Device for the implantation and fixation of prosthetic valves

A device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent (10) with a prosthetic heart valve (11) at its proximal end is introducible into a patient's main artery. With the objective of optimizing such a device to the extent that the prosthetic heart valve (11) can be implanted into a patient in a minimally-invasive procedure, to ensure optimal positioning accuracy of the prosthesis (11) in the patient's ventricle, the device includes a self-expanding positioning stent (20) introducible into an aortic valve positioned within a patient. The positioning stent is configured separately from the heart valve stent (10) so that the two stents respectively interact in their expanded states such that the heart valve stent (10) is held by the positioning stent (20) in a position in the patient's aorta relative the heart valve predefinable by the positioning stent (20).

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent with a prosthetic heart valve at its proximal end.

2. Background Information

A device of this type is, in principle, known to medical technology. At present, biological or mechanical valve models are available to substitute for human heart valves which are usually fixedly sewn into the bed of the heart valve during a surgical procedure through an opening in the chest after removal of the diseased heart valve. In this surgical procedure, the patient's circulation must be maintained by a heart-lung machine, whereby cardiac arrest is induced during the implantation of the prosthetic heart valve. This consequently makes the surgical procedure a risky one coupled with the associated risks for the patients and a lengthy post-operative treatment phase. In particular, such a procedure cannot be performed on patients whose hearts are already too weak.

Minimally-invasive treatment procedures of recent development are characterized in particular by requiting a considerably shortened duration of anesthesia. One approach provides for implanting a self-expanding prosthetic heart valve with an artificial heart valve and a collapsible and expandable stent connected to the heart valve into the human body by means of an appropriate catheter system. The catheter system is used to guide such a self-expanding prosthetic heart valve through a femoral artery or vein to its site of implantation at the heart. After reaching the site of implantation, the stent, which consists for example of a plurality of self-expanding stent segments which can be bent relative one another in the longitudinal direction, can then be successively expanded. Following the expansion, anchoring hooks can for example support the anchoring of the prosthetic heart valve at least in the respective blood vessel close to the heart. The actual prosthetic heart valve itself is thereby in the direct proximal area of the stent.

Known for example from the DE 100 10 074 AI printed publication is a device for fastening and anchoring prosthetic heart valves, which is essentially formed from wire-shaped interconnected elements. The device provides for using various different arched elements in order to attain a secure retention and support for the prosthetic heart valve. To this end, the device described in this printed publication makes use of three identical pairs of arched elements, offset from one another by 120°. These arched elements are interconnected by means of solid articulations, whereby the solid articulations fulfill the function of pivot bearings. Additional arched elements bent opposite to each other are furthermore provided which form rocker arms as equal in length as possible in order to achieve a secure anchoring of the arched elements even when subject to peristaltic actions on the heart and blood vessels and a solid sealing for an implanted and anchored prosthetic heart valve.

In the known solutions, however, there is a risk of heart valve implant malalignment. This essentially refers to the exact positioning and angular adjustment of the prosthetic heart valve to be implanted. In particular, it is only with immense skill on the part of the person performing the implantation—if at all—that a stent with the prosthetic heart valve at its proximal end winds up being positioned so precisely in the proximity of the patient's diseased heart valve that both sufficient lateral positioning accuracy as well as a suitable angular position to the prosthetic heart valve can be optimally ensured. The known solutions are also only conditionally suitable for explanting improperly or incorrectly positioned prosthetic heart valves. Such a process is usually only possible with great effort; in particular, a further surgical procedure is required.

Among other complications, an implantation malalignment of a less than optimally positioned prosthetic heart valve can lead to, for example, leakage or valvular regurgitation, which puts a substantial burden on the ventricle. Should, for example, a prosthetic heart valve be implanted too high above the actual heart valve plane, this can lead to occlusion of the coronary artery origination (coronaries) and thus to a fatal coronary ischemia with myocardiac infarction. It is therefore imperative for an implanted prosthetic heart valve to meet all the respective requirements for both the accuracy of the lateral positioning as well as the angular positioning.

In conventional implantation techniques in which self-expanding prosthetic heart valves are, for example, guided through a patient's femoral artery to the site of deployment at the heart in a minimally-invasive procedure, the prosthesis is usually introduced using a guide wire and catheters, whereby conventional balloon catheters can also be used. Although such a surgical introduction can be monitored and controlled, for example with fluoroscopy (Cardiac Catheterization Laboratory=CCL) or with ultrasound (Trans-esophageal Echocardiogram=TEE), oftentimes—due to the limited maneuverability of the prosthetic heart valve which is still in a collapsed state during the introduction procedure and despite being in the collapsed state is still of relatively large size—it is not possible to ensure the required positioning accuracy and especially the angular position to the prosthetic heart valve implant with the corresponding anchoring elements affixed thereto. In particular—as a result of a possible coronary artery occlusion—an anglular misalignment to the implanted prosthetic heart valve from the optimum site of deployment can pose a threat to the respective patient.

In designing a prosthetic heart valve, special consideration must, in particular, be given to the substantial forces also acting on the prosthesis during the filling period of the cardiac cycle (diastole), necessitating a secure anchorage in order to prevent the implanted prosthetic heart valve from dislodging.

Hence on the one hand, the prosthetic heart valve must be able to be maneuvered as much as possible in the respective coronary artery during the implantation procedure so as to ensure optimum positioning accuracy and, on the other hand, the implanted prosthesis must be able to be firmly anchored at its site of implantation in order to effectively prevent subsequent prosthesis misalignment.

The present invention addresses the problem that the known devices for transvascular implantation and fixation of prosthetic heart valves are often not suitable for easily implanting a prosthetic heart valve in a patient's ventricle with the necessary positioning accuracy. In particular, the necessary lateral positioning accuracy and the angular position of the prosthetic heart valve can usually only be sufficiently guaranteed when the person performing the procedure has the corresponding experience. On the other hand, explanting a previously implanted prosthetic heart valve in a minimally-invasive procedure or accordingly correcting an incorrectly positioned prosthetic heart valve has to date is only been possible with great effort, if at all.

On the basis of this problem as set forth, the present invention proposes a device which enables a prosthetic heart valve to be implanted into a patient in a minimally-invasive procedure in as simple a manner as possible, wherein an increased positioning accuracy to the prosthesis in the patient's ventricle can in particular be ensured. Such a device is to, in particular, reduce the risk of an incorrect deployment to the greatest extent possible.

SUMMARY OF THE INVENTION

According to the invention, this task is solved by a device as described at the outset by the device having, in addition to the self-expanding heart valve stent with a prosthetic heart valve at its proximal end, a self-expanding positioning stent insertable into a position in the patient's aortic valve, which is configured separate from the heart valve stent, wherein the positioning stent and the heart valve stent are configured such that they each work in concert in their expanded states so that the positioning stent helps to hold the heart valve stent in a position relative the patient's heart valve predefined by the positioning stent.

