 1 and 2 has a hollow cylindrical shape with a sharp-edged open tip 26, an open butt 27, and a bore extending longitudinally therethrough from the tip 26 to the butt 27. The sharp tip 26 is beveled to create a sharp edge at its outer circumference and is thereby adapted to pierce and penetrate tissue. Alternatively, the sharp tip 26 could be beveled to create a sharp edge at its inner circumference.

An annular collar 28, which includes an open keyway 30 formed therein, encircles the butt of the needle. The keyway extends a short distance toward the needle tip through the cylindrical wall of the needle as shown in FIG. 2.

The hollow tube 16, which is at least as long as the needle 14, and has an elongate cylindrical shape with an open tip 17 and an open butt 19, is adapted to slide within the hollow needle. The tube 16 has an interior bore diameter large enough to receive the suture 12 therethrough so that the free end 13 of the suture extends from the open butt 19 of the tube. The tube 16 has an annular flange 32 encircling the butt 19 thereof to prevent the tube, when pushed toward the needle tip 26, from protruding more than a predetermined distance beyond the tip. The tube is preferably such a length that when the flange 32 is positioned immediately adjacent the collar 28, the tip 17 of the tube is proximate the needle tip 26,.as shown in FIG. 4.

A limiting mechanism for controlling movement of the tube 16 is provided in the form of a key 34 that is mounted on the outer cylindrical wall of the tube 16. The key 34 is adapted to mate with the keyway 30 associated with the needle 14. The key 34 will prevent, the tip 17 of the tube 16 from moving proximal to the tip 26 of the needle 14 unless the key 34 is aligned with the keyway 30. This alignment is accomplished by rotation of the tube 16 within the needle 14. If the tube 16 is of the aforementioned preferred length, the key 34 should be located close enough to the tip 17 of the tube 16 to permit the anchor member 10 to be fully drawn into the needle tip 26 when the tube is positioned inside the needle with the key and keyway out of alignment, as shown in FIGS. 2 and 3. As will be apparent, the keyway 30 should be of sufficient length to allow the flange 32 to contact the collar 28 when the key 34 is positioned in the keyway 30. It should be recognized that, while the aforedescribed key and keyway arrangement is believed to be particularly suitable, other mechanisms for limiting the movement of the tube 16 within the needle 14 could be utilized without departing from the principles of this invention.

As shown in FIGS. 1 and 2, a shield 36 having a generally cylindrical shape with open ends is adapted to fit removably on the sharp needle tip 26. The inner walls of the shield have three distinct sections: an upper section 29, an intermediate section 31, and a lower section 33. The upper section 29 is cylindrical and has an inner diameter substantially equal to the outer diameter of the needle tip 26 so as to permit the shield to be mounted over the tip 26. The intermediate section 31 is cylindrical and has an inner diameter slightly smaller than the outer diameter of the needle tip 26, to shield the anchor member from the sharp edge of the needle tip 26. The lower section 33 has a bell-like flared shape to encourage appropriate deformation of the anchor member 10 as it is drawn into the needle tip 26 as shown in FIG. 2.

Prior to use, the apparatus is first assembled as shown in FIGS. 1 and 2, the shield 36 being mounted upon the tip 26 prior to the suture 12 being threaded through the tube 16 so that the free end 13 protrudes out the butt end 19 of the tube. Tension on the free end 13 of the suture 12 will pull the anchor member 10 into the needle tip 26 as shown in FIG. 2, the inner surface of the bell-shaped lower section 31 of the shield guiding the anchor member into the appropriate U-shape, the anchor member being protected from the sharp tip by the shield 36.

The tube 16 is axially positioned within the needle with the key 34 abutting the collar 28 so that there is appropriate space for the anchor member to lodge deformably within the needle tip 26. Positioning the tube 16 within the needle as shown in FIGS. 1 and 2 is not necessary prior to introducing the free end 13 of the suture 12 into and through the bore of the needle 14, but having the tube so positioned when the anchor member 10 is drawn into the tip 26 is helpful to ensure that the anchor member 10 is not positioned an unnecessary distance from the needle tip 26. Once the anchor member 10 is deformably lodged in the tip 26, the shield 36 may be removed.

The assembled apparatus may then be introduced into the joint of a patient, either through an incision or by using the needle tip 26 to pierce the skin and surrounding tissue. The tip 26 of the needle 14 is thereafter used to pierce-the cartilage 18 which is to be manipulated or anchored, as shown in FIG. 3.

Once the tip 26 has pierced the cartilage 18, the tube 16 may be axially rotated within the needle 14 so that the key 34 aligns with the keyway 30. The tube 16 may then be pushed toward the tip 26 of the needle 14, the key 34 entering the keyway 30, and the tip 17 of the tube 16 expelling the anchor member 10 from the needle, tip 26 as shown in FIG. 4. As the anchor member 10 is pushed from the needle tip 26, it resumes its normal elongated shape. Where the cartilage 18 is very near bone 38, the slanted end faces 20, 22 of the anchor member facilitate movement of the longitudinal extremities of the anchor member through the space 40 between the bone 38 and cartilage 18.

Once the anchor member 10 has generally resumed its normal elongate shape behind the cartilage 18, the needle 14.and the tube 16.may be withdrawn from the joint, allowing the cartilage 18 to partially collapse around the anchor member 10 and suture 12 as shown in FIG. 5. The suture 12 is now anchored to the cartilage 18, and the cartilage may be securely held and manipulated by tension on the suture 12 to facilitate further surgical procedures on and around the cartilage.

The relatively small size of the suture 12 allows virtually unobstructed vision of the interior of the joint through an arthroscope, and also permits the insertion of other surgical instruments, such as an arthroscope or scalpel, through the same incision as the suture. Due to the flexibility of the suture 12, tension may be applied from many directions as dictated by the needs of the surgical process. Further control of the cartilage 18 is available by rethreading the suture 12 through the tube 16 and applying tension to the suture, thereby effectively clamping the cartilage 18 between the anchor member 10 and the tip 17 of the tube 16, and allowing the cartilage to be pushed, rather than pulled, into a desired position.

A hook-ended instrument 42, shown in FIG. 7, may be used to achieve even greater maneuverability of the anchored cartilage 18 by introducing the instrument 42 into the joint through a separate incision., capturing the suture 12 in the hooked end of the instrument, and drawing the suture 12 out of the joint through such other incision. The cartilage may then be manipulated and controlled in the manner described above, through a different incision, without detaching the anchor member 10 from the anchored cartilage 18.

If necessary, the anchored cartilage 18 may be surgically freed, and removed from the joint by tension on the suture 12.

Referring now to FIGS. 8 and 9, an anchor member 50, which is similar to the anchor member 10 described above, has fixedly attached thereto a suture 52. The anchor member 50 is held within the tip 53 of a hollow needle 54, ahead of the tip 56 of a hollow tube 55. The edge of the hollow needle 54 at the tip 53 is formed in a plane that is slanted relative to the longitudinal axis of the needle, thereby to form a sharp leading edge 51 for piercing tissue. The free end 57 of the suture 52 extends from the hollow tube 55.

As shown in FIGS. 8 and 9, the anchor member 50 may be used in essentially the same fashion as is the anchor member 10, with the hollow needle 54 piercing a piece of fibrous tissue, such as cartilage 60. The anchor member 50 is expelled from the tip 53 of the hollow needle 54 as the hollow tube 55 is slid toward the tip 53 of the hollow needle 54. The anchor member 50 thereafter assumes a position between the cartilage 60 and a bone 62, where it extends generally perpendicular to the suture 52. The slanted end faces 64, 65 of the anchor member 50 assist in directing the anchor member 50 to this position. Once the anchor member 50 has been expelled from the needle 54, the suture 52 is pulled outwardly to move the anchor member 50 to the position shown in broken line in FIG. 9, where it extends laterally along the lower surface of the cartilage 60.

