Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
An apparatus and procedures for percutaneous placement of surgical implants and instruments such as, for example, screws, rods, wires and plates into various body parts using image guided surgery. The invention includes an apparatus for use with a surgical navigation system, an attaching device rigidly connected to a body part, such as the spinous process of a vertebrae, with an identification superstructure rigidly but removably connected to the attaching device. This identification superstructure, for example, is a reference arc and fiducial array which accomplishes the function of identifying the location of the superstructure, and, therefore, the body part to which it is fixed, during imaging by CAT scan or MRI, and later during medical procedures.
Latest Medtronic Navigation, Inc. Patents:
- Powered drill assembly
- G-shaped arm imaging devices, systems, and methods
- Systems and methods for registration between patient space and image space using registration frame apertures
- Systems and methods for enhancement of 3D imagery and navigation via integration of patient motion data
- System and method for imaging a subject
This application is a reissue of U.S. Pat. No. 6,226,548 issued on May 1, 2001 and also claims benefit under 35 U.S.C. §120 as a reissue continuation of U.S. patent application Ser. No. 13/036,939, filed on Feb. 28, 2011, now U.S. Pat. No. Re. 44,305, issued on Jun. 18, 2013; which also claims benefit under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 11/451,594, filed on Jun. 12, 2006, now U.S. Pat. No. Re. 42,194; which also claims benefit under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 10/423,332 filed on Apr. 24, 2003, now U.S. Pat. No. Re. 39,133; which is also a reissue of U.S. Pat. No. 6,226,548 issued on May 1, 2001; which claims rights under 35 U.S.C. §119 of provisional application No. 60/059,915, filed on Sep. 24, 1997.
U.S. patent application Ser. No. 13/036,939, filed on Feb. 28, 2011, now U.S. Pat. No. Re. 44,305, issued on Jun. 18, 2013; also claims benefit under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 11/451,595, filed on Jun. 12, 2006, now U.S. Pat. No. Re. 42,226; which also claims benefit under 35 U.S.C. §120 as a continuation of U.S. patent application Ser. No. 10/423,332 filed on Apr. 24, 2003; which is a reissue of U.S. Pat. No. 6,226,548 issued on May 1, 2001; which claims rights under 35 U.S.C. §119 of provisional application No. 60/059,915, filed on Sep. 24, 1997.
The present invention claims rights under 35 U.S.C. §119 on provisional application No. 60/059,915, filed on Sep. 24, 1997, and entitled “Percutaneous Registration Apparatus and Method for Use in Computer-Assisted Surgical Navigation.”
FIELD OF THE INVENTIONThe present invention relates generally to guiding, directing, or navigating instruments or implants in a body percutaneously, in conjunction with systems that use and generate images during medical and surgical procedures, which images assist in executing the procedures and indicate the relative position of various body parts, surgical implants, and instruments. In particular the invention relates to apparatus and minimally invasive procedures for navigating instruments and providing surgical implants percutaneously in the spine, for example, to stabilize the spine, correct deformity, or enhance fusion in conjunction with a surgical navigation system for generating images during medical and surgical procedures.
BACKGROUND OF THE INVENTIONTypically, spinal surgical procedures used, for example, to provide stabilization, fusion, or to correct deformities, require large incisions and substantial exposure of the spinal areas to permit the placement of surgical implants such as, for example, various forms of screws or hooks linked by rods, wires, or plates into portions of the spine. This standard procedure is invasive and can result in trauma, blood loss, and post operative pain. Alternatively, fluoroscopes have been used to assist in placing screws beneath the skin. In this alternative procedure at least four incisions must be made in the patient's back for inserting rods or wires through previously inserted screws. However, this technique can be difficult in that fluoroscopes only provide two-dimensional images and require the surgeon to rotate the fluoroscope frequently in order to get a mental image of the anatomy in three dimensions. Fluoroscopes also generate radiation to which the patient and surgical staff may become over exposed over time. Additionally, the subcutaneous implants required for this procedure may irritate the patient. A lever arm effect can also occur with the screws that are not connected by the rods or wires at the spine. Fluoroscopic screw placement techniques have traditionally used rods or plates that are subcutaneous to connect screws from vertebra to vertebra. This is due in part to the fact that there is no fluoroscopic technique that has been designed which can always adequately place rods or plates at the submuscular region (or adjacent to the vertebrae). These subcutaneous rods or plates may not be well tolerated by the patient. They also may not provide the optimal mechanical support to the spine because the moment arm of the construct can be increased, thereby translating higher loads and stresses through the construct.
A number of different types of surgical navigation systems have been described that include indications of the positions of medical instruments and patient anatomy used in medical or surgical procedures. For example, U.S. Pat. No. 5,383,454 to Bucholz; PCT Application No. PCT/US94/04530 (Publication No. WO 94/24933) to Bucholz; and PCT Application No. PCT/US95/12894 (Publication No. WO 96/11624) to Bucholz et al., the entire disclosures of which are incorporated herein by reference, disclose systems for use during a medical or surgical procedure using scans generated by a scanner prior to the procedure. Surgical navigation systems typically include tracking means such as, for example, an LED array on the body part, LED emitters on the medical instruments, a digitizer to track the positions of the body part and the instruments, and a display for the position of an instrument used in a medical procedure relative to an image of a body part.