The device according to the invention exhibits an entire array of substantial advantages over the prosthetic heart valves known from the prior art and described above. The two-part configuration of the device in the design of the heart valve stent and the positioning stent configured separately therefrom can, in particular, greatly increase the positioning accuracy of the prosthetic heart valve in the patient's ventricle. The positioning stent hereby primarily assumes the function of determining the position of the prosthetic heart valve in the patient's ventricle as well as the function of anchoring or fixing the prosthesis at optimum placement. In particular, the prosthetic heart valve is not on or in the positioning stent, but instead configured separately from the positioning stent on the heart valve stent This has the advantage that the dimensions of the positioning stent in its collapsed state are extremely small, which increases the stent's maneuverability.

The heart valve stent primarily serves the inventive device only as a supporting structure for the prosthetic heart valve to be implanted. This function sharing enables both the positioning stent as well as the heart valve stent to be of relatively simple configuration. What can be achieved in particular is that compared to a stent on which both a prosthetic heart valve as well as means for positioning and fixing the prosthetic heart valve are arranged, the positioning stent can be configured to exhibit only relatively small dimensions in its collapsed state. Inserting the positioning stent in the patient's artery is thus—due to the better maneuverability achieved—substantially simpler. A direct consequence of this is increased positioning accuracy for the positioning stent.

The device according to the invention is configured in such a manner that not until the positioning stent is positioned into the patient's artery and after aligning the stent with respect to a predefinable axial rotation and horizontal position relative an (old) heart valve of the patient is the heart valve stent configured separately from the positioning stent inserted into the artery or vein. During the insertion procedure, the heart valve stent, which has the prosthetic heart valve at its proximal end, independently orientates itself to the exactly-positioned positioning stent as fixed at the arterial wall. Specifically, the heart valve stent is independently guided within the expanded positioning stent into the implantation position predefined by the positioning stent at which the prosthetic heart valve is in an optimum position relative the patient's old heart valve. After the heart valve stent, aided by the positioning stent, has positioned into the coronary artery in the predefined position relative the old heart valve, the full expansion of the heart valve stent is induced, for example by an external manipulation, as a consequence of which the heart valve stent according to the invention interacts with the positioning stent in such a way that the heart valve stent, and thus also the prosthetic heart valve disposed at its proximal end, is positionally fixed into the implantation position. Accordingly, the positioning stent serves—in addition to the already mentioned function of defining the position for the prosthetic heart valve in the patient's ventricle and the function of anchoring or fixing the prosthesis at this position—also the function of guiding the heart valve stent into the optimum position for the prosthetic heart valve during the implantation procedure. The advantages attainable with the inventive device are obvious: in particular, an optimum positioning is enabled for the prosthetic heart valve in its final implanted position, whereby the alignment and fixing of the prosthetic heart valve ensues independently based on the co-operative action of the heart valve stent and the positioning stent. On the one hand, a position-contingent, inaccurate implantation of the prosthetic heart valve can hereby be excluded. On the other hand, the device is characterized by the implantation and anchoring of the prosthetic heart valve ensuing in a particularly simple manner.

Because the positioning stent according to the invention is configured to be an insertable, self-expanding component in a patient's blood vessel, it can be inserted beforehand; i.e., prior to the actual implantation of the prosthetic heart valve disposed at the proximal end of the heart valve stent. It would thus be conceivable here for the positioning stent to first be brought into the aorta and optimally positioned and fixed there, whereby the heart valve stent with the prosthetic heart valve is thereafter introduced and inserted optimally by means of the positioning stent already in position and fixed there.

According to the invention, both the heart valve stent as well as the positioning stent are configured to self-expand, which facilitates the respective introduction of these components. Because the positioning stent assuming the task of determining the position for the heart valve stent, the prosthetic heart valve disposed thereon respectively, can be configured to be substantially smaller in comparison to previous self-expanding prosthetic heart valves, the maneuverability of the positioning stent is increased considerably, which ultimately results in being able to select an extremely precise position at which the positioning stent is anchored relative the heart valve and one ideally adapted to the respective requirements. This advantage of exact positioning of the easily-maneuvered and minutely-configured positioning stent extends to the subsequent implantation of the prosthetic heart valve since the heart valve stent, at the proximal end of which the prosthetic heart valve is arranged, is held in the position defined by the (optimally positioned) positioning stent.

Advantageous further developments of the inventive device are specified in the dependent claims.

One particularly advantageous development with respect to insertion of the heart valve stent provides for the heart valve stent to be configured to be reversibly expandable and collapsible. It is thereby conceivable for the heart valve stent to be collapsed, for example via external manipulation, and extracted using an explantation catheter. Specifically, this embodiment enables the heart valve stent in collapsed form to be connectably received in a cartridge of a positioning catheter, an explantation catheter respectively. In order for the heart valve stent to be optimally inserted into a patient's blood vessel and positioned there in a predefined position relative the heart valve, it is necessary for the positioning stent to be as small as possible in its collapsed state so that the stent can be optimally navigated with as little impact as possible on the heart valve. This is achieved by the prosthetic heart valve implant not being affixed to the positioning stent but rather to the heart valve stent. The positioning stent is furthermore configured such that all the components of the stent in the collapsed state have a certain measure of pretensioning acting in a radially outward direction which effects the self-expansion following release from the cartridge. The positioning stent can then be implanted with the cartridge in conventional manner using a positioning stent catheter, for example through a femoral artery. Should the positioning stent be inaccurately deployed, for example if the positioning stent is not positioned precisely accurately in the patient's aorta, or when an explantation of the positioning stent is necessary for other reasons, it is provided for the positioning stent to be convertible from its expanded state back into its collapsed state. This is done for example by external manipulation using an implantation catheter. The positioning stent is thus fully reversibly withdrawable in the catheter, which enables the stent to be completely removed.

The inventive device for transvascular implantation and fixation of prosthetic heart valves can advantageously provide for the positioning stent to have an anchorage at its proximal end, in particular an anchoring support, whereby this anchoring support is configured such that the positioning stent self-positions into a pre-defined position relative the patient's heart valve in its expanded state and is held by means of the anchoring support. The positioning stent is thereby configured such that the anchoring support is received in collapsed form in a cartridge connectable with a catheter. The anchoring support is thereby to be compressed such that it is pretensioned in a radially outward direction which effects the self-expansion following release from the cartridge. Configuring the positioning stent so that it self-positions into a given position relative the patient's heart valve in its expanded state and is held there by means of the anchoring support enables the position of the positioning stent and thus the position of the heart valve stent to be precisely definable beforehand so that inaccurate implantations, as can occur with the known solutions, can be excluded.

In order to facilitate the positioning stent's self-expansion, the positioning stent can advantageously furthermore exhibit pretensioning elements in order to radially pretension the positioning stent in its position defined by the anchorage. The pretensioning elements are thereby also configured to be reversible so that their pretensioning function can be countermanded by external manipulation, which enables the positioning stent to be collapsed and thus be retracted into a catheter, enabling the positioning stent to be removed completely.