It is noteworthy that the anchor member 50 depicted in FIGS. 8 and 9 may be formed of substantially rigid material. A rigid anchor member can be inserted into the space between the cartilage and bone by moving the needle 54 so that it is inclined to the bone surface and then expelling the anchor member from the needle.

A rigid anchor member may be lodged within cartilage or other tissue (i.e., as opposed to being inserted between cartilage and bone) by expelling the anchor member substantially straight into the tissue and pulling on the suture. Because the suture-is attached between the ends of the anchor member, tension on the suture tends to-rotate the anchor member into a position substantially perpendicular to the suture, thereby causing the anchor member to become firmly lodged within the tissue. In this regard, rotational movement of the anchor member 50 into a position substantially perpendicular to the suture 52 most readily occurs when the end face 65 that last enters the tissue is slanted so that a force applied perpendicular to that surface (that force being a component of the reaction force of the tissue against the surface 65 as tension is applied to the suture of the expelled anchor member) tends to move that face 65 of the anchor member 50 away from the suture 52. This preferred slanting of the end face 65 is shown in FIGS. 8 and 9.

Referring now to FIGS. 10-14, retainer devices 68 and 69, each having a pair of generally parallel surfaces, are made of resilient material and have slits 70 and 72, respectively, which intersect near the central points of the parallel surfaces, defining pointed corner flaps 71 and 73, respectively. The retainers 68 and 69 are preferably circular because the circular shape may reduce the possibility of irritation of surrounding tissue. It will be understood, however, that this shape is a matter of choice and that other shapes would also be acceptable.

Raised points 74 are provided on the inner surface of the retainer 68 to bear against tissue, and to assist in immobilizing the tissue while the anchor member is in use. In many instances, however, the raised points 74 will not be required and a flat inner surface will suffice. The following discussion of retainer use is directed to the anchor member 50 of FIG. 8; however, it is understood that the discussion applies to all embodiments of the anchor member described herein.

The retainer 68 (or retainer 69) may be used in conjunction with the anchor member 50 by inserting the free end 57 of the suture through the retainer at the intersection of the slits 70 after the hollow needle and hollow tube have been withdrawn from around the suture. When the suture 52 is inserted through the retainer 68, the flaps 71 that are defined between adjacent slits 70 are resiliently deformed toward the direction of movement of the suture therethrough. Thereafter, the flaps wedge against the suture 52 and resist withdrawal of the suture through the slits. By applying tension to the suture 52 (see FIGS. 13 and 14) and urging the retainer 68 along the suture to the surface of cartilage 76 from which the suture extends, the retainer may be used to maintain tension in the suture, thereby holding a loose piece of cartilage 76 against the stable piece of cartilage 78 from which the loose piece of cartilage 76 had been torn or fractured.

The anchor member 50, suture 52, and retainer 68 may be left permanently in the joint to retain the torn cartilage 76 in its proper location against the stable cartilage 78, with the retainer 68 resting against the outside of the stable cartilage 78, between the surface of the stable cartilage 78 and muscle tissue 79 adjacent thereto.

It is noteworthy that in many instances the needle 54 may be inserted into a joint from opposing directions. For example, the anchor member 50 was deposited in the position shown in FIGS. 13 and 14 by a needle that penetrated the muscle tissue 79. The needle could have been inserted from the opposing side of the joint (and not through muscle tissue 79) to deposit the anchor member 50 in the position occupied by the retainer 68 in FIGS. 13 and 14. Accordingly, the positions of the anchor member 50 and the retainer 68 would be reversed from those shown in FIGS. 13 and 14, but the loose cartilage 76 would still be held against the secure cartilage 78. One reason for inserting the needle from the opposing side of the joint, as just explained, would be to avoid damaging any nerves or blood vessels that are present in the region of the muscle tissue 79.

To prevent prolonged irritation of the surrounding tissue by the presence of the anchor member 50 and retainer 68, it is particularly desirable to form the anchor member and retainer of material that can be gradually absorbed by the body of the patient as healing occurs. Resilient, synthetic materials that are gradually absorbable by the body are known for use in sutures and are desirable as materials for the anchor member and retainers of the present invention. One such material is an absorbable polymer known as poly-diaxanone (PDS), which is available from Ethicon, Inc., of Summerville, New Jersey.

Referring now to FIGS. 15-17, an anchor member 80 is particularly adapted for use in anchoring a suture 82 to bone 96 so that the suture 82 may be used to reattach tissue 98 to the bone. The anchor member 80 is generally bullet-shaped having a rounded convex base 84 with two attached legs 86 extending from the base. The outer ends 85 of the legs are tapered and terminate in sharp outer edges 87. The anchor member 80 is formed of resilient material, and whenever the anchor member is in its relaxed state (FIG. 15), the legs 86 diverge outwardly so that the outer edges 87 of the legs are spaced apart a maximum distance D. One end of a suture 82 is embedded within, or otherwise attached to, the base 84 of the anchor member 80. Suture 82 extends outwardly from the base 84 between the legs 86.

Preferably, the outer surface of the anchor member 80 carries a plurality of barbs 88. The barbs 88 point outwardly, and away from the rounded convex base 84. As a result, the exposed sharp point of each barb 88 is directed generally toward the direction in which the suture 82 extends away from the base 84 of the anchor member 80.

As shown in FIG. 16, the anchor member 80 is inserted within the tip 93 of a hollow needle 90 ahead of the tip 91 of a tube 92 that is used to expel the anchor member 80 from the needle. The suture 82 extends through the bore of the tube 92.

The anchor member 80 and the bore of the needle 90 are sized so that the anchor member is in a deformed position whenever it is lodged within the tip 93 of the needle. In the deformed position, the legs 86 of the anchor member are pressed together with the outer edges 87 of the legs being spaced apart a minimum distance d corresponding to the needle bore diameter. This distance d is less than the maximum distance D between the outer edges 87 as measured when the anchor member is in the relaxed position (FIG. 15).

As noted, the anchor member 80 is formed of resilient material. Consequently, whenever the anchor member 80 is expelled from the needle 90, the intrinsic resilience of the anchor member urges it into the relaxed position. As will now be explained, the tendency of the anchor member 80 to move from the deformed into the relaxed position provides a simple mechanism for anchoring the anchor member 80 in bone so that, in conjunction with the attached suture, there is provided a means for reattaching tissue to the bone to promote healing.

More particularly, with reference to FIG. 17, a hole 100 is drilled into the bone 96 in the region where the tissue 98 is to be reattached to the bone. The hole diameter is less than the maximum distance D between the outer edges 87 of the anchor member, but greater than or equal to the bore diameter of the needle 90. With the anchor member 80 within the tip 93 of the needle 90, the tissue 98 is pierced by the needle in a manner as described earlier. The tip 93 of the needle is forced through the tissue 98 and then aligned with the hole 100. Next, the anchor member 80 is expelled from the needle into the hole 100 by sliding the tube 92 toward the tip 93 of the needle 90 as described earlier with respect to FIGS. 3-5.

Once expelled from the needle 90 into the hole 100, the resilience of the anchor member 80 urges the outer edges 87 of the legs 86 to bear upon the bone within the hole 100. With the outer edges 87 of the legs bearing upon the bone, any tension applied to the suture 82 causes the sharp edges 87 to dig into the bone to secure the anchor member within the hole. The barbs 88 also dig into the bone to supplement the anchoring effect of the legs 86.

