Device for the implantation and fixation of prosthetic valves
A device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent (10) with a prosthetic heart valve (11) at its proximal end is introducible into a patient's main artery. With the objective of optimizing such a device to the extent that the prosthetic heart valve (11) can be implanted into a patient in a minimally-invasive procedure, to ensure optimal positioning accuracy of the prosthesis (11) in the patient's ventricle, the device includes a self-expanding positioning stent (20) introducible into an aortic valve positioned within a patient. The positioning stent is configured separately from the heart valve stent (10) so that the two stents respectively interact in their expanded states such that the heart valve stent (10) is held by the positioning stent (20) in a position in the patient's aorta relative the heart valve predefinable by the positioning stent (20).
Latest JENAVALVE TECHNOLOGY GMBH Patents:
- Methods of implanting an endoprosthesis
- Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
- Medical device for treating a heart valve insufficiency or stenosis
- Stent for the positioning and anchoring of a valvular prosthesis
- Device for the implantation and fixation of prosthetic valves
1. Field of the Invention
The present invention relates to a device for the transvascular implantation and fixation of prosthetic heart valves having a self-expanding heart valve stent with a prosthetic heart valve at its proximal end.
2. Background Information
A device of this type is, in principle, known to medical technology. At present, biological or mechanical valve models are available to substitute for human heart valves which are usually fixedly sewn into the bed of the heart valve during a surgical procedure through an opening in the chest after removal of the diseased heart valve. In this surgical procedure, the patient's circulation must be maintained by a heart-lung machine, whereby cardiac arrest is induced during the implantation of the prosthetic heart valve. This consequently makes the surgical procedure a risky one coupled with the associated risks for the patients and a lengthy post-operative treatment phase. In particular, such a procedure cannot be performed on patients whose hearts are already too weak.
Minimally-invasive treatment procedures of recent development are characterized in particular by requiting a considerably shortened duration of anesthesia. One approach provides for implanting a self-expanding prosthetic heart valve with an artificial heart valve and a collapsible and expandable stent connected to the heart valve into the human body by means of an appropriate catheter system. The catheter system is used to guide such a self-expanding prosthetic heart valve through a femoral artery or vein to its site of implantation at the heart. After reaching the site of implantation, the stent, which consists for example of a plurality of self-expanding stent segments which can be bent relative one another in the longitudinal direction, can then be successively expanded. Following the expansion, anchoring hooks can for example support the anchoring of the prosthetic heart valve at least in the respective blood vessel close to the heart. The actual prosthetic heart valve itself is thereby in the direct proximal area of the stent.
Known for example from the DE 100 10 074 AI printed publication is a device for fastening and anchoring prosthetic heart valves, which is essentially formed from wire-shaped interconnected elements. The device provides for using various different arched elements in order to attain a secure retention and support for the prosthetic heart valve. To this end, the device described in this printed publication makes use of three identical pairs of arched elements, offset from one another by 120°. These arched elements are interconnected by means of solid articulations, whereby the solid articulations fulfill the function of pivot bearings. Additional arched elements bent opposite to each other are furthermore provided which form rocker arms as equal in length as possible in order to achieve a secure anchoring of the arched elements even when subject to peristaltic actions on the heart and blood vessels and a solid sealing for an implanted and anchored prosthetic heart valve.
In the known solutions, however, there is a risk of heart valve implant malalignment. This essentially refers to the exact positioning and angular adjustment of the prosthetic heart valve to be implanted. In particular, it is only with immense skill on the part of the person performing the implantation—if at all—that a stent with the prosthetic heart valve at its proximal end winds up being positioned so precisely in the proximity of the patient's diseased heart valve that both sufficient lateral positioning accuracy as well as a suitable angular position to the prosthetic heart valve can be optimally ensured. The known solutions are also only conditionally suitable for explanting improperly or incorrectly positioned prosthetic heart valves. Such a process is usually only possible with great effort; in particular, a further surgical procedure is required.
Among other complications, an implantation malalignment of a less than optimally positioned prosthetic heart valve can lead to, for example, leakage or valvular regurgitation, which puts a substantial burden on the ventricle. Should, for example, a prosthetic heart valve be implanted too high above the actual heart valve plane, this can lead to occlusion of the coronary artery origination (coronaries) and thus to a fatal coronary ischemia with myocardiac infarction. It is therefore imperative for an implanted prosthetic heart valve to meet all the respective requirements for both the accuracy of the lateral positioning as well as the angular positioning.
In conventional implantation techniques in which self-expanding prosthetic heart valves are, for example, guided through a patient's femoral artery to the site of deployment at the heart in a minimally-invasive procedure, the prosthesis is usually introduced using a guide wire and catheters, whereby conventional balloon catheters can also be used. Although such a surgical introduction can be monitored and controlled, for example with fluoroscopy (Cardiac Catheterization Laboratory=CCL) or with ultrasound (Trans-esophageal Echocardiogram=TEE), oftentimes—due to the limited maneuverability of the prosthetic heart valve which is still in a collapsed state during the introduction procedure and despite being in the collapsed state is still of relatively large size—it is not possible to ensure the required positioning accuracy and especially the angular position to the prosthetic heart valve implant with the corresponding anchoring elements affixed thereto. In particular—as a result of a possible coronary artery occlusion—an anglular misalignment to the implanted prosthetic heart valve from the optimum site of deployment can pose a threat to the respective patient.
In designing a prosthetic heart valve, special consideration must, in particular, be given to the substantial forces also acting on the prosthesis during the filling period of the cardiac cycle (diastole), necessitating a secure anchorage in order to prevent the implanted prosthetic heart valve from dislodging.
Hence on the one hand, the prosthetic heart valve must be able to be maneuvered as much as possible in the respective coronary artery during the implantation procedure so as to ensure optimum positioning accuracy and, on the other hand, the implanted prosthesis must be able to be firmly anchored at its site of implantation in order to effectively prevent subsequent prosthesis misalignment.
The present invention addresses the problem that the known devices for transvascular implantation and fixation of prosthetic heart valves are often not suitable for easily implanting a prosthetic heart valve in a patient's ventricle with the necessary positioning accuracy. In particular, the necessary lateral positioning accuracy and the angular position of the prosthetic heart valve can usually only be sufficiently guaranteed when the person performing the procedure has the corresponding experience. On the other hand, explanting a previously implanted prosthetic heart valve in a minimally-invasive procedure or accordingly correcting an incorrectly positioned prosthetic heart valve has to date is only been possible with great effort, if at all.
On the basis of this problem as set forth, the present invention proposes a device which enables a prosthetic heart valve to be implanted into a patient in a minimally-invasive procedure in as simple a manner as possible, wherein an increased positioning accuracy to the prosthesis in the patient's ventricle can in particular be ensured. Such a device is to, in particular, reduce the risk of an incorrect deployment to the greatest extent possible.
SUMMARY OF THE INVENTIONAccording to the invention, this task is solved by a device as described at the outset by the device having, in addition to the self-expanding heart valve stent with a prosthetic heart valve at its proximal end, a self-expanding positioning stent insertable into a position in the patient's aortic valve, which is configured separate from the heart valve stent, wherein the positioning stent and the heart valve stent are configured such that they each work in concert in their expanded states so that the positioning stent helps to hold the heart valve stent in a position relative the patient's heart valve predefined by the positioning stent.