An advantageous realization of the latter embodiment provides for the anchoring support to have at least one support strut which is configured such that it self-positions into the pockets of the patient's heart valve in the expanded state of the positioning stent and thus fixes the orientation of the positioning stent relative the heart valve in the axial and horizontal direction. Hereby conceivable would be, for example, that the support struts configured at the proximal end of the positioning stent implant independently in the pockets of the respective patient's heart valve during the implantation procedure, whereby the pockets of the heart valve form a counter bearing for counteracting the proximal insertion motion so that the anchoring supports can be precisely positioned laterally with the positioning stent. Since the pockets represent a guide per se for the support struts during insertion, this ensures at the same time that the anchoring support and the positioning stent can adopt a precise angular position. Only after the support struts have been introduced into the pockets of the respective patient's heart valve and the final position for the positioning stent has been reached is the heart valve stent configured separately from the positioning stent deployed with the help of, for example, a heart valve catheter. The heart valve stent exhibiting the prosthetic heart valve at its proximal end is then optimally implanted at the most favorable and ideal site by means of the positioning stent already having been exactly positioned and fixed. To be mentioned as a further advantage is that the support struts of the positioning stent are positioned at the patient's heart valve following implantation of the positioning stent. Because the positioning stent is of relatively simple configuration, since it for example does not comprise the prosthetic heart valve which is disposed separately from the positioning stent on the heart valve stent, the struts of the positioning stent can exhibit a relatively large radius, which entails a lesser risk of injury to the heart valve.

The support strut disposed on an anchoring support or anchorage should be curved convexly and arcuately in the proximal direction because such a rounded form wards off injuries to the heart's blood vessel as well as facilitates the unfolding in the self-expansion process. With such a design, inserting the support struts into the pockets of the old heart valve is thus likewise easier without engendering any corresponding injuries to the tissue or the blood vessels of the region.

Additional stabilizing struts can also be provided on the anchoring supports, which achieves increased fixedness following the self-expansion of the anchored anchoring supports. Such stabilizing struts can be advantageous since in order to benefit from the self-expansion effect required of an anchoring support for securely fixing the anchoring support with the positioning stent, accepting that the anchoring supports collapsed within a cartridge during the introduction phase must be of the smallest volume possible, small cross-sections for the respective struts must be maintained.

All the struts of an anchoring support should thereby be arranged, configured and dimensioned such that the successively ensuing release of the supporting struts and the other struts with the further elements provided on an anchoring support, as the case may be, can be achieved by the appropriate manipulation of cartridge and/or catheter. In so doing, the design of the cartridge or at least a portion of the cartridge should, of course, also be taken into consideration.

Corresponding to physical anatomy, three supporting struts each arranged at the same angular spacing from one another on the anchoring support should be provided. Yet there is also the possibility of arranging each of the supporting struts disposed on an anchoring support to be at an angular offset from one another. In this case, the supporting struts with their proximal members are then introduced into the pockets of an old heart valve in the implanted state and the old heart valve can then be tightly secured and fixed with the supporting struts.

The stability of an implanted and fixed positioning stent can be optimally increased by means of at least one ring support, which can be an element on an anchoring support. Thus, by means of such a ring support, the possibility exists of connecting different struts provided on an anchoring support, preferably at their bases. It is thereby not imperative to provide a connection between the ring support and all the struts of an anchoring support.

After the positioning stent is positioned at the heart and held there by the anchorage, the heart valve stent is introduced. It is hereby advantageously provided for the heart valve stent to be configured such that the prosthetic heart valve in its expanded state presses the patient's heart valve against the aorta wall, whereby the at least one anchorage of the positioning stent positions between the aorta wall and the heart valve expanded by the prosthetic heart valve.

In order to have the heart valve stent be held in a position defined by the positioning stent relative the patient's heart valve using the positioning stent, the positioning stent has at least one engaging element at its distal end. The heart valve stent should thereby exhibit a correspondingly complementary-configured retaining element at its distal end, whereby in the expanded state of the positioning stent and in the fully expanded state of the heart valve stent, the at least one retaining element forms a positive connection with the at least one engaging element of the positioning stent. This thus achieves the positioning of the prosthetic heart valve in the coronary artery in the position predefined by the positioning stent and it being held there by the positioning stent. It would hereby be conceivable to provide engaging clips on the heart valve stent. The engaging clips are thereby among the elements of the heart valve stent which are not released to expand until the heart valve stent is accurately inserted into its implantation deployment site at the patient's heart valve by means of the already implanted positioning stent. When the engaging clips of the heart valve stent expand, they engage with the engaging elements of the positioning stent and thus hold the heart valve stent in the position given by the positioning stent. At the same time, portions of the respective patient's old heart valve then each work into an anchoring strut of the positioning stent and the expanded prosthetic heart valve so that the respective portions of the old heart valve can be clamped and held between these elements following the successful expanding of the prosthetic heart valve, similar to how a sheet of paper is held between the brackets of a paper clip.

The heart valve stent is in particular configured such that it does not adopt its fully expanded state, in which both the prosthetic heart valve as well as also the retaining element is released, until the heart valve stent is in the position as defined by the positioning stent.

As is the case with the positioning stent, the heart valve stent is also advantageously configured to be reversible in its folding action, whereby the positive connection with the positioning stent is disengaged in the collapsed state. This thus allows the prosthetic heart valve disposed on the heart valve stent to again be explanted, for example in the case of an improper implantation, without also having to extract the positioning stent in order to do so.

In order to facilitate explantation of the heart valve stent, explantation elements can be provided at the distal end of the heart valve stent which work in concert with the heart valve stent such that when externally manipulated, for example, the explantation elements disengage the positive connection between the heart valve stent and the positioning stent, and the heart valve stent collapses. One advantageous realization of the explantation elements provides for their being engageable, for example by means of an explantation catheter, whereby retracting the explantation elements in the explantation catheter disengages the positive connection between the heart valve stent and the positioning stent, and the heart valve stent folds back up.

The heart valve stent is advantageously accommodated in the collapsed state in a cartridge connectable to a heart valve stent catheter and/or explantation catheter, whereby a predefinable motion of the cartridge will release the heart valve stent. Specifically, it is thereby advantageously provided that a predefinable first motion of the cartridge will only release the prosthetic heart valve to expand, whereby the retaining element of the heart valve stent is released by at least one second subsequent motion of the cartridge, the catheter respectively.

It can be advantageous, in particular for the subsequent cartridge and catheter movement, which leads to the sequential release of the individual elements of the heart valve stent, to use a multi-part cartridge, whereby at least two individual parts can each be moved relative one another. Hence, the movements of a cartridge or individual parts of a cartridge to be realized, for example so as to lead to self-expansion, can be a proximal and/or distal displacement, which can ensue in several successive stages, each covering different paths in order to successively release the corresponding parts for their respective expansion during implantation.

Thus, a first movement, for example, can be a distal retraction of the cartridge or a portion of a cartridge. Should it hereby be necessary so as to avoid inaccurate implantation, a proximal movement of the cartridge or a portion of a cartridge can then be effected to re-collapse the already-expanded retaining elements acting radially outwardly with a pretensioning force, the prosthetic heart valve of the heart valve stent respectively, and to bring same into the interior of the cartridge so as to enable the device to be removed from the patient. Bowden cables or flexible push tubes guided through the interior of the catheter to the cartridge or to a portion of the cartridge can be used as the actuating elements for a manipulation and the associated displacing movement of the cartridge or individual parts of the cartridge. Such actuating elements can, however, also engage with fastening elements, for example eyelets, provided on the anchoring support.