Preferably, the anchor member 80 is sized so that when it is positioned within the hole 100, the outer edges 87 of the legs 86 are beneath a relatively dense bone layer 97 that is located at the surface of the bone 96, and is known as the cortical layer 97. As a result, tension in the suture (in conjunction with the intrinsic resilient force of the anchor member 80 that forces the leg edges 87 apart) tends to lodge the edges 87 of the anchor member beneath the cortical layer 97, rendering the anchor member substantially irremovable from the hole 100.

As shown in FIG. 17, a retainer 68, as described earlier, may be employed with the suture 82 to secure the tissue 98 to the bone 96.

FIG. 18 illustrates another technique for securing tissue 99 to the bone 96, wherein two anchor members 80 are anchored in holes 101, 103, and the free ends of the sutures 82 are tied together over the tissue.

It is noted that it may not be necessary to first pierce the tissue 99 before depositing the anchor member 80 into the hole 101, 103. For instance, the anchor member 80 may be deposited within the hole 101, 103 in the manner described above., and the free end of the suture 82 may be threaded through a conventional surgical needle that is used to pierce the tissue. The surgical needle is then removed and the free ends of the sutures 82 are secured as described above.

FIG. 19 depicts an alternative embodiment of an anchor member 110 suitable for anchoring in bone. The anchor member 110 is substantially similar to the anchor member 80 described earlier, except that it includes a continuous passage 112 formed therein to pass into one leg 114, through the base 116, and out the other leg 115. The suture 118 is threaded through the hole passage 112 so that two suture segments 120 extend from the anchor member. This configuration of the anchor member 110 allows the user to select any type of suture for use with the anchor member 110, depending upon the particular surgical needs. Further, having two suture segments 120 available for securing the tissue to the bone is often desirable. For example, whenever an odd number of anchor members 116 is used, the resulting even number of available suture segments 120 permits each segment of one anchor member to be tied to a corresponding segment of an adjacent anchor member, without the need for tying more than two suture segments together.

FIGS. 20 and 21 illustrate a side sectional view and top view, respectively, of another alternative embodiment of an anchor member 130 formed in accordance with this invention. This embodiment is a generally cup-shaped piece of resilient material, such as plastic, having a base 132 with four legs 134 extending upwardly therefrom. The sharp outer edge 136 of each leg is spaced apart from an opposing edge 136 by a maximum distance D whenever the anchor member is in the relaxed position as shown in FIG. 20. As noted earlier, distance D is greater than the diameter of the hole into which the anchor member 130 is deposited. Preferably, two holes 138 are formed in the base 132 of the anchor member 130. A suture 140 is threaded through the holes 138.

The anchor member 130 is deposited within a hole in a bone in a manner similar to that explained with respect to the apparatus of FIG. 16. Specifically, the anchor member 130 is positioned within the tip of a hollow needle (not shown) where it assumes a deformed position. In the deformed position, the outer edge 136 of each leg is held near the outer edge 136 of the opposing leg a distance d that is less than the “relaxed” distance D and corresponds to the diameter of the needle bore in which the anchor member is lodged. When the anchor member 130 is expelled from the needle and deposited within the hole in the bone, the intrinsic resilience of the anchor member 130 forces the outer edges 136 against the bone, thereby anchoring the anchor member within the hole. The suture 140 is thereafter available to secure tissue against the bone as discussed above.

The anchor members 80, 110, 130 just described may be formed of material that is absorbable by the body. Alternatively, the anchor members may be formed of non-absorbable material (e.g., stainless steel of suitable resilience) that remains in the bone indefinitely.

The terms and expressions that have been employed in the foregoing specification are used herein as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding equivalents of the features shown and described or portions thereof, it being recognized that the scope of the invention is defined and limited only by the claims that follow.

Claims

1. An apparatus for insertion into and through tissue to provide a mechanism for manipulating and anchoring tissue within a patient, the apparatus comprising:

an elongated anchor member having opposite ends that are tapered to be insertable into and through the tissue to be manipulated, the member being shaped to normally assume a substantially straight configuration; and
a suture irremovably attached to the anchor member between the opposite ends of the anchor member, the suture having an end free for manipulating the tissue into which the anchor member is inserted, the suture being flaccid in the vicinity of the anchor member so that the suture and anchor member do not assume a predetermined relative orientation.

2. The apparatus of claim 1 wherein the suture is a flexible, non-stiffened member in the vicinity of the anchor member.

3. The apparatus of claim 1 wherein the anchor member is resiliently deformable.

4. The apparatus of claim 1 wherein the tapered ends of the anchor member define slanted end faces.

5. The apparatus of claim 1 wherein the suture is attached to facilitate substantially perpendicular extension of the suture from the anchor member.

6. The apparatus of claim 1 wherein the suture is attached to the anchor member medially thereof and extends laterally away from said elongated anchor member.

7. The apparatus of claim 1 wherein the anchor member is insertable through the tissue to be manipulated by the suture to a position underneath the tissue and the suture extends therefrom to outside of the tissue.

8. The apparatus of claim 1 wherein the suture and anchor member are configured such that the end of the suture is free for manipulating the anchor member to thereby manipulate the tissue.

9. The apparatus of claim 1 wherein the free end of the suture is a first end and the suture also has a second end, which second end is fixed to the anchor member, and wherein the anchor member is insertable to a manipulation position underneath the tissue that is thereafter to be manipulated, and wherein in the manipulation position, the first end is outside the tissue and the second end is underneath the tissue.

10. The apparatus of claim 1 wherein the suture and anchor member have a manipulation position in which the anchor member is substantially entirely underneath the tissue to be manipulated.

11. The apparatus of claim 1 wherein the anchor member is attached to the suture near the longitudinal midpoint of the anchor member and the suture extends laterally therefrom.

12. The apparatus of claim 1 further comprising a second anchor member attached to the suture.

13. The apparatus of claim 12 wherein the second anchor member is slidingly attached to the suture.

14. The apparatus of claim 12 wherein the anchor members have different shapes.

15. The apparatus of claim 12 wherein the suture is flaccid in the vicinity of the second anchor member so that the suture and the second anchor member do not assume a predetermined orientation.

16. The apparatus of claim 12 wherein the suture is attached to facilitate substantially perpendicular extension of the suture from each anchor member.

17. A method, comprising:

advancing an elongate member to place the elongate member relative to a first body structure of a patient,
placing a flat, circular member relative to a second body structure of the patient with a flat surface of the circular member against the second body structure, the two members being coupled by a flexible member, the circular member being slidable along the flexible member,
applying tension to the flexible member while sliding the circular member along the flexible member, the circular member acting to maintain tension on the flexible member, and
rotating the elongate member from a position substantially parallel to the flexible member during advancement of the elongate member to a position substantially perpendicular to the flexible member.

18. The method of claim 17 wherein the elongate member is rotated by pulling the flexible member.

19. The method of claim 17 wherein the two members are coupled by suture.

20. The method of claim 17 wherein the circular member is slid by urging the circular member along the flexible member.

21. The method of claim 17 wherein the flexible member is received through an opening in the circular member.

22. An apparatus for insertion into and through tissue to provide a mechanism for manipulating and anchoring tissue within a patient, the apparatus comprising:

an elongated anchor member having a substantially cylindrical shape with opposite ends, the member having a first length along a first side and second length that is shorter than the first length along a second side that is opposite to the first side such that ends of the second side are axially spaced from ends of the first side, the member being shaped to normally assume a substantially straight configuration; and
a suture irremovably attached to the anchor member between the opposite ends of the anchor member, the suture having an end free for manipulating the tissue into which the anchor member is inserted, the suture being flaccid in the vicinity of the anchor member so that the suture and anchor member do not assume a predetermined relative orientation.