The device according to the invention exhibits an entire array of substantial advantages over the prosthetic heart valves known from the prior art and described above. The two-part configuration of the device in the design of the heart valve stent and the positioning stent configured separately therefrom can, in particular, greatly increase the positioning accuracy of the prosthetic heart valve in the patient's ventricle. The positioning stent hereby primarily assumes the function of determining the position of the prosthetic heart valve in the patient's ventricle as well as the function of anchoring or fixing the prosthesis at optimum placement. In particular, the prosthetic heart valve is not on or in the positioning stent, but instead configured separately from the positioning stent on the heart valve stent This has the advantage that the dimensions of the positioning stent in its collapsed state are extremely small, which increases the stent's maneuverability.
The heart valve stent primarily serves the inventive device only as a supporting structure for the prosthetic heart valve to be implanted. This function sharing enables both the positioning stent as well as the heart valve stent to be of relatively simple configuration. What can be achieved in particular is that compared to a stent on which both a prosthetic heart valve as well as means for positioning and fixing the prosthetic heart valve are arranged, the positioning stent can be configured to exhibit only relatively small dimensions in its collapsed state. Inserting the positioning stent in the patient's artery is thus—due to the better maneuverability achieved—substantially simpler. A direct consequence of this is increased positioning accuracy for the positioning stent.
The device according to the invention is configured in such a manner that not until the positioning stent is positioned into the patient's artery and after aligning the stent with respect to a predefinable axial rotation and horizontal position relative an (old) heart valve of the patient is the heart valve stent configured separately from the positioning stent inserted into the artery or vein. During the insertion procedure, the heart valve stent, which has the prosthetic heart valve at its proximal end, independently orientates itself to the exactly-positioned positioning stent as fixed at the arterial wall. Specifically, the heart valve stent is independently guided within the expanded positioning stent into the implantation position predefined by the positioning stent at which the prosthetic heart valve is in an optimum position relative the patient's old heart valve. After the heart valve stent, aided by the positioning stent, has positioned into the coronary artery in the predefined position relative the old heart valve, the full expansion of the heart valve stent is induced, for example by an external manipulation, as a consequence of which the heart valve stent according to the invention interacts with the positioning stent in such a way that the heart valve stent, and thus also the prosthetic heart valve disposed at its proximal end, is positionally fixed into the implantation position. Accordingly, the positioning stent serves—in addition to the already mentioned function of defining the position for the prosthetic heart valve in the patient's ventricle and the function of anchoring or fixing the prosthesis at this position—also the function of guiding the heart valve stent into the optimum position for the prosthetic heart valve during the implantation procedure. The advantages attainable with the inventive device are obvious: in particular, an optimum positioning is enabled for the prosthetic heart valve in its final implanted position, whereby the alignment and fixing of the prosthetic heart valve ensues independently based on the co-operative action of the heart valve stent and the positioning stent. On the one hand, a position-contingent, inaccurate implantation of the prosthetic heart valve can hereby be excluded. On the other hand, the device is characterized by the implantation and anchoring of the prosthetic heart valve ensuing in a particularly simple manner.
Because the positioning stent according to the invention is configured to be an insertable, self-expanding component in a patient's blood vessel, it can be inserted beforehand; i.e., prior to the actual implantation of the prosthetic heart valve disposed at the proximal end of the heart valve stent. It would thus be conceivable here for the positioning stent to first be brought into the aorta and optimally positioned and fixed there, whereby the heart valve stent with the prosthetic heart valve is thereafter introduced and inserted optimally by means of the positioning stent already in position and fixed there.
According to the invention, both the heart valve stent as well as the positioning stent are configured to self-expand, which facilitates the respective introduction of these components. Because the positioning stent assuming the task of determining the position for the heart valve stent, the prosthetic heart valve disposed thereon respectively, can be configured to be substantially smaller in comparison to previous self-expanding prosthetic heart valves, the maneuverability of the positioning stent is increased considerably, which ultimately results in being able to select an extremely precise position at which the positioning stent is anchored relative the heart valve and one ideally adapted to the respective requirements. This advantage of exact positioning of the easily-maneuvered and minutely-configured positioning stent extends to the subsequent implantation of the prosthetic heart valve since the heart valve stent, at the proximal end of which the prosthetic heart valve is arranged, is held in the position defined by the (optimally positioned) positioning stent.
Advantageous further developments of the inventive device are specified in the dependent claims.
One particularly advantageous development with respect to insertion of the heart valve stent provides for the heart valve stent to be configured to be reversibly expandable and collapsible. It is thereby conceivable for the heart valve stent to be collapsed, for example via external manipulation, and extracted using an explantation catheter. Specifically, this embodiment enables the heart valve stent in collapsed form to be connectably received in a cartridge of a positioning catheter, an explantation catheter respectively. In order for the heart valve stent to be optimally inserted into a patient's blood vessel and positioned there in a predefined position relative the heart valve, it is necessary for the positioning stent to be as small as possible in its collapsed state so that the stent can be optimally navigated with as little impact as possible on the heart valve. This is achieved by the prosthetic heart valve implant not being affixed to the positioning stent but rather to the heart valve stent. The positioning stent is furthermore configured such that all the components of the stent in the collapsed state have a certain measure of pretensioning acting in a radially outward direction which effects the self-expansion following release from the cartridge. The positioning stent can then be implanted with the cartridge in conventional manner using a positioning stent catheter, for example through a femoral artery. Should the positioning stent be inaccurately deployed, for example if the positioning stent is not positioned precisely accurately in the patient's aorta, or when an explantation of the positioning stent is necessary for other reasons, it is provided for the positioning stent to be convertible from its expanded state back into its collapsed state. This is done for example by external manipulation using an implantation catheter. The positioning stent is thus fully reversibly withdrawable in the catheter, which enables the stent to be completely removed.
The inventive device for transvascular implantation and fixation of prosthetic heart valves can advantageously provide for the positioning stent to have an anchorage at its proximal end, in particular an anchoring support, whereby this anchoring support is configured such that the positioning stent self-positions into a pre-defined position relative the patient's heart valve in its expanded state and is held by means of the anchoring support. The positioning stent is thereby configured such that the anchoring support is received in collapsed form in a cartridge connectable with a catheter. The anchoring support is thereby to be compressed such that it is pretensioned in a radially outward direction which effects the self-expansion following release from the cartridge. Configuring the positioning stent so that it self-positions into a given position relative the patient's heart valve in its expanded state and is held there by means of the anchoring support enables the position of the positioning stent and thus the position of the heart valve stent to be precisely definable beforehand so that inaccurate implantations, as can occur with the known solutions, can be excluded.
In order to facilitate the positioning stent's self-expansion, the positioning stent can advantageously furthermore exhibit pretensioning elements in order to radially pretension the positioning stent in its position defined by the anchorage. The pretensioning elements are thereby also configured to be reversible so that their pretensioning function can be countermanded by external manipulation, which enables the positioning stent to be collapsed and thus be retracted into a catheter, enabling the positioning stent to be removed completely.