The solution according to the invention thus also provides the possibility of aborting prosthetic heart valve implantations which will be unsuccessful and removing the device again by withdrawing the catheter, whereby in so doing, the heart valve stent which has already expanded re-collapses again and can be guided back into a cartridge or a portion of a cartridge.

An advantageous further development of the device according to the invention provides for the positioning stent to furthermore comprise anchoring elements, in particular hooks, in order to anchor the positioning stent in its predefinable position at the heart. Additionally or alternatively to the positioning stent, it would be conceivable for the heart valve stent to also comprise anchoring elements such as hooks, for example, in order to anchor the heart valve stent in the position in the aorta as predefined by the positioning stent. Both solutions ultimately serve the secure fixing of the implanted prosthetic heart valve at its site of implantation as predefined by the positioning stent.

In order to facilitate spatial orientation when inserting the positioning stent, markers can be disposed on the positioning stent, in particular x-ray markers. Of course, other solutions are also conceivable. For example, insertion of the positioning stent can also be monitored and controlled using fluoroscopy (Cardiac Catheterization Laboratory=CCL) or ultrasound (Transesophageal Echocardiogram=TEE).

The positioning stent and/or the heart valve stent can furthermore exhibit guiding means which are configured in such a manner that the heart valve stent is guided independently in the expanded positioning stent into the position predefined by the positioning stent. It would hereby be conceivable for the guiding means to be configured as elements tapering to the distal end of the positioning stent, the heart valve stent respectively, so as to realize a self-adjusting of the heart valve stent in the positioning stent and thus into the position predefined by the positioning stent.

The device according to the invention can also be used together with a balloon catheter. With a balloon catheter, the old heart valve can be pushed away prior to the self-expansion of the anchoring support.

The following will make reference to the figures in describing preferred embodiments of the device according to the invention for the implantation and fixation of prosthetic heart valves in greater detail.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings:

FIG. 1: a preferred embodiment of a positioning stent of the device according to the invention in the inserted and expanded state;

FIG. 2A: a preferred embodiment of a heart valve stent of the device according to the invention in the expanded state;

FIG. 2B: the heart valve stent of FIG. 2A in the implanted state;

FIGS. 3A,B: one schematic representation each to illustrate the explantation process with a preferred embodiment of the heart valve stent, and

FIG. 4: a detailed representation of the explantation elements provided on the heart valve stent, the positioning stent respectively, as well as their mode of operation.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

FIG. 1 shows a preferred embodiment of a positioning stent 20 for the device according to the invention in the inserted state. The positioning stent 20 is in its expanded state in the embodiment shown. As depicted, the positioning stent 20 has an anchoring segment 21′ with anchoring supports 21 at its proximal end. The anchoring supports 21 are hereby configured such that they optimize themselves into the pockets T of the old heart valve relative to axial rotation as well as horizontal position. To this end, the positioning stent 20 is supported by means of anchoring supports 21 in pockets T of the old heart valve. The anchoring supports 21 themselves are connected to docking segment 23 by means of shoulders 22. The docking segment 24′ of positioning stent 20, provided at its distal end, exhibits a plurality of engaging elements 24 which fix a heart valve stent to be implanted (not explicitly shown in FIG. 1).

The positioning stent 20 is configured as a self-expanding component. Due to the simple configuration of positioning stent 20, which essentially consists only of anchoring segment 21′, docking segment 24′ and shoulders 22, the positioning stent 20 exhibits extremely small dimensions when in its collapsed state. Thus, when inserting positioning stent 20, for example using a positioning stent catheter, the positioning stent 20 has very good maneuverability within aorta A. After positioning stent 20 has been inserted into aorta A, it is expanded, enabled, for example, by means of an external manipulation of the positioning stent catheter. The anchoring supports 21 of the expanded positioning stent 20 self-position into the pockets T of the patient's heart valve, whereby the alignment of the positioning stent 20 in the axial and horizontal direction is fixed relative the heart valve. So that the positioning stent 20 will expand independently, suitable pretensioning elements can be (optionally) provided. In the embodiment as shown, pretensioning elements are realized in the form of anchoring supports 21.

After positioning stent 20 is inserted into aorta A and positioned and fixed there as described above, a heart valve stent 10 (FIG. 2A) disposed with a prosthetic heart valve 11 at its proximal end is inserted into positioning stent 20. It expands subsequent to release and, in doing so, presses the old valve against the aorta wall, the positioning stent 20 respectively.

FIG. 2A shows a heart valve stent 10 in the expanded state. As depicted, the heart valve stent 10 has the prosthetic heart valve 11 at its proximal end and an anchoring segment 12′ comprising at least one retaining element 12 at its distal end.

FIG. 2B provides a representation of how the heart valve stent 10 is held in the already positioned and fixed positioning stent 20. The heart valve stent 10 is guided by guide elements 17, 27 in positioning stent 20 relative to rotation and axial position such that the new heart valve is optimally positioned. Thereafter, further releasing of the heart valve stent 10 introduces its anchoring segment 12′ into docking segment 24′ (FIG. 1) of the positioning stent 20. The anchoring segment 12′ comprises retaining elements 12 which form a positive connection with the engaging elements 24 of the positioning stent 10 in order to position the prosthetic heart valve 11 in the position in the coronary artery as predefined by the positioning stent 20 and to hold same there by means of positioning stent 20.

Unlike conventional heart valve stents, the heart valve stent 10 of the present device does not have retaining clips to engage behind the old heart valve but rather engaging clips in the form of retaining elements 12 in the anchoring segment 12′ of heart valve stent 10. These engaging clips interact with the engaging elements 24 disposed in the docking segment 24′ of positioning stent 20. The advantage of this is that the heart valve stent 10 is commutably anchored in positioning stent 20. By means of its self-expanding induced by guide means 17, 27, heart valve stent 10 independently slides inside positioning stent 20 and cannot slide any further. The guide means 17, 27 are configured as elements tapering to the distal end of positioning stent 20 and/or heart valve stent 10. Due to the special design of engaging elements 23 of positioning stent 20 and the retaining elements 12 of heart valve stent 10 as clips formed in zigzag fashion (Z-clips), a finer angular positioning of the heart valve stent 10 can in particular ensue. Both the positioning stent 20 as well as the heart valve stent 10 can be configured of individual segments, whereby the individual segments can be rotated relative one another. This increases flexibility when inserting the two stents into the aorta. It is in particular possible to realize a finer angular positioning to heart valve stent 10. It is thus conceivable, for example, for the physician to alternatively insert a rotated prosthetic heart valve 11. The segmented configuration is also of advantage with respect to the collapsing of the heart valve stent and the positioning stent since the segmented stents in collapsed state can be housed compressed within a catheter.

FIGS. 3A, 3B and 4 are schematic representations of how the heart valve stent 10 in the already positioned and implanted positioning stent 20 can be explanted. In the event of a valve dysfunction, the mechanically stable connection between the positioning stent 20 and the heart valve stent 10 as described above can be disengaged again by external manipulation. This can be realized, for example, by using a catheter 30 with a cartridge 33 affixed thereto to engage explantation elements 13. After retracting the explantation elements 13 into the variable funnel-shaped explantation catheter 30, the heart valve stent 10 is pulled into same and can thus be replaced with a new one. The positioning stent 20 remains as a marking and anchoring base for a new heart valve stent 10. Positioning stent 20 can, of course, also be explanted in a similar procedure.