23. The apparatus of claim 22 wherein the suture is a flexible, non-stiffened member in the vicinity of the anchor member.

24. The apparatus of claim 22 wherein the anchor member is resiliently deformable.

25. The apparatus of claim 22 wherein the ends of the anchor member are tapered and define slanted end faces.

26. The apparatus of claim 22 wherein the suture is attached to facilitate substantially perpendicular extension of the suture from the anchor member.

27. The apparatus of claim 22 wherein the suture is attached to the anchor member medially thereof and extends laterally away from said elongated anchor member.

28. The apparatus of claim 22 wherein the anchor member is insertable through the tissue to be manipulated by the suture to a position underneath the tissue and the suture extends therefrom to outside of the tissue.

29. The apparatus of claim 22 wherein the suture and anchor member are configured such that the end of the suture is free for manipulating the anchor member to thereby manipulate the tissue.

30. The apparatus of claim 22 wherein the free end of the suture is a first end and the suture also has a second end, which second end is fixed to the anchor member, and wherein the anchor member is insertable to a manipulation position underneath the tissue that is thereafter to be manipulated, and wherein in the manipulation position, the first end is outside the tissue and the second end is underneath the tissue.

31. The apparatus of claim 22 wherein the suture and anchor member have a manipulation position in which the anchor member is substantially entirely underneath the tissue to be manipulated.

32. The apparatus of claim 22 wherein the anchor member is attached to the suture near the longitudinal midpoint of the anchor member and the suture extends laterally therefrom.

33. The apparatus of claim 22 further comprising a second anchor member attached to the suture.

34. The apparatus of claim 33 wherein the second anchor member is slidingly attached to the suture.

35. The apparatus of claim 33 wherein the anchor members have different shapes.

36. The apparatus of claim 33 wherein the suture is flaccid in the vicinity of the second anchor member so that the suture and the second anchor member do not assume a predetermined orientation.

37. The apparatus of claim 33 wherein the suture is attached to facilitate substantially perpendicular extension of the suture from each anchor member.

38. A method, comprising:

advancing a first member into and through tissue in a patient, the first member being elongated and shaped to normally assume a substantially straight configuration and having a suture attached thereto between the opposite ends of the first member, the suture having an end free for manipulating the tissue into which the first member is inserted, the suture being flaccid in the vicinity of the first member so that the suture and member do not assume a predetermined relative orientation,
rotating the first member from a position substantially parallel to the suture during advancement of the first member to a position substantially perpendicular to the suture,
placing the first member at a first location within the patient,
placing a second member at a second location within the patient, the two members being coupled by the suture, the second member being slidable along the suture, and
applying tension to the free end of the suture, the length of the suture between the first and second members being shortened with the first and second members tending to be drawn together.

39. The method of claim 38 wherein the tissue comprises stable cartilage and torn cartilage, and further comprising:

advancing the first member such that the suture extends from the stable cartilage to the torn cartilage, and
applying sufficient tension to the suture to retain the torn cartilage against the stable cartilage.

40. The method of claim 38 wherein the free end of the suture is a first end and the suture also has a second end, which second end is fixed to the first member, and further comprising inserting the first member to a manipulation position underneath the tissue that is thereafter to be manipulated.

41. The method of claim 38 wherein the first member is rotated by pulling the suture.

42. The method of claim 38 wherein the second member is placed after the first member.

43. A method, comprising:

advancing an elongate member to place the elongate member relative to a first body structure of a patient,
placing a flat member relative to a second body structure of the patient, the two members being coupled by a flexible member, the flat member being slidable along the flexible member,
applying tension to the flexible member while sliding the flat member along the flexible member, the flat member acting to maintain tension on the flexible member, and
rotating the elongate member from a position substantially parallel to the flexible member during advancement of the elongate member to a position substantially perpendicular to the flexible member.