An advantageous realization of the latter embodiment provides for the anchoring support to have at least one support strut which is configured such that it self-positions into the pockets of the patient's heart valve in the expanded state of the positioning stent and thus fixes the orientation of the positioning stent relative the heart valve in the axial and horizontal direction. Hereby conceivable would be, for example, that the support struts configured at the proximal end of the positioning stent implant independently in the pockets of the respective patient's heart valve during the implantation procedure, whereby the pockets of the heart valve form a counter bearing for counteracting the proximal insertion motion so that the anchoring supports can be precisely positioned laterally with the positioning stent. Since the pockets represent a guide per se for the support struts during insertion, this ensures at the same time that the anchoring support and the positioning stent can adopt a precise angular position. Only after the support struts have been introduced into the pockets of the respective patient's heart valve and the final position for the positioning stent has been reached is the heart valve stent configured separately from the positioning stent deployed with the help of, for example, a heart valve catheter. The heart valve stent exhibiting the prosthetic heart valve at its proximal end is then optimally implanted at the most favorable and ideal site by means of the positioning stent already having been exactly positioned and fixed. To be mentioned as a further advantage is that the support struts of the positioning stent are positioned at the patient's heart valve following implantation of the positioning stent. Because the positioning stent is of relatively simple configuration, since it for example does not comprise the prosthetic heart valve which is disposed separately from the positioning stent on the heart valve stent, the struts of the positioning stent can exhibit a relatively large radius, which entails a lesser risk of injury to the heart valve.
The support strut disposed on an anchoring support or anchorage should be curved convexly and arcuately in the proximal direction because such a rounded form wards off injuries to the heart's blood vessel as well as facilitates the unfolding in the self-expansion process. With such a design, inserting the support struts into the pockets of the old heart valve is thus likewise easier without engendering any corresponding injuries to the tissue or the blood vessels of the region.
Additional stabilizing struts can also be provided on the anchoring supports, which achieves increased fixedness following the self-expansion of the anchored anchoring supports. Such stabilizing struts can be advantageous since in order to benefit from the self-expansion effect required of an anchoring support for securely fixing the anchoring support with the positioning stent, accepting that the anchoring supports collapsed within a cartridge during the introduction phase must be of the smallest volume possible, small cross-sections for the respective struts must be maintained.
All the struts of an anchoring support should thereby be arranged, configured and dimensioned such that the successively ensuing release of the supporting struts and the other struts with the further elements provided on an anchoring support, as the case may be, can be achieved by the appropriate manipulation of cartridge and/or catheter. In so doing, the design of the cartridge or at least a portion of the cartridge should, of course, also be taken into consideration.
Corresponding to physical anatomy, three supporting struts each arranged at the same angular spacing from one another on the anchoring support should be provided. Yet there is also the possibility of arranging each of the supporting struts disposed on an anchoring support to be at an angular offset from one another. In this case, the supporting struts with their proximal members are then introduced into the pockets of an old heart valve in the implanted state and the old heart valve can then be tightly secured and fixed with the supporting struts.
The stability of an implanted and fixed positioning stent can be optimally increased by means of at least one ring support, which can be an element on an anchoring support. Thus, by means of such a ring support, the possibility exists of connecting different struts provided on an anchoring support, preferably at their bases. It is thereby not imperative to provide a connection between the ring support and all the struts of an anchoring support.
After the positioning stent is positioned at the heart and held there by the anchorage, the heart valve stent is introduced. It is hereby advantageously provided for the heart valve stent to be configured such that the prosthetic heart valve in its expanded state presses the patient's heart valve against the aorta wall, whereby the at least one anchorage of the positioning stent positions between the aorta wall and the heart valve expanded by the prosthetic heart valve.
In order to have the heart valve stent be held in a position defined by the positioning stent relative the patient's heart valve using the positioning stent, the positioning stent has at least one engaging element at its distal end. The heart valve stent should thereby exhibit a correspondingly complementary-configured retaining element at its distal end, whereby in the expanded state of the positioning stent and in the fully expanded state of the heart valve stent, the at least one retaining element forms a positive connection with the at least one engaging element of the positioning stent. This thus achieves the positioning of the prosthetic heart valve in the coronary artery in the position predefined by the positioning stent and it being held there by the positioning stent. It would hereby be conceivable to provide engaging clips on the heart valve stent. The engaging clips are thereby among the elements of the heart valve stent which are not released to expand until the heart valve stent is accurately inserted into its implantation deployment site at the patient's heart valve by means of the already implanted positioning stent. When the engaging clips of the heart valve stent expand, they engage with the engaging elements of the positioning stent and thus hold the heart valve stent in the position given by the positioning stent. At the same time, portions of the respective patient's old heart valve then each work into an anchoring strut of the positioning stent and the expanded prosthetic heart valve so that the respective portions of the old heart valve can be clamped and held between these elements following the successful expanding of the prosthetic heart valve, similar to how a sheet of paper is held between the brackets of a paper clip.
The heart valve stent is in particular configured such that it does not adopt its fully expanded state, in which both the prosthetic heart valve as well as also the retaining element is released, until the heart valve stent is in the position as defined by the positioning stent.
As is the case with the positioning stent, the heart valve stent is also advantageously configured to be reversible in its folding action, whereby the positive connection with the positioning stent is disengaged in the collapsed state. This thus allows the prosthetic heart valve disposed on the heart valve stent to again be explanted, for example in the case of an improper implantation, without also having to extract the positioning stent in order to do so.
In order to facilitate explantation of the heart valve stent, explantation elements can be provided at the distal end of the heart valve stent which work in concert with the heart valve stent such that when externally manipulated, for example, the explantation elements disengage the positive connection between the heart valve stent and the positioning stent, and the heart valve stent collapses. One advantageous realization of the explantation elements provides for their being engageable, for example by means of an explantation catheter, whereby retracting the explantation elements in the explantation catheter disengages the positive connection between the heart valve stent and the positioning stent, and the heart valve stent folds back up.
The heart valve stent is advantageously accommodated in the collapsed state in a cartridge connectable to a heart valve stent catheter and/or explantation catheter, whereby a predefinable motion of the cartridge will release the heart valve stent. Specifically, it is thereby advantageously provided that a predefinable first motion of the cartridge will only release the prosthetic heart valve to expand, whereby the retaining element of the heart valve stent is released by at least one second subsequent motion of the cartridge, the catheter respectively.
It can be advantageous, in particular for the subsequent cartridge and catheter movement, which leads to the sequential release of the individual elements of the heart valve stent, to use a multi-part cartridge, whereby at least two individual parts can each be moved relative one another. Hence, the movements of a cartridge or individual parts of a cartridge to be realized, for example so as to lead to self-expansion, can be a proximal and/or distal displacement, which can ensue in several successive stages, each covering different paths in order to successively release the corresponding parts for their respective expansion during implantation.
Thus, a first movement, for example, can be a distal retraction of the cartridge or a portion of a cartridge. Should it hereby be necessary so as to avoid inaccurate implantation, a proximal movement of the cartridge or a portion of a cartridge can then be effected to re-collapse the already-expanded retaining elements acting radially outwardly with a pretensioning force, the prosthetic heart valve of the heart valve stent respectively, and to bring same into the interior of the cartridge so as to enable the device to be removed from the patient. Bowden cables or flexible push tubes guided through the interior of the catheter to the cartridge or to a portion of the cartridge can be used as the actuating elements for a manipulation and the associated displacing movement of the cartridge or individual parts of the cartridge. Such actuating elements can, however, also engage with fastening elements, for example eyelets, provided on the anchoring support.