The docking segment 24′ of the positioning stent can comprise eyelets or nubs to which the explantation catheter 30 is to be affixed in order to effect such an explantation. Attaching to eyelets is possible via preferably three to six eyelets and three to six loops which are subsequently pulled out of the eyelets. The positioning stent 20 as well as the heart valve stent 10 is in particular completely reversibly withdrawable in the catheter, which enables the complete removal of the positioning stent and/or the heart valve stent.

The disengaging of the mechanically stable connection between positioning stent 20 and heart valve stent 10 by means of external manipulation, in the case of valve dysfunction for example, is possible when the previously implanted heart valve stent 10 exhibits a retrievable structure suitable for this purpose. This could consist of a plurality of connecting struts which project medially from the upper outer end of the stent into the vascular lumen and join there with an anchoring device (eyelet, hook, nub, etc.). Should this anchoring device now be grasped by the retrieval catheter wire of catheter 30, the distal portion of heart valve stent 10 can thus be compressed toward the lumen and drawn into a catheter tube 33. This then again provides the opportunity of using the positioning stent 20 which remains as a marking and anchoring base for a new heart valve stent 10.

The positioning stent 20 is made from a solid mesh (wire, polymer, etc.) or produced in a laser-cutting process. Applicable as suitable materials for the positioning stent are NiTi, high-grade steel or biocompatible plastics. For spatial orientation, x-ray markers can furthermore be disposed on positioning stent 20.

Claims

1. A method of treating a native aortic valve, comprising:

positioning an expandable first stent adjacent the native aortic valve, the first stent having a first attachment element disposed adjacent a distal end of the first stent and at least one positioning element disposed adjacent a proximal end of the first stent, wherein the proximal end of the first stent is positioned closer to a patient's heart than the distal end of the first stent;
positioning the at least one positioning element behind a portion of a leaflet of the native valve, radially outward from the leaflet and radially inward from a portion of a vessel wall;
anchoring the first stent relative to the native aortic valve by expanding the first stent;
after expanding the first stent, positioning an expandable second stent radially within the first stent to connect the second stent to the first stent, the second stent having a second attachment element disposed adjacent a distal end of the second stent, wherein the proximal end of the second stent is positioned closer to the patient's heart than the distal end of the second stent; and
compressing at least a portion of a leaflet of the native valve against a vessel wall such that the compressed portion of the leaflet is positioned radially inward from the at least one positioning element of the first stent and radially outward from a portion of the second stent component;
wherein the first and second attachment elements are complimentary to one another.

2. The method of claim 1, wherein the second stent includes a plurality of engagement elements configured to be selectively attached to a catheter.

3. The method of claim 1, further including:

disconnecting the second stent from the first stent; and
positioning an expandable third stent radially within the first stent to connect the third stent to the first stent, the third stent having a third attachment element adjacent a distal end of the third stent;
wherein the first and third attachment elements are complimentary to one another.