44. The method of claim 43 wherein the elongate member is rotated by pulling the flexible member.

45. The method of claim 43 wherein the two members are coupled by suture.

46. The method of claim 43 wherein the flat member is slid by urging the flat member along the flexible member.

47. The method of claim 43 wherein the flexible member is received through an opening in the flat member.

Referenced Cited
U.S. Patent Documents
1131155 March 1915 Murphy
1153450 September 1915 Schaff
2065659 December 1936 Cullen
2069878 February 1937 Flood
2075508 March 1937 Davidson
2108206 February 1938 Meeker
2302986 November 1942 Vollrath
2381050 August 1945 Hardinge
2397545 April 1946 Hardinge
2562419 July 1951 Ferris
2581564 January 1952 Villegas
2669774 January 1954 Livingston
2685877 August 1954 Dobelle
2699774 January 1955 Livingston
2745308 May 1956 Gisondi
2833284 May 1958 Springer
2883096 April 1959 Dawson
2901796 September 1959 Hope
3003155 October 1961 Mielzynski et al.
3028646 April 1962 Janes
3090386 May 1963 Curtis
3103666 September 1963 Bone
3123077 March 1964 Alcamo
3176316 April 1965 Bodell
3209422 October 1965 Dritz
3312139 April 1967 DiCristina
3399432 September 1968 Merser
3470834 October 1969 Bone
3470875 October 1969 Johnson
3494004 February 1970 Bone
3500820 March 1970 Almén
3515132 June 1970 McKnight
3518729 July 1970 Merser
3527223 September 1970 Shein
3541591 November 1970 Hoegerman
3547389 December 1970 Mitchell
3570497 March 1971 Lemole
3618447 November 1971 Goins
3664345 May 1972 Dabbs et al.
3675639 July 1972 Cimber
3695271 October 1972 Chodorow
3699969 October 1972 Allen
3707006 December 1972 Bokros et al.
3708883 January 1973 Flander
3716058 February 1973 Tanner, Jr.
3739773 June 1973 Schmitt et al.
3745590 July 1973 Stubstad
3757629 September 1973 Schneider
3845772 November 1974 Smith
3871368 March 1975 Johnson et al.
3875648 April 1975 Bone
3894467 July 1975 Brescia
3896504 July 1975 Fischer
3910281 October 1975 Kletschka et al.
3924276 December 1975 Eaton
3931667 January 13, 1976 Merser et al.
3943932 March 16, 1976 Woo
3953896 May 4, 1976 Treace
3954103 May 4, 1976 Garcia-Roel et al.
3973277 August 10, 1976 Semple et al.
3973299 August 10, 1976 Keefe
3976079 August 24, 1976 Samuels et al.
3977050 August 31, 1976 Perez
3979799 September 14, 1976 Merser et al.
3981051 September 21, 1976 Brumlik
3988783 November 2, 1976 Treace
3990619 November 9, 1976 Russell
4006747 February 8, 1977 Kronenthal et al.
4011602 March 15, 1977 Rybicki et al.
4013071 March 22, 1977 Rosenberg
4039078 August 2, 1977 Bone
4091806 May 30, 1978 Aginsky
4094313 June 13, 1978 Komamura et al.
4103690 August 1, 1978 Harris
4121487 October 24, 1978 Bone
4144876 March 20, 1979 DeLeo
4149277 April 17, 1979 Bokros
4160453 July 10, 1979 Miller
4185636 January 29, 1980 Gabbay et al.
4235161 November 25, 1980 Kunreuther
4235238 November 25, 1980 Ogiu et al.
4237779 December 9, 1980 Kunreuther
4243037 January 6, 1981 Smith
4255820 March 17, 1981 Rothermel et al.
4259072 March 31, 1981 Hirabayashi et al.
4259959 April 7, 1981 Walker
4263903 April 28, 1981 Griggs
4275490 June 30, 1981 Bivins
4275717 June 30, 1981 Bolesky
4279249 July 21, 1981 Vert et al.
4287807 September 8, 1981 Pacharis et al.
4289124 September 15, 1981 Zickel
4291698 September 29, 1981 Fuchs et al.
4301551 November 24, 1981 Dore et al.
4316469 February 23, 1982 Kapitanov
4326531 April 27, 1982 Shimonaka
4400833 August 30, 1983 Kurland
4402445 September 6, 1983 Green
4409974 October 18, 1983 Freedland
4414967 November 15, 1983 Shapiro
4438769 March 27, 1984 Pratt et al.
4447915 May 15, 1984 Weber
4450591 May 29, 1984 Rappaport
4454875 June 19, 1984 Pratt
4456006 June 26, 1984 Wevers et al.
4462395 July 31, 1984 Johnson
4462402 July 31, 1984 Burgio et al.
4467478 August 28, 1984 Jurgutis
4469101 September 4, 1984 Coleman et al.
4473984 October 2, 1984 Lopez
4483678 November 20, 1984 Nishio et al.
4487210 December 11, 1984 Knudsen et al.
4493323 January 15, 1985 Albright et al.
4505274 March 19, 1985 Speelman
4519392 May 28, 1985 Lingua
4523587 June 18, 1985 Frey
4532926 August 6, 1985 O'Holla
4537185 August 27, 1985 Stednitz
4545875 October 8, 1985 Riley
4548202 October 22, 1985 Duncan
4570623 February 18, 1986 Ellison et al.
4584722 April 29, 1986 Levy et al.
4590928 May 27, 1986 Hunt et al.
4592356 June 3, 1986 Gutierrez
4602635 July 29, 1986 Mulhollan et al.
4602636 July 29, 1986 Noiles
4620541 November 4, 1986 Gertzman et al.
4621640 November 11, 1986 Mulhollan et al.
4627437 December 9, 1986 Bedi et al.
4632100 December 30, 1986 Somers et al.
4635637 January 13, 1987 Schreiber
4653486 March 31, 1987 Coker
4662886 May 5, 1987 Moorse et al.
4667675 May 26, 1987 Davis
4669473 June 2, 1987 Richards et al.
4696300 September 29, 1987 Anderson
4705040 November 10, 1987 Mueller et al.
4708132 November 24, 1987 Silvestrini
4738255 April 19, 1988 Goble et al.
4741330 May 3, 1988 Hayhurst
4750492 June 14, 1988 Jacobs
4754749 July 5, 1988 Tsou
4772286 September 20, 1988 Goble et al.
4776328 October 11, 1988 Frey et al.
4781190 November 1, 1988 Lee
4790303 December 13, 1988 Steffee
4804383 February 14, 1989 Rey et al.
4834757 May 30, 1989 Brantigan
4841960 June 27, 1989 Garner
4870957 October 3, 1989 Goble et al.
4871289 October 3, 1989 Choiniere
4873976 October 17, 1989 Schreiber
4887601 December 19, 1989 Richards
4895148 January 23, 1990 Bays et al.
4898156 February 6, 1990 Gatturna et al.
4899743 February 13, 1990 Nicholson et al.
4968315 November 6, 1990 Gatturna
4976715 December 11, 1990 Bays et al.
5013316 May 7, 1991 Goble et al.
5037422 August 6, 1991 Hayhurst
5049155 September 17, 1991 Bruchman et al.
5084050 January 28, 1992 Draenert
5100417 March 31, 1992 Cerier et al.
5224946 July 6, 1993 Hayhurst et al.
5261914 November 16, 1993 Warren
5400805 March 28, 1995 Warren
5417691 May 23, 1995 Hayhurst
5437680 August 1, 1995 Yoon
5601557 February 11, 1997 Hayhurst
5647874 July 15, 1997 Hayhurst
5690676 November 25, 1997 DiPoto et al.
6656182 December 2, 2003 Hayhurst
Foreign Patent Documents
632 922 November 1982 CH
3 146 634 November 1981 DE
31 36 083 March 1983 DE
233 303 February 1986 DE
3 710 587 March 1987 DE
0 040 884 December 1981 EP
0 083 028 July 1983 EP
0129422 December 1984 EP
0241240 October 1987 EP
A-0241240 October 1987 EP
0 317 406 May 1989 EP
88904139 November 1991 EP
2 422 386 April 1978 FR
2 590 792 June 1987 FR
2 606 270 May 1988 FR
2 622 790 May 1989 FR
284898 February 1928 GB
1 602 834 November 1981 GB
A-2118474 November 1983 GB
2118474 November 1991 GB
WO8603666 July 1986 WO
WO-A-8603666 July 1986 WO
WO8701270 March 1987 WO
WO-A-8701270 March 1987 WO
Other references
  • Smith & Nephew, Inc. v. Biomet, Inc. and Arthrotek, Inc., Civil No. CV 05-611 JE, Plantiffs' Amended Claim Chart in Support of Motion for Preliminary Injunction, Jul. 7, 2005, 9 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. 04-0029 ST, Deposition of John O. Hayhurst, MD, Jan. 24, 2007, including exhibits, A-234, A-241 through 245, A-249, DDX004 (Confidential Material Redacted).
  • Deposition excerpt: John O. Hayhurst; US District Court, Oregon, Case No. CV04-0029ST pp. 1, 13-18; 77-86; 93-99; Errata Sheet (1 page) and Exhibit 15 (1 page) Nov. 4, 2004.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Smith & Nephew's Opening Claim Construction Brief, Nov. 30, 2006, 41 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Smith & Nephew's Opening Brief in Support of its Motion for Summary Judgment, Nov. 30, 2006, 79 pages (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Omnibus Declaration of Brenna K. Legaard in Support of Smith & Nephew's Opening Claim Construction and Summary Judgment Briefs, 10 pages, with Exhibits 1-25, 48-56, 58-69 and 71-80, Nov. 30, 2006 (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Arthrex's Memorandum in Support of its Motion for Summary Judgment of Invalidity Over Prior Art, Nov. 30, 2006, 21 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Declaration of Anthony P. Cho in Support of Arthrex Inc.'s Motion for Summary Judgment of Invalidity, 3 pages, with Exhibits A-F, Nov. 30, 2006.