The solution according to the invention thus also provides the possibility of aborting prosthetic heart valve implantations which will be unsuccessful and removing the device again by withdrawing the catheter, whereby in so doing, the heart valve stent which has already expanded re-collapses again and can be guided back into a cartridge or a portion of a cartridge.
An advantageous further development of the device according to the invention provides for the positioning stent to furthermore comprise anchoring elements, in particular hooks, in order to anchor the positioning stent in its predefinable position at the heart. Additionally or alternatively to the positioning stent, it would be conceivable for the heart valve stent to also comprise anchoring elements such as hooks, for example, in order to anchor the heart valve stent in the position in the aorta as predefined by the positioning stent. Both solutions ultimately serve the secure fixing of the implanted prosthetic heart valve at its site of implantation as predefined by the positioning stent.
In order to facilitate spatial orientation when inserting the positioning stent, markers can be disposed on the positioning stent, in particular x-ray markers. Of course, other solutions are also conceivable. For example, insertion of the positioning stent can also be monitored and controlled using fluoroscopy (Cardiac Catheterization Laboratory=CCL) or ultrasound (Transesophageal Echocardiogram=TEE).
The positioning stent and/or the heart valve stent can furthermore exhibit guiding means which are configured in such a manner that the heart valve stent is guided independently in the expanded positioning stent into the position predefined by the positioning stent. It would hereby be conceivable for the guiding means to be configured as elements tapering to the distal end of the positioning stent, the heart valve stent respectively, so as to realize a self-adjusting of the heart valve stent in the positioning stent and thus into the position predefined by the positioning stent.
The device according to the invention can also be used together with a balloon catheter. With a balloon catheter, the old heart valve can be pushed away prior to the self-expansion of the anchoring support.
The following will make reference to the figures in describing preferred embodiments of the device according to the invention for the implantation and fixation of prosthetic heart valves in greater detail.
In the drawings:
FIGS. 3A,B: one schematic representation each to illustrate the explantation process with a preferred embodiment of the heart valve stent, and
The positioning stent 20 is configured as a self-expanding component. Due to the simple configuration of positioning stent 20, which essentially consists only of anchoring segment 21′, docking segment 24′ and shoulders 22, the positioning stent 20 exhibits extremely small dimensions when in its collapsed state. Thus, when inserting positioning stent 20, for example using a positioning stent catheter, the positioning stent 20 has very good maneuverability within aorta A. After positioning stent 20 has been inserted into aorta A, it is expanded, enabled, for example, by means of an external manipulation of the positioning stent catheter. The anchoring supports 21 of the expanded positioning stent 20 self-position into the pockets T of the patient's heart valve, whereby the alignment of the positioning stent 20 in the axial and horizontal direction is fixed relative the heart valve. So that the positioning stent 20 will expand independently, suitable pretensioning elements can be (optionally) provided. In the embodiment as shown, pretensioning elements are realized in the form of anchoring supports 21.
After positioning stent 20 is inserted into aorta A and positioned and fixed there as described above, a heart valve stent 10 (
Unlike conventional heart valve stents, the heart valve stent 10 of the present device does not have retaining clips to engage behind the old heart valve but rather engaging clips in the form of retaining elements 12 in the anchoring segment 12′ of heart valve stent 10. These engaging clips interact with the engaging elements 24 disposed in the docking segment 24′ of positioning stent 20. The advantage of this is that the heart valve stent 10 is commutably anchored in positioning stent 20. By means of its self-expanding induced by guide means 17, 27, heart valve stent 10 independently slides inside positioning stent 20 and cannot slide any further. The guide means 17, 27 are configured as elements tapering to the distal end of positioning stent 20 and/or heart valve stent 10. Due to the special design of engaging elements 23 of positioning stent 20 and the retaining elements 12 of heart valve stent 10 as clips formed in zigzag fashion (Z-clips), a finer angular positioning of the heart valve stent 10 can in particular ensue. Both the positioning stent 20 as well as the heart valve stent 10 can be configured of individual segments, whereby the individual segments can be rotated relative one another. This increases flexibility when inserting the two stents into the aorta. It is in particular possible to realize a finer angular positioning to heart valve stent 10. It is thus conceivable, for example, for the physician to alternatively insert a rotated prosthetic heart valve 11. The segmented configuration is also of advantage with respect to the collapsing of the heart valve stent and the positioning stent since the segmented stents in collapsed state can be housed compressed within a catheter.
The docking segment 24′ of the positioning stent can comprise eyelets or nubs to which the explantation catheter 30 is to be affixed in order to effect such an explantation. Attaching to eyelets is possible via preferably three to six eyelets and three to six loops which are subsequently pulled out of the eyelets. The positioning stent 20 as well as the heart valve stent 10 is in particular completely reversibly withdrawable in the catheter, which enables the complete removal of the positioning stent and/or the heart valve stent.
The disengaging of the mechanically stable connection between positioning stent 20 and heart valve stent 10 by means of external manipulation, in the case of valve dysfunction for example, is possible when the previously implanted heart valve stent 10 exhibits a retrievable structure suitable for this purpose. This could consist of a plurality of connecting struts which project medially from the upper outer end of the stent into the vascular lumen and join there with an anchoring device (eyelet, hook, nub, etc.). Should this anchoring device now be grasped by the retrieval catheter wire of catheter 30, the distal portion of heart valve stent 10 can thus be compressed toward the lumen and drawn into a catheter tube 33. This then again provides the opportunity of using the positioning stent 20 which remains as a marking and anchoring base for a new heart valve stent 10.
The positioning stent 20 is made from a solid mesh (wire, polymer, etc.) or produced in a laser-cutting process. Applicable as suitable materials for the positioning stent are NiTi, high-grade steel or biocompatible plastics. For spatial orientation, x-ray markers can furthermore be disposed on positioning stent 20.
Claims
1. A method of treating a native aortic valve, comprising:
- positioning an expandable first stent adjacent the native aortic valve, the first stent having a first attachment element disposed adjacent a distal end of the first stent and at least one positioning element disposed adjacent a proximal end of the first stent, wherein the proximal end of the first stent is positioned closer to a patient's heart than the distal end of the first stent;
- positioning the at least one positioning element behind a portion of a leaflet of the native valve, radially outward from the leaflet and radially inward from a portion of a vessel wall;
- anchoring the first stent relative to the native aortic valve by expanding the first stent;
- after expanding the first stent, positioning an expandable second stent radially within the first stent to connect the second stent to the first stent, the second stent having a second attachment element disposed adjacent a distal end of the second stent, wherein the proximal end of the second stent is positioned closer to the patient's heart than the distal end of the second stent; and
- compressing at least a portion of a leaflet of the native valve against a vessel wall such that the compressed portion of the leaflet is positioned radially inward from the at least one positioning element of the first stent and radially outward from a portion of the second stent component;
- wherein the first and second attachment elements are complimentary to one another.
2. The method of claim 1, wherein the second stent includes a plurality of engagement elements configured to be selectively attached to a catheter.
3. The method of claim 1, further including:
- disconnecting the second stent from the first stent; and
- positioning an expandable third stent radially within the first stent to connect the third stent to the first stent, the third stent having a third attachment element adjacent a distal end of the third stent;
- wherein the first and third attachment elements are complimentary to one another.