4. The method of claim 1, further including:

positioning the at least one positioning element behind the portion of the leaflet before compressing a portion of the leaflet against the vessel wall.
Referenced Cited
U.S. Patent Documents
4922905 May 8, 1990 Strecker
5002566 March 26, 1991 Carpentier et al.
5061277 October 29, 1991 Carpentier et al.
5094661 March 10, 1992 Levy et al.
5104407 April 14, 1992 Lam et al.
5197979 March 30, 1993 Quintero et al.
5279612 January 18, 1994 Eberhardt
5332402 July 26, 1994 Teitelbaum
5336258 August 9, 1994 Quintero et al.
5352240 October 4, 1994 Ross
5368608 November 29, 1994 Levy et al.
5411552 May 2, 1995 Andersen et al.
5456713 October 10, 1995 Chuter
5509930 April 23, 1996 Love
5549666 August 27, 1996 Hata et al.
5595571 January 21, 1997 Jaffe et al.
5613982 March 25, 1997 Goldstein
5632778 May 27, 1997 Goldstein
5674298 October 7, 1997 Levy et al.
5679112 October 21, 1997 Levy et al.
5683451 November 4, 1997 Lenker et al.
5697972 December 16, 1997 Kim et al.
5713953 February 3, 1998 Vallana et al.
5746775 May 5, 1998 Levy et al.
5755777 May 26, 1998 Chuter
5824041 October 20, 1998 Lenker et al.
5824080 October 20, 1998 Lamuraglia
5840081 November 24, 1998 Andersen et al.
5841382 November 24, 1998 Walden et al.
5843181 December 1, 1998 Jaffe et al.
5876434 March 2, 1999 Flomenblit et al.
5880242 March 9, 1999 Hu et al.
5895420 April 20, 1999 Mirsch et al.
5899936 May 4, 1999 Goldstein
5928281 July 27, 1999 Huynh et al.
5935163 August 10, 1999 Gabbay
5104407 April 14, 1992 Lam et al.
5957949 September 28, 1999 Leonhardt et al.
6001126 December 14, 1999 Nguyen-Thien-Nhon
5061277 October 29, 1991 Carpentier et al.
6077297 June 20, 2000 Robinson et al.
6093530 July 25, 2000 McIlroy et al.
6102944 August 15, 2000 Huynh et al.
6117169 September 12, 2000 Moe
6126685 October 3, 2000 Lenker et al.
6168614 January 2, 2001 Andersen et al.
6177514 January 23, 2001 Pathak et al.
6183481 February 6, 2001 Lee et al.
6200336 March 13, 2001 Pavcnik et al.
6214055 April 10, 2001 Simionescu et al.
6231602 May 15, 2001 Carpentier et al.
6254564 July 3, 2001 Wilk et al.
6254636 July 3, 2001 Peredo
6283995 September 4, 2001 Moe et al.
6287338 September 11, 2001 Sarnowski et al.
6338740 January 15, 2002 Carpentier
6342070 January 29, 2002 Nguyen-Thien-Nhon
6344044 February 5, 2002 Fulkerson et al.
6350278 February 26, 2002 Lenker et al.
6379740 April 30, 2002 Rinaldi et al.
6391538 May 21, 2002 Vyavahare et al.
6425916 July 30, 2002 Garrison et al.
6454799 September 24, 2002 Schreck
6471723 October 29, 2002 Ashworth et al.
6478819 November 12, 2002 Moe
6508833 January 21, 2003 Pavcnik et al.
6509145 January 21, 2003 Torrianni
6521179 February 18, 2003 Girardot et al.
6540782 April 1, 2003 Snyders
6558417 May 6, 2003 Peredo
6558418 May 6, 2003 Carpentier et al.
6572642 June 3, 2003 Rinaldi et al.
6582462 June 24, 2003 Andersen et al.
6585766 July 1, 2003 Huynh et al.
6613086 September 2, 2003 Moe et al.
6682559 January 27, 2004 Myers et al.
6730118 May 4, 2004 Spenser et al.
6736845 May 18, 2004 Marquez et al.
6767362 July 27, 2004 Schreck
6790230 September 14, 2004 Beyersdorf et al.
6808529 October 26, 2004 Fulkerson
6821211 November 23, 2004 Otten et al.
6821297 November 23, 2004 Snyders
6824970 November 30, 2004 Vyavahare et al.
6830584 December 14, 2004 Seguin
6861211 March 1, 2005 Levy et al.
6872226 March 29, 2005 Cali et al.
6881199 April 19, 2005 Wilk et al.
6893460 May 17, 2005 Spenser et al.
6908481 June 21, 2005 Cribier
6911043 June 28, 2005 Myers et al.
6945997 September 20, 2005 Huynh et al.
6974474 December 13, 2005 Pavcnik et al.
7014655 March 21, 2006 Barbarash et al.
7018406 March 28, 2006 Seguin et al.
7037333 May 2, 2006 Myers et al.
7050276 May 23, 2006 Nishiyama
7078163 July 18, 2006 Torrianni
7081132 July 25, 2006 Cook et al.
7137184 November 21, 2006 Schreck
7141064 November 28, 2006 Scott et al.
7163556 January 16, 2007 Xie et al.
7189259 March 13, 2007 Simionescu et al.
7198646 April 3, 2007 Figulla et al.
7201772 April 10, 2007 Schwammenthal et al.
7238200 July 3, 2007 Lee et al.
7252682 August 7, 2007 Seguin
7318278 January 15, 2008 Zhang et al.
7318998 January 15, 2008 Goldstein et al.
7322932 January 29, 2008 Xie et al.
7329278 February 12, 2008 Seguin et al.
7381218 June 3, 2008 Schreck
7393360 July 1, 2008 Spenser et al.
7399315 July 15, 2008 Iobbi
7452371 November 18, 2008 Pavcnik et al.
7473275 January 6, 2009 Marquez
7896915 March 1, 2011 Guyenot et al.
7914575 March 29, 2011 Guyenot et al.
8398704 March 19, 2013 Straubinger et al.
8465540 June 18, 2013 Straubinger et al.
8468667 June 25, 2013 Straubinger et al.
8551160 October 8, 2013 Figulla et al.
20010011187 August 2, 2001 Pavcnik et al.
20010039450 November 8, 2001 Pavcnik et al.
20020032481 March 14, 2002 Gabbay
20020055775 May 9, 2002 Carpentier et al.
20020123790 September 5, 2002 White et al.
20020133226 September 19, 2002 Marquez et al.
20020151970 October 17, 2002 Garrison et al.
20020193871 December 19, 2002 Beyersdorf et al.
20020198594 December 26, 2002 Schreck
20030014104 January 16, 2003 Cribier
20030023300 January 30, 2003 Bailey et al.
20030027332 February 6, 2003 Lafrance et al.
20030036791 February 20, 2003 Philipp et al.
20030036795 February 20, 2003 Andersen et al.
20030040792 February 27, 2003 Gabbay
20030050694 March 13, 2003 Yang et al.
20030055495 March 20, 2003 Pease et al.
20030065386 April 3, 2003 Weadock
20030114913 June 19, 2003 Spenser et al.
20030125795 July 3, 2003 Pavcnik et al.
20030139796 July 24, 2003 Sequin et al.
20030139803 July 24, 2003 Sequin et al.
20030149476 August 7, 2003 Damm et al.
20030149478 August 7, 2003 Figulla et al.
20030153974 August 14, 2003 Spenser et al.
20030195620 October 16, 2003 Huynh et al.
20030236570 December 25, 2003 Cook et al.
20040006380 January 8, 2004 Buck et al.
20040039436 February 26, 2004 Spenser et al.
20040049262 March 11, 2004 Obermiller et al.
20040073289 April 15, 2004 Hartley et al.
20040078950 April 29, 2004 Schreck et al.
20040102855 May 27, 2004 Shank
20040117004 June 17, 2004 Osborne et al.
20040117009 June 17, 2004 Cali et al.
20040148018 July 29, 2004 Carpentier et al.
20040153145 August 5, 2004 Simionescu et al.
20040186558 September 23, 2004 Pavcnik et al.
20040186563 September 23, 2004 Lobbi
20040186565 September 23, 2004 Schreck
20040193244 September 30, 2004 Hartley et al.
20040210301 October 21, 2004 Obermiller et al.
20040210304 October 21, 2004 Seguin et al.
20040210307 October 21, 2004 Khairkhahan
20040260389 December 23, 2004 Case et al.
20050009000 January 13, 2005 Wilhelm et al.