  • Smith & Nephew, Inc. v. Arhtrex, Inc., Case No. CV 04-0029 MO, Arthrex, Inc.'s. Memorandum in Support of its Motion for Summary Judgment of Invalidity for Double Patenting, Nov. 30, 2006, 15 pages.
  • Smith & Nephew, Inc. v. Arhtex, Inc., Case No. CV 04-0029 MO, Declaration of Anthony P. Cho in Support of Arthex, Inc.'s Motion for Summary Judgment of Invalidity for Double Patenting, 3 pages, with Exhibits A-G, Nov. 30, 2006.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Declaration of Anthony P. Cho in Support of Arthrex, Inc.'s Markman Brief, 6 pages, with Exhibits A-FF, Nov. 30, 2006.
  • Smith & Nephew, Inc. v. Arhtrex, Inc., Case No. CV 04-0029 MO, Arthrex, Inc.'s Corrected Markman Brief, Request for Oral Argument, Jan. 4, 2007, 48 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Smith & Nephew's Response to Arthrex's Markman Brief, Jan. 5, 2007, 53 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Smith & Nephew's Opposition to Arthrex's Motion for Summary Judgment of Invalidity Over Prior Art, Jan. 5, 2007 (document dated 2006), 19 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Smith & Nephew's Opposition to Arthrex's Motion for summary Judgment of Invalidity for Double Patenting, Jan. 5, 2007, 19 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Supplemental Omnibus Declaration of Brenna K. Legaard in Support of Plaintiff's Response to Defendant's Markman Brief and Opposition to Defendant's Motions for Summary Judgment, 6 pages, with Exhibits 81-94, 96, 97 and 99-102, and 112, Jan. 5, 2007.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Arthrex, Inc.'s Response to Smith & Nephew's Opening Claim Construction Brief, Jan. 5, 2007, 41 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Arthex, Inc's Memorandum in Opposition to Smith and Nephew's Motion for Summary Judgment, pp. 1 and 11-61, Jan. 5, 2007, 51 pages (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Arthex, Inc., Case No. CV 04-0029 MO, Declaration of Anthony P. Cho in Support of Arthrex, Inc.'s Response in Opposition to Smith & Nephew's Opening Claim Construction and Summary Judgment Briefs, 5 pages, with Exhibits A-W, Jan. 5, 2007.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Smith & Nephew's Reply Brief in Support of its Motion for Summary Judgment, Jan. 19, 2007, 57 pages (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Smith & Nephew's Reply to Arthrex's Response to Smith & Nephew's Opening Claim Construction Brief, Jan. 19, 2007, 47 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Second Supplemental Omnibus Declaration of Brenna K. Legaard in Support of Smith & Nephew's Claim Construction and Summary Judgment Reply Briefs, 2 pages, with Exhibits 117-120, Jan. 19, 2007 (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Arthrex, Inc.'s Reply to Smith & Nephew's Opening Claim Construction Brief, Jan. 19, 2007, 33 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Arthrex, Inc.'s Reply to Smith & Nephew's Opposition to Arthrex's Motion for Summary Judgment of Invalidity for Double Patenting, Jan. 19, 2007, 15 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Arthrex, Inc.'s Reply Brief in Support of its Motion for Summary Judgment of Invalidity Based upon Prior Art, Jan. 19, 2007, 12 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Declaration in Support of Anthony P. Cho in Support of Arthrex, Inc.'s Reply to Opposition to Arthrex's Motion for Summary Judgment of Invalidity for Double Patenting, 2 pages, with Exhibits A-B, Jan. 19, 2007.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV 04-0029 MO, Markman Hearing Transcript of Proceedings Before the Honorable Michael W. Mosman United States District Court Judge, Feb. 26, 2007, 140 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Minutes of Proceedings, Feb. 27, 2007, 2 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Order, Mar. 1, 2007, 2 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Opinion Re: Claim Construction Issue Preclusion, Apr. 12, 2007, 8 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Civil No. CV 04-0029 MO, Opinion & Order Re: Summary Judgment, May 17, 2007, 25 pages.
  • Hayhurst, U.S. Appl. No. 11/292,385, Protest Under 37 CFR 1.291 of Reissue Patent Application, 33 pages, with Exhibits E-G, Apr. 20, 2007.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Defendant's Supplemental Response to Plaintiff's First Set of Interrogatories, Jan. 20, 2006, 41 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Expert Report of Dr. Wayne Burkhead, May 17, 2006, 27 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Expert Report of Mr. David Carlson, May 19, 2006, 27 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Expert Report of Dr. Allan Tencer, 41 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Case No. CV98-76HU, Deposition of John O. Hayhurst, M.D., Oct. 9, 1998, 14 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Smith & Nephew's Summary of Proposed Testimony for Markman Hearing, Sep. 20, 1998, 8 pages.
  • Smith & Nephew, Inc. v. Arthrex, Expert Rebuttal Report of Lisa A. Pruitt, Ph.D., Jul. 20, 2006, 35 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Rebuttal Expert Report of David Randall Diduch, M.D., M.S., Jul. 21, 2006, 114 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Rebuttal Expert Report of Wilson C. Hayes, Ph.D. Regarding the Issues of Validity, Jul. 21, 2006, 101 pages.
  • Clancy, Jr. et al., “Anterior Cruciate Ligament Reconstruction using One-Third of the Patellar Ligament, Augmented by Extra-Articular Tendon Transfers”, The Journal of Bone and Joint Surgery, 1982, pp. 352-359.
  • Furnas et al., “A Teflon Toggle for Fastening Soft Tissue to Bone”, British Journal of Plastic Surgery, 1976, pp. 104-105.
  • Broström, “Sprained Ankles”, Acta Chir. Scand., vol. 132, 1966, pp. 551-565.
  • Gibson et al., “Bankart Repairs Utilizing the Mitek Anchor System”, 2 pages.
  • Perthes, “Uber Operationen bei habitueller Schulterluxation”, Deutsche Zeitschrift fur Chirurgie, vol. 85, 1906, pp. 199-227, with translation.
  • “Medizinische Gesellschaft zu Leipzig: Offzielles Protokoll”, Muenchener Medizinische Wochenschrift, Mar. 1905, pp. 481-482, with translation.
  • Perthes, “Uber Ergebnisse der Operationene bei habitueller Schulterluxation, mit besonderere Berucksichtigung unseres Verfaahrens”, Chir. Univ.-Klinik Tubingen, Jul. 25, 1925, pp. 1-24, with translation.
  • McLaughlin, “Repair of Major Tendon Ruptures by Buried Removable Suture”, American Journal of Surgery, Nov. 1947, pp. 758-764.
  • Augustine et al., “Boat-Nail Fixation of Tendons and Ligaments to Cancellous Bone”, Journal of Bone and Joint Surgery, vol. 38-A, No. 5, Oct. 1956, pp. 1156-1158.
  • Du Toit et al., “Recurrent Dislocation of the Shoulder”, Journal of Bone and Joint Surgery, vol. 38-A, No. 1, Jan. 1956, pp. 1-12.
  • Augustine, “The Unstable Knee”, American Journal of Surgery, vol. 92, Sep. 1956, pp. 380-388.