4. The method of claim 1, further including:
- positioning the at least one positioning element behind the portion of the leaflet before compressing a portion of the leaflet against the vessel wall.
4922905 | May 8, 1990 | Strecker |
5002566 | March 26, 1991 | Carpentier et al. |
5061277 | October 29, 1991 | Carpentier et al. |
5094661 | March 10, 1992 | Levy et al. |
5104407 | April 14, 1992 | Lam et al. |
5197979 | March 30, 1993 | Quintero et al. |
5279612 | January 18, 1994 | Eberhardt |
5332402 | July 26, 1994 | Teitelbaum |
5336258 | August 9, 1994 | Quintero et al. |
5352240 | October 4, 1994 | Ross |
5368608 | November 29, 1994 | Levy et al. |
5411552 | May 2, 1995 | Andersen et al. |
5456713 | October 10, 1995 | Chuter |
5509930 | April 23, 1996 | Love |
5549666 | August 27, 1996 | Hata et al. |
5595571 | January 21, 1997 | Jaffe et al. |
5613982 | March 25, 1997 | Goldstein |
5632778 | May 27, 1997 | Goldstein |
5674298 | October 7, 1997 | Levy et al. |
5679112 | October 21, 1997 | Levy et al. |
5683451 | November 4, 1997 | Lenker et al. |
5697972 | December 16, 1997 | Kim et al. |
5713953 | February 3, 1998 | Vallana et al. |
5746775 | May 5, 1998 | Levy et al. |
5755777 | May 26, 1998 | Chuter |
5824041 | October 20, 1998 | Lenker et al. |
5824080 | October 20, 1998 | Lamuraglia |
5840081 | November 24, 1998 | Andersen et al. |
5841382 | November 24, 1998 | Walden et al. |
5843181 | December 1, 1998 | Jaffe et al. |
5876434 | March 2, 1999 | Flomenblit et al. |
5880242 | March 9, 1999 | Hu et al. |
5895420 | April 20, 1999 | Mirsch et al. |
5899936 | May 4, 1999 | Goldstein |
5928281 | July 27, 1999 | Huynh et al. |
5935163 | August 10, 1999 | Gabbay |
5104407 | April 14, 1992 | Lam et al. |
5957949 | September 28, 1999 | Leonhardt et al. |
6001126 | December 14, 1999 | Nguyen-Thien-Nhon |
5061277 | October 29, 1991 | Carpentier et al. |
6077297 | June 20, 2000 | Robinson et al. |
6093530 | July 25, 2000 | McIlroy et al. |
6102944 | August 15, 2000 | Huynh et al. |
6117169 | September 12, 2000 | Moe |
6126685 | October 3, 2000 | Lenker et al. |
6168614 | January 2, 2001 | Andersen et al. |
6177514 | January 23, 2001 | Pathak et al. |
6183481 | February 6, 2001 | Lee et al. |
6200336 | March 13, 2001 | Pavcnik et al. |
6214055 | April 10, 2001 | Simionescu et al. |
6231602 | May 15, 2001 | Carpentier et al. |
6254564 | July 3, 2001 | Wilk et al. |
6254636 | July 3, 2001 | Peredo |
6283995 | September 4, 2001 | Moe et al. |
6287338 | September 11, 2001 | Sarnowski et al. |
6338740 | January 15, 2002 | Carpentier |
6342070 | January 29, 2002 | Nguyen-Thien-Nhon |
6344044 | February 5, 2002 | Fulkerson et al. |
6350278 | February 26, 2002 | Lenker et al. |
6379740 | April 30, 2002 | Rinaldi et al. |
6391538 | May 21, 2002 | Vyavahare et al. |
6425916 | July 30, 2002 | Garrison et al. |
6454799 | September 24, 2002 | Schreck |
6471723 | October 29, 2002 | Ashworth et al. |
6478819 | November 12, 2002 | Moe |
6508833 | January 21, 2003 | Pavcnik et al. |
6509145 | January 21, 2003 | Torrianni |
6521179 | February 18, 2003 | Girardot et al. |
6540782 | April 1, 2003 | Snyders |
6558417 | May 6, 2003 | Peredo |
6558418 | May 6, 2003 | Carpentier et al. |
6572642 | June 3, 2003 | Rinaldi et al. |
6582462 | June 24, 2003 | Andersen et al. |
6585766 | July 1, 2003 | Huynh et al. |
6613086 | September 2, 2003 | Moe et al. |
6682559 | January 27, 2004 | Myers et al. |
6730118 | May 4, 2004 | Spenser et al. |
6736845 | May 18, 2004 | Marquez et al. |
6767362 | July 27, 2004 | Schreck |
6790230 | September 14, 2004 | Beyersdorf et al. |
6808529 | October 26, 2004 | Fulkerson |
6821211 | November 23, 2004 | Otten et al. |
6821297 | November 23, 2004 | Snyders |
6824970 | November 30, 2004 | Vyavahare et al. |
6830584 | December 14, 2004 | Seguin |
6861211 | March 1, 2005 | Levy et al. |
6872226 | March 29, 2005 | Cali et al. |
6881199 | April 19, 2005 | Wilk et al. |
6893460 | May 17, 2005 | Spenser et al. |
6908481 | June 21, 2005 | Cribier |
6911043 | June 28, 2005 | Myers et al. |
6945997 | September 20, 2005 | Huynh et al. |
6974474 | December 13, 2005 | Pavcnik et al. |
7014655 | March 21, 2006 | Barbarash et al. |
7018406 | March 28, 2006 | Seguin et al. |
7037333 | May 2, 2006 | Myers et al. |
7050276 | May 23, 2006 | Nishiyama |
7078163 | July 18, 2006 | Torrianni |
7081132 | July 25, 2006 | Cook et al. |
7137184 | November 21, 2006 | Schreck |
7141064 | November 28, 2006 | Scott et al. |
7163556 | January 16, 2007 | Xie et al. |
7189259 | March 13, 2007 | Simionescu et al. |
7198646 | April 3, 2007 | Figulla et al. |
7201772 | April 10, 2007 | Schwammenthal et al. |
7238200 | July 3, 2007 | Lee et al. |
7252682 | August 7, 2007 | Seguin |
7318278 | January 15, 2008 | Zhang et al. |
7318998 | January 15, 2008 | Goldstein et al. |
7322932 | January 29, 2008 | Xie et al. |
7329278 | February 12, 2008 | Seguin et al. |
7381218 | June 3, 2008 | Schreck |
7393360 | July 1, 2008 | Spenser et al. |
7399315 | July 15, 2008 | Iobbi |
7452371 | November 18, 2008 | Pavcnik et al. |
7473275 | January 6, 2009 | Marquez |
7896915 | March 1, 2011 | Guyenot et al. |
7914575 | March 29, 2011 | Guyenot et al. |
8398704 | March 19, 2013 | Straubinger et al. |
8465540 | June 18, 2013 | Straubinger et al. |
8468667 | June 25, 2013 | Straubinger et al. |
8551160 | October 8, 2013 | Figulla et al. |
20010011187 | August 2, 2001 | Pavcnik et al. |
20010039450 | November 8, 2001 | Pavcnik et al. |
20020032481 | March 14, 2002 | Gabbay |
20020055775 | May 9, 2002 | Carpentier et al. |
20020123790 | September 5, 2002 | White et al. |
20020133226 | September 19, 2002 | Marquez et al. |