20050033220 February 10, 2005 Wilk et al.
20050033398 February 10, 2005 Seguin
20050043790 February 24, 2005 Seguin
20050049692 March 3, 2005 Numamoto et al.
20050075725 April 7, 2005 Rowe
20050075776 April 7, 2005 Cho
20050096726 May 5, 2005 Sequin et al.
20050096735 May 5, 2005 Hojeibane et al.
20050096736 May 5, 2005 Osse et al.
20050098547 May 12, 2005 Cali et al.
20050113910 May 26, 2005 Paniagua et al.
20050119728 June 2, 2005 Sarac
20050119736 June 2, 2005 Zilla et al.
20050137687 June 23, 2005 Salahieh et al.
20050137688 June 23, 2005 Salahieh et al.
20050137689 June 23, 2005 Salahieh et al.
20050137690 June 23, 2005 Salahieh et al.
20050137697 June 23, 2005 Salahieh et al.
20050137698 June 23, 2005 Salahieh et al.
20050137702 June 23, 2005 Haug et al.
20050143804 June 30, 2005 Haverkost
20050143807 June 30, 2005 Pavcnik et al.
20050149166 July 7, 2005 Schaeffer et al.
20050150775 July 14, 2005 Zhang et al.
20050171597 August 4, 2005 Boatman et al.
20050171598 August 4, 2005 Schaeffer
20050192665 September 1, 2005 Spenser et al.
20050197695 September 8, 2005 Stacchino et al.
20050222668 October 6, 2005 Schaeffer et al.
20050234546 October 20, 2005 Nugent et al.
20050267560 December 1, 2005 Bates
20060009842 January 12, 2006 Huynh et al.
20060025857 February 2, 2006 Bergheim et al.
20060047343 March 2, 2006 Oviatt et al.
20060058864 March 16, 2006 Schaeffer et al.
20060074484 April 6, 2006 Huber
20060074485 April 6, 2006 Realyvasquez
20060111770 May 25, 2006 Pavcnik et al.
20060142846 June 29, 2006 Pavcnik et al.
20060149360 July 6, 2006 Schwammenthal et al.
20060155366 July 13, 2006 LaDuca et al.
20060167543 July 27, 2006 Bailey et al.
20060178740 August 10, 2006 Stacchino et al.
20060193885 August 31, 2006 Neethling et al.
20060210597 September 21, 2006 Hiles
20060224183 October 5, 2006 Freudenthal
20060229718 October 12, 2006 Marquez
20060229719 October 12, 2006 Marquez et al.
20060246584 November 2, 2006 Covelli
20060259134 November 16, 2006 Schwammenthal et al.
20060259136 November 16, 2006 Nguyen et al.
20060259137 November 16, 2006 Artof et al.
20060265056 November 23, 2006 Nguyen et al.
20060271161 November 30, 2006 Meyer et al.
20060287717 December 21, 2006 Rowe et al.
20060287719 December 21, 2006 Rowe et al.
20060290027 December 28, 2006 O'Connor et al.
20060293745 December 28, 2006 Carpentier et al.
20070005129 January 4, 2007 Damm et al.
20070005131 January 4, 2007 Taylor
20070005132 January 4, 2007 Simionescu et al.
20070020248 January 25, 2007 Everaerts et al.
20070021826 January 25, 2007 Case et al.
20070027535 February 1, 2007 Purdy, Jr. et al.
20070032856 February 8, 2007 Limon
20070038291 February 15, 2007 Case et al.
20070038295 February 15, 2007 Case et al.
20070043435 February 22, 2007 Seguin et al.
20070050014 March 1, 2007 Johnson
20070088431 April 19, 2007 Bourang et al.
20070093887 April 26, 2007 Case et al.
20070100435 May 3, 2007 Case et al.
20070100440 May 3, 2007 Figulla et al.
20070112422 May 17, 2007 Dehdashtian
20070123700 May 31, 2007 Ueda et al.
20070123979 May 31, 2007 Perier et al.
20070142906 June 21, 2007 Figulla et al.
20070162103 July 12, 2007 Case et al.
20070173932 July 26, 2007 Cali et al.
20070179592 August 2, 2007 Schaeffer
20070185565 August 9, 2007 Schwammenthal et al.
20070203576 August 30, 2007 Lee et al.
20070213813 September 13, 2007 Von Segesser et al.
20070239271 October 11, 2007 Nguyen
20070244551 October 18, 2007 Stobie
20070260327 November 8, 2007 Case et al.
20070288087 December 13, 2007 Fearnot et al.
20080004688 January 3, 2008 Spenser et al.
20080021546 January 24, 2008 Patz et al.
20080033534 February 7, 2008 Cook et al.
20080065011 March 13, 2008 Marchand et al.
20080071361 March 20, 2008 Tuval et al.
20080071362 March 20, 2008 Tuval et al.
20080071363 March 20, 2008 Tuval et al.
20080071366 March 20, 2008 Tuval et al.
20080071368 March 20, 2008 Tuval et al.
20080071369 March 20, 2008 Tuval et al.
20080077236 March 27, 2008 Letac et al.
20080086205 April 10, 2008 Gordy et al.
20080097586 April 24, 2008 Pavcnik et al.
20080102439 May 1, 2008 Tian et al.
20080133003 June 5, 2008 Seguin et al.
20080140189 June 12, 2008 Nguyen et al.
20080154355 June 26, 2008 Benichou et al.
20080200977 August 21, 2008 Paul et al.
20080215143 September 4, 2008 Seguin
20080255661 October 16, 2008 Straubinger et al.
20080262602 October 23, 2008 Wilk et al.
20080269878 October 30, 2008 Iobbi
20080275549 November 6, 2008 Rowe
20090216310 August 27, 2009 Straubinger et al.
20090216313 August 27, 2009 Straubinger et al.
20090222076 September 3, 2009 Figulla et al.
20090234443 September 17, 2009 Ottma et al.
20100174362 July 8, 2010 Straubinger et al.
20100249915 September 30, 2010 Zhang
20100249916 September 30, 2010 Zhang
20100249917 September 30, 2010 Zhang
20100249918 September 30, 2010 Zhang
20100292779 November 18, 2010 Straubinger et al.
20110015616 January 20, 2011 Straubinger et al.
20110106244 May 5, 2011 Ferrari et al.
20110238159 September 29, 2011 Guyenot et al.
20110288626 November 24, 2011 Straubinger et al.
20110295363 December 1, 2011 Girard et al.
20130079869 March 28, 2013 Straubinger et al.
20130144203 June 6, 2013 Wilk et al.
20130178930 July 11, 2013 Straubinger et al.
20130253635 September 26, 2013 Straubinger et al.
Foreign Patent Documents
2006308187 May 2007 AU
2006310681 May 2007 AU
2436258 January 2005 CA
2436258 January 2005 CA
2595233 July 2006 CA
2595233 July 2006 CA
2627555 May 2007 CA
19 546 692 June 1997 DE
20 00 3874 June 2000 DE
19 857 887 July 2000 DE
10 010 073 September 2001 DE
10 010 074 October 2001 DE
10 121 210 November 2002 DE
19 546 692 November 2002 DE
101 21 210 November 2002 DE
19546692 November 2002 DE
10 301 026 February 2004 DE
10335948 July 2004 DE
10 302 447 February 2005 DE
10 010 074 April 2005 DE
19857887 May 2005 DE
10 010 073 December 2005 DE
10 2005 051 849 May 2007 DE
10 2005 052628 May 2007 DE
20 2007 005 491 July 2007 DE
0 084 395 July 1983 EP
0458877 August 1990 EP
0 402 036 December 1990 EP
0 402 176 December 1990 EP
0402176 December 1990 EP
0 458 877 April 1991 EP
0 515 324 November 1992 EP
0 547 135 June 1993 EP
0871414 September 1995 EP
0 592 410 October 1995 EP
0756498 October 1995 EP
0 592 410 November 1995 EP
0786970 May 1996 EP
0 729 364 September 1996 EP
0 756 498 May 1997 EP
0 778 775 June 1997 EP
0786970 August 1997 EP
0888142 September 1997 EP
0971649 October 1998 EP
0 928 615 July 1999 EP
1051204 July 1999 EP
1089676 December 1999 EP
0 986 348 March 2000 EP
1117446 April 2000 EP
1 164 976 August 2000 EP
1158937 September 2000 EP
1 041 942 October 2000 EP
1 041 943 October 2000 EP
1171061 October 2000 EP