Bucholz et al. WO 96/11624 is of particular interest, in that it identifies special issues associated with surgical navigation in the spine, where there are multiple vertebral bodies that can move with respect to each other. Bucholz et al. describes a procedure for operating on the spine during an open process where, after imaging, the spinous process reference points may move with respect to each other. It also discloses a procedure for modifying and repositioning the image data set to match the actual position of the anatomical elements. When there is an opportunity for anatomical movement, such movement degrades the fidelity of the pre-procedural images in depicting the intra-procedural anatomy. Therefore, additional innovations are desirable to bring image guidance to the parts of the body experiencing anatomical movement.
Furthermore, spinal surgical procedures are typically highly invasive. There is, thus, a need for more minimally invasive techniques for performing these spinal procedures, such as biopsy, spinal fixation, endoscopy, spinal implant insertion, fusion, and insertion of drug delivery systems, by reducing incision size and amount. One such way is to use surgical navigation equipment to perform procedures percutaneously, that is beneath the skin. To do so by means of surgical navigation also requires apparatus that can indicate the position of the spinal elements, such as, for example the vertebrae, involved in the procedure relative to the instruments and implants being inserted beneath the patient's skin and into the patient's spine. Additionally, because the spinal elements naturally move relative to each other, the user requires the ability to reorient these spinal elements to align with earlier scanned images stored in the surgical navigation system computer, to assure the correct location of those elements relative to the instruments and implants being applied or inserted percutaneously.
In light of the foregoing, there is a need in the art for apparatus and minimally invasive procedures for percutaneous placement of surgical implants and instruments in the spine, reducing the size and amount of incisions and utilizing surgical navigation techniques.
SUMMARY OF THE INVENTIONAccordingly, the present invention is directed to apparatus and procedures for percutaneous placement of surgical implants and instruments such as, for example, screws, rods, wires and plates into various body parts using image guided surgery. More specifically, one object of the present invention is directed to apparatus and procedures for the percutaneous placement of surgical implants and instruments into various elements of the spine using image guided surgery.
To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, the invention includes an apparatus for use with a surgical navigation system and comprises an attaching device rigidly connected to a body part, such as the spinous process of a vertebrae, with an identification superstructure rigidly but removably connected to the attaching device. This identification superstructure is a reference arc and fiducial array, which accomplishes the function of identifying the location of the superstructure, and, therefore, the body part to which it is fixed, during imaging by CAT scan or MRI, and later during medical procedures.
In one aspect, the attaching device is a clamp with jaws and sharp teeth for biting into the spinous process.
In another aspect, the fixture is a screw, having a head, wherein the screw is implanted into the spinous process and a relatively rigid wire is attached to the head of the screw and also implanted into the spinous process at an angle to the axis of the screw to prevent the screw from rotating in either direction.
In another aspect, the superstructure includes a central post, and a fiducial array and a reference arc rigidly but removably attached to the central post. The fiducial array is composed of image-compatible materials, and includes fiducials for providing a reference point, indicating the position of the array, which are rigidly attached to the fiducial array, composed of, for example titanium or aluminum spheres. The reference arc includes emitters, such as, for example Light Emitting Diodes (“LEDs”), passive reflective spheres, or other tracking means such as acoustic, magnetic, electromagnetic, radiologic, or micropulsed radar, for indicating the location of the reference arc and, thus, the body part it is attached to, during medical procedures.
In addition, the invention further comprises a method for monitoring the location of an instrument, surgical implants and the various portions of the body, for example, vertebrae, to be operated on in a surgical navigation system comprising the steps of: attaching a fixture to the spinous process; attaching a superstructure including a fiducial array with fiducials and a reference arc to the fixture; scanning the patient using CT, MRI or some other three-dimensional method, with fiducial array rigidly fixed to patient to identify it on the scanned image; and thereafter, in an operating room, using image-guided technology, touching an image-guided surgical pointer or other instrument to one or more of the fiducials on the fiducial array to register the location of the spinal element fixed to the array and emitting an audio, visual, radiologic, magnetic or other detectable signal from the reference arc to an instrument such as, for example, a digitizer or other position-sensing unit, to indicate changes in position of the spinal element during a surgical procedure, and performing a surgical or medical procedure percutaneously on the patient using instruments and implants locatable relative to spinal elements in a known position in the surgical navigation system.
In another aspect, the method includes inserting screws or rigid wires in spinal elements in the area involved in the anticipated surgical procedure before scanning the patient, and after scanning the patient and bringing the patient to the operating area, touching an image-guided or tracked surgical pointer to these screws and wires attached to the vertebrae to positively register their location in the surgical navigation computer, and manipulating either the patient's spine or the image to align the actual position of the spinal elements with the scanned image.