  • Perthes, “On therapy for habitual shoulder luxation”, Leipzig Medical Society, 1905, 5 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76-MA, Declaration of Vicki Margolis in Support of Ethicon's Motion for Summary Judgment, Oct. 15, 1999, 800 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Mitek Surgical Products, Inc., Civil No. CV 98-76 HA, Plaintiffs' Claim Infringement Chart, May 12, 1998, 11 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Defendant's Claim Construction Chart, Jul. 2, 1998, 33 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV 98-76 HU, Smith & Nephew's Claim Interpretation Chart, Aug. 3, 1998, 11 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV 98-76 HA, Ethicon's Supplemental Responses to Plaintiffs' First Set of Interrogatories (Interrogatory No. 6), Aug. 12, 1998, 7 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV 98-76 HA, Ethicon's Supplemental Response to Plaintiffs' First Set of Interrogatories (Interrogatory No. 5), Aug. 12, 1998, 16 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Ethicon's Claim Construction Memorandum, Aug. 21, 1998, 33 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV-98-76-HA, Smith & Nephew's Memorandum of Law Regarding Ethicon's Claim Interpretation Errors, Aug. 1998, 9 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-HU, Smith & Nephew's “Markman” Brief, Sep. 4, 1998, 31 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-HU, Declaration of Mark J. Herbert, Sep. 4, 1998, 87 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Ethicon, Inc.'s Claim Construction Brief, Sep. 4, 1998, 41 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Declaration of Michael P. Leary, Esq. In Support of Defendant Ethicon, Inc.'s Claim Construction Brief, Sep. 2, 1998, 310 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Reply to Plaintiffs' Opposition to Ethicon's Motion for Summary Judgment of Invalidity, Feb. 2, 1999, 18 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Ethicon, Inc.'s Supplemental Memo on Claim Construction to Bring to the Court's Attention New Case Authority, Mar. 17, 1999, 4 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. 98-76-HU, Findings and Recommendations, May 24, 1999, 10 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. 98-76-HU, Amended Findings and Recommendations, Jun. 11, 1999, 10 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. 98-76-HU, Order, Aug. 5, 1999, 3 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76-MA, Ethicon's Motion for Summary Judgment, Request for Oral Argument, Oct. 15, 1999, 3 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76-MA, Ethicon's Memorandum of Law in Support of its Motion for Summary Judgment, Request for Oral Argument, Oct. 15, 1999, 56 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Ethicon, Inc., CV. No. 98-76-HU, Transcript of Markman Hearing Before the Honorable Dennis J. Hubel, Nov. 18, 1998, pp. 1-235.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Memorandum in Support of Defendant Ethicon Inc's Motion for Summary Judgment of Unenforceability, Dec. 18, 1998, 22 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Concise Statement of Material Facts in Support of Defendant Ethicon Inc.'s Motion for Summary Judgment of Unenforceability, Dec. 18, 1998, 6 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Declaration of Michael P. Leary, Esq. in Support of Defendant Ethicon, Inc.'s Summary Judgment Motion of Unenforceability, Dec. 17, 1998, 89 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Ethicon Inc.'s Motion for Summary Judgment of Invalidity, Dec. 18, 1998.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Memorandum in Support of Defendant Ethicon's Motion for Summary Judgment of Invalidity, Dec. 18, 1998, 18 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Errata to Ethicon's Memorandum in Support of Ethicon's Motion for Summary Judgment of Invalidity, Jan. 19, 1999, 5 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Concise Statement of Material Facts in Support of Defendant Ethicon Inc.'s Motion for Summary Judgment of Invalidity, Dec. 18, 1998, 6 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Declaration of Michael P. Leary, Esq. in Support of Defendant Ethicon, Inc.'s Summary Judgment Motion of Invalidity, Dec. 17, 1998, 165 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Declaration of Michael P. Leary in Support of the Reply to Plaintiffs' Opposition to Ethicon Motion for Summary Judgment of Invalidity, Feb. 1, 1999, 8 pages.
  • Smith & Nephew, Inc. v. Ethcon, Inc., Civil Action No. CV-98-76-HU, Smith & Nephew's Opposition to Ethicon, Inc.'s Motion for Summary Judgment of Invalidity, Jan. 19, 1999, 36 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-HU, Smith & Nephew's Response to Ethicon's Concise Statement of Facts Regarding Ethicon's Motion for Summary Judgment of Invalidity, Jan. 19, 1999, 25 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-HU, Declaration of John M. Skenyon in Support of Smith & Nephew's Opposition to Ethicon's Summary Judgment Motion of Invalidity, Jan. 19, 1999, 42 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-HU, Smith & Nephew's Opposition to Ethicon's Motion for Summary Judgment of Unenforceability, Jan. 19, 1999, 8 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-HU, Smith & Nephew's Response to Ethicon's Separate Concise Statement of Facts Regarding Ethicon's Motion for Summary Judgment of Unenforceability, Jan. 19, 1999, 18 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76HU, Reply to Plaintiffs' Opposition to Ethicon's Motion for Summary Judgment of Unenforceability, Feb. 2, 1999, 7 pages.
  • McLaughlin, Harrison, “Repair of Ruptures Through The Larger Tendons By Removable Staple Suture: A Preliminary Report”, Archives of Surgery, 1946, pp. 547-556.
  • McLaughlin, Harrison, “Repair of Major Tendon Ruptures By Buried Removable Suture”, American Journal of Surgery, vol. 74, No. 5, Nov. 1947, pp. 758-764.
  • Perthes, “Über Operationen bei habitueller Schulterluxation”, Deutsch Ztschr Chir, 1906, pp. 199-227.
  • Boyd, et al., “Recurrent Dislocation of the Shoulder”, The Journal of Bone and Joint Surgery, vol. 47-A, No. 8, Dec. 1965, pp. 1514-1520.
  • Sisk et al., “Management of Recurrent Anterior Dislocation of the Shoulder”, Clinical Orthopaedics and Related Research, No. 103, Sep. 1974, pp. 150-156.
  • Palmer et al., “Supracondylar Fracture of the Humerus in Children”, The Journal of Bone and Joint Surgery, Vo. 60-, No. 5, Jul. 1978, pp. 653-656.
  • Wright, “Dislocations”, Campbell's Operative Orthopaedics, vol. 1, 6th edition, Chapter 4, 1980, pp. 418, 474-499.
  • Goth et al., “Die operative Behandlung der ulnaren Seitenbandruptur des Daumengrundgelenkes”, Handchirurgie: Zeitschrift der Deutschsprachigen Arbeitsgemeinschaft für Hanchirurgie, 1979.
  • Noyes, M.D. et al., “Intra-articular Cruciate Reconstruction: 1: Perspectives on Graft Strength, Vascularization, and Immediate Motion after Replacement”, Clinical Orthopaedics and Related Research, No. 172, Jan.-Feb. 1983, pp. 71-77.
  • Murphy et al., “Displaced Olecranon Fractures in Adults”, Clinical Orthopaedics and Related Research, No. 224, Nov. 1987, pp. 210-214.
  • Hendler, “A unitunnel technique for arthroscopic anterior cruciate ligament reconstruction”, Techniques In Orthopaedics, vol. 2, No. 4, Jan. 1988, pp. 52-59.
  • Downing, “A Simplification of Bankart's Capsulorrhaphy for Recurrent Dislocation of the Shoulder” The Journal of Bone and Joint Surgery, vol. 28, No. 2, Apr. 1946, pp. 250-252.
  • Robertson et al., “Soft Tissue Fixation to Bone”, The American Journal of Sports Medicine, vol. 14, No. 5, 1986, pp. 398-403.
  • Ogilvie, “Recurrent Dislocation of the Shoulder”, British Medical Journal, Mar. 9, 1946, p. 362.
  • Swanson, “Silicone Rubber Implants for Replacement of Arthritic or Destroyed Joints in the Hand”, Surgical Clinics of North America, vol. 48, No. 5, Oct. 1968, pp. 1113-1127.
  • Nikolaou et al., “Anterior cruciate ligament allograft transplantation,” The American Journal of Sports Medicine, vol. 14, No. 5, 1986, pp. 348-360.
  • Jackson et al., “Freeze dried anterior cruciate ligament allografts”, The American Journal of Sports Medicine, vol. 15, No. 4, 1987, pp. 295-302.