20020151970 | October 17, 2002 | Garrison et al. |
20020193871 | December 19, 2002 | Beyersdorf et al. |
20020198594 | December 26, 2002 | Schreck |
20030014104 | January 16, 2003 | Cribier |
20030023300 | January 30, 2003 | Bailey et al. |
20030027332 | February 6, 2003 | Lafrance et al. |
20030036791 | February 20, 2003 | Philipp et al. |
20030036795 | February 20, 2003 | Andersen et al. |
20030040792 | February 27, 2003 | Gabbay |
20030050694 | March 13, 2003 | Yang et al. |
20030055495 | March 20, 2003 | Pease et al. |
20030065386 | April 3, 2003 | Weadock |
20030114913 | June 19, 2003 | Spenser et al. |
20030125795 | July 3, 2003 | Pavcnik et al. |
20030139796 | July 24, 2003 | Sequin et al. |
20030139803 | July 24, 2003 | Sequin et al. |
20030149476 | August 7, 2003 | Damm et al. |
20030149478 | August 7, 2003 | Figulla et al. |
20030153974 | August 14, 2003 | Spenser et al. |
20030195620 | October 16, 2003 | Huynh et al. |
20030236570 | December 25, 2003 | Cook et al. |
20040006380 | January 8, 2004 | Buck et al. |
20040039436 | February 26, 2004 | Spenser et al. |
20040049262 | March 11, 2004 | Obermiller et al. |
20040073289 | April 15, 2004 | Hartley et al. |
20040078950 | April 29, 2004 | Schreck et al. |
20040102855 | May 27, 2004 | Shank |
20040117004 | June 17, 2004 | Osborne et al. |
20040117009 | June 17, 2004 | Cali et al. |
20040148018 | July 29, 2004 | Carpentier et al. |
20040153145 | August 5, 2004 | Simionescu et al. |
20040186558 | September 23, 2004 | Pavcnik et al. |
20040186563 | September 23, 2004 | Lobbi |
20040186565 | September 23, 2004 | Schreck |
20040193244 | September 30, 2004 | Hartley et al. |
20040210301 | October 21, 2004 | Obermiller et al. |
20040210304 | October 21, 2004 | Seguin et al. |
20040210307 | October 21, 2004 | Khairkhahan |
20040260389 | December 23, 2004 | Case et al. |
20050009000 | January 13, 2005 | Wilhelm et al. |
20050033220 | February 10, 2005 | Wilk et al. |
20050033398 | February 10, 2005 | Seguin |
20050043790 | February 24, 2005 | Seguin |
20050049692 | March 3, 2005 | Numamoto et al. |
20050075725 | April 7, 2005 | Rowe |
20050075776 | April 7, 2005 | Cho |
20050096726 | May 5, 2005 | Sequin et al. |
20050096735 | May 5, 2005 | Hojeibane et al. |
20050096736 | May 5, 2005 | Osse et al. |
20050098547 | May 12, 2005 | Cali et al. |
20050113910 | May 26, 2005 | Paniagua et al. |
20050119728 | June 2, 2005 | Sarac |
20050119736 | June 2, 2005 | Zilla et al. |
20050137687 | June 23, 2005 | Salahieh et al. |
20050137688 | June 23, 2005 | Salahieh et al. |
20050137689 | June 23, 2005 | Salahieh et al. |
20050137690 | June 23, 2005 | Salahieh et al. |
20050137697 | June 23, 2005 | Salahieh et al. |
20050137698 | June 23, 2005 | Salahieh et al. |
20050137702 | June 23, 2005 | Haug et al. |
20050143804 | June 30, 2005 | Haverkost |
20050143807 | June 30, 2005 | Pavcnik et al. |
20050149166 | July 7, 2005 | Schaeffer et al. |
20050150775 | July 14, 2005 | Zhang et al. |
20050171597 | August 4, 2005 | Boatman et al. |
20050171598 | August 4, 2005 | Schaeffer |
20050192665 | September 1, 2005 | Spenser et al. |
20050197695 | September 8, 2005 | Stacchino et al. |
20050222668 | October 6, 2005 | Schaeffer et al. |
20050234546 | October 20, 2005 | Nugent et al. |
20050267560 | December 1, 2005 | Bates |
20060009842 | January 12, 2006 | Huynh et al. |
20060025857 | February 2, 2006 | Bergheim et al. |
20060047343 | March 2, 2006 | Oviatt et al. |
20060058864 | March 16, 2006 | Schaeffer et al. |
20060074484 | April 6, 2006 | Huber |
20060074485 | April 6, 2006 | Realyvasquez |
20060111770 | May 25, 2006 | Pavcnik et al. |
20060142846 | June 29, 2006 | Pavcnik et al. |
20060149360 | July 6, 2006 | Schwammenthal et al. |
20060155366 | July 13, 2006 | LaDuca et al. |
20060167543 | July 27, 2006 | Bailey et al. |
20060178740 | August 10, 2006 | Stacchino et al. |
20060193885 | August 31, 2006 | Neethling et al. |
20060210597 | September 21, 2006 | Hiles |
20060224183 | October 5, 2006 | Freudenthal |
20060229718 | October 12, 2006 | Marquez |
20060229719 | October 12, 2006 | Marquez et al. |
20060246584 | November 2, 2006 | Covelli |
20060259134 | November 16, 2006 | Schwammenthal et al. |
20060259136 | November 16, 2006 | Nguyen et al. |
20060259137 | November 16, 2006 | Artof et al. |
20060265056 | November 23, 2006 | Nguyen et al. |
20060271161 | November 30, 2006 | Meyer et al. |
20060287717 | December 21, 2006 | Rowe et al. |
20060287719 | December 21, 2006 | Rowe et al. |
20060290027 | December 28, 2006 | O'Connor et al. |
20060293745 | December 28, 2006 | Carpentier et al. |
20070005129 | January 4, 2007 | Damm et al. |
20070005131 | January 4, 2007 | Taylor |
20070005132 | January 4, 2007 | Simionescu et al. |
20070020248 | January 25, 2007 | Everaerts et al. |
20070021826 | January 25, 2007 | Case et al. |
20070027535 | February 1, 2007 | Purdy, Jr. et al. |
20070032856 | February 8, 2007 | Limon |
20070038291 | February 15, 2007 | Case et al. |
20070038295 | February 15, 2007 | Case et al. |
20070043435 | February 22, 2007 | Seguin et al. |
20070050014 | March 1, 2007 | Johnson |
20070088431 | April 19, 2007 | Bourang et al. |
20070093887 | April 26, 2007 | Case et al. |
20070100435 | May 3, 2007 | Case et al. |
20070100440 | May 3, 2007 | Figulla et al. |
20070112422 | May 17, 2007 | Dehdashtian |
20070123700 | May 31, 2007 | Ueda et al. |
20070123979 | May 31, 2007 | Perier et al. |
20070142906 | June 21, 2007 | Figulla et al. |
20070162103 | July 12, 2007 | Case et al. |
20070173932 | July 26, 2007 | Cali et al. |
20070179592 | August 2, 2007 | Schaeffer |
20070185565 | August 9, 2007 | Schwammenthal et al. |