In another aspect, the method includes percutaneously implanting screws into spinal elements, which screws are located using image guided surgical navigation techniques, and further manipulating the orientation of the screw heads percutaneously using a head-positioning probe containing an emitter, that can communicate to the surgical navigation computer the orientation of the screw heads and position them, by use of a specially designed head-positioning tool with an end portion that mates with the heads of the screws and can rotate those screw heads to receive a rod, wire, plate, or other connecting implant. If a rod is being inserted into the screw heads for example, the method further includes tracking the location and position of the rod, percutaneously using a rod inserter having one or more emitters communicating the location and orientation of the rod to the surgical navigation computer.
The objects of the invention are to provide a user, such as a surgeon, with the system and method to track an instrument and surgical implants used in conjunction with a surgical navigation system in such a manner to operate percutaneously on a patient's body parts, such as spinal vertebrae which can move relative to each other.
It is a further object of this invention to provide a system and method to simply and yet positively indicate to the user a change in position of body parts, such as spinal vertebrae segments, from that identified in a stored image scan, such as from an MRI or CAT scan, and provide a method to realign those body parts to correspond with a previously stored image or the image to correspond with the actual current position of the body parts.
It is a further object of this invention to provide a system or method for allowing a fiducial array or reference arc that is removable from a location rigidly fixed to a body part and replaceable back in that precise location.
It is another object of this invention to provide a system and method for positively generating a display of instruments and surgical implants, such as, for example screws and rods, placed percutaneously in a patient using image-guided surgical methods and techniques.
It is another object of this invention for a percutaneous reference array and fiducial array, as described in this appplication, to be used to register and track the position of the vertebrae for the purposes of targeting a radiation dose to a diseased portion of said vertebrae using a traditional radiosurgical technique.
Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in this description.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate one embodiment of the invention and together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiment of the invention, an example of which is illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. The following example is intended to be purely exemplary of the invention.
As generally described in PCT/US95/12894, the entire disclosure of which is incorporated herein by reference, a typical surgical navigation system is shown in
The system includes an apparatus such as a digitizer or other Position Sensing Unit (PSU), such as for example sensor array 110 on support 112 for identifying, during the procedure, the relative position of each of the reference points to be displayed by tracking the position of emitters 122 on arc 120. The system also includes a processor 114 such as a PC or other suitable workstation processor associated with controller 108 for modifying the image data set according to the identified relative position of each of the reference points during the procedure, as identified by digitizer 110. The processor 114 can then, for example, generate an image data set representing the position of the body elements during the procedure for display on monitor 106. A surgical instrument 130, such as a probe or drill or other tool, may be included in the system, which is positioned relative to a body part and similarly tracked by sensor array 110.
In summary, the general operation of a surgical navigating system is well known in the art and need not further be described here.
In accordance with the preferred embodiment of the present invention, with further reference to
With reference now to
Also rigidly attached to the central post 150, as part of the superstructure 20 preferably at a location closer to the skin, or possibly collocated with or also performing the function of the reference arc 120, is a fiducial array 170, which can be of various different shapes, such as, for example the H-shaped frame 170 depicted in
Additionally, the fiducial array 170, can be located at various heights on the post 150 to accomodate variations in patient tissue depth and size, preferably as close to the patient's body as possible, and then fixed at that specific height by the use of pins or indents matched to holes 19 (shown in
Alternatively, rather than using clamp 30, a screw 42 and rigid wire 45 attachment, as depicted in
Another embodiment for preventing the superstructure 20 from rotating as depicted in
Having described the preferred embodiment of this apparatus of the present system, the method of using this apparatus to practice the invention of registering a single vertebrae will now be discussed. The operation of a surgical navigating system is generally well known and is described in PCT/US95/12894. In the preferred method of operation, clamp 30 of
After scanning the patient, the array 120 and post 150 can be removed from the patient, while leaving in place the rigidly connected clamp 30 or screw 42. For example, as depicted in
Once in the operating room, the patient may be positioned in an apparatus, such as, for example, a spinal surgery frame 125 to help keep the spinal elements in a particular position and relatively motionless. The superstructure 20 is then replaced on the clamp 30 or screw 42 in a precise manner to the same relative position to the spinal elements as it was in the earlier CAT scan or MRI imaging. The reference arc 120 is fixed to the starburst or other interface connector 60 on the central post 150 which is fixed to the clamp 30 or screw 42. The operator, for example a surgeon, then touches an instrument with a tracking emitter such as a surgical pointer 130 with emitters 195 to the divots 29 on the fiducial array 170 to register the location of the array 170 and, thus, because the spinal process is fixed to the fiducial array 170, the location of the spinal element is also registered in the surgical navigation system.