  • Jackson et al., “Cruciate reconstruction using freeze dried anterior cruciate ligament allograft and a ligament augmentation device (LAD)”, The American Journal of Sports Medicine, vol. 15, No. 6, 1987, pp. 528-538.
  • Ward et al., “Tensile Strength Comparison of Dowel Plug Technique to Standard Techniques of Tendon-Bone Attachment”, The Official Journal of the American Orthopaedic Foot and Ankle Society, vol. 8, No. 5, 1988, pp. 248-253.
  • Magnuson, et al., “Recurrent Dislocation of the Shoulder”, The Journal A.M.A., vol. 123, No. 14, 1943, pp. 889-892.
  • Gomes et al., “Anterior cruciate ligament reconstruction with a loop or double thickness of semitendinosus tendon”, The American Journal of Sports Medicine, vol. 12, No. 3, 1984, pp. 199-203.
  • May, “A Modified Bristow Operation for Anterior Recurrent Dislocation of the Shoulder”, The Journal of Bone and Joint Surgery, vol. 52-A, No. 5, 1970, pp. 1010-1016.
  • Artz et al., “A Major Complication of the Modified Bristow Procedure for Recurrent Dislocation of the Shoulder”, The Journal of Bone and Joint Surgery, vol. 54-A,. No. 6, 1972, pp. 1293-1296.
  • Ormandy, “Olecranon Screw for Skeletal Traction of the Humerus”, The American Journal of Surgery, vol. 127, 1974, pp. 615-616.
  • Lombardo et al., “The Modified Bristow Procedure for Recurrent Dislocation of the Shoulder”, vol. 58-A, No. 2, 1976, pp. 256-261.
  • Hill et al., “The modified Bristow-Helfet procedure for recurrent anterior shoulder subluxations and dislocations”, The American Journal of Sports Medicine, vol. 9, No. 5, 1981, pp. 283-287.
  • Lambert, “Vascularized Patellar Tendon Graft with Rigid Internal Fixation for Anterior Cruciate Ligament Insufficiency”, Clinical Orthopaedics and Related Research, No. 172, 1983, pp. 85-89.
  • Helfet, “Coracoid Transplantation For Recurring dislocation Of The Shoulder”, The Journal of Bone and Joint Surgery, vol. 40-B, No. 2, 1958, pp. 198-202.
  • Smith & Nephew, Inc. v. Ethicon, Inc., 276 F.3d 1304 (Fed. Cir. 2001), 15 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Briefs for Plaintiffs-Appellants, CAFC Appeal Nos. 00-1160, -127, Apr. 27, 2000, 124 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Brief for Defendant-Cross Appellant, CAFC Appeal Nos. 00-1160, Jul. 19, 2000, 73 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Reply Brief for Plaintiffs-Appellants, CAFC Appeal No. 00-1160, Aug. 2, 2000, 32 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Defendant-Appellee Ethicon Inc.'s Petition for Rehearing En Banc, CAFC Appeal No. 00-1160, Jan. 9, 2002, 52 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Plaintiffs-Appellants' Response to Defendant-Appellee Ethicon, Inc.'s Petition for Rehearing En Banc, CAFC Appeal No. 00-1160, Jan. 28, 2002, 23 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Declaration of Steven Susser in Support of Arthrex Inc.'s Renewed Motion for Judgment as a Matter of Law, or in the Alternative, for a New Trial, USDC CV04-0029ST, Exhibits 1-6, and 10-13, Jul. 28, 2008, 121 pages, confidential material redacted.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Memorandum in Support of Arthrex, Inc.'s Renewed Motion for Judgment as a Matter of Law, or in the Alternative, for a New Trial, USDC CV04-0029-MO, Jul. 28, 2008, 32 pages, confidential material redacted.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Defendant's Second Amended Response to Plaintiffs' First Set of Interrogatories, USDC CV04-0029ST, Apr. 29, 2006, 8 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Plaintiffs' Opposition to Arthrex's Motion for Stay of Judicial Proceedings Pending Reexamination of U.S. Patent No. 5,601,557, USDC CV04-0029-MO, Jul. 22, 2008, 15 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Memorandum in Support of Arthrex, Inc.'s Motion to Stay Judicial Proceedings Pending Reexamination Proceeding of U.S. Patent No. 5,601,557, USDC CV04-0029-MO, Jul. 11, 2008, 8 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Motion to Stay Judicial Proceedings Pending Reexamination Proceeding of U.S. Patent No. 5,601,557, USDC CV04-0029-ST, Jul. 11, 2008, 2 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Complaint for Patent Infringement, USDC CV08-714-PK, Jun. 11, 2008, 4 pages.
  • Smith & Nephew, Inc. v . Arthrex, Inc., Jury Verdict, USDC CV04-029-MO, Jun. 11, 2008, 3 pages.
  • Smith & Nephew, Inc. v . Ethicon, Inc., Stipulated Consent Judgment, USDC CV-98-76-MA, Dec. 11, 2002, 3 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., CV04-0029ST, Confidential Deposition of John O. Hayhurst, MD, pp. 1, 10-21, 50-53, 66-101, Errata Sheet, Exhibit 15, Nov. 4, 2004, 16 pages.
  • Ex Parte Reexamination Communication in U.S. Appl. No. 90/009,307, mailed Sep. 24, 2009, 10 pages.
  • Fish & Richardson P.C., Amendment in Reply to Action dated Sep. 24, 2009, in U.S. Appl. No. 90/009,307, filed Oct. 22, 2008, 24 pages.
  • U.S. Court of Appeals for the Federal Circuit, Smith & Nephew, Inc. and John O. Hayhurst v. Arthrex, Inc., Case No. 2009-1091,-1192, Disposition, dated Dec. 2, 2009, 9 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. CV98-76-MA, Declaration of Edward S. Grood, Ph.D. In Support of Ethicon's Motion for Summary Judgment, Oct. 18, 1999, 51 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-MA, Smith & Nephew's Opposition to Ethicon's Motion for Summary Judgment, Oct. 29, 1999, 49 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Action No. CV-98-76-MA, Smith & Nephew's Revised Response to Ethicon's Five Separate Concise Statements of Facts Regarding Ethicon's Motion for Summary Judgment, Oct. 29, 1999, 51 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Ethicon, Inc , Civil No. 98-76-MA, Opinion and Order, Dec. 17, 1999, 18 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. 98-76-MA, Amended Judgment, Feb. 16, 2000, 5 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil No. 98-76-MA, Order, Feb. 16, 2000, 4 pages.
  • Smith & Nephew, Inc. v. Ethicon, Inc., Civil Case No. 98-CV-76-MA, Judgment, Dec. 12, 2001, 29 pages.
  • Smith & Nephew, Inc. v. Biomet, Inc., Case No. 3:05-CV-611-JE, Declaration of Laura Caldera Taylor in Support of Defendants Biomet, Inc.'s and Arthrotek, Inc.'s Memorandum in Response to Plaintiffs' Motion for Preliminary Injunction, Aug. 5, 2005, 174 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Biomet, Inc. and Arthrotek, Inc., Case No., CV05-611-JE, Plantiffs' Claim Chart in Support of Motion for Preliminary Injunction, 8 pages.
  • Smith & Nephew, Inc. v. Biomet, Inc., Case No. CV05-611, Defendants Biomet, Inc.'s and Arthrotek, Inc.'s Memorandum in Response to Plaintiffs' Motion for Preliminary Injunction, Aug. 5, 2005, 37 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Biomet, Inc., Case No. CV05-611-JE, Plaintiffs' Corrected Reply Brief in Support of Their Motion for Preliminary Injunction, Aug. 18, 2005 39 pages. (Confidential Material Redacted).
  • Smith & Nephew, Inc. v. Biomet, Inc., Case No. 05-611-K1, Opinion and Order, Nov. 21, 2005, 35 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Confidential Deposition of John O. Hayhurst, M.D., Nov. 4, 2004, 16 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Defendant's Response to Plantiffs' First Set of Interrogatories, 4 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Smith & Nephew v. Arthrex Claim Construction Chart, 3 pages.
  • Smith & Nephew, Inc. v. Arthrex, Inc., Case No. CV04-0029ST, Arthrex's Proposed Claim Construction '557 patent, 3 pages.
Patent History
Patent number: RE43143
Type: Grant
Filed: Dec 2, 2005
Date of Patent: Jan 24, 2012
Inventor: John O. Hayhurst (Wilsonville, OR)
Primary Examiner: Michael A. Brown
Attorney: Fish & Richardson P.C.
Application Number: 11/292,385
Classifications