20070203576 | August 30, 2007 | Lee et al. |
20070213813 | September 13, 2007 | Von Segesser et al. |
20070239271 | October 11, 2007 | Nguyen |
20070244551 | October 18, 2007 | Stobie |
20070260327 | November 8, 2007 | Case et al. |
20070288087 | December 13, 2007 | Fearnot et al. |
20080004688 | January 3, 2008 | Spenser et al. |
20080021546 | January 24, 2008 | Patz et al. |
20080033534 | February 7, 2008 | Cook et al. |
20080065011 | March 13, 2008 | Marchand et al. |
20080071361 | March 20, 2008 | Tuval et al. |
20080071362 | March 20, 2008 | Tuval et al. |
20080071363 | March 20, 2008 | Tuval et al. |
20080071366 | March 20, 2008 | Tuval et al. |
20080071368 | March 20, 2008 | Tuval et al. |
20080071369 | March 20, 2008 | Tuval et al. |
20080077236 | March 27, 2008 | Letac et al. |
20080086205 | April 10, 2008 | Gordy et al. |
20080097586 | April 24, 2008 | Pavcnik et al. |
20080102439 | May 1, 2008 | Tian et al. |
20080133003 | June 5, 2008 | Seguin et al. |
20080140189 | June 12, 2008 | Nguyen et al. |
20080154355 | June 26, 2008 | Benichou et al. |
20080200977 | August 21, 2008 | Paul et al. |
20080215143 | September 4, 2008 | Seguin |
20080255661 | October 16, 2008 | Straubinger et al. |
20080262602 | October 23, 2008 | Wilk et al. |
20080269878 | October 30, 2008 | Iobbi |
20080275549 | November 6, 2008 | Rowe |
20090216310 | August 27, 2009 | Straubinger et al. |
20090216313 | August 27, 2009 | Straubinger et al. |
20090222076 | September 3, 2009 | Figulla et al. |
20090234443 | September 17, 2009 | Ottma et al. |
20100174362 | July 8, 2010 | Straubinger et al. |
20100249915 | September 30, 2010 | Zhang |
20100249916 | September 30, 2010 | Zhang |
20100249917 | September 30, 2010 | Zhang |
20100249918 | September 30, 2010 | Zhang |
20100292779 | November 18, 2010 | Straubinger et al. |
20110015616 | January 20, 2011 | Straubinger et al. |
20110106244 | May 5, 2011 | Ferrari et al. |
20110238159 | September 29, 2011 | Guyenot et al. |
20110288626 | November 24, 2011 | Straubinger et al. |
20110295363 | December 1, 2011 | Girard et al. |
20130079869 | March 28, 2013 | Straubinger et al. |
20130144203 | June 6, 2013 | Wilk et al. |
20130178930 | July 11, 2013 | Straubinger et al. |
20130253635 | September 26, 2013 | Straubinger et al. |
2006308187 | May 2007 | AU |
2006310681 | May 2007 | AU |
2436258 | January 2005 | CA |
2436258 | January 2005 | CA |
2595233 | July 2006 | CA |
2595233 | July 2006 | CA |
2627555 | May 2007 | CA |
19 546 692 | June 1997 | DE |
20 00 3874 | June 2000 | DE |
19 857 887 | July 2000 | DE |
10 010 073 | September 2001 | DE |
10 010 074 | October 2001 | DE |
10 121 210 | November 2002 | DE |
19 546 692 | November 2002 | DE |
101 21 210 | November 2002 | DE |
19546692 | November 2002 | DE |
10 301 026 | February 2004 | DE |
10335948 | July 2004 | DE |
10 302 447 | February 2005 | DE |
10 010 074 | April 2005 | DE |
19857887 | May 2005 | DE |
10 010 073 | December 2005 | DE |
10 2005 051 849 | May 2007 | DE |
10 2005 052628 | May 2007 | DE |
20 2007 005 491 | July 2007 | DE |
0 084 395 | July 1983 | EP |
0458877 | August 1990 | EP |
0 402 036 | December 1990 | EP |
0 402 176 | December 1990 | EP |
0402176 | December 1990 | EP |
0 458 877 | April 1991 | EP |
0 515 324 | November 1992 | EP |
0 547 135 | June 1993 | EP |
0871414 | September 1995 | EP |
0 592 410 | October 1995 | EP |
0756498 | October 1995 | EP |
0 592 410 | November 1995 | EP |
0786970 | May 1996 | EP |
0 729 364 | September 1996 | EP |
0 756 498 | May 1997 | EP |
0 778 775 | June 1997 | EP |
0786970 | August 1997 | EP |
0888142 | September 1997 | EP |
0971649 | October 1998 | EP |
0 928 615 | July 1999 | EP |
1051204 | July 1999 | EP |
1089676 | December 1999 | EP |
0 986 348 | March 2000 | EP |
1117446 | April 2000 | EP |
1 164 976 | August 2000 | EP |
1158937 | September 2000 | EP |
1 041 942 | October 2000 | EP |
1 041 943 | October 2000 | EP |
1171061 | October 2000 | EP |
1206179 | February 2001 | EP |
1 117 446 | July 2001 | EP |
1 255 510 | August 2001 | EP |
1259193 | September 2001 | EP |
1 206 179 | May 2002 | EP |
1347785 | August 2002 | EP |
1235537 | September 2002 | EP |
1 251 804 | October 2002 | EP |
1248655 | October 2002 | EP |
1251804 | October 2002 | EP |
1257305 | November 2002 | EP |
0 971 649 | December 2002 | EP |
1395208 | December 2002 | EP |
1 401 359 | January 2003 | EP |
1406561 | January 2003 | EP |
1 281 375 | February 2003 | EP |
1281357 | February 2003 | EP |
1281375 | February 2003 | EP |
1408882 | February 2003 | EP |
1 435 878 | April 2003 | EP |
1 435 879 | April 2003 | EP |
1 441 672 | June 2003 | EP |
1 017 868 | September 2003 | EP |
1354569 | October 2003 | EP |
1494616 | October 2003 | EP |
1 519 697 | January 2004 | EP |
1 539 047 | April 2004 | EP |
1551274 | April 2004 | EP |
1 560 542 | May 2004 | EP |
1414295 | May 2004 | EP |
1 452 153 | September 2004 | EP |
1 603 493 | September 2004 | EP |
1452153 | September 2004 | EP |
0 987 998 | October 2004 | EP |
1 087 727 | November 2004 | EP |
1 233 731 | December 2004 | EP |
1 499 366 | January 2005 | EP |
1 663 070 | March 2005 | EP |
1 253 875 | April 2005 | EP |
1 667 614 | April 2005 | EP |
1 251 803 | June 2005 | EP |
1 702 247 | July 2005 | EP |
1734902 | August 2005 | EP |
1 469 797 | November 2005 | EP |
1835948 | June 2006 | EP |
1 690 515 | August 2006 | EP |
1863545 | September 2006 | EP |
1893132 | November 2006 | EP |
1901681 | December 2006 | EP |
1 251 805 | March 2007 | EP |
1 255 510 | March 2007 | EP |
1835948 | September 2007 | EP |
1 112 042 | November 2007 | EP |
1 878 407 | January 2008 | EP |
1 886 649 | February 2008 | EP |