Once the superstructure 20 is placed back on the patient, any instrument 130 fitted with tracking emitters thereon such as, for example, a drill or screw driver, can be tracked in space relative to the spine in the surgical navigation system without further surgical exposure of the spine. The position of the instrument 130 is determined by the user stepping on a foot pedal 116 to begin tracking the emitter array 190. The emitters 195 generate infrared signals to be picked up by camera digitizer array 110 and triangulated to determine the position of the instrument 130. Additionally, other methods may be employed to track reference arcs, pointer probes, and other tracked instruments, such as with reflective spheres, or sound or magnetic emitters, instead of LED's. For example, reflective spheres can reflect infrared light that is emitted from the camera array 110 back to the camera array 110. The relative position of the body part, such as the spinal process is determined in a similar manner, through the use of similar emitters 122 mounted on the reference frame 120 in mechanical communication with the spinal segment. As is well known in this art and described generally in PCT/US95/12894, based upon the relative position of the spinal segment and the instrument 130 (such as by touching a known reference point) the computer would illustrate a preoperative scan—such as the proper CAT scan slice—on the screen of monitor 106 which would indicate the position of the tool 130 and the spinal segment for the area of the spine involved in the medical procedure.
For better access by the operator of various areas near the central post 150, the fiducial array 170 can be removed from the central post 150, by, for example, loosening screw 42 and sliding the array 170 off post 150, leaving the reference arc 120 in place or replacing it after removal of array 170. By leaving the reference arc 120 in place, the registration of the location of the spinal process is maintained. Additionally, the central post 150, reference arc 120, and fiducial array 170 can be removed after the spinal element has been registered leaving only the clamp 30 or screw 42 in place. The entire surgical field can then be sterilized and a sterile post 150 and reference arc 170 fixed to the clamp 30 or screw 42 with the registration maintained.
This surgical navigation system, with spinal element registration maintained, can then be used, for example, to place necessary and desired screws, rods, hooks, plates, wires, and other surgical instruments and implants percutaneously, using image-guided technology. Once the location of the spinal element 100 involved in the procedure is registered, by the process described above, in relation to the image data set and image 105 projected on monitor 106, other instruments 130 and surgical implants can be placed under the patient's skin at locations indicated by the instrument 130 relative to the spinal element 100.
Additionally, the location of other spinal elements, relative to the spinal element 100 containing the fiducial array 170, can be registered in the surgical navigation system by, for example, inserting additional screws 250, rigid wires 260, or other rigid implants or imageable devices into the spinal segment.
For example, as depicted in
For additional positioning information, the operator can place additional rigid wires 260 or screws 250 into the vertebrae, for example, located at the superior (toward the patient's head) and inferior (towards the patient's feet) ends of the spinal process to more accurately position those vertebrae relative to the other vertebrae and the image data. Additionally, the wires 260 and screws 250 implanted to provide positioning information can also be equipped with emitters, such as, for example, LEDs, to provide additional information to the surgical navigation system on the location of the wire 260 or screw 250, and thus the vertebra to which they are affixed.
Alternatively, the patient can be placed in a position stabilizing device, such as a spinal surgery frame 125 or board, before a scan is taken, and then moved to the operating facility for the procedure, maintaining the spine segments in the same position from the time of scanning until the time of surgery. Alternatively, a fluoroscope can be used to reposition the spinal segments relative to the earlier image from the scan. An ultrasound probe can be used to take real-time images of the spinal segment which can be portrayed by monitor 106 overlayed or superimposed on image 105. Then the operator can manually manipulate the spinal elements and take additional images of these elements with the fluoroscope to, in an iterative fashion, align the spinal elements with the previously scanned image 105.
Alternatively, a clamp 30 or screw 42 and superstructure 20 can be rigidly fixed to each vertebra involved in the surgical or medical procedure to register the position of each vertebra as explained previously for a single vertebra:
After the spinal elements are registered in the spine, various medical and surgical procedures can be performed on that patient. For example, spinal implants, endoscopes, or biopsy probes can be passed into the spine and procedures such as, for example, spinal fusion, manipulation, or disc removal can be performed percutaneously and facilitated by the surgical navigation image-guiding system. Additionally, a radiation dose can be targeted to a specific region of the vertebrae.
One such procedure facilitated by the apparatus and methods described above is the percutaneous insertion of screws and rods, fixed to different vertebra in a spine to stabilize them. Once screws, for example multiaxial screws 250, (as depicted in
In an alternative procedure, one or more plates and/or one or more wires may be inserted instead of one or more rods 360.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention and in construction of this surgical navigation system without departing from the scope or spirit of the invention. Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only.
Claims
1. An apparatus for facilitating percutaneous placement of surgical instruments into the spine, adapted for use with a surgical navigation system employing an energy-detecting array in communication with a surgical navigation computer to track positions of instruments in three dimensional space relative to a known reference point, said apparatus comprising:
- a connector adapted to be rigidly attached to a portion of the spine;
- at least one central post connected to said connector;
- a position identification structure rigidly and removably connected to said central post at a predetermined position on said central post and adapted to be reconnected at the same said predetermined position, said identification structure being further adapted to allow a patient to be scanned with the structure connected to the central post, said structure including an assembly for communicating positioning information with respect to said assembly to the energy detecting array and surgical navigation computer; and
- a connector assembly for said reconnecting of said structure substantially to said predetermined position on said central post.