1206179 February 2001 EP
1 117 446 July 2001 EP
1 255 510 August 2001 EP
1259193 September 2001 EP
1 206 179 May 2002 EP
1347785 August 2002 EP
1235537 September 2002 EP
1 251 804 October 2002 EP
1248655 October 2002 EP
1251804 October 2002 EP
1257305 November 2002 EP
0 971 649 December 2002 EP
1395208 December 2002 EP
1 401 359 January 2003 EP
1406561 January 2003 EP
1 281 375 February 2003 EP
1281357 February 2003 EP
1281375 February 2003 EP
1408882 February 2003 EP
1 435 878 April 2003 EP
1 435 879 April 2003 EP
1 441 672 June 2003 EP
1 017 868 September 2003 EP
1354569 October 2003 EP
1494616 October 2003 EP
1 519 697 January 2004 EP
1 539 047 April 2004 EP
1551274 April 2004 EP
1 560 542 May 2004 EP
1414295 May 2004 EP
1 452 153 September 2004 EP
1 603 493 September 2004 EP
1452153 September 2004 EP
0 987 998 October 2004 EP
1 087 727 November 2004 EP
1 233 731 December 2004 EP
1 499 366 January 2005 EP
1 663 070 March 2005 EP
1 253 875 April 2005 EP
1 667 614 April 2005 EP
1 251 803 June 2005 EP
1 702 247 July 2005 EP
1734902 August 2005 EP
1 469 797 November 2005 EP
1835948 June 2006 EP
1 690 515 August 2006 EP
1863545 September 2006 EP
1893132 November 2006 EP
1901681 December 2006 EP
1 251 805 March 2007 EP
1 255 510 March 2007 EP
1835948 September 2007 EP
1 112 042 November 2007 EP
1 878 407 January 2008 EP
1 886 649 February 2008 EP
1 900 343 March 2008 EP
1 259 195 October 2008 EP
1 980 220 October 2008 EP
1259195 October 2008 EP
1 99 4913 November 2008 EP
2 000 115 December 2008 EP
2 828 263 February 2003 FR
2433700 July 2007 GB
2440809 February 2008 GB
2003-523262 August 2003 JP
2003-524504 August 2003 JP
2005-118585 May 2005 JP
2007-296375 November 2007 JP
WO 90/09102 August 1990 WO
WO 95/11055 April 1995 WO
WO 95/24873 September 1995 WO
WO 95/28183 October 1995 WO
WO 96/13227 May 1996 WO
WO 97/32615 September 1997 WO
WO 98/43556 October 1998 WO
WO 98/46165 October 1998 WO
WO 99/37337 July 1999 WO
WO-99/66863 December 1999 WO
WO 00/15148 March 2000 WO
WO 00/18445 April 2000 WO
WO 00/25702 May 2000 WO
WO 00/47139 August 2000 WO
WO 00/53125 September 2000 WO
WO 00/62714 October 2000 WO
WO 01/10209 February 2001 WO
WO 01/35870 May 2001 WO
WO 01/41679 June 2001 WO
WO 01/51104 July 2001 WO
WO 01/54625 August 2001 WO
WO 01/58503 August 2001 WO
WO 01/62189 August 2001 WO
WO 01/64137 September 2001 WO
WO 02/36048 May 2002 WO
WO 02/058745 August 2002 WO
WO 02/100301 December 2002 WO
WO 02/102286 December 2002 WO
WO 03/003949 January 2003 WO
WO 03/007795 January 2003 WO
WO 03/009785 February 2003 WO
WO 03/011195 February 2003 WO
WO 03/013239 February 2003 WO
WO 03/028592 April 2003 WO
WO 03/047468 June 2003 WO
WO 03/079928 October 2003 WO
WO 03/096935 November 2003 WO
WO 2004/004597 January 2004 WO
WO 2004/016200 February 2004 WO
WO 2004/016201 February 2004 WO
WO 2004/019825 March 2004 WO
WO 2004/026117 April 2004 WO
WO 2004/026173 April 2004 WO
WO 2004/028399 April 2004 WO
WO 2004/043301 May 2004 WO
WO 2004/082527 September 2004 WO
WO 2004/082528 September 2004 WO
WO 2004/096100 November 2004 WO
WO 2005/021063 March 2005 WO
WO 2005/034812 April 2005 WO
WO 2005/062980 July 2005 WO
WO 2005/062980 July 2005 WO
WO 2005/063980 July 2005 WO
WO 2005/070343 August 2005 WO
WO 2005/072654 August 2005 WO
WO 2006/066327 June 2006 WO
WO 2006/076890 July 2006 WO
WO 2006/102063 September 2006 WO
WO 2006/108090 October 2006 WO
WO 2006/124649 November 2006 WO
WO 2006/127756 November 2006 WO
WO 2006/127765 November 2006 WO
WO 2006/132948 December 2006 WO
WO 2007/047488 April 2007 WO
WO 2007/047945 April 2007 WO
WO 2007/051620 May 2007 WO
WO 2007/059252 May 2007 WO
WO 2007/071436 June 2007 WO
WO 2007/098232 August 2007 WO
WO 2007/120543 October 2007 WO
WO 2008/028569 March 2008 WO
WO 2008/035337 March 2008 WO
WO 2008/045949 April 2008 WO
WO 2008/070797 June 2008 WO
WO 2006/076890 July 2008 WO
WO 2008/079962 July 2008 WO
WO 2008/101083 August 2008 WO
WO 2008/125153 October 2008 WO
WO 2008/138584 November 2008 WO
WO 2008/150529 December 2008 WO
Other references
  • Aortenklappenbioprothese erfolgreich in der Entwicklung, May 16, 2003 (1 page).
  • English translation of Aortenklappenbioprotheseerfolgreich in der Entwicklung (2 pages).
  • Screen shots from http://www.fraunhofer.de/presse/filme/2006/index.jsp, 2006 (2 pages).
  • Liang, Ma, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” Eur. J. Cardio-Thoracic Surgery, vol. 28, pp. 194-198 (2005) (5 pages).
  • Huber, Christoph H., et al. “Direct Access Valve Replacement (DAVR)—are we entering a new era in cardiac surgery?” Eur. J. Cardio-Thoracic Surgery, vol. 29, pp. 380-385 (2006) (6 pages).
  • English translation of DE 19 546 692 A1 (4 pages).
  • English translation of EP 1 469 797 B1 (16 pages).
  • International Search Report for PCT/EP2006/010023.
  • Klein, Allan L. et al., “Age-related Prevalence of Valvular Regurgitation in Normal Subjects: A Comprehensive Color Flow Examination of 118 Volunteers,” J. Am. Soc. Echocardiography, vol. 3, No. 1, pp. 54-63 (1990) (10 pages).
  • Gummert, J.F. et al., “Cardiac Surgery in Germany During 2007: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 56, pp. 328-336 (2008) (9 pages).
  • Gummert, J.F. et al., “Cardiac Surgery in Germany During 2006: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 55, pp. 343-350 (2007) (8 pages).
  • File history for Geman Patent DE 195 46 692 filed Dec. 14, 1995 and patented Jul. 11, 2002.
  • International Search Report for PCT/EP2006/010023, Mar. 23, 2007.
  • Aortenklappenbioprothese erfolgreich in der Entwicklung, (1 page) May 16, 2003.
  • Translation of Aortenklappenbioprothese erfolgreich in der Entwicklung ( 2 pages).
  • Screen shots from http://www.fraunhofer.de/presse/filme/2006/index.jsp (2 pages), 2006.
  • Liang, Ma, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, 194-198 (5 pages), Jun. 13, 2005.
  • Huber, Christoph, et al. “Direct Access Valve Replacement (DAVR)—are we entering a new era in cardiac surgery?” European Journal of Cardio-Thoracic Surgery, 380-385, (6 pages), Jan. 19, 2006.
  • Translation of DE 19546692 A1 (4 pages), Jun. 19, 1997.
  • Translation of EP 1469797 B1 (16 pages), Feb. 11, 2005.
Patent History
Patent number: RE45790
Type: Grant
Filed: Aug 7, 2014
Date of Patent: Nov 3, 2015
Assignee: JENAVALVE TECHNOLOGY GMBH (Munich)
Inventors: Hans-Reiner Figulla (Jena), Markus Ferrari (Jena), Christoph Damm (Jena)
Primary Examiner: Catherine S Williams
Application Number: 14/454,285
Classifications
Current U.S. Class: Annular Member For Supporting Artificial Heart Valve (623/2.38)
International Classification: A61F 2/24 (20060101);