1 900 343 | March 2008 | EP |
1 259 195 | October 2008 | EP |
1 980 220 | October 2008 | EP |
1259195 | October 2008 | EP |
1 99 4913 | November 2008 | EP |
2 000 115 | December 2008 | EP |
2 828 263 | February 2003 | FR |
2433700 | July 2007 | GB |
2440809 | February 2008 | GB |
2003-523262 | August 2003 | JP |
2003-524504 | August 2003 | JP |
2005-118585 | May 2005 | JP |
2007-296375 | November 2007 | JP |
WO 90/09102 | August 1990 | WO |
WO 95/11055 | April 1995 | WO |
WO 95/24873 | September 1995 | WO |
WO 95/28183 | October 1995 | WO |
WO 96/13227 | May 1996 | WO |
WO 97/32615 | September 1997 | WO |
WO 98/43556 | October 1998 | WO |
WO 98/46165 | October 1998 | WO |
WO 99/37337 | July 1999 | WO |
WO-99/66863 | December 1999 | WO |
WO 00/15148 | March 2000 | WO |
WO 00/18445 | April 2000 | WO |
WO 00/25702 | May 2000 | WO |
WO 00/47139 | August 2000 | WO |
WO 00/53125 | September 2000 | WO |
WO 00/62714 | October 2000 | WO |
WO 01/10209 | February 2001 | WO |
WO 01/35870 | May 2001 | WO |
WO 01/41679 | June 2001 | WO |
WO 01/51104 | July 2001 | WO |
WO 01/54625 | August 2001 | WO |
WO 01/58503 | August 2001 | WO |
WO 01/62189 | August 2001 | WO |
WO 01/64137 | September 2001 | WO |
WO 02/36048 | May 2002 | WO |
WO 02/058745 | August 2002 | WO |
WO 02/100301 | December 2002 | WO |
WO 02/102286 | December 2002 | WO |
WO 03/003949 | January 2003 | WO |
WO 03/007795 | January 2003 | WO |
WO 03/009785 | February 2003 | WO |
WO 03/011195 | February 2003 | WO |
WO 03/013239 | February 2003 | WO |
WO 03/028592 | April 2003 | WO |
WO 03/047468 | June 2003 | WO |
WO 03/079928 | October 2003 | WO |
WO 03/096935 | November 2003 | WO |
WO 2004/004597 | January 2004 | WO |
WO 2004/016200 | February 2004 | WO |
WO 2004/016201 | February 2004 | WO |
WO 2004/019825 | March 2004 | WO |
WO 2004/026117 | April 2004 | WO |
WO 2004/026173 | April 2004 | WO |
WO 2004/028399 | April 2004 | WO |
WO 2004/043301 | May 2004 | WO |
WO 2004/082527 | September 2004 | WO |
WO 2004/082528 | September 2004 | WO |
WO 2004/096100 | November 2004 | WO |
WO 2005/021063 | March 2005 | WO |
WO 2005/034812 | April 2005 | WO |
WO 2005/062980 | July 2005 | WO |
WO 2005/062980 | July 2005 | WO |
WO 2005/063980 | July 2005 | WO |
WO 2005/070343 | August 2005 | WO |
WO 2005/072654 | August 2005 | WO |
WO 2006/066327 | June 2006 | WO |
WO 2006/076890 | July 2006 | WO |
WO 2006/102063 | September 2006 | WO |
WO 2006/108090 | October 2006 | WO |
WO 2006/124649 | November 2006 | WO |
WO 2006/127756 | November 2006 | WO |
WO 2006/127765 | November 2006 | WO |
WO 2006/132948 | December 2006 | WO |
WO 2007/047488 | April 2007 | WO |
WO 2007/047945 | April 2007 | WO |
WO 2007/051620 | May 2007 | WO |
WO 2007/059252 | May 2007 | WO |
WO 2007/071436 | June 2007 | WO |
WO 2007/098232 | August 2007 | WO |
WO 2007/120543 | October 2007 | WO |
WO 2008/028569 | March 2008 | WO |
WO 2008/035337 | March 2008 | WO |
WO 2008/045949 | April 2008 | WO |
WO 2008/070797 | June 2008 | WO |
WO 2006/076890 | July 2008 | WO |
WO 2008/079962 | July 2008 | WO |
WO 2008/101083 | August 2008 | WO |
WO 2008/125153 | October 2008 | WO |
WO 2008/138584 | November 2008 | WO |
WO 2008/150529 | December 2008 | WO |
- Aortenklappenbioprothese erfolgreich in der Entwicklung, May 16, 2003 (1 page).
- English translation of Aortenklappenbioprotheseerfolgreich in der Entwicklung (2 pages).
- Screen shots from http://www.fraunhofer.de/presse/filme/2006/index.jsp, 2006 (2 pages).
- Liang, Ma, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” Eur. J. Cardio-Thoracic Surgery, vol. 28, pp. 194-198 (2005) (5 pages).
- Huber, Christoph H., et al. “Direct Access Valve Replacement (DAVR)—are we entering a new era in cardiac surgery?” Eur. J. Cardio-Thoracic Surgery, vol. 29, pp. 380-385 (2006) (6 pages).
- English translation of DE 19 546 692 A1 (4 pages).
- English translation of EP 1 469 797 B1 (16 pages).
- International Search Report for PCT/EP2006/010023.
- Klein, Allan L. et al., “Age-related Prevalence of Valvular Regurgitation in Normal Subjects: A Comprehensive Color Flow Examination of 118 Volunteers,” J. Am. Soc. Echocardiography, vol. 3, No. 1, pp. 54-63 (1990) (10 pages).
- Gummert, J.F. et al., “Cardiac Surgery in Germany During 2007: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 56, pp. 328-336 (2008) (9 pages).
- Gummert, J.F. et al., “Cardiac Surgery in Germany During 2006: A Report on Behalf of the German Society for Thoracic and Cardiovascular Surgery,” Thorac. Cardiov. Surg., vol. 55, pp. 343-350 (2007) (8 pages).
- File history for Geman Patent DE 195 46 692 filed Dec. 14, 1995 and patented Jul. 11, 2002.
- International Search Report for PCT/EP2006/010023, Mar. 23, 2007.
- Aortenklappenbioprothese erfolgreich in der Entwicklung, (1 page) May 16, 2003.
- Translation of Aortenklappenbioprothese erfolgreich in der Entwicklung ( 2 pages).
- Screen shots from http://www.fraunhofer.de/presse/filme/2006/index.jsp (2 pages), 2006.
- Liang, Ma, et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, 194-198 (5 pages), Jun. 13, 2005.
- Huber, Christoph, et al. “Direct Access Valve Replacement (DAVR)—are we entering a new era in cardiac surgery?” European Journal of Cardio-Thoracic Surgery, 380-385, (6 pages), Jan. 19, 2006.
- Translation of DE 19546692 A1 (4 pages), Jun. 19, 1997.
- Translation of EP 1469797 B1 (16 pages), Feb. 11, 2005.
Type: Grant
Filed: Aug 7, 2014
Date of Patent: Nov 3, 2015
Assignee: JENAVALVE TECHNOLOGY GMBH (Munich)
Inventors: Hans-Reiner Figulla (Jena), Markus Ferrari (Jena), Christoph Damm (Jena)
Primary Examiner: Catherine S Williams
Application Number: 14/454,285
International Classification: A61F 2/24 (20060101);