2. The apparatus of claim 1, wherein the connector is a clamp having teeth adapted for biting into a spinous process.
3. The apparatus of claim 1, wherein the connector includes an elongated fixture with a central axis and a threaded end adapted to be inserted into the spinous process and a substantially rigid wire connected to the fixture with the central axis of the wire adapted to be implanted into the spinous process at an angle to elongated fixture to prevent the fixture from rotating.
4. The apparatus of claim 1, wherein said assembly for communication positioning information is a substantially H-shaped frame.
5. The apparatus of claim 1, wherein said assembly for communicating positioning information is a substantially W-shaped frame.
6. The apparatus of claim 1, wherein said assembly for communicating positioning information is a substantially U-shaped frame.
7. The apparatus of claim 1, wherein said assembly for communicating positioning information is a substantially X-shaped frame.
8. The apparatus of claim 1, wherein said assembly for communicating positioning information comprises:
- a fiducial array for registering the location of a spinal element with rigidly connected fiducials; and
- a reference arc for signaling the position of a spinal element, said arc further comprising rigidly connected emitters.
9. The apparatus of claim 1, wherein said reference point is on the spine.
10. A method for monitoring the location of an instrument, surgical implant and various portions of the body, to be operated on, using a surgical navigation system with a surgical navigation computer and a digitizer array for monitoring the location of instruments in three-dimensional space relative to a known reference point, said method comprising the steps of:
- attaching a fixture having a central post to a portion of the spine;
- removably attaching an identification structure including a fiducial array and a reference arc to said central post;
- providing a scanned three-dimensional image of a patient including said fiducial array rigidly attached to said central post of said fixture, said fixture being rigidly attached to the patient to identify the position of said fixture and said fiducial array on the scanned image;
- using an image-guided system, by touching an image guided surgical pointer to one or more fiducials on the fiducial array to register the location of a spinal element fixed to said array; and
- emitting a signal from said reference arc to indicate changes in position of the spinal element during a surgical procedure.
11. The method of claim 10, further comprising:
- performing a surgical procedure percutaneously on a patient using an instrument and implant locatable relative to the spinal element and said structure in known positions identified in the surgical navigation system.
12. The method of claim 10, further comprising:
- inserting a threaded fixture having a substantially rigid wire into a spinal element; and
- touching an image guided pointer to said threaded fixture and wire to positively register the location of said fixture and wire in a surgical navigation computer.
13. The method of claim 10, further comprising:
- implanting imageable devices into spinal elements to identify the location of the spinal elements in the surgical navigation computer.
14. The method of claim 10, further comprising:
- implanting imageable devices into a plurality of spinal elements; and
- manipulating the patient's spine by viewing the location of the implanted devices, as communicated to the surgical navigation computer by touching an instrument with a tracking emitter to said implanted imageable devices to align the actual position of the spinal elements with the previously scanned image.
15. The method of claim 10 further comprising:
- percutaneously implanting screws into spinal elements; and
- locating the position of said screws using image guided surgical navigation techniques.
16. The method of claim 15 further comprising:
- manipulating the orientation of the screw heads percutaneously using a head-positioning probe for communicating location containing an emitter, said probe communicating to the surgical navigation computer the orientation of the screw heads; and
- using a head positioning tool for manipulating implants having an end portion that mates with the heads of the screws and rotating the screws to receive a connecting implant.
17. The method of claim 16 further comprising:
- tracking the location and position of the connecting implant by means of an instrument affixed to the implant having emitters capable of communicating orientation and location to the surgical navigation computer.
18. A system for use in performing the percutaneous placement of surgical implants and instruments into the spine using image guided surgery and a surgical navigation computer and energy detecting array, said system comprising:
- means for attaching a fixture to a portion of the spine;
- means for communicating position information to the surgical navigation computer and energy detecting array said means rigidly and removably connected to said means for attaching a fixture;
- means for providing location information of said spinal portion to the surgical navigation system adapted to be connected to spinal elements;
- means for indicating screw-head position said means electrically connected to the surgical navigation system and adapted to mate with the head of a screw implanted in one or more of said spinal elements.
19. The system of claim 18 further comprising:
- an elongated implant adapted to be inserted into said implanted screws;
- means for indicating the position of said elongated implant electrically connected to the surgical navigation system and adapted to mate with the elongated implant.
20. The system of claim 18, wherein said implanted screws have heads and the elongated implant is a rod adapted to be guided through holes in said implanted screw heads.
21. A method of registering a physical space defined relative to a subject to an image space of the subject, comprising:
- connecting an attaching device to the subject;
- connecting at least one of a fiducial portion or a reference portion to the connected attaching device with a connector in a geometric orientation and location;
- acquiring image data of the subject and the connected at least one fiducial portion or reference portion that is connected to the subject in the geometric orientation and location;
- removing the connected at least one fiducial portion or reference portion from the connected at least one clamp or screw after acquiring the image data; and
- registering the physical space of the subject to the image space of the acquired image data, including: reattaching at least one of the fiducial portion or the reference portion to the connected attaching device in the geometric orientation and location as during the acquiring the image data, and determining a location of a registration portion of the connected at least one fiducial portion or reference portion.
22. The method of claim 21, further comprising:
- attaching the reference portion to the connected attaching device after acquiring the image data of the subject.
23. The method of claim 21, wherein determining the location of the registration portion of the fiducial portion includes determining a location of at least one divot on the fiducial portion.
24. The method of claim 23, further comprising:
- folding the fiducial portion to reduce a volume encompassed by the fiducial portion.
25. The method of claim 23, further comprising:
- removing the fiducial portion subsequent to the registering the subject space to the image space and maintaining registration of the subject space to the image space with the attached reference portion.
26. The method of claim 23, wherein determining a location of at least one divot on the fiducial portion includes tracking an instrument to touch the at least one divot.
27. The method of claim 21, wherein connecting the attaching device to the subject includes fixing a clamp to the subject by moving a first arm and a second arm towards one another to compress a structure of the subject between the first arm and the second arm to hold the clamp relative to the structure.
28. A method of registering a physical space defined relative to a subject to an image space of the subject, comprising:
- connecting a device to the subject;
- connecting at least a portion of a super-structure to the connected device with a connector;
- acquiring image data of the subject and the connected at least a portion of the super-structure connected to the device that is connected to the subject;
- removing the connected at least a portion of the super-structure from the connected device after acquiring the image data; and
- registering the physical space of the subject to the image space of the acquired image data, including: re-connecting the at least the portion of the super-structure to the connected device in a same geometric orientation and location as during the acquiring the image data, and determining a location of a registration portion of the re-connected at least a portion of the super-structure.
29. The method of claim 28, wherein connecting the device to the subject includes fixing at least one of a clamp or a screw to a structure of the subject.
30. The method of claim 28, wherein connecting at least the portion of the super-structure to the connected device includes connecting at least one of a fiducial portion or a reference arc to the fixed device with a connector to the device.
31. The method of claim 28, wherein connecting the device to the subject includes fixing the device to a structure of the subject.
32. The method of claim 31, wherein connecting at least the portion of the super-structure to the device includes connecting a reference portion to the connected device after acquiring the image data of the subject.
33. The method of claim 28, wherein determining the location of the registration portion of the re-connected at least a portion of the super-structure includes determining a location of a plurality of divots on the at least a portion of the super-structure.
34. The method of claim 33, wherein re-connecting the at least the portion of the super-structure includes re-connecting at least a fiducial portion that defines the plurality of divots.
35. The method of claim 34, further comprising:
- folding the fiducial portion to reduce a volume encompassed by the fiducial portion.
36. The method of claim 34, further comprising:
- removing the fiducial portion subsequent to the registering the physical space to the image space and maintaining registration of the physical space to the image space via the re-connected at least a portion of the super-structure.
37. The method of claim 36, wherein re-connecting the at least the portion of the super-structure includes connecting at least a reference portion;
- wherein maintaining registration of the physical space to the image space includes tracking the connected reference portion.
38. The method of claim 28, wherein connecting the device to the subject includes connecting a clamp to a structure of the subject by at least moving a first arm towards a second arm to compress the structure between the first arm and the second arm to hold the clamp relative to the structure.
39. A system for registering a physical space defined relative to a subject to an image space of the subject, comprising:
- a device operable to be connected to the subject; and
- at least one of a reference portion operable to be detachably connected to the device or a fiducial portion operable to be detachably connected to the device;
- wherein the reference portion is operable to determine a location of the subject and the fiducial portion is operable to be registered relative to an image of the subject.
40. The system of claim 39, further comprising:
- a member extending and detachable from the device.
41. The system of claim 40, wherein the device includes a screw operable to be driven into the subject;
- wherein the member is detachable from the screw.
42. The system of claim 40, wherein the device includes a clamp operable to compress a structure of the subject between a first arm and a second arm;
- wherein the member is detachable from the clamp.
43. The apparatus of claim 40, further comprising:
- a connector to interconnect the at least one of the reference portion or the fiducial portion to the member;
- wherein the member extends from a first end to a second end, wherein one of the first end or the second end of the member is operable to be connected to the device;
- wherein the connector is connected near the second end;
- wherein the connector is operable to interconnect the reference portion and the member.
44. The apparatus of claim 43, wherein the connector includes a shaped interface such that the reference portion and the member can be separated and placed back in the same geometric orientation and location.
45. The apparatus of claim 39, wherein the fiducial portion includes a plurality of divots operable to be registered to increase accuracy when compared to a single registration divot.
3821469 | June 1974 | Whetstone et al. |
3983474 | September 28, 1976 | Kuipers |
4058114 | November 15, 1977 | Soldner |
4209254 | June 24, 1980 | Reymond et al. |
4259725 | March 31, 1981 | Andrews et al. |
4262306 | April 14, 1981 | Renner |
4341220 | July 27, 1982 | Perry |
4396945 | August 2, 1983 | DiMatteo et al. |
4398540 | August 16, 1983 | Takemura et al. |
4419012 | December 6, 1983 | Stephenson et al. |
4457311 | July 3, 1984 | Sorenson et al. |
4543959 | October 1, 1985 | Sepponen |
4583538 | April 22, 1986 | Onik et al. |
4592352 | June 3, 1986 | Patil |
4602622 | July 29, 1986 | Bär et al. |
4608977 | September 2, 1986 | Brown |
4638798 | January 27, 1987 | Shelden et al. |
4649504 | March 10, 1987 | Krouglicof et al. |
4686997 | August 18, 1987 | Oloff et al. |
4701049 | October 20, 1987 | Beckman et al. |
4705395 | November 10, 1987 | Hageniers |
4705401 | November 10, 1987 | Addleman et al. |
4706665 | November 17, 1987 | Gouda |
4723544 | February 9, 1988 | Moore et al. |
4733661 | March 29, 1988 | Palestrant |
4737921 | April 12, 1988 | Goldwasser et al. |
4750487 | June 14, 1988 | Zanetti |
4771787 | September 20, 1988 | Wurster et al. |
4779212 | October 18, 1988 | Levy |
4782239 | November 1, 1988 | Hirose et al. |
4788481 | November 29, 1988 | Niwa |
4791934 | December 20, 1988 | Brunnett |
4793355 | December 27, 1988 | Crum et al. |
4805615 | February 21, 1989 | Carol |
4809694 | March 7, 1989 | Ferrara |
4836778 | June 6, 1989 | Baumrind et al. |
4841967 | June 27, 1989 | Chang et al. |
4875478 | October 24, 1989 | Chen |
4896673 | January 30, 1990 | Rose et al. |
4931056 | June 5, 1990 | Ghajar et al. |
4943296 | July 24, 1990 | Funakubo et al. |
4945914 | August 7, 1990 | Allen |
4955891 | September 11, 1990 | Carol |
4991579 | February 12, 1991 | Allen |
5016639 | May 21, 1991 | Allen |
5047036 | September 10, 1991 | Koutrouvelis |
5078140 | January 7, 1992 | Kwoh |
5080662 | January 14, 1992 | Paul |
5094241 | March 10, 1992 | Allen |
5097839 | March 24, 1992 | Allen |
5119817 | June 9, 1992 | Allen |
5142930 | September 1, 1992 | Allen et al. |
5178164 | January 12, 1993 | Allen |
5186174 | February 16, 1993 | Schlöndorff et al. |
5198877 | March 30, 1993 | Schulz |
5211164 | May 18, 1993 | Allen |
5222499 | June 29, 1993 | Allen et al. |
5230338 | July 27, 1993 | Allen et al. |
5230623 | July 27, 1993 | Guthrie et al. |
5249581 | October 5, 1993 | Horbal et al. |
5251127 | October 5, 1993 | Raab |
5257998 | November 2, 1993 | Ota et al. |
5279309 | January 18, 1994 | Taylor et al. |
5295200 | March 15, 1994 | Boyer |
5295483 | March 22, 1994 | Nowacki et al. |
5299288 | March 29, 1994 | Glassman et al. |
5305203 | April 19, 1994 | Raab |
5309913 | May 10, 1994 | Kormos et al. |
5371778 | December 6, 1994 | Yanof et al. |
5383454 | January 24, 1995 | Bucholz |
5389101 | February 14, 1995 | Heilbrun et al. |
5402801 | April 4, 1995 | Taylor |
5447154 | September 5, 1995 | Cinquin et al. |
5483961 | January 16, 1996 | Kelly et al. |
5494034 | February 27, 1996 | Schlöndorff et al. |
5515160 | May 7, 1996 | Schulz et al. |
5517990 | May 21, 1996 | Kalfas et al. |
5526576 | June 18, 1996 | Fuchs et al. |
5551429 | September 3, 1996 | Fitzpatrick et al. |
5572999 | November 12, 1996 | Funda et al. |
5603318 | February 18, 1997 | Heilbrun et al. |
5603328 | February 18, 1997 | Zucker et al. |
5617857 | April 8, 1997 | Chader et al. |
5622170 | April 22, 1997 | Schulz |
5630431 | May 20, 1997 | Taylor |
5638819 | June 17, 1997 | Manwaring et al. |
5662111 | September 2, 1997 | Cosman |
5676673 | October 14, 1997 | Ferre et al. |
5748767 | May 5, 1998 | Raab |
5749362 | May 12, 1998 | Funda et al. |
5755725 | May 26, 1998 | Druais |
RE35816 | June 2, 1998 | Schulz |
5772594 | June 30, 1998 | Barrick |
5795294 | August 18, 1998 | Luber et al. |
5823958 | October 20, 1998 | Truppe |
5834759 | November 10, 1998 | Glossop |
5836954 | November 17, 1998 | Heilbrun et al. |
5848967 | December 15, 1998 | Cosman |
5851183 | December 22, 1998 | Bucholz |
5868675 | February 9, 1999 | Henrion et al. |
5871445 | February 16, 1999 | Bucholz |
5891034 | April 6, 1999 | Bucholz |
6006126 | December 21, 1999 | Cosman |
197 15 202 | January 1997 | DE |
0 018 166 | April 1980 | EP |
0 359 773 | May 1988 | EP |
0 326 768 | December 1988 | EP |
0 427 358 | October 1990 | EP |
0 501 993 | November 1990 | EP |
0 456 103 | May 1991 | EP |
0 469 966 | July 1991 | EP |
WO 88/09151 | December 1988 | WO |
WO 91/07726 | May 1991 | WO |
WO 92/06645 | April 1992 | WO |
WO 94/23647 | October 1994 | WO |
WO 94/24933 | November 1994 | WO |
WO 96/11624 | April 1995 | WO |
WO 96/11624 | April 1996 | WO |
WO 96/32059 | October 1996 | WO |
WO 97/40764 | November 1997 | WO |
- Weinstein, et al., Spinal Pedicle Fixation: Reliability and Validity of Roentgenogram—Based Assessment and Surgical Factors on Successful Screw Placement, Spine, vol. 13, No. 9, 1988, pp. 1012-1018.
- Kelly, The NeuroStation System for Image-Guided, Frameless Stereotaxy, Neurosugery, vol. 37, No. 2, Aug. 1995, pp. 348-350.
- Vector Vision: The Power of Surgical Tracking, BrainLab, 1997.
- J.F. Mallet, et al., Post-Laminectomy Cervical-Thoracic Kyphosis in a Patient with Von Recklinghausen's Disease, Spinal Frontiers, vol. Three, Issue One, Apr. 1996, pp. 1-15.
- Bucholz, et al., Image-Guided Surgical Techniques for Infections and Trauma of the Central Nervous Systems, Neurosurgery Clinics of North America, vol. 7, No. 2, Apr. 1996, pp. 187-200.
- Foley, et al., Image-guided Intraoperative Spinal Localization, Intraoperative Neuroprotection: Monitoring, Part Three, 1996, pp. 325-340.
- Mazier, et al., Computer Assisted Interventionist Imaging: Application to the Vertebral Column Surgery, Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 12, No. 1, 1990, pp. 0430-0431.
- Lavallée, et al., Computer Assisted Medical Interventions, NATO ASI Series, vol. F 60, 1990, pp. 301-312.
- Adams et al., Computer-Assisted Surgery, IEEE Computer Graphics & Applications , May 1990, pp. 43-51.
- 3-D Digitizer Captures the World, BYTE, Oct. 1990, p. 43.
- Reinhardt, et al., Interactive Sonar-Operated Device for Stereotactic and Open Surgery, Proceedings of the Xth Meeting of the World Society for Stereotactic and Functional Neurosurgery, Maebashi, Japan, Oct. 1989, pp. 393-397.
- Kato, et al., A frameless, armless navigational system fo computer-assisted neurosurgery, J. Neurosurg 74, 1991, pp. 845-849.
- Smith et al., Multimodality Image Analysis and Display Methods for Improved Tumor Localization in Stereotatic Neurosurgery, Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 13, 1991, p. 0210.
- Sautot et al., Computer Assisted Spine Surgery: a first step toward clinical application in orthopaedics, IEEE, 1992, p. 1071-1072.
- Cinquin, et al., GOR: Image Guided Operating Robot. Methodology, Application, IEEE EMBS, Paris 1992, pp. 1-2.
- Alignment Procedure for the PixSys Two-Emitter Offset Probe for the SAC GP-8-3d Sonic Digitizer, PixSys, Jul. 2, 1992, pp. 1-4.
- Smith, et al., Computer Methods for Improved Diagnostic Image Display Applied to Stereotatic Neurosurgery, Automedica, 1992, vol. 14, pp. 371-382.
- Reinhardt, Neuronavigation: A Ten-Year Review, Neurosurgery, 1993, pp. 329-341.
- Bucholz, et al., Intraoperative localization using a three dimensional optical digitizer, SPIEvol. 1894, Jan. 17, 1993, pp. 312-322.
- Smith, et al., The Neurostation™-A Highly Accurate, Minimally Invasive Solution to Frameless Stereotactic Neurosurgery, Computerized Medical Imaging and Graphics, vol. 18, 1994, pp. 247-256.
- Bucholz, et al., Halo vest versus spinal fusion for cervical injury: evidence from an outcome study, J. Neurosurg., vol. 70, pp. 884-892.
- Awwad, et al., Post-traumatic Spinal Synovial Cyst with Spondylolysis: CT Features, Journal of Computer Assisted Tomography, vol. 13, No. 2, 1989, pp. 334-337.
Type: Grant
Filed: Jun 17, 2013
Date of Patent: May 5, 2015
Assignee: Medtronic Navigation, Inc. (Louisville, CO)
Inventors: Kevin T. Foley (Germantown, TN), John B. Clayton (Superior, CO), Anthony J. Melkent (Germantown, TN), Michael C. Sherman (Memphis, TN)
Primary Examiner: George Manuel
Application Number: 13/919,648
International Classification: A61B 5/05 (20060101); A61B 17/70 (20